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Chapter 1

Computable Functions

We use N to denote the set of natural numbers,

N = {0, 1, 2, . . .} .

For k ≥ 1, the k-fold Cartesian product

N × . . .× N︸ ︷︷ ︸
k

is denoted Nk. A k-place function is a function f : Nk → N and is sometimes
indicated with the lambda-notation,

f = λx1 · · ·xk [ f(x1, . . . , xk) ] .

A number-theoretic function is a k-place function for some k ≥ 1.
The purpose of this chapter is to define and study an important class of

number-theoretic functions, the recursive functions (sometimes called the com-
putable functions). We begin with a certain subclass known as the primitive
recursive functions.

1.1 Primitive Recursive Functions

Loosely speaking, a recursion is any kind of inductive definition, and a primitive

recursion is an especially straightforward kind of recursion, in which the value
of a number-theoretic function at argument x + 1 is defined in terms of the
value at argument x. For example, the factorial function λx [x! ] is defined by
the primitive recursion equations 0! = 1, (x + 1)! = x!(x + 1). A number-
theoretic function is said to be primitive recursive if it can be built up by means
of primitive recursions. This concept is made precise in the following definition.

Definition 1.1.1 (Primitive Recursive Functions). The class PR of primitive
recursive functions is the smallest class C of number-theoretic functions having
the following closure properties.
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1. The constant zero function Z = λx [ 0 ] belongs to C.

2. The successor function S = λx [x + 1 ] belongs to C.

3. For each k ≥ 1 and 1 ≤ i ≤ k, the projection function Pki = λx1 · · ·xk [xi ]
belongs to C.

4. C is closed under generalized composition. This means that whenever the
k-place functions

λx1 · · ·xk [ g1(x1, . . . , xk) ], . . . , λx1 · · ·xk [ gm(x1, . . . , xk) ]

and the m-place function λy1 · · · ym [h(y1, . . . , ym) ] all belong to C, then
the k-place function

f = λx1 · · ·xk [h(g1(x1, . . . , xk), . . . , gm(x1, . . . , xk)) ]

also belongs to C. Here f is defined by

f(x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gm(x1, . . . , xk)) .

5. C is closed under primitive recursion. This means that whenever the
k-place function λx1 · · ·xk [ g(x1, . . . , xk) ] and the (k+2)-place function

λyzx1 · · ·xk [h(y, z, x1, . . . , xk) ]

belong to C, then the (k+1)-place function λyx1 · · ·xk [ f(y, x1, . . . , xk) ]
defined by

f(0, x1, . . . , xk) = g(x1, . . . , xk)

f(y + 1, x1, . . . , xk) = h(y, f(y, x1, . . . , xk), x1, . . . , xk)

also belongs to C.

We now list some examples of primitive recursive functions.

Examples 1.1.2.

1. The recursion equations

x+ 0 = x

x+ (y + 1) = (x+ y) + 1

show that the addition function λxy [x+ y ] is primitive recursive.

2. The recursion equations

x · 0 = 0

x · (y + 1) = (x · y) + x

show that the multiplication function λxy [x · y ] is primitive recursive.
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3. The recursion equations

x0 = 1

xy+1 = xy · x

show that the exponentiation function λxy [xy ] is primitive recursive.

4. As already mentioned, the recursion equations

0! = 1

(x+ 1)! = x! · (x+ 1)

show that the factorial function λx [x! ] is primitive recursive.

We now proceed to further enlarge our library of primitive recursive func-
tions. First, the recursion equations P (0) = 0, P (x + 1) = x show that the
“predecessor” function

P (x) =

{
x− 1 if x > 0 ,
0 if x = 0

is primitive recursive. We can then obtain the truncated subtraction function

x ·− y =

{
x− y if x ≥ y ,
0 if x < y

using primitive recursion equations x ·−0 = x, x ·−(y+1) = P (x ·−y). (Truncated
subraction is useful because ordinary subtraction is not a function from N2 into
N.) We shall also have use for

|x− y| = (x ·− y) + (y ·− x)

and α(x) = 1 ·− x. Note that

α(x) =

{
0 if x > 0 ,
1 if x = 0 .

The following exercise will become easy after we have developed a little more
machinery.

Exercise 1.1.3. Show that the Fibonacci function, defined by

fib(0) = 0 ,

fib(1) = 1 ,

fib(x+ 2) = fib(x) + fib(x+ 1)

is primitive recursive. (The first few values of this function are 0, 1, 1, 2, 3, 5,
8, 13, 21, 34, 55, . . . .)
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In addition to primitive recursive functions, we shall want to consider prim-
itive recursive predicates. By a k-place predicate we mean a subset of Nk. If
R ⊆ Nk is a k-place predicate and x1, . . . , xk are elements of N, we say that
R(x1, . . . , xk) is true if 〈x1, . . . , xk〉 ∈ R, otherwise false. A number-theoretic

predicate is a k-place predicate for some k ≥ 1.

Definition 1.1.4. A k-place predicate R ⊆ Nk is said to be primitive recursive

if its characteristic function

χR(x1, . . . , xk) =

{
1 if R(x1, . . . , xk) is true
0 if R(x1, . . . , xk) is false

is primitive recursive.

For example, the 2-place predicates x = y and x < y are primitive recursive,
since χ=(x, y) = α(|x− y|) and χ<(x, y) = α(α(y ·− x)).

Lemma 1.1.5 (Boolean Connectives). If P and Q are primitive recursive pred-
icates, then so are ¬P , P ∧Q, and P ∨Q. (Here ¬ , ∧, and ∨ denote negation,
conjunction, and (nonexclusive) disjunction, respectively.)

Proof. We have χ¬P = α(χP ) and χP∧Q = χP · χQ. Also

χP∨Q = α(α(χP ) · α(χQ))

since P ∨Q ≡ ¬ ((¬P ) ∧ (¬Q)) (de Morgan’s law).

Lemma 1.1.6 (Iterated Sums and Products). If f(x, y, z1, . . . , zk) is a primitive
recursive function, then so are

g(y, z1, . . . , zk) =

y−1∑

x=0

f(x, y, z1, . . . , zk) (= 0 if y = 0)

and

h(y, z1, . . . , zk) =

y−1∏

x=0

f(x, y, z1, . . . , zk) (= 1 if y = 0) .

Proof. We have g(y, z1, . . . , zk) = g∗(y, y, z1, . . . , zk) where

g∗(w, y, z1, . . . , zk) =

w−1∑

x=0

f(x, y, z1, . . . , zk) .

The recursion equations

g∗(0, y, z1, . . . , zk) = 0

g∗(w + 1, y, z1, . . . , zk) = g∗(w, y, z1, . . . , zk) + f(w, y, z1, . . . , zk)

show that g∗ is primitive recursive, hence g is primitive recursive. The treatment
of h is similar.
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Lemma 1.1.7 (Finite Conjuction and Disjunction). If R(x, y, z1, . . . , zk) is a
primitive recursive predicate, then so are

P (y, z1, . . . , zk) ≡
y−1∧

x=0

R(x, y, z1, . . . , zk)

and

Q(y, z1, . . . , zk) ≡
y−1∨

x=0

R(x, y, z1, . . . , zk) .

Proof. We have

χP (y, z1, . . . , zk) =

y−1∏

x=0

χR(x, y, z1, . . . , zk)

and

χQ(y, z1, . . . , zk) = α

(
y−1∏

x=0

α(χR(x, y, z1, . . . , zk))

)

so our result follows from the previous lemma.

Note that
∧y−1
x=0 and

∨y−1
x=0 can be paraphrased as “for all x in the range

0 ≤ x < y” and “there exists x in the range 0 ≤ x < y”, respectively. These
operators are sometimes called bounded quantifiers.

