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Note. Since the first 28 postulates of Euclid’s Elements do not use the

Parallel Postulate, then these results will also be valid in our first example

of non-Euclidean geometry called hyperbolic geometry. Recall that one

of Euclid’s unstated assumptions was that lines are infinite. This will not

be the case in our other version of non-Euclidean geometry called elliptic

geometry and so not all 28 propositions will hold there (for example, in

elliptic geometry the sum of the angles of a triangle is always more than

two right angles and two of the angles together can be greater than two

right angles, contradicting Proposition 17). We will now start adding new

propositions (which we call “theorems”), but number them by adding a

prefix of “H” for hyperbolic.
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Note. We will lead into hyperbolic geometry by considering the Saccheri

quadrilateral:

We call AB the base, CD the summit, AD and BC the arms (which

are equal in length), and angles C and D the summit angles. We have

already stated the following result, but now offer a proof. The following

is also valid in Euclidean geometry.

Theorem H29. The summit angles of a Saccheri quadrilateral are equal.

Proof. Triangles ABC and BAD are congruent by Proposition 4 (S-

A-S). So AC = BD. Then triangles ADC and BCD are congruent by

Proposition 8 (S-S-S). Therefore angle ADC equals angle BCD.
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Theorem H30. The line joining the midpoints of the base and summit

of a Saccheri quadrilateral is perpendicular to each. The base and summit

therefore lie on parallel lines having a common perpendicular.

Proof. Let points E and F be the midpoints of AB and CD, respectively.

The triangles DEA and CBA are congruent by side-angle-side (S-A-S).

So DE = CE, ∠1 = ∠2, and ∠3 = ∠4. So triangles CEF and DEF are

congruent by side-side-side (S-S-S). Hence ∠5 = ∠6, and so each of these

angles is a right angle. Also, ∠7 = ∠8, and so ∠1+∠7 = ∠2+∠8 = 90◦.

So line EF is perpendicular to lines AB and CD. Therefore lines AB and

CD are parallel by Proposition 27 and EF is the common perpendicular.
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Theorem H31. The angle-sum of a triangle does not exceed two right

angles, or 180◦.

Proof. Suppose, to the contrary, that there exists a triangle ABC where

the angle-sum is 180◦ + α, where α is a positive number of degrees. Let

D be the midpoint of BC and take E on line AD so that AD = DE.

(Notice the unstated assumptions that lines are infinite is used here, just

as in the proof of Proposition 16.)

Angles BDA and EDC are vertical angles and so are equal (Proposition

15). So triangles BDA and CDE are congruent by Proposition 4 (S-A-S).

Now the angle-sum of triangle AEC is

∠1 + ∠2 + ∠3 + ∠4 = ∠1 + ∠2 + ∠5 + ∠6 (∗)

and this is the angle-sum of triangle ABC. Next, notice that ∠1 + ∠6 =

∠BAC. So either ∠1 or ∠6 is less than or equal to 1
2
∠BAC. Without

loss off generality, suppose ∠1 = ∠CAD ≤ 1
2
∠BAC. Then we repeat the

above process by taking the midpoint of DC and cutting ∠1 = ∠CAD
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into ∠CAF and ∠FAD.

Now either ∠CAF ≤ 1
2∠CAD or ∠FAD ≤ 1

2∠CAD. That is, either

∠CAF ≤ 1
22∠BAC or ∠FAD ≤ 1

22∠BAC. Continue in this manner by

bisecting the edges of the resulting triangles and creating smaller triangles

until a triangle PQR has been constructed with ∠R < α. Then in

triangle PQR the angle-sum is the same as the angle-sum of triangle ABC

by repeated application of (∗), and so 180◦ + α = ∠P + ∠Q + ∠R <

∠P +∠Q+α, or 180◦ < ∠P +∠Q. But then triangle PQR is a triangle

with two angles summing to more than two right angles, contradicting

Proposition 17.

Theorem H32. The summit angles of a Saccheri quadrilateral are not

obtuse.

