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[ Fusion and fission work
ET on the same principle
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A number of reactions are possible

“easiest”:
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~ M conditions to achieve the reaction
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conditions to achieve fusion reaction:
sufficiently high energy — high enough temperature — plasma state
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A plasma is electrically conducting and very reactive
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Conditions to sustain reaction

 fission: reaction propagated by neutrons - don’t loose them

« fusion: for the reaction to propagate,
conditions must be maintained

power must be large enough to compensate for the losses

hot enough: T, temperature

dense enough: n, density

well enough insulated: T, confinement time
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What is the meaning of the confinement time 1.7

Temperature

Time

Te

Tc is a measure of how fast the plasma looses its energy

The loss rate is smallest, t- largest
if the fusion plasma is big and well insulated
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Lawson Criterium

power must be large enough to compensate for the losses

l |

n2 <o (T) v> + external power radiation losses  n2 T2
— —
P:usion P xternal convection and conduction n T/ @
forP ema =0 = n(density) x 1 (confinement time) > function of T (Temperature)
| Lawson Criterium |
for I:’external #0
Q = Psycion! Pexternal = n Xt >function of Tand Q
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Lawson Criterium
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How can a plasma be confined ?

Gravitational
Confinement Magnetic Confinement

Magnetic Field

Intenze Energy
Beams

Inertial O
Conflne men‘t Fuel Pellzt
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Magnetic confinement

Particles move freely along field lines:
how can we prevent losses in that direction ?

two solutions o _ _
« pinching the field lines at the end

x = ——> reflection (“mirror”)

—— linear arrangement

but still losses at the end

e closing the field lines on themselves
——> no end losses

toroidal confinement

however: a pure toroidal field does not work
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o .-_- Two major ways to avoid this charge separation

Stellarator Tokamak
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o JET: the European Tokamak
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Heat and particle transport

“ classical transport”

step size (5T, 10 keV)
ion (H) =2 mm

electron = 0.05 mm

.Noterdaeme ICENES 2005, Brussels, August 22, 2005 2005.19.17



Heat and particle transport

but, there are instabilities and turbulence

JGO1.62/3¢ i ©
ligh E
S
=l
plasma magnetic field
step size

J.-M.Noterdaeme ICENES 2005, Brussels, August 22, 2005 2005.19.18



Transport dominated by turbulence

For diffusive processes:
» Confinement time t¢ o a%/x

(a = small Plasmaradius,
k = heat conductivity)

QuickTime™ and a
Microsoft Video 1 decompressor
are needed to see this picture.

smaller «x = larger 1¢

Turbulence — one of the central theme of plasmaphysics
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Improvement of the confinement

15
| For diffusive processes:
s | » Confinement time 1 oc a%/k
o 10 .
S | (a = small Plasmaradius,
= — ..
3 k = heat conductivity)
=
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turbulence can be suppressed by a variation of rotation speed
(shear in rotation) leading to an improvement of 1.
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What has been achieved ?

» 16 MW
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record (Q = 0.8) but
not yet self sustaining !
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How far are we on the road
to the sustained fusion conditions

Evolution of the performance over the years
n matches that of computers “Moore’s law”
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We need a larger machine

« for a sustained reaction: n 1t > f (T)

 we need a larger confinement time
7 Temperature

thus

- better insulation

- larger machine

> |

> Time
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Size from scaling laws
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ITER
JET
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2 1 ITER

R=6.2m,a=2m, Tg=3 s
ITER

JET

Central

Solenoid = T~

Toroidal Field
Cails

Poloidal Field Volume 850 m3
cote Current 15 MA
e o — Magnetic field 53T
Fusion power 400 MW
_ ) Heating power 40- 90 MW
pe FSON “ 4= Q 10
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The overall dimension of the machineareH=24 m, D = 28 m

e T The reactor building (partially underground) will fit
- under the first level of the Eiffel tower (H = 58 m)

and is dwarfed by the size of an oil platform

Tritium building
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Fission reactor
Olkiluoto 3, in Finland
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EPR and ITER buildings

both approximately 60 m high

Tokamak building

Double-wall containment with Molten “:’ spreading GL+56.5m
ventilation and lilkering system ea

remaval system

/ ’ Containment heat ‘

Tritium building

|

Water tank inside
contalnment

d-train
redundancy of
main safeguard

: systems GL-231m
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A site was recently chosen