The above lemmas make it easy to show that many familiar predicates are
primitive recursive. For example, the set (i.e., 1-place predicate) of prime num-
bers is primitive recursive, since

Prime (x) ≡ x is a prime number

≡ x > 1 ∧ ¬ ∨u<x
∨
v<x (x = u · v ∧ u > 1 ∧ v > 1) .

Similarly, the following lemma can be used to show that many familiar func-
tions are primitive recursive.

Lemma 1.1.8 (Bounded Least Number Operator). If R(x, y, z1, . . . , zk) is a
primitive recursive predicate, then the function

f(y, z1, . . . , zk) =





least x < y such that R(x, y, z1, . . . , zk) holds ,
if such x exists ,

y otherwise

is primitive recursive.

Proof. We have

f(y, z1, . . . , zk) =
∑y−1

x=0

(
x · χR(x, y, z1, . . . , zk) ·∏x−1

w=0 α(χR(w, y, z1, . . . , zk))
)

+ y ·∏y−1
x=0 α(χR(x, y, z1, . . . , zk)) ,

so f is primitive recursive.
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For example, consider the function λn [ pn ] which enumerates the prime
numbers in increasing order. (The first few values of this function are p0 = 2,
p1 = 3, p2 = 5, p3 = 7, . . . .) We want to use the bounded least number operator
to show that λn [ pn ] is primitive recursive. First, recall a famous theorem of
Euclid which gives the bound pn+1 ≤ pn!+1. We can then write p0 = 2, pn+1 =
least x ≤ pn! + 1 such that Prime (x) and x > pn. Thus λn [ pn ] is primitive
recursive.

As another application of the bounded least number operator, note that the
functions

Quotient (y, x) = ⌊y/x⌋ = q ,

Remainder (y, x) = (y mod x) = r ,

where y = q · x+ r, 0 ≤ r < x, 0 ≤ q, are primitive recursive, in view of

Quotient (y, x) = least q ≤ y such that
∨
r<x(y = q · x+ r) ,

Remainder (y, x) = least r < x such that
∨
q≤y(y = q · x+ r) .

Using the bounded least number operator, we can obtain a primitive recur-
sive method of encoding ordered pairs of natural numbers as single numbers.
For our pairing function we use λuv [ 2u3v ]. The unpairing functions are then
λz [ (z)0 ] and λz [ (z)1 ], where

(z)n = least w < z such that Remainder(z, pw+1
n ) 6= 0

= the exponent of pn in the prime power factorization of z .

Note that (2u3v)0 = u and (2u3v)1 = v.
More generally, we can encode variable-length finite sequences of natural

numbers as single numbers. The sequence 〈a0, a1, . . . , am−1〉 is encoded by

a =
∏

x<m

pax

x ,

and for decoding we can use the primitive recursive function λzx [ (z)x ], since
(a)x = ax. This method of prime power coding will be used extensively in the
proof of the Enumeration Theorem, below.

The pairing and unpairing functions make it easy to show that the Fibonacci
function is primitive recursive (cf. Exercise 1.1.3). Namely, we first note that
the auxiliary function λx [ fibpair(x) ], defined by

fibpair(x) = 2fib(x)3fib(x+1) ,

is primitive recursive in view of

fibpair(0) = 2031 ,

fibpair(x+ 1) = 2(fibpair(x))13(fibpair(x))0+(fibpair(x))1 .

Then λx [ fib(x) ] is primitive recursive since fib(x) = (fibpair(x))0.

11



Exercise 1.1.9. Show that the 2-place number-theoretic functions GCD(x, y)
and LCM(x, y), the greatest common divisor and least common multiple of x
and y, are primitive recursive.

Solution. GCD(x, y) = least z ≤ max(x, y) such that Remainder(x, z) =
Remainder(y, z) = 0. LCM(x, y) = least z ≤ x · y such that Remainder(z, x) =
Remainder(z, y) = 0.

Exercise 1.1.10. Show that the 1-place number-theoretic function f(n) given
by

f(n) = 1 +

n−1∑

k=0

f(k)n

is primitive recursive.

Solution. Consider the so-called course-of-values function

f̃(n) =

n−1∏

k=0

p
f(k)
k ,

i.e., f̃(n) encodes the variable-length finite sequence 〈f(0), f(1), . . . , f(n− 1)〉
via prime power coding. Then f̃(n) is primitive recursive, in view of the recur-

sion equations f̃(0) = 1 and

f̃(n+ 1) = f̃(n) · ph(n,ef(n))
n ,

where h(n, z) = 1 +
∑n−1

k=0 ((z)k)n. It now follows that f(n) = (f̃(n + 1))n
is primitive recursive. This general technique is known as course-of-values

recursion.

Exercise 1.1.11. Show that the function λn
(
nth digit of

√
2
)

is primitive
recursive.

Solution. The nth digit of
√

2 is f(n) = Remainder(g(n), 10), where g(n) = the
least x < 4 · 102n such that (x+ 1)2 > 2 · 102n.

Exercise 1.1.12. Show that the 1-place number-theoretic function

f(n) = the nth decimal digit of π = 3.141592 · · ·
is primitive recursive.

Hint: You may want to use the fact that |π − a/b| > 1/b42 for all integers
a, b > 1. This result is due to K. Mahler, On the approximation of π, Nederl.
Akad. Wetensch. Proc. Ser. A., 56, Indagationes Math., 15, 30–42, 1953.

Solution. We use the well-known series

π

4
= 1 − 1

3
+

1

5
− 1

7
+

1

9
− · · · =

∞∑

n=0

(−1)n

2n+ 1
,
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i.e.,

π = 4 − 4

3
+

4

5
− 4

7
+

4

9
− · · · =

∞∑

n=0

(−1)n4

2n+ 1
.

Let Sk be the kth partial sum of this series. We have Sk = a(k)/b(k) where the
functions a(k) and b(k) are primitive recursive, namely

a(k) =
k∑

n=0

(−1)n4(2k + 1)!

2n+ 1

and b(k) = (2k + 1)!. Note also that the functions

g(n, a, b) = (µi < 10nb) (10ia ≥ 10nb)

and

h(n, a, b) = Rem(Quot(10g(n,a,b)a, b), 10) = the nth digit of a/b

is primitive recursive. By Mahler’s result, for each n there exists k < 1050n

such that Sk and Sk+1 have the same first n digits. Since π lies between Sk
and Sk+1, it follows that Sk and π have the same first n digits, so in partic-
ular f(n) = the nth digit of Sk. Using the bounded least number operator,
we have f(n) = h(n, a(k(n)), b(k(n))) where k(n) = the least k < 1050n such
that

∧n
m=0 g(m, a(k), b(k)) = g(m, a(k + 1), b(k + 1)). Clearly this is primitive

recursive.

1.2 The Ackermann Function

In this section we present an example of a function which is not primitive re-
cursive, yet is clearly computable in some intuitive sense. The precise concept
of computability which we have in mind will be explained in the next section.

Definition 1.2.1. We define a sequence of 1-place functions An, n ∈ N, as
follows:

A0(x) = 2x,

An+1(x) = AnAn · · ·An︸ ︷︷ ︸
x

(1) .

Thus A0(x) = 2x, A1(x) = 2x, A2(x) = 22·
·
·
2

(height x), etc.

Exercise 1.2.2 (the Ackermann hierarchy).

1. Show that, for each n, λx [An(x) ] is primitive recursive.

2. Show that

(a) An(x + 1) > An(x) > x for all x ≥ 1 and all n.
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(b) An+1(x) ≥ An(x+ 1) for all x ≥ 3 and all n.

3. Show that for each k-place primitive recursive function

λx1 . . . xk [ f(x1, . . . , xk) ]

there exists n such that

f(x1, . . . , xk) ≤ An(max(3, x1, . . . , xk))

for all x1, . . . , xk.