Proof. Suppose, to the contrary, that the summit angles are obtuse.

Then the sum of the four angles of the Saccheri quadrilateral exceeds 360◦

and so the angle-sum of either triangle ABC or triangle ACD exceeds

180◦, contradicting Theorem H31. So the summit angles are not obtuse.
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Theorem H33. In a quadrilateral with a base, if the arms relative to

the base are unequal, so are the summit angles, and conversely, the greater

summit angle always lying opposite the greater arm.

Note. Theorems H29–H33 make no assumption about parallel lines and

so are valid in both Euclidean geometry and hyperbolic geometry. We

now start our study of hyperbolic geometry by explicitly stating our re-

placement of Euclid’s Parallel Postulate.

Postulate H5 (Hyperbolic Parallel Postulate). The summit an-

gles of a Saccheri quadrilateral are acute.
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Note. (From Non-Euclidean Geometry by Roberto Bonola, Dover Pub-

lications, 1955.) Historically, it is recognized that there are three founders

of hyperbolic geometry: Carl Frederick Gauss (1777–1855), Nicolai Loba-

chevsky (1793–1856), and Johann Bolyai (1802–1860). Historical docu-

ments (primarily in the form of letters from Gauss to other mathemati-

cians) seem to indicate that Gauss was the first to understand that there

was an alterative to Euclidean geometry. Quoting Bonola: “Gauss was

the first to have a clear view of geometry independent of the Fifth Pos-

tulate, but this remained quite fifty years concealed in the mind of the

great geometer, and was only revealed after the works of Lobatschewsky

(1829–30) and J. Bolyai (1832) appeared.” Based on various passages in

Gauss’s letters, one can tell that he began his thoughts on non-Euclidean

geometry in 1792. However, Gauss did not recognize the existence of a

logically sound non-Euclidean geometry by intuition or a flash of genius,

but only after years of thought in which he overcame the then universal

prejudice against alternatives to the Parallel Postulate. Letters show that

Gauss developed the fundamental theorems of the new geometry some

time shortly after 1813. However, in his correspondence, Gauss pleaded

with his colleagues to keep silent on his results. However, “throughout

his life he failed to publish anything on the matter” [An Introduction

to the History of Mathematics, 5th Edition, by Howard Eves, Saunders

College Publishing, 1983]. The honor of being the first to publish work on

non-Euclidean geometry goes to others.
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Note. (From Eves.) Johann Bolyai was a Hungarian officer in the Aus-

trian army and the son of Wolfgang Bolyai, a math teacher and friend

of Gauss. The elder Bolyai published a two volume work on elementary

mathematics. In 1829, Johann submitted a manuscript to his father and

in 1832 the paper appeared as a 26 page appendix to the first volume of

his father’s work. The paper was entitled “The Science of Absolute Space”

(a translation is available in Bonola). Johann Bolyai never published any-

thing further.

Note. (From Eves and Bonola.) Nicolai Lobachevsky was a Russian

math professor at the University of Kasan. On February 12, 1826 (in

the old Russian calender) he gave a talk to the Physical Mathematical

Section of the University of Kasan. He describes a geometry in which two

parallels to a given line can be drawn through a point not on the line.

A manuscript of this lecture is not known, but in 1829–30 Lobachevsky

published “On the Principles of Geometry” in the Kasan Bulletin which

contained the ideas of the lecture and further applications. This is the

first publication of non-Euclidean geometry and therefore Lobachevsky

justifiable has the claim as the first to clearly state properties of non-

Euclidean geometry. However, this work received little attention in Russia

and practically no attention elsewhere. During the 1830’s he published four

other works on geometry. Hoping to reach a wider audience, he published

“Geometrical Researches on the Theory of Parallels” in 1840 in German
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(a translation is available in Bonola). In 1855 he published a complete

