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Fusion and fission work
on the same principle
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A number of reactions are possible
• D + D 
• D + 3He

• D + T

• D + T → 4He + n + ∆E

n + 6Li → 4He + T

n + 7Li → 4He + T + n

keV

“easiest”:  “largest” cross section
at “lowest” temperature

• D + T

D + Li → 4He + 4000  GW d/ Ton 1 eV ≈ 104 K
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Conditions to achieve the reaction

energy in center of mass

Fission

Fusion

conditions to achieve fusion reaction:
sufficiently high energy → high enough temperature → plasma state
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What is a plasma : fourth state of matter

Increasing Temperature

A plasma is electrically conducting and very reactive
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Conditions to sustain reaction

• fission: reaction propagated by neutrons → don’t loose them

• fusion: for the reaction to propagate, 
conditions must be maintained

power must be large enough to compensate for the losses

hot enough: T, temperature

dense enough: n, density

well enough insulated: τE, confinement time
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What is the meaning of the confinement time τE?

τE

τE is a measure of how fast the plasma looses its energy

Time

Temperature

1/e

The loss rate is smallest, τE  largest
if the fusion plasma is big and well insulated
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Lawson Criterium

n2 <σ  (Τ) v>  + external power

power must be large enough to compensate for the losses

radiation losses n2 T1/2

convection and conduction   n T /  τEPfusion Pexternal

for Pexternal = 0 ⇒ n (density) x τE (confinement time) > function of  T  (Temperature)

Lawson Criterium 

for Pexternal ≠ 0

⇒ n x τE > function of  T and QQ = Pfusion / Pexternal



J.-M.Noterdaeme 2005.19.10ICENES 2005, Brussels,  August 22, 2005

Lawson Criterium
n x τE > f (T)

(Pext = 0)

T

n τE

sometimes
also transformed into

n x τE > f (T, Q = Pfus/Pext)
(Pext ≠ 0)

n x τE > f (T)

(taking into account temperature 
dependence near minimum)

n x τE x T  > 3 1021 (m-3 s keV)
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How can a plasma be confined ?
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Magnetic confinement
Particles move freely along field lines:

how can we prevent losses in that direction ?
two solutions

• pinching the field lines at the end

reflection (“mirror”)

linear arrangement

but still losses at the end

however: a pure toroidal field does not work

• closing the field lines on themselves

no end losses

toroidal confinement
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Toroidal field alone is insufficient
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Two major ways to avoid this charge separation

+ + + +

- - - -

.

Stellarator Tokamak
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Components of a TokamakJET: the European Tokamak
• 60 m3

• up to 4 T

• up to 5 MA

• plasma 
volume

• magn. 
field.

• plasma 
current
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Heat and particle transport

“ classical transport”

step size

step size ( 5 T, 10 keV)

ion (H) = 2 mm  

electron = 0.05 mm
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Heat and particle transport

heavy fluid

light fluid

he
av

y
flu

id

lig
ht

 fl
ui

d

plasma

step size

but, there are instabilities and turbulence

magnetic field
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Transport dominated by turbulence

QuickTime™ and a
Microsoft Video 1 decompressor
are needed to see this picture.

For diffusive processes: 
• Confinement time τE ∝ a2/κ
(a = small Plasmaradius,
κ = heat conductivity)

smaller κ ⇒ larger τE

Turbulence – one of the central theme of plasmaphysics
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Improvement of the confinement

For diffusive processes: 
• Confinement time τE ∝ a2/κ
(a = small Plasmaradius,
κ = heat conductivity)

smaller κ ⇒ larger τE

turbulence can be suppressed by a variation of rotation speed
(shear in rotation) leading to an improvement of τE
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What has been achieved ?

in a D-T plasma,

with 20 MW input 
into the plasma

τE

16 MW

total output : max 16 MW

record  (Q = 0.8) but
not yet self sustaining !
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How far are we on the road 
to the sustained fusion conditions

T

n τE n τE T = 1021

Evolution of the performance over the years 
matches that of computers “Moore’s law”

single parameter: n τE T
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We need a larger machine
• for a sustained reaction :  n τE > f (T)
• we need a larger confinement time

Time

Temperature

1/e

τE

thus

how much larger ?