4. Show that the 2-place function λnx [An(x) ] is not primitive recursive.
This is known as the Ackermann function.

5. Show that the 3-place relation λnxy [An(x) = y ] is primitive recursive.
Use this to show that the Ackermann function is computable, i.e., recur-
sive, in the sense of Section 1.3.

Solutions.

1. Show that An(1) = 2, An(2) = 4, and An+1(3) = An(4) for all n. Compute
An(x) for all n, x with n+ x ≤ 8.

Solution. For all n we have An+1(1) = An(1), hence by induction An(1) =
A0(1) = 2. Also An+1(2) = An(An(1)) = An(2), hence by induction
An(2) = A0(2) = 4. Also, for all n and x we have An+1(x + 1) =
An(An+1(x)), in particular An+1(3) = An(An+1(2)) = An(4). Table 1.1
shows An(x) for small values of n, x.

Table 1.1: The Ackermann branches.

0 1 2 3 4 5

A0 0 2 4 6 8 10

A1 1 2 4 8 16 32

A2 1 2 4 16 216 2216

A3 1 2 4 216 22·
·
·
2

(height 216) 22·
·
·
2

(height 22·
·
·
2

(height 216))

A4 1 2 4 22·
·
·
2

(height 216) A3(22·
·
·
2

(height 216))

A5 1 2 4 A3(22·
·
·
2

(height 216))

A6 1 2 4

2. Prove the following:
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(a) An(x + 1) > An(x) > x for all x ≥ 1 and all n.

(b) An+1(x) ≥ An(x+ 1) for all x ≥ 3 and all n.

(c) For each primitive recursive function f(x1, . . . , xk) there exists n such
that An covers f , i.e.,

f(x1, . . . , xk) ≤ An(max(3, x1, . . . , xk))

for all x1, . . . , xk.

(d) The 1-place function λx (Ax(x)) is not primitive recursive.

(e) The 2-place function λxy (Ax(y)) is not primitive recursive.

Solution. First we prove An(x + 1) > An(x) > x for x ≥ 1, by induction
on n. For n = 0 we have A0(x + 1) = 2x + 2 > 2x = A0(x) for all
x, and A0(x) = 2x > x for x ≥ 1. For n + 1 and x ≥ 1 we have
An+1(x + 1) = An(An+1(x)) > An+1(x) by inductive hypothesis. Thus
An+1 is strictly monotone. Since An+1(0) > 0, it follows that An+1(x) > x
for all x.

Next we proveAn+1(x) ≥ An(x+1) for x ≥ 3, by induction on x. For x = 3
we have An+1(3) = An(4) as noted above, and inductively An+1(x+ 1) =
An(An+1(x)) ≥ An(An(x+1)) ≥ An(x+2), since An is strictly monotone
and An(x+ 1) ≥ x+ 2 by what has already been proved.

Next we prove that each primitive recursive function is covered by An for
some n. We prove this by induction on the class of primitive recursive
functions. We begin by noting that the initial functions are covered by
A0.

Suppose f is obtained by generalized composition, say

f(x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gm(x1, . . . , xk)).

Let n be such that An covers h and An+1 covers g1, . . . , gm. We then have

f(x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gm(x1, . . . , xk))
≤ An(max(3, g1(x1, . . . , xk), . . . , gm(x1, . . . , xk)))
≤ An(An+1(max(3, x1, . . . , xk)))
= An+1(max(3, x1, . . . , xk) + 1)
≤ An+2(max(3, x1, . . . , xk)),

i.e., An+2 covers f .

Suppose f is obtained by primitive recursion, say

f(0, x1, . . . , xk) = g(x1, . . . , xk),
f(y + 1, x1, . . . , xk) = h(y, f(y, x1, . . . , xk), x1, . . . , xk).

Let n be such that An covers h and An+1 covers g. We first claim that

f(y, x1, . . . , xk) ≤ An+1(y + max(3, x1, . . . , xk))
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for all y, x1, . . . , xk. We prove this by induction on y. For y = 0 we
have f(0, x1, . . . , xk) = g(x1, . . . , xk) ≤ An+1(max(3, x1, . . . , xk)). For the
inductive step we have

f(y + 1, x1, . . . , xk) = h(y, f(y, x1, . . . , xk), x1, . . . , xk)
≤ An(max(3, y, f(y, x1, . . . , xk), x1, . . . , xk)
≤ An(max(3, y, An+1(y + max(3, x1, . . . , xk)), x1, . . . , xk)
= An(An+1(y + max(3, x1, . . . , xk)))
= An+1(y + 1 + max(3, x1, . . . , xk))

and this proves our claim. We then have

f(y, x1, . . . , xk) ≤ An+1(y + max(3, x1, . . . , xk))
≤ An+1(2 max(3, y, x1, . . . , xk))
≤ An+1(An+2(max(3, y, x1, . . . , xk)))
= An+2(max(3, y, x1, . . . , xk) + 1)
≤ An+3(max(3, y, x1, . . . , xk)),

i.e., An+3 covers f . This completes the proof that each primitive recursive
function is covered by An for some n.

Now, if Ax(x) were primitive recursive, then Ax(x)+1 would be primitive
recursive, hence covered by An for some n ≥ 3. But then in particular
An(n) + 1 ≤ An(max(3, n)) = An(n), a contradiction. Thus the 1-place
function Ax(x) is not primitive recursive. It follows immediately that the
2-place function Ax(y) is not primitive recursive.

3. Show that the 3-place relation

{〈x, y, z〉 | Ax(y) = z}

is primitive recursive. Use this to prove that λxy (Ax(y)) is recursive.
Hence λx (Ax(x)) is recursive.

Solution. For all x, y > 0 we have

0 < y < Ax(y) = Ax−1(Ax(y − 1)) = Ax−1(y′)

where y′ = Ax(y − 1). Since Ax−1(y′) = Ax(y) ≥ 2, it follows that
0 < y′ < Ax−1(y′) = Ax(y). Repeating this step x times, we obtain a
finite sequence y0, y1, y2, . . . , yx starting with y such that

Ax(y) = Ax(y0) = Ax−1(y1) = Ax−2(y2) = · · · = A0(yx) = 2yx,

and each of y0, y1, . . . , yx is > 0 and < Ax(y). Moreover, if y > 2 then we
also have x < Ax(y). Thus the 3-place predicate Ax(y) = z can be defined
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by course-of-values recursion on z as follows:

Ax(y) = z if and only if

(x = 0 ∧ z = 2y) ∨
(x > 0 ∧ y = 0 ∧ z = 1) ∨
(x > 0 ∧ y = 1 ∧ z = 2) ∨
(x > 0 ∧ y = 2 ∧ z = 4) ∨
(x > 0 ∧ y > 2 ∧ x < z ∧ ∃y0, y1, . . . , yx < z

(y0 = y ∧ ∀i < x (yi+1 = Ax−i(yi − 1)) ∧ z = 2yx)).

Actually, the function being defined by primitive recursion is

a(w) =
∏{p2x3y5z | Ax(y) = z ∧ x, y, z < w}.

In any case, it follows that the 3-place predicate Ax(y) = z is primitive
recursive.

Applying the least number operator, we see that the 2-place function
Ax(y) is recursive. It follows immediately that the 1-place function Ax(x)
is recursive.

1.3 Computable Functions

In this section we define the class of computable (i.e., recursive) number-theoretic
functions. We show that the primitive recursive functions form a proper subclass
of the computable functions.