exposition of his geometry in French. Lobachevsky died in 1856 and did

not live to see his work receive wide acceptance. For example, Johann

Bolyai did not even learn of the existence of Lobachevsky’s work until

1848. Some controversy exists as to who deserves credit for the early

work in non-Euclidean geometry. “There was considerable suspicion and

incrimination of plagiarism at the time” (Eves, page 374). Gauss and

Lobachevsky were together in Brunswick, Germany for two years (1805

and 1806) and corresponded later. It is reasonable that Gauss had an

influence on Lobachevsky’s thought (although Gauss had not solidified

his own ideas by 1806). Lobachevsky is given some recognition in that

the hyperbolic geometry developed in the first half of the 19th century is

sometimes called Lobachevskian geometry.

Note. Since the Hyperbolic Parallel Postulate is the negation of Euclid’s

Parallel Postulate (by Theorem H32, the summit angles must either be

right angles or acute angles). So the negation of anything equivalent to

Euclid’s Parallel Postulate will be a property of hyperbolic geometry. For

example, we can conclude:

(1) Parallel lines exist which are not equidistant from one another.

(2) A line and a point not on the line exist such that more than one

parallel to the line passes through the point.

(3) Similar triangles are always congruent.
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Note. Now we study some properties of hyperbolic geometry which do

not hold in Euclidean geometry.

Theorem H34. In a Saccheri quadrilateral, the summit is longer than

the base and the segment joining their midpoints is shorter than each arm.

Proof. Let points E and F be the midpoints of the base and summit,

respectively. Then EF is perpendicular to both the base and summit by

Theorem H30. Since ∠C and ∠D are acute, then AD > EF in quadri-

lateral AEFD and BC > EF in quadrilateral EBCF , by Theorem

H33. So segment EF is shorter than each arm. Now consider quadri-

lateral AEFD as having arms AE and DF . We have by Theorem H33

that DF > AE. Similarly, for quadrilateral EBCF , we get FC > EB.

Hence, combining these two inequalities, DF + FC > AE + EB or

DC > AB and the summit is longer than the base.
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Note. In the previous construction, we have EF as a transversal cutting

line DC and AB with alternate angles equal, and so by Proposition 27,

lines DC and AB are parallel. Since AD > EF and BC > EF , we see a

specific example of parallel lines which are not equidistant (the definition

of distance may seem a little muddled here — we measure the distance

from line l to line g at point A on line l by measuring the length of line

segment AD where AD is perpendicular to line l and point D is the point

where AD and g intersect, if in fact they do intersect).

Theorem H35. A Lambert quadrilateral is a quadrilateral with three

right angles. The fourth angle of a Lambert quadrilateral is acute and

each side adjacent to it is longer than the opposite side.

Note. We know by Proposition 27 that if two lines have a common per-

pendicular, then they are parallel. Conversely, though, in hyperbolic ge-

ometry, parallel lines sometimes have a common perpendicular and some-

times do not.

Theorem H36. If two parallel lines have a common perpendicular, then

they cannot have a second common perpendicular.

Proof. If two lines have two common perpendiculars, then they form a

Lambert quadrilateral with four right angles, contradicting Theorem H35.
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Note. We will need the following two theorems in a proof concerning

angle-sums of hyperbolic triangles.

Theorem H37. Two lines will be parallel, with a common perpen-

dicular, if there is a transversal which cuts the lines so as to form equal

alternate interior angles or equal corresponding angles.

Theorem H38. If two lines have a common perpendicular, there are

transversals which cut the lines so as to form equal alternate interior angles

(or equal corresponding angles). The only transversals with this property

are those which go through the point on that perpendicular which is mid-

way between the lines.

Theorem H39. The distance between two parallels with a common per-

pendicular is least when measured along that perpendicular. The distance

from a point on either parallel to the other increases as the point recedes

from the perpendicular in either direction. (By “distance” from a point

to a line is meant the length of a line segment from the line to the point

and perpendicular to the line.)

Proof. Let g and h be parallel lines with common perpendicular which

meets them at points E and F , respectively. Let B be any point on h

other than F and construct a perpendicular to g through B (Proposition
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12) and let C be the point where the perpendicular meets g.