- better insulation

- larger machine
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Size from scaling laws

AUG JET

ITER

≈30 years
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ASDEX Upgrade
≈30 years

R = 1.65 m, a =0.5 m, τE = 0.1 s
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JET, without and with plasma
≈30 years

R = 3 m, a = 1 m, τE = 0.5 s
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ITER

R = 6.2 m, a = 2 m, τE = 3  s estimated cost : 
4 000 Million Euro

≈30 years

Volume 850 m3

Current 15 MA
Magnetic field 5.3 T
Fusion power 400 MW
Heating power 40- 90 MW
Q 10
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QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

The overall dimension of the machine are H = 24 m, D =  28 m

The reactor building (partially underground) will fit 
under the first level of the Eiffel tower (H = 58 m)

and is dwarfed by the size of an oil platform
(512 m)
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Fission reactor 
Olkiluoto 3, in Finland
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EPR and ITER buildings

both approximately 60 m high
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A site was recently chosen

• there were originally 4 candidate sites
• then 2
• at the end of June 2005: decision for Cadarache

France
Japan

Canada

Spain
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Cadarache, near Aix en Provence
ITER BuildingTore Supra

(existing French Tokamak)
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Construction schedule: 10 years

ITER International 
Organization

LICENSE TO 
CONSTRUCT

TOKAMAK ASSEMBLY 
STARTS

FIRST 
PLASMA

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Bid
Contract

EXCAVATE
TOKAMAK BUILDING

PFC BUILDING
OTHER BUILDINGS

TOKAMAK ASSEMBLY

COMMISSIONING

MAGNET

VESSEL

Bid Vendor’s Design

Bid

Install
cryostat

First sector Complete VV
Complete 
blanket/divertor

PFC Install CS

First sector Last sector

Last CSLast TFCCSPFC TFC
fabrication start

Contract

Contract

2016
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Both nuclear, but there are differences
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Fission reaction:  235U + 1n → x. n + Y + Z + Energy 

for the same power :

Mass 
input

Energy 
output

Neutron 
output

Neutron 
energy

Products

Fusion 5 17.6 1 14.1 4He
Fission 236 200 ≈ 2 radioactive

0 1 2 63 4 5 7
MeV

approx. 5 x more neutrons

fuel mass smaller by factor approx  4
(amount of fuel in reactor at any time much smaller)

no radioactive products, but structure becomes activated

with higher energy
dpa: 10 vs 150
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Fusion material
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after 2.5 y irradiation 
with averaged neutron wall load of  2 MW/m2 Forthy and Taylor

Euromat96 Conf.
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Strong demands on materials
Power per unit area : ITER vs PWR

Average Power/Area: 
approx. same 0.5 MW/m2

Peaking factor: 10 vs. 2
QuickTime™ and a

YUV420 codec decompressor
are needed to see this picture.
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Power flux vs power density
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sun, at surface ≈ 0.25 W / m3

sun, power producing core 0.3 R ≈ 10 W / m3

≈ 1 kW / m3

≈ 500 kW / m3

≈ 60 MW / m3

sun center ≈ 250 W / m3

0.5 MW/m2
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The Fusion Reactor
• a reactor may or may not be based on the tokamak concept

– tokamak presently the best to achieve the fusion conditions
– other concepts may have advantages as reactors

• fusion has some definite positive points
– D and Li readily available and not geographically localized
– about 1 truck load /year necessary for a power plant
– reaction cannot run away (conditions, fuel inventory a few seconds)
– largest conceivable accident will not require evacuation
– no direct emissions (CO2)
– final products of the reaction are not radioactive
– material will be activated by neutrons, but some choices possible
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Towards commercial power

Fusion power technology – DEMO-
relevant
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Decision 
point

Tokamak physics commercial
fusion power

Concept improvements, Stellarator

ITER-relevant technology

electrical
power 
production

DEMO
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Synergy of Fission and Fusion
• nuclear fusion is a nuclear process and  will need nuclear engineers

• fission and fusion will only be accepted 
if the public opinion becomes more positive towards nuclear energy

• for public acceptance: critical issues are waste management and safety

• long term fission requires reprocessing and breeders

• fusion could in the long term take over from fission

• for the next decades, there is a strong role for  fission
thereby a one through cycle, without reprocessing would suffice

• this could lead to better acceptance



To Remember

• nuclear fusion has made substantial progress

• we are embarking on the next step: ITER

• ITER will be a nuclear machine 

• the prospect of fusion as a long term energy option

could influence positively the further development of fission
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