Our definition will be given in terms of a register machine. We assume the
existence of infinitely many registers R1, R2, . . . , Ri, . . . . At any given time,
each register contains a natural number. If the number contained in Ri is 0, we
say that Ri is empty. At any given time, all but finitely many of the registers
are empty. The basic actions that the machine can perform are to increment or
decrement a register, i.e., add or subtract 1 from the number contained in it.

A register machine program consists of finitely many instructions linked to-
gether in a flow diagram indicating the order in which the instructions are to
be executed. There are four types of instructions: R+

i , R−
i , start, and stop.

Each program contains exactly one start instruction, which is executed first.
An R+

i instruction is executed by incrementing Ri and then proceeding to an-
other, specified, instruction. An R−

i instruction is executed by testing Ri for
emptiness. If Ri is empty, we proceed to one of two specified instructions. If Ri
is nonempty, we decrement it and then proceed to the other of the two specified
instructions. A stop instruction causes execution of the program to halt. See
Figure 1.1.

For example, consider the addition program depicted in Figure 1.2. If we run
this program starting with natural numbers x and y in R1 and R2 respectively,
the run will eventually halt with x+ y in R3.
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startONMLHIJK //

��
??

??
??

?

// R+
i

ONMLHIJK //

??�������

begin run of program increment register Ri

��
??

??
??

?

// R−
i

ONMLHIJK e //

��
??

??
??

???�������

��
??

??
??

?

// stopONMLHIJK
??�������

if Ri empty go to e, terminate run of program
otherwise decrement Ri

Figure 1.1: Register Machine Instructions

startONMLHIJK // R−
3

ONMLHIJK
cdabg̀

==

e // R−
1

ONMLHIJK
��

e // R−
2

ONMLHIJK
��

e // stopONMLHIJK

R+
3

ONMLHIJK
OO

R+
3

ONMLHIJK
OO

Figure 1.2: An Addition Program
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Let P be a register machine program, and let x1, . . . , xk be natural numbers,
i.e., elements of N. We write P(x1, . . . , xk) to denote the unique run of P starting
with x1 in R1, . . . , xk in Rk, and all other registers empty. Uniqueness follows
from the fact that the register machine operates deterministically.

Definition 1.3.1 (Computable Functions). A k-place number-theoretic func-
tion

λx1 . . . xk [ f(x1, . . . , xk) ]

is said to be computable if there exists a register machine program P which
computes it, i.e. for all x1, . . . , xk ∈ N, P(x1, . . . , xk) eventually halts with
y = f(x1, . . . , xk) in Rk+1.

For example, the addition program of Figure 1.2 shows that λx1x2 [x1 +x2 ]
is computable.

We shall now prove that all primitive recursive functions are computable.

Lemma 1.3.2. The initial functions Z, S, and Pki, 1 ≤ i ≤ k, are computable.

Proof. The functions Z = λx [ 0 ], S = λx [x + 1 ], and Pki = λx1 . . . xk [xi ] are
computed by the register machine programs given in Figure 1.3.

Zero startONMLHIJK // stopONMLHIJK

Successor startONMLHIJK // R−
1

ONMLHIJK
��

e // R+
2

ONMLHIJK // stopONMLHIJK

R+
2

ONMLHIJK
OO

Projection startONMLHIJK // R−
i

ONMLHIJK
��

e // stopONMLHIJK

R+
k+1

WVUTPQRS
OO

Figure 1.3: The Initial Functions
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startONMLHIJK
��

F−
1

ONMLHIJK
��

e // . . . e // F−
k

ONMLHIJK
��

e // G1
// G−

1 k+1
_^]\XYZ[

��

e // . . . e // Gm // G−
mk+1

_^]\XYZ[
��

e // H

��

G+
11

ONMLHIJK
��

G+
1k

ONMLHIJK
��

H+
1

ONMLHIJK
OO

H+
m

ONMLHIJK
OO

...

��

...

��

F+
k+1

ONMLHIJK //
H−
m+1

_^]\XYZ[
oo

e
��

G+
m1

ONMLHIJK

GG

G+
mk

ONMLHIJK

GG

stopONMLHIJK
Figure 1.4: Generalized Composition

Lemma 1.3.3. The class of computable functions is closed under generalized
composition.

Proof. Assume that

λx1 . . . xk [ g1(x1, . . . , xk) ] , . . . , λx1 . . . xk [ gm(x1, . . . , xk) ]

and λy1 . . . ym [h(y1, . . . , ym) ] are computed by register machine programs G1,
. . . , Gm, H respectively. For convenience we regard these programs as being
executed on pairwise disjoint sets of registers. We use Gj1, . . . , Gjk, Gj,k+1,
. . . to denote the registers on which Gj is executed, 1 ≤ j ≤ m. We use H1, . . . ,
Hm, Hm+1, . . . to denote the registers on which H is executed.

To compute λx1 . . . xk [ f(x1, . . . , xk) ] where

f(x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gm(x1, . . . , xk)) .

we shall use a register machine program F which we regard as being executed
on registers F1, . . . , Fk, Fk+1, . . . . In order to make it easy for F to call G1,
. . . , Gm, H, the registers of G1, . . . , Gm, H will be among the auxiliary registers
of F . (The auxiliary registers of F are the registers Fi, i ≥ k + 2.) Actually,
the auxiliary registers of F consist precisely of the registers of G1, . . . , Gm, H.
Our program F is given in Figure 1.4.

Lemma 1.3.4. The class of computable functions is closed under primitive
recursion.
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In proving this lemma, the idea will be to write a program containing a loop
which repeatedly calls the iterator h. Let us first illustrate this idea with a
simple example.

Example 1.3.5. The multiplication function λx1x2 [x1 · x2 ] is computed by
iterated addition, using the program given in Figure 1.5.

startONMLHIJK // R−
1

ONMLHIJK
e

��

// R−
2

ONMLHIJK
��

e // R−
4

ONMLHIJK
��

e

zz

stopONMLHIJK R+
3

ONMLHIJK
��

R+
2

ONMLHIJK
OO

R+
4

ONMLHIJK

DD

Figure 1.5: A Multiplication Program

Exercise 1.3.6. Write a register machine program which computes the ex-

ponential function, i.e., the 2-place number-theoretic function exp(x, y) = xy.
Note that x0 = 1 for all x.

Proof of Lemma 1.3.4. Assume that λx1 . . . xk [ g(x1, . . . , xk) ] and

λyzx1 . . . xk [h(y, z, x1, . . . , xk) ]

are computed by register machine programs G and H with registers G1, . . . ,
Gk, Gk+1, . . . and H1, H2, H3, . . . , Hk+2, Hk+3, . . . respectively. To compute
λyx1 . . . xk [ f(y, x1, . . . , xk) ] where

f(0, x1, . . . , xk) = g(x1, . . . , xk) ,

f(y + 1, x1, . . . , xk) = h(y, f(y, x1, . . . , xk), x1, . . . , xk) ,

we use a register machine program F with registers F1, F2, . . . , Fk+1, Fk+2,
. . . . See Figure 1.6. The auxiliary registers Fi, i ≥ k + 3 of F consist of the
registers of G and H plus two additional registers, U and V .