Since ECBF is a Lambert quadrilateral, ∠1 is acute and BC > FE

(Theorem H35). So the distance from h to g is less when measured along

the common perpendicular than along any other perpendicular from h to

g.

Next, choose point B′ on h so that B is between F and B′. Let C ′

be the “projection of B′ onto g” (constructed similar to point C above).

Then ∠3 is acute since EC ′B′F is a Lambert quadrilateral. Also, ∠2 is

obtuse since ∠1 is acute and so ∠2 > ∠3 in quadrilateral BCC ′B′ and

by Theorem H33, B′C ′ > BC and distance between g and h increases as

described.
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Note. We are now starting to get some insight as to how to visualize

parallel lines in hyperbolic geometry. We might think of parallel lines

with a common perpendicular as “bending away” from each other:

Then a Saccheri quadrilateral is like:

and a Lambert quadrilateral is like:
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We can think of triangles, then, as looking like:

Note. The following is very clearly in contradiction to the result from

Euclidean geometry called Playfair’s Theorem.

Theorem H40. Given any line and any point not on it, there passes

infinitely many lines through the point which are parallel to the line and

have a common perpendicular with it.

Proof. Let g be a line and F a point not on it. If E is the projection

of F on g and line h is perpendicular to line EF at F , then h is one line

through F which is parallel to g and EF is the common perpendicular.

Next, take a point L1 on h to the right, say, of F . Let point M1 be the

projection of L1 onto line g. Then L1M1 > EF by Theorem H39. Let

P1 be the point on L1M1 such that M1P1 = EF . Then EM1P1F is

a Saccheri quadrilateral and so line FP1 and g are parallel and have a

common perpendicular by Theorem H30 (the common perpendicular is

based on the midpoints of FP1 and EM1). Similarly, by taking L2 as a
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point to the right of F , and create line FP2 parallel to g. Now line h is

distinct from lines FP1 and FP2 “clearly.” We need to show lines FP1

and FP2 are distinct. Suppose to the contrary that lines FP1 and FP2

are the same. Then there are three points on this line, F , P1, and P2,

which are each the same distance from line g, contradicting one of the

homework problems. Therefore the lines are distinct and for any point on

h to the right (or for that matter, the left) of F , there is a line parallel to

g through F .

Note. We now turn our attention to hyperbolic triangles. We have

already argued that the angles of a triangle sum to less than 180◦ by

considering negatives of things logically equivalent to Euclid’s Parallel

Postulate. We now give a proof of this based on other established results.
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Theorem H42. The angle-sum of every triangle is less than 180◦.

Proof. First, consider a right triangle ABC with right angle C. Let BD

be the line through B such that ∠1 = ∠2.

Lines AC and BD are then parallel by Proposition 27 and have a common

perpendicular by Theorem H37. Let the common perpendicular meet lines

AC and BD at points F and G, respectively, and let E be the midpoint of

FG. Then by Theorem H38, E is on line AB and AE = EB by one of the

homework problems. So BCFG is a Lambert quadrilateral and ∠CBG

is acute by Theorem H35. So ∠1 + ∠3 = ∠2 + ∠3 = ∠CBG < 90◦, or

∠1+∠3 < 90◦. Hence in triangle ABC the angle-sum is ∠1+∠3+∠4 <

180◦, and the claim holds for right triangles.

Second, consider any triangle PQR which is not a right triangle. By

Theorem H31, triangle PQR can have at most one obtuse angle and so

must contain at least two acute angles, say at P and Q. Let S be the

projection of R onto line PQ. By Proposition 16, S lies between P and
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Q. So line RS subdivides ∠PRQ and we have two right triangles PRS

and QRS. From above, the sum of the angles in these two triangles is

less than 360◦. It follows that the angle-sum of triangle PQR is less than

180◦.