» there were originally 4 candidate sites
e then 2
e at the end of June 2005: decision for Cadarache

France

o 5 i W
" Cadarache e S | et (_larington

3

yaridellos ‘
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= B cadarache, near Aix en Provence
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Construction schedule: 10 years
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- Both nuclear, but there are differences

a@ JET

S Fusion reaction: 2D+ 3T — 4He + n + Energy

D

[ .. :

3, Fission reaction: 23U +'n > x.n+Y + Z + Energy
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W cessssd
lEne:gg;fgsed """ Fission | 236 radioactive
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fuel mass smaller by factor approx 4 -‘
(amount of fuel in reactor at any time much smaller) x_\\b\_ ]
approx. 5 x more neutrons h
. . ol } L H_H___‘—-_——_T
with higher energy ) 1 2 345 6 7
dpa: 10 vs 150 MeV

no radioactive products, but structure becomes activated <:I

J.-M.Noterdaeme ICENES 2005, Brussels, August 22, 2005 2005.19.36



Fusion material
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[ Strong demands on materials
JET Power per unit area : ITER vs PWR

Average Power/Area:
approx. same 0.5 MW/m?2

Peaking factor: 10 vs. 2
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Power flux vs power density

sun, at surface = 0.25 W/ m3
sun, power producing core 0.3 R=10 W/ m3

sun center =250 W/ m?3
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The Fusion Reactor

e areactor may or may not be based on the tokamak concept
— tokamak presently the best to achieve the fusion conditions — T

 fusion has some definite positive points
— D and Li readily available and not geographically localized
— about 1 truck load /year necessary for a power plant
— reaction cannot run away (conditions, fuel inventory a few seconds)
— largest conceivable accident will not require evacuation
— no direct emissions (CO,)
— final products of the reaction are not radioactive
— material will be activated by neutrons, but some choices possible
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Towards commercial power
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Synergy of Fission and Fusion

* nuclear fusion is a nuclear process and will need nuclear engineers

fission and fusion will only be accepted
if the public opinion becomes more positive towards nuclear energy

« for public acceptance: critical issues are waste management and safety
* long term fission requires reprocessing and breeders
e fusion could in the long term take over from fission

« for the next decades, there is a strong role for fission
thereby a one through cycle, without reprocessing would suffice

* this could lead to better acceptance

J.-M.Noterdaeme ICENES 2005, Brussels, August 22, 2005 2005.19.43



. am N
)has made substantiz

:‘ L. ll .
§/ L3

* We are embark;ga on the ne)i't"ghtep:l .l:i'ER
« ITER will be a ﬁ'ﬁglejy?machine S
2 A : : 4
L i 1 ¢
« the prospect of fusion as a long term energy option

L]

could influence positively the further development of fission

' L



	Controlled Fusion, from Basic Plasma Physics to Nuclear Engineering
	Fusion and fission work on the same principle
	A number of reactions are possible
	Conditions to achieve the reaction
	What is a plasma : fourth state of matter
	Conditions to sustain reaction
	Lawson Criterium
	How can a plasma be confined ?
	Magnetic confinement
	Toroidal field alone is insufficient
	Two major ways to avoid this charge separation
	JET: the European Tokamak
	Heat and particle transport
	Heat and particle transport
	Transport dominated by turbulence
	Improvement of the confinement
	What has been achieved ?
	How far are we on the road to the sustained fusion conditions
	We need a larger machine
	Size from scaling laws
	ASDEX Upgrade
	JET, without and with plasma
	ITER
	Fission reactor Olkiluoto 3, in Finland
	EPR and ITER buildings
	A site was recently chosen
	Cadarache, near Aix en Provence
	Construction schedule: 10 years
	Both nuclear, but there are differences
	Fusion material
	Strong demands on materialsPower per unit area : ITER vs PWR
	Power flux vs power density
	The Fusion Reactor
	Towards commercial power
	Synergy of Fission and Fusion