Theorem 1.3.7. Every primitive recursive function is computable.
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startONMLHIJK
��

F−
2

ONMLHIJK
��

e // V −ONMLHIJK
��

e // . . . e // F−
k+1

ONMLHIJK
��

e // V −ONMLHIJK
��

e // G

��

H+
2

ONMLHIJK
��

V +ONMLHIJK
��

F+
2

ONMLHIJK
OO

V +ONMLHIJK
��

F+
k+1

ONMLHIJK
OO

F−
1

ONMLHIJK
e

��

// G−
k+1

WVUTPQRS
OO

z{

e

�~

��

G+
1

ONMLHIJK

DD

G+
k

ONMLHIJK

DD

F+
k+2

ONMLHIJK //
G−
k+1

WVUTPQRS
oo

e
��

stopONMLHIJK

H+
2

ONMLHIJK
��

U+ONMLHIJK
����

��
��

�

. . .oo H−
4

ONMLHIJK
g̀fecd

}}

e
oo H−

3
ONMLHIJK

g̀fecd
}}

e
oo H−

k+3
WVUTPQRS

OO

e
oo

U−ONMLHIJK
��

e // V −ONMLHIJK
��

e // F−
2

ONMLHIJK
��

e // V −ONMLHIJK
��

e // . . . e // F−
k+1

ONMLHIJK
��

e // V −ONMLHIJK
��

e // H

��

H−
2

ONMLHIJKfecdab
]]

e

OO

V +ONMLHIJK
��

U+ONMLHIJK
OO

V +ONMLHIJK
��

F+
2

ONMLHIJK
OO

V +ONMLHIJK
��

F+
k+1

ONMLHIJK
OO

F−
1

ONMLHIJK
e

��

// H−
1

ONMLHIJKfecdab
]]

e

OO

H+
1

ONMLHIJK

DD

H+
3

ONMLHIJK

DD

H+
k+2

WVUTPQRS

DD

F+
k+2

ONMLHIJK //
H−
k+3

WVUTPQRS
oo

e
��

stopONMLHIJK

Figure 1.6: Primitive Recursion
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Proof. The above lemmas show that the computable functions form a class
which contains the initial functions and is closed under generalized composition
and primitive recursion. Since the primitive recursive functions were defined as
the smallest such class, our theorem follows.

1.4 Partial Recursive Functions

A k-place partial function is a function ψ : dom(ψ) → N where dom(ψ) ⊆ Nk.

We sometimes abbreviate this as ψ : Nk
P−→ N. We use dom(ψ) and rng(ψ) to

denote the domain and range of ψ, respectively. If dom(ψ) = Nk, we say that
ψ is total. Thus a total k-place function is just what we have previously called
a k-place function.

The use of partial functions leads to expressions which may or may not have
a numerical value. (For example, ψ(x1, . . . , xk) + 3 has a numerical value if
and only if 〈x1, . . . , xk〉 ∈ dom(ψ)). If E is such an expression, we say that E is
defined or convergent (abbreviated E ↓) if E has a numerical value. We say that
E is undefined or divergent (abbreviated E ↑) if E does not have a numerical
value. We write E1 ≃ E2 to mean that E1 and E2 are both defined and equal,
or both undefined.

Definition 1.4.1 (Recursive Functions and Predicates). A k-place (total) func-
tion is said to be recursive if and only if it is computable. A k-place predicate
is said to be recursive if its characteristic function is recursive.

Definition 1.4.2 (Partial Recursive Functions). A k-place partial function ψ is
said to be partial recursive if it is computed by some register machine program
P . This means that, for all x1, . . . , xk ∈ N,

ψ(x1, . . . , xk) ≃ the number in Rk+1 if and when P(x1, . . . , xk) stops .

In particular, ψ(x1, . . . , xk) is defined if and only if P(x1, . . . , xk) eventually
stops.

Partial recursive functions arise because a particular run of a register ma-
chine program may or may not eventually stop. One way this can happen is
because of an unbounded search, as in the following lemma.

Lemma 1.4.3 (Unbounded Least Number Operator). Let P (x1, . . . , xk, y) be
a (k+1)-place recursive predicate. Then the k-place partial function ψ defined
by

ψ(x1, . . . , xk) ≃ least y such that P (x1, . . . , xk, y) holds

is partial recursive.
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startONMLHIJK

��

F+
k+1

ONMLHIJK
��~~

~~
~~

~

. . .oo P−
2

ONMLHIJK
g̀fecd

}}

e
oo P−

1
ONMLHIJK

g̀fecd
}}

e
oo

F−
1

ONMLHIJK
��

e // V −ONMLHIJK
��

e // . . . e // F−
k+1

ONMLHIJK
��

e // V −ONMLHIJK
��

e // P // P−
k+2

ONMLHIJK
��

e
__???????

V +ONMLHIJK
��

F+
1

ONMLHIJK
OO

V +ONMLHIJK
��

F+
k+1

ONMLHIJK
OO

stopONMLHIJK

P+
1

ONMLHIJK

DD

P+
k+1

ONMLHIJK

DD

Figure 1.7: Minimization

Proof. Assume that χP is computed by a register machine program P with
registers P1, . . . , Pk, Pk+1, Pk+2, . . . . To compute ψ we use a register machine
program F with registers F1, F2, . . . , Fk+1, . . . . The auxiliary registers Fi,
i ≥ k + 2, of F are the registers of P plus an additional register V . See
Figure 1.7.

The unbounded least number operator is sometimes called the minimization

operator. As a byproduct of the work in the next section, we shall see that all
partial recursive functions can be obtained from primitive recursive functions
by composition and minimization.

Exercise 1.4.4. Show that the function f(n) = nth digit of π is recursive.

Hint: Use an infinite series such as

π

4
= 1 − 1

3
+

1

5
− 1

7
+

1

9
− · · ·

plus the fact that π is irrational.

Solution. This follows from Exercise 1.1.12. A solution not using Mahler’s result
is as follows.

Let Sk be the kth partial sum of the alternating series

π = 4 − 4

3
+

4

5
− 4

7
+

4

9
− · · · =

∞∑

n=0

(−1)n4

2n+ 1
,
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We have Sk = a(k)/b(k) where a(k) and b(k) are primitive recursive. Since π is
irrational, it follows that for each n there exists k such that Sk and Sk+1 have
the same first n digits. Since π lies between Sk and Sk+1, it follows that Sk and
π have the same first n digits, so in particular f(n) = the nth digit of Sk. Note
also that the function

h(n, a, b) = nth digit of a/b

is primitive recursive. Using the least number operator, we have f(n) = h(n, a(k(n)), b(k(n)))
where k(n) = the least k such that

∧n
m=0 h(m, a(k), b(k)) = h(m, a(k+1), b(k+

1)). Clearly this is recursive.

Exercise 1.4.5. Show that there exists a computable function which is not
primitive recursive. (By 1.2.2 it suffices to show that the Ackermann function
λnx [An(x) ] is computable.)

Exercise 1.4.6. Let f : N
1−1 onto−→ N be a permutation of N, the set of natural

numbers. Show that if f is recursive, then the inverse permutation f−1 is also
recursive.

Solution. Using the least number operator, we have f−1(y) = the least x such
that f(x) = y.

Exercise 1.4.7. Give an example of a primitive recursive permutation of N

whose inverse is not primitive recursive.

Solution. From our study of the Ackermann function in Section 1.2, we know
that the predicate {〈x, y〉 | Ax(x) = y} is primitive recursive, although the one-
to-one increasing function x 7→ Ax(x) is not. Let B be the range of x 7→ Ax(x),
i.e., B = {y | ∃x (Ax(x) = y)}. Then B is primitive recursive, because y ∈ B ⇔∨y−1
x=0Ax(x) = y. Note also that B is infinite and coinfinite.

For any infinite set S ⊆ N, let πS : N → N be the principal function of S,
i.e.,

S = {πS(0) < πS(1) < · · · < πS(n) < πS(n+ 1) < · · ·}
where πS(n) = the nth element of S. Let f be the permutation of N defined by

f(y) =

{
2π−1

B (y) if y ∈ B,

2π−1
N\B(y) + 1 if y ∈ N \B.

By course-of-values recursion, f is primitive recursive. However, f−1 is not
primitive recursive, because f−1(2x) = πB(x) = Ax(x).