Note. In fact, for any σ ∈ (0◦, 180◦), there is a triangle with angle-sum

σ. Informally, “small” triangles have angle-sums near 180◦ and “large”

triangles have angle-sums near 0◦. The following result partly illustrates

this.

Theorem H43. There are triangles with angle-sum arbitrarily close to

180◦.

Proof. Consider any triangle ABC and a variable point D between

A and B. Let D approach A (here we are using unstated assumptions

involving the continuum and limits). Then ∠ADC approaches ∠EAC,



Hyperbolic Geometry 19

and ∠ACD approaches 0. Hence as D approaches A, the angle-sum of

ACD, ∠ACD +∠CDA+∠CAD, approaches 0◦ +∠CAE +∠CAD =

180◦. So the angle-sum of ACD can be made arbitrarily close to 180◦ by

making D sufficiently close to A. (This could be neated up with ε’s and

δ’s.)

Theorem H44. The angle-sum of every (convex) quadrilateral is less

than 360◦.

Idea of Proof. We can cut the quadrilateral into two triangles and

apply Theorem H43.

Note. The following result is certainly not true in Euclidean geometry.

We might call it angle-angle-angle (A-A-A).

Theorem H45. Two triangles are congruent if the three angles of one

are equal respectively to the three angles of the other.
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Proof. Consider triangle ABC and A′B′C ′ where the corresponding

angles are equal. Suppose AB > A′B′. Take point D on AB such that

AD = A′B′. On line AC, on the same side of A as C, take point E such

that AE = A′C ′. Then by construction, triangles A′B′C ′ and ADE are

congruent (Proposition 4, S-A-S). So ∠ADE = ∠B and ∠AED = ∠C.

Now if point E is not between points A and C, we have a triangle in which

an exterior angle equals an opposite interior angle, contradicting Propo-

sition 16. So point E is between points A and C. Then in quadrilateral

BCED the angle-sum equals 360◦, contradicting Theorem H44. We con-

clude that AB = A′B′ and similarly AC = A′C ′ and BD = B′C ′.

Therefore triangles ABC and A′B′C ′ are congruent.

Note. Let’s briefly discuss the area of triangles in hyperbolic geometry.

First, define the defect of a triangle to be the amount by which its angle-

sum is less than 180◦. We want to discuss area, but remember that area

is thought of in terms of squares and squares do not exist in hyperbolic

geometry (this is a homework problem). So instead of thinking of squares

giving areas, we deal more with triangles (remember, triangles are con-
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gruent when their corresponding angles are equal). With this approach to

“area,” we find that the area A of a triangle is proportional to its defect

D: A = kD. This parameter k gives us a fundamental constant for a

hyperbolic geometry. Surprisingly, it is easy to tell when two hyperbolic

triangles have the same area:

Theorem H54. Two triangles have the same area if and only if they

have the same angle-sum.

Note. For the last 100 or 150 years, mathematics has been thought

of as an abstract axiomatic system independent of preconceived notions

and, especially, independent of the (necessary) use of pictures. Euclidean

geometry is a system within itself independent of dots, lines, and circles on

paper, as well as the Cartesian plane and Cartesian coordinates. However,

we use the usual Cartesian plane as a model of Euclidean geometry. We

then use the model to help us visualize properties of the axiomatic system.

We want a similar model for hyperbolic geometry.

Note. (From Foundations of Euclidean and Non-Euclidean Geome-

try, Richard Faber.) The first model for hyperbolic geometry is due to

Eugenio Beltrami (1835–1900). In 1868 he published his Essay on the In-

terpretation of Non-Euclidean Geometry in which he described a surface

in Euclidean space which gives a partial representation of the hyperbolic

plane. The surface is called a pseudosphere. It can be generated as fol-
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lows. Let a box be located in the xz-plane at position (1, 0) with a chain

of unit length attached to it. We start with the other end of the chain at

the point (0, 0) and then move that end up the z-axis, dragging the box

along. The path can be described parametrically as

(x(t), z(t)) = (sin t, cos t + ln

(
tan

(
t

2

))
, t ∈

(
0,

π

2

]
.

This curve is called a tractrix or “drag curve.” If we revolve the curve

around the z-axis to generate a surface in 3-dimensional Euclidean space,

we get the surface (in terms of parameters u and v):

(x(u, v), y(u, v), z(u, v)) =
(
sinu cos v, sinu sin v, cosu + ln

(
tan

(u

2

)))
.

This surface is the pseudosphere.

Note. In the pseudosphere model, “points” are points on the surface,

“lines” are geodesics on the surface, and the “plane” is the surface it-

self. One example of lines on the surface are cross sections which are

tractrices. The pseudosphere has one desirable property and one undesir-

able property. The desirable property is a property of homogeneity — it

has uniform curvature (the curvature at any interior point is −1). the

undesirable property is that it has a boundary and lines cannot be ex-

tended indefinitely from all points. By analogy, we could think of taking a

piece of the Euclidean half plane and roll it up into a cylinder (Euclidean

planes and such cylinders have zero curvature). The pseudosphere is a

piece of the hyperbolic plane that has been rolled up into a hyperbolic
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cylinder (the curvature of the hyperbolic plane and the pseudosphere are

both −1. . . or at least both are a negative constant if we modify things

a little). So the pseudosphere is only a “local” model for the hyperbolic

plane (not a “global” model). In fact, David Hilbert, in 1901, proved

that there does not exist in Euclidean 3-space any smooth surface whose

geodesic geometry represents the entire hyperbolic plane. Nevertheless, it

was Beltrami’s pseudosphere which, more than anything else, convinced

mathematicians that Lobachevsky’s hyperbolic geometry was as consistent

as Euclid’s (page 225, Faber).

Note. Let’s step aside and discuss curvature of surfaces briefly. Crudely, a

surface has zero curvature if it is flat. For a smooth surface, we can describe

curvature at a point P by considering tangent planes to the surface at point

P . If a tangent plane to a surface at point P has the surface lying entirely

on one side of the plane in a deleted neighborhood of P , then the surface

has positive curvature at point P . For example, a sphere has positive

(constant) curvature at each point. If a tangent plane to a surface at point

P has part of the surface on one side of the plane and part on the other

side for any deleted neighborhood of P , then the surface has negative

curvature. For example, the saddle surface in 3-dimensional Euclidean

space with formula z = x2 − y2 has negative curvature at each point.

However, curvature is not a constant on the saddle surface! Curvature is

its most extreme at the saddle point (0, 0, 0) where it is −1, and is less
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extreme (closer to 0) away from the saddle point (where it is closer to a

flat surface). THIS is why the saddle surface cannot be used for a model

of hyperbolic geometry!!! It is not a surface of constant curvature, and if,

for example, we take a triangle and slide it around the surface (translate

it), then its angle sum will change while the length of the edges remain the

same (we don’t have “translation invariance” in this sense and are lead to

contradictions involving congruent hyperbolic triangles and areas).

Problem. Describe the curvature at various points of a torus.

Definition. The Poincare disk model of hyperbolic geometry represents

the “plane” as an open unit disk, “points” of the plane are points of the

disk, and “lines” are circular arcs which are perpendicular to the boundary

of the disk.
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Note. We can use the model to illustrate some of the results for hy-

perbolic geometry. The above figure has two lines through point P both

of which are parallel to the other line l, thus illustration the negation of

Playfair’s Theorem. To see that the sum of the angles of a triangle are

less than 180◦, consider the following:

Note. The obvious shortcoming of the model is that line segments are

apparently not infinite in extent (it looks as if the longest line in this

universe is 2 units). However, we modify the way distance is measured. We

describe the disk as {(x, y) | x2+y2 < 1} in the Cartesian plane. We then

take the differential of arclength, ds, as satisfying ds2 =
dx2 + dy2

1 − (x2 + y2)
.