1.5 The Enumeration Theorem

To each register machine program E we shall assign a unique number e = #(E).
This number will be called the Gödel number of E and will also be called an
index of the k-place partial recursive function which is computed by E
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Recall that our register machine is equipped with infinitely many registers
Ri, i ≥ 1. Initially all of the registers are empty except for R1, . . . , Rk which
contain the arguments x1, . . . , xk. We assume that our program E is given
as a numbered sequence of instructions I1, . . . , Il. By convention our machine
starts by executing I1 and stops when it attempts to execute the nonexistent
instruction I0. Each instruction Im, 1 ≤ m ≤ l, is of the form

increment Ri then go to instruction In0 , (1.0)

or
if Ri is empty go to In0 , otherwise

decrement Ri then go to instruction In1 .
(1.1)

Here n0 and n1 are in the range 0 ≤ n ≤ l. To each instruction Im we assign a
Gödel number #(Im), where

#(Im) =

{
3i · 5n0 for Im as in (1.0) ,

2 · 3i · 5n0 · 7n1 for Im as in (1.1) .

The Gödel number of the entire program E is then defined as

#(E) =
l∏

m=1

p#(Im)
m ,

where p0, p1, p2, . . . are the prime numbers 2, 3, 5, . . . in increasing order.

Example 1.5.1. Let E be the program in Figure 1.8, which computes λx [x+1 ].
Listing the instructions I1, I2, I3 as shown in the figure, we have

#(I1) = 2 · 31 · 53 · 72 = 2 · 3 · 125 · 49 = 36750 ,

#(I2) = 32 · 51 = 45 ,

#(I3) = 32 · 50 = 9 ,

so that
#(E) = 3#(I1) · 5#(I2) · 7#(I3) = 336750 · 545 · 79 .

Lemma 1.5.2. The 1-place predicate

Program(e) ≡ (e is the Gödel number of some register machine program)

is primitive recursive.

Proof. We have

Program(e) ≡
e∨

l=0

Program(e, l)
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I1 I3

startONMLHIJK // R−
1

ONMLHIJK
��

e // R+
2

ONMLHIJK // stopONMLHIJK

R+
2

ONMLHIJK
OO

I2

Figure 1.8: A Program with Labeled Instructions

where Program (e, l) says that e is the Gödel number of a register machine
program consisting of l instructions I1, . . . , Il. We then have

Program(e, l) ≡ e =

l∏

m=1

p(e)m

m ∧

l∧

m=1

e∨

i=1

l∨

n0=0

l∨

n1=0

[
(e)m = 3i · 5n0 ∨ (e)m = 2 · 3i · 5n0 · 7n1

]
,

the idea being that (e)m = #(Im). This proves the lemma.

Definition 1.5.3. We denote by ϕ
(k)
e the k-place partial computable function

which is computed by the register machine program E whose Gödel number is
e. In more detail, we define

ϕ
(k)
e (x1, · · · , xk) ≃ the number in Rk+1 if and when E(x1, · · · , xk)

stops, where e = #(E), and undefined otherwise.

Note that if e is not the Gödel number of a register machine program, then

ϕ
(k)
e (x1, · · · , xk) is undefined for all x1, . . . , xk, so in this case ϕ

(k)
e is the empty

function.

If ψ is a k-place partial recursive function, an index of ψ is any number e

such that ψ = ϕ
(k)
e , i.e., e is the Gödel number of a program which computes ψ.

Clearly ψ has many different indices, since there are many different programs
which compute ψ.

Exercise 1.5.4. Find an index of the function

α(x) =

{
1 if x = 0,

0 if x > 0.
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Solution. Clearly the labeled program

I1 I2

startONMLHIJK // R−
1

ONMLHIJK
��

??
??

??
?

e // R+
2

ONMLHIJK
��

stopONMLHIJK
computes α. We have #(I1) = 2 · 31 · 52 · 70 = 150 and #(I2) = 32 · 50 = 9, so

an index of α is e = 3#(I1) · 5#(I2) = 3150 · 59. In other words, ϕ
(1)
e = α.

The main theorem on indices reads as follows.

Theorem 1.5.5 (The Enumeration Theorem). For each k ≥ 1, the (k+1)-place
partial function

λex1 . . . xk [ϕ(k)
e (x1, . . . , xk) ]

is partial recursive.

Remark 1.5.6. The Enumeration Theorem entails the existence of a “univer-
sal” program, i.e., a register machine program which can emulate the action of
any other register machine program. This concept underlies the stored program
digital computer.

In the proof of the Enumeration Theorem, the following easy lemma will be
useful.

Lemma 1.5.7 (Definition by Cases). Let P1 and P2 be k-place primitive re-
cursive predicates and let f1 and f2 be k-place primitive recursive functions.
Assume that P1 and P2 are mutually exclusive and exhaustive, i.e., for each
k-tuple 〈x1, . . . , xk〉 ∈ Nk, either P1(x1, . . . , xk) or P2(x1, . . . , xk) holds but not
both. Then the k-place function f defined by

f(x1, . . . , xk) =

{
f1(x1, . . . , xk) if P1(x1, . . . , xk) holds

f2(x2, . . . , xk) if P2(x1, . . . , xk) holds

is primitive recursive.

Proof. This is clear since f = f1 · χP1 + f2 · χP2 . The extension to more than
two cases is also easy.

Proof of the Enumeration Theorem.
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The idea of the proof is to represent the state of E(x1, . . . , xk) after executing
n instructions by a single number

z = State (e, x1, . . . , xk, n)

= pm0 ·∏∞
i=1 p

zi

i ,

where zi is the number in register Ri, and Im is the next instruction to be
executed. Note that (z)0 = m and, for all i ≥ 1, (z)i = zi.

We first show that the State function is primitive recursive. We have

State (e, x1, . . . , xk, 0) = p1
0 · px1

1 · . . . · pxk

k

(begin by executing I1) ,

State (e, x1, . . . , xk, n+ 1) = NextState (e, State (e, x1, . . . , xk, n)) ,

NextState (e, z) =






z · pi · p−m+n0
0 if ((e)m)0 = 0 ,

z · p−m+n0
0 if ((e)m)0 = 1 and (z)i = 0 ,

z · p−1
i · p−m+n1

0 if ((e)m)0 = 1 and (z)i > 0 ,

z otherwise ,

where
m = (z)0 , i = ((e)m)1 , n0 = ((e)m)2 , n1 = ((e)m)3 .

We are now ready to prove the theorem. We use the least number operator
to obtain

Stop (e, x1, . . . , xk) ≃ least n such that (State (e, x1, . . . , xk, n))0 = 0

∧ Program(e) .

(The idea is that our machine stops if and when it is about to execute I0. Note
that Stop (e, x1, . . . , xk) is undefined if e is not the Gödel number of a register
machine program.) We then use composition to get

FinalState (e, x1, . . . , xk) ≃ State (e, x1, . . . , xk, Stop (e, x1, . . . , xk))

(the state of our machine if and when it stops)

and
Output (e, x1, . . . , xk) ≃ (FinalState (e, x1, . . . , xk))k+1

(the number that is finally in register Rk+1) .

Since the Output function was obtained by composition, primitive recursion and
the least number operator, it is partial recursive. Moreover, for all e and x1,
. . . , xk, we clearly have

ϕ(k)
e (x1, . . . , xk) ≃ Output (e, x1, . . . , xk) .

This completes the proof of the Enumeration Theorem.
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Exercise 1.5.8. Let f : Nk → N be a k-place total recursive function. Show
that f is primitive recursive if and only if there exists an index e of f such that

λx1 . . . xk [ Stop (e, x1, . . . , xk) ]

is majorized by some primitive recursive function. (See also Exercise 1.2.2.)