Now if we consider the diameter D of the disk from (−1, 0) to (1, 0), we

have the length
∫

D

ds =

∫ 1

−1

dx

1 − x2
=

1

2
ln

∣∣∣∣
1 + x

1 − x

∣∣∣∣
∣∣∣∣
1

−1

= ∞.

In general, “lines” in the Poincare disk are infinite (under this measure of
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arclength). In terms of curvature, the Poincare disk has curvature −4 at

each point (to get curvature −1, we take a disk of radius 4).

Note. (From A Survey of Classical and Modern Geometries by Arthur

Baragar.) Let’s consider the negation of Playfair’s Theorem again. Let

L by a line and P a point not on l. Then there are two lines through

P parallel to l and, hence, an infinite number of such lines. We might

imagine tilting the lines through P towards two “limiting lines.” If we

tilt more than the limiting lines, we no longer have parallels to l. This is

illustrated in the Poincare disk as follows:

The limiting lines are parallel to l and the other lines are said to be

ultraparallel to l. With this verbiage, we have the following properties:

(1) two lines which are ultraparallel have a common perpendicular, and (2)

two lines which are parallel (but not ultraparallel) do not have a common

perpendicular.
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Note. We have said that the angle-sum of a hyperbolic triangle can be

any value (strictly) between 0◦ and 180◦. By making the triangles small,

the angle-sum approaches 180◦. We can make the angle-sum near 0◦ by

making the triangles “large.” In fact, we can consider “triply asymptotic

triangles” with angle-sum 0◦:

By previous results, we know that all triply asymptotic triangles are con-

gruent, that the defect is 180◦, and that the area of each is maximal (since

the defect is minimal).

Note. Clearly we can tile (or “tessellate”) the Euclidean plane with

squares. Notice that at each “vertex,” four squares meet and the four

right angles sum to 360◦. We can also tile the Euclidean plane with regular

hexagons such that three hexagons meet at each vertex (the interior angle

of a hexagon is 120◦). The hexagons can be subdivided into six triangles

each to give an equilateral triangle tiling of the plane with six triangles
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meeting at each vertex. Each of these is an example of a regular polygon

tiling of the Euclidean plane (recall that the interior angles of a regular

Euclidean n-gon are each n−2
n ×180◦; this, combined with the fact that the

angles of the n-gon must divide 360◦, implies that the above three tilings

are the only regular n-gon tilings of the Euclidean plane).

Note. In hyperbolic geometry, we define a polygon as regular if the

lengths of the sides are the same and the angles are equal. The sizes of the

angles, however, depend on the lengths of the edges. We can construct a

regular n-gon whose angles are equal to α for any α such that 0 < α <
n−2
n

× 180◦. This means that we cannot take the hyperbolic plane with

regular 4-gons where four meet at each vertex (traditional Euclidean right-

angle squares do not exist here), but we can tile the plane with regular

4-gons where five (or any integer greater than 4) of them meet at each

vertex. Here is an image of such a tiling with six 4-gons meeting at each

vertex (from Baragar, pages 183):
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Notice that the angle-sum of each 4-gon in these figures is 240◦, so the

area is k240◦ for some constant k (determined by the curvature of the

plane). Because of the liberty in the sizes of angles of regular n-gons in

the hyperbolic plane, regular tilings are much more prevalent than in the

Euclidean plane. Here’s a hexagon tiling with four hexagons meeting at

each vertex (Baragar, page 184):

In fact, the last two figures give tilings which are duals of each other. A

dual of a tiling is determined by putting a vertex in the center of each

n-gon and then joining vertices which are in n-gons that share an edge.

Here is another view of the same tiling (Geometry: Plane and Fancy,

David Singer, page 60):
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Here’s a regular 5-gon tiling with four 5-gons meeting at a vertex (what’s

the dual?, from Singer page 61):

Some of these tilings are used in the paintings of M.C. Escher (1898–1972).
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Note. With this tiling stuff, we see a way to construct a hyperbolic

surface which we can hold in our hands. The easiest way is to take a

bunch of equilateral triangles and tape them together with seven triangles

joined at each vertex. Of course, you have to bend the paper for this to

happen. The bending and twisting yields a surface of negative curvature

(from Weeks, page 153):
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Some interesting “constructions” of surfaces of negative curvature (includ-

ing the pseudosphere) using crocheting are given in Experiencing Geom-

etry in Euclidean, Spherical, and Hyperbolic Geometries, 2nd Edition,

by David Henderson.

Note. As another example of a model of hyperbolic geometry, we con-

sider the Poincare upper half plane model. We take as the hyperbolic

plane the upper half of the Cartesian plane, {(x, y) | y > 0}, and the

hyperbolic lines are semicircles with centers on the x-axis and vertical

(Cartesian) lines. Lines are infinite and the differential of arclength is

ds2 =
dx2 + dy2

y2
. The curvature of this surface is −1. It can be shown

that all models of hyperbolic geometry are the same (“isomorphic”). Here

is an image of a regular 4-gon tiling of the Poincare upper half plane with

six 4-gons meeting at each vertex (from Baragar, pages 182):



Hyperbolic Geometry 33

Note. As a final comment, we might wonder about the geometry of our

universe. Let’s start the discussion by considering the surfaces which are

bounded but finite. We can create a torus by starting with a square and

then “conceptually connecting” (versus a physical bending and connect-

ing) opposite sides:

If we travel around this 2-D universe and pass through the right hand side,

then we return on the left hand side, and similarly for the top and bottom.

The square is called the fundamental domain and if we look around this

universe, we see the “sky” tiled with copies of the fundamental domain.

This is called a 2-torus (this is the universe PacMan lives in!). In fact

(as I understand it) we can use the tiling and “conceptual connections”

to create other interesting surfaces. For example, we could take a tiling of

the hyperbolic plane with squares and take a tiling of the hyperbolic plane

with squares and make the same connections as above. This creates a two

dimensional surface (its global topology is the same as the flat 2-torus)

with negative curvature. Notice that the curvature does not depend on
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how the surface is embedded in a higher dimensional space, but is simply

an artifact of how distances are measured and what geodesics (lines) are.

That is, the curvature is an intrinsic property of the surface. When you

hear someone describe curvature as how a surface (or higher dimensional

manifold) bends into a higher dimensional space, this is not correct! The

curvature can be present without the appeal of a bigger space (this makes

the discussion of “hyperspace” rather subtle!).

Note. So what about 3-dimensional spaces? Well, we could tile Euclidean

3-space with cubes and conceptually connect opposite faces. This produces

the 3-torus. It has Euclidean geometry and a “nontrivial global topology”

(there are directions in which you can travel which bring you back to where

you started). It is possible to tile 3-D hyperbolic space with dodecahedra.

If opposite faces of these dodecahedra are conceptually joined (this requires

a small twist of the dodecahedron), this produces a 3-D finite space of

negative curvature called the Seifert-Weber manifold:



Hyperbolic Geometry 35

This space has negative curvature, but is finite in extent. You may hear

it said (by astronomers maybe) that if space has negative curvature then

it must “bend away” from itself and so be infinite in extent. This is not

true! It is true that if a space has positive curvature (and hence elliptic

geometry) then it must curve back on itself and must be finite. So, for

the universe, we have the following possibilities in terms of curvature and

boundedness:

1. Zero curvature and infinite (for example, R3).

2. Zero curvature and finite (for example, 3-torus).

3. Negative curvature and infinite (for example, hyperbolic 3-space).

4. Negative curvature and finite (for example, the Seifert Weber space).

5. Positive curvature and finite (for example, the 3-sphere).

Studies are currently underway to try to determine the curvature and

global topology of the universe. For a nice, easy to read account of these

ideas, see The Shape of Space, 2nd edition, Jeffrey Weeks. A much more

technical account is in Three-Dimensional Geometry and Topology, Vol-

ume 1, William Thurston, edited by Silvio Levy.