Exercise 1.5.9. Fix k ≥ 1. Construct a k+1-place total recursive function
Φk : Nk+1 → N with the following properties:

1. for each e ∈ N, the k-place function λx1 . . . xk [ Φk(e, x1, . . . , xk) ] is prim-
itive recursive;

2. for each k-place primitive recursive function f : Nk → N, there exists an
e such that f = λx1 . . . xk [ Φk(e, x1, . . . , xk) ].

Exercise 1.5.10. Given a k-place partial recursive function ψ(x1, . . . , xk), show
that there is a 1-place partial recursive function ψ∗(x) such that

ψ∗(px1
1 · · · pxk

k ) ≃ p
ψ(x1,...,xk)
k+1

for all x1, . . . , xk, and ψ∗ is computable by a register machine program which
uses only two registers, R1 and R2.

Solution. We begin with a register machine programP which computes ψ(x1, . . . , xk).
Let P1, . . . , Pk, Pk+1, . . . , Ps be the registers used in P . We may safely assume
that, whenever P(x1, . . . , xk) halts, it leaves all registers except Pk+1 empty.

We transform P into a program R which uses only two registers, R1 and R2.
The idea is that, if P1, . . . , Ps contain z1, . . . , zs respectively, then R1 contains
z = pz11 · · · pzs

s , while R2 contains 0. Incrementing (decrementing) Pi corre-
sponds to multiplication (division) by pi. Each instruction in P is replaced by
a corresponding set of instructions in R.

We replace // P+
i

ONMLHIJK // in P by Figure 1.9 in R.

We replace // P−
i

ONMLHIJK //

e

��
??

??
??

?

A

B

in P by Figure 1.10 in R.

We replace // stopONMLHIJK in P by Figure 1.11 in R.

1.6 Consequences of the Enumeration Theorem

In this section we present some important consequences of the Enumeration
Theorem.
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// R−
1

ONMLHIJK
��

e // R−
2

ONMLHIJK
��

e //

R+
2

ONMLHIJK
��

R+
1

ONMLHIJK
OO

...

��

R+
2

ONMLHIJK

FF

The number of R+
2 instructions is pi.

Figure 1.9: Incrementing Pi

R+
1

ONMLHIJK
��

// R−
1

ONMLHIJK
��

e // R−
2

ONMLHIJK
OO

e // A R+
1

ONMLHIJK
��

R+
2

ONMLHIJK
??�������

R−
1

ONMLHIJK
��

e // R+
1

ONMLHIJK // R−
2

ONMLHIJK
e

��

??�������

R+
1

ONMLHIJK
��

...

��

...

OO

B ...

��

R−
1

ONMLHIJK

WW0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

e // R+
1

ONMLHIJK
OO

R+
1

ONMLHIJK

WW0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

The number of R−
1 instructions is pi.

Figure 1.10: Decrementing Pi
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// R−
1

ONMLHIJK
��

e // stopONMLHIJK

R+
2

ONMLHIJK
OO

Figure 1.11: Stopping

Theorem 1.6.1. All partial recursive functions can be obtained from primitive
recursive functions by composition and minimization.

Proof. This is immediate from the proof of the Enumeration Theorem. The
State function is primitive recursive, the Stop function is obtained from the
State function by minimization, and the FinalState and Output functions are
obtained by composing the Stop and State functions with the primitive recursive
function λz [ (z)k+1 ].

The following characterizations of the class of partial recursive functions do
not involve register machines and are similar to our definition of the class of
primitive recursive functions.

Corollary 1.6.2. The class of partial recursive functions is the smallest class
of functions containing the primitive recursive functions and closed under com-
position and minimization.

Corollary 1.6.3. The class of partial recursive functions is the smallest class of
functions containing the initial functions and closed under composition, primi-
tive recursion, and minimization.

Proof. Both corollaries are immediate from the previous theorem and Lem-
mas 1.3.2, 1.3.3, 1.3.4, 1.4.3.

Next we present an interesting example showing that the consideration of
partial functions is in some sense unavoidable or inherent in recursive function
theory.

Example 1.6.4. We present an example of a partial recursive function ψ :

N
P−→ N which cannot be extended to a total recursive function f : N → N.

Namely, we define
ψ(x) ≃ ϕ(1)

x (x) + 1 .

By the Enumeration Theorem, ψ is a partial recursive function. Suppose ψ
were extendible to a total recursive function f . Let e be an index of f . Then

ψ(e) ≃ ϕ
(1)
e (e) + 1 ≃ f(e) + 1 is defined, hence f(e) ≃ ψ(e) ≃ f(e) + 1, a

contradiction.
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Definition 1.6.5. A set A ⊆ N is said to be recursive if its characteristic
function χA : N → N is recursive. More generally, a k-place predicate R ⊆ Nk

is said to be recursive if its characteristic function χR : Nk → N is recursive.

Example 1.6.6. We present an example of a nonrecursive set. Let K be

the subset of N consisting of all x ∈ N such that ϕ
(1)
x (x) is defined. Thus

K = dom(ψ) where ψ is as in the previous example. We claim that K is not
recursive. If K were recursive, then the total function f : N → N defined by

f(x) =

{
ψ(x) if x ∈ K,

0 if x /∈ K

would be recursive, contradicting the fact that ψ is not extendible to a total
recursive function.

Definition 1.6.7. A pair of sets A, B ⊆ N is said to be recursively inseparable

if there is no recursive set X such that A ⊆ X and X ∩B = ∅.

Exercise 1.6.8. Letting Kn = {x ∈ N | ϕ(1)
x (x) ≃ n}, show that K0 and K1

are recursively inseparable.

Exercise 1.6.9. Show that there exists a set A ⊆ N which is recursive but not
primitive recursive.

(Caution: It can be shown that the 3-place predicate z = Ax(y) is prim-
itive recursive, even though the 2-place function λxy [Ax(y) ] is not primitive
recursive. See Exercises 1.2.2, 1.4.5, 1.5.8, 1.5.9.)

Remark 1.6.10 (Church’s Thesis). Perhaps the most important consequence
of the proof of the Enumeration Theorem is that it provides strong evidence for
Church’s Thesis. We shall first explain what Church’s Thesis says, and then we
shall present the evidence for it.

The context of Church’s Thesis is that, as mathematicians, we have an in-
tuitive notion of what it means for a function f : Nk → N to be algorithmically
computable. Since recursive functions are register machine computable, they
are obviously algorithmically computable in the intuitive sense. Church’s The-
sis states the converse: All functions f : Nk → N which are algoritmically
computable in the intuitive sense are in fact recursive.

To present our evidence for Church’s thesis, assume that we are given a func-
tion f : Nk → N which is algorithmically computable in the intuitive sense. We
want to show that f is recursive. Since the given algorithm for f is presumably
deterministic, the execution of the algorithm should be describable as a sequence
of states with deterministic transition from one state to the next. The precise
nature of the states depends on the nature of the algorithm, but no matter what
the states actually consist of, it should be possible to view them as finite strings
of symbols and to assign Gödel numbers to them. Once this has been done, the
transition from the Gödel number of one state to the Gödel number of the next
state should be very simple, in particular primitive recursive. Thus we should
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be able to carry out an analysis similar to what is in the proof of Theorem 1.5.5
(State, NextState, Stop, etc.). Such an analysis will show that f is obtained
from primitive recursive functions by means of composition and minimization.
It will then follow by Corollary 1.6.2 that f is recursive.

The argument in the previous paragraph is of necessity nonrigorous. How-
ever, it can be specialized to provide rigorous proofs that various models of com-
putation (similar to but differing in details from register machine computability)
give rise to exactly the same class of functions, the recursive functions. Some
of the models of computation that have been analyzed in this way are: Turing
machines, Markov algorithms, Kleene’s equation calculus. There is no reason
to think that the same analysis could not be carried out for any similar model.
This constitutes very strong evidence for Church’s thesis.

Note that the same arguments and evidence apply more generally in case f
is a partial rather than a total function. From now on, we shall take Church’s
Thesis for granted and identify the class of partial recursive functions with the
class of partial functions from Nk into N that are algorithmically computable in
the intuitive sense.

The fact that the intuitive notion of algorithmic computability is captured
by a rigorous mathematical notion of recursiveness is one of the successes of
modern mathematical logic.

1.7 Unsolvable Problems

The purpose of this section is twofold: (1) to discuss and make precise the con-
cept of an unsolvable mathematical problem, and (2) to present some important
examples of such problems.

We begin with a preliminary clarification. In certain contexts, the word
problem refers to a mathematical statement which has a definite truth value,
True or False, but whose truth value is unknown at the present time. (An ex-
ample of a problem in this sense is the Riemann Hypothesis.) However, we shall
not deal with this type of problem now. Instead, we consider a somewhat dif-
ferent concept. For us in this section, a problem is any mathematical statement
that involves a parameter. A solution of such a problem would be an algorithm
which would enable us to compute the truth value of the problem statement for
any given value of the parameter. The problem is said to be solvable if there
exists such an algorithm, otherwise unsolvable. An instance of a problem is the
specialization of the problem statement to a particular parameter value.

As an example of a solvable problem, we mention:

Example 1.7.1. The statement “n is prime” represents the problem of deciding
whether an arbitrary number n ∈ N is prime or composite. Here the parameter
is the variable n. For any particular n (e.g. n = 123456789), the question of
whether this particular n is prime or composite is an instance (i.e., special case)
of the general “primality problem”. Since the set of prime numbers

{n ∈ N | n is prime}
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is primitive recursive, the general primality problem is solvable.

On the other hand, we have the following example of an unsolvable problem.

Example 1.7.2. The set K defined in Example 1.6.6 is nonrecursive. Hence by
Church’s Thesis there is no algorithm to decide whether or not a given number
n belongs to K. It is therefore appropriate to describe the membership problem
for K (i.e., the problem of computing the truth value of n ∈ K for any given n)
as an unsolvable problem.

The ability to distinguish solvable problems from unsolvable ones is of basic
importance for the mathematical enterprise. Among the most famous unsolvable
mathematical problems are:

Example 1.7.3 (Hilbert’s Tenth Problem). Hilbert’s Tenth Problem is to de-
termine, for a given polynomial p in several variables with integral coeffients,
p ∈ Z[X1, . . . , Xn], whether or not the equation p(X1, . . . , Xn) = 0 has a solu-
tion in integers X1, . . . , Xn ∈ N. This problem encompasses the entire theory
of Diophantine equations. A theorem of Matijasevič shows that Hilbert’s Tenth
Problem is unsolvable. Actually Matijasevič produced a particular polynomial

p(X0, X1, . . . , X9)

with 10 indeterminates, such that

{n ∈ N | p(n, a1, . . . , a9) = 0 for some a1, . . . , a9 ∈ Z}

is nonrecursive. Once again, our notion of unsolvable problem is related to the
existence of a nonrecursive set, namely the set of parameter values n for which
the problem statement holds.

Example 1.7.4 (Word Problems). Let G be a group presented by finitely many
generators and relations. The word problem for G is the problem of determining,
for a given word w in the generators of G and their inverses, whether or not
w = 1 in G. In this case the parameter is w, and the word problem for G is
solvable if and only if there exists an algorithm for determining whether or not a
given word w is equal to 1 in G. It is known that the word problem is solvable for
some groups G and not solvable for others. For example, the word problem for
free groups or groups with one relation is solvable, but Boone and Novikov have
exhibited groups G with finitely many relations such that the word problem for
G is unsolvable.

Example 1.7.5 (The Halting Problem).
Some famous unsolvable problems arise from computability theory itself. One
of these is the Halting Problem: To determine whether or not a given register
machine program P will eventually stop, if started with all registers empty. By
Gödel numbering, we can identify the Halting Problem with the problem of
deciding whether a given natural number e belongs to the set

H = {e ∈ N | ϕ(1)
e (0) is defined} .
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We shall prove below that H is nonrecursive, i.e., the Halting Problem is un-
solvable.

In all of the above examples, the issue of solvability or unsolvability of a
particular problem was rephrased as an issue of whether or not a particular
subset of N is recursive. Such considerations based on Church’s Thesis motivate
the following definition:

Definition 1.7.6 (Unsolvability). Recall that a set A ⊆ N is said to be recursive
if and only if its characteristic function χA : N → {0, 1} is recursive. A problem

is defined to be a subset of N. If A ⊆ N is a problem in this sense, the problem
A is said to be solvable if A is recursive, and unsolvable if A is nonrecursive.

We shall prove the unsolvability of the Halting Problem, i.e., the nonrecur-
siveness of the set H in Example 1.7.5 above. The proof will be accomplished
by showing that the problem of membership in K is “reducible” to the problem
of membership in H . In this context, reducibility of one problem to another
means that each instance of the former problem can be effectively converted to
an equivalent instance of the latter problem. Our precise notion of reducibility
is given by:

Definition 1.7.7 (Reducibility). Let A and B be subsets of N (i.e., problems,
cf. Definition 1.7.6). We say that A is reducible to B if there exists a recursive
function f : N → N such that, for all n ∈ N, n ∈ A implies f(n) ∈ B, and n /∈ A
implies f(n) /∈ B.

Lemma 1.7.8. Suppose that A is reducible to B. If B is recursive, then A is
recursive. If A is nonrecursive, then B is nonrecursive.

Proof. The first statement follows easily from the fact that χA(x) = χB(f(x)).
The second statement follows since it is the contrapositive of the first.

Exercise 1.7.9. Write A ≤m B to mean that A is reducible to B. Show that

1. A ≤m A for all A ⊆ N.

2. A ≤m B and B ≤m C imply A ≤m C.

3. If ∅ 6=B 6= N, then for every recursive set A we have A ≤m B.

In order to prove that the set H is nonrecursive, we shall need the following
important technical result:

Theorem 1.7.10 (The Parametrization Theorem). Let θ(x0, x1, . . . , xk) be a
(k+1)-ary partial recursive function. Then we can find a unary primitive recur-
sive function f(x0) such that, for all x0, x1, . . . , xk ∈ N,

ϕ
(k)
f(x0)

(x1, . . . , xk) ≃ θ(x0, x1, . . . , xk) .
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Proof. Let T be a register machine program which computes the k+1-ary partial
recursive function θ. The idea of the proof is to let f(x0) be the Gödel number
of a program which is similar to T but has x0 hard-coded as the first argument
of θ.

Formally, let T ′ be a register machine program which computes the k+1-ary
partial recursive function

θ′(x1, . . . , xk, x0) ≃ θ(x0, x1, . . . , xk) .

Let I1, . . . , Il be the instructions of T ′, and let T ′′ be the same as T ′ but modified
so that the instructions are numbered I5, . . . , Il+4 instead of I1, . . . , Il. Then for
any given x0 ∈ N, the program T ′′′

x0
depicted in Figure 1.12 computes the k-ary

partial recursive function λx1 . . . xk [ θ′(x1, . . . , xk, x0) ], i.e. λx1 . . . xk [ θ(x0, x1, . . . , xk) ].
The instructions of T ′′′

x0
are numbered as I1, . . . , Il+x0+5. Let f(x0) be the Gödel

number of T ′′′
x0

. Note that

f(x0) =
∏l+x0+5
m=1 p

#(Im)
m

=
∏l+4
m=1 p

#(Im)
m ·∏l+x0+4

m=l+5 p
3k+1·5m+1

m · p2·3k+1·55·75

l+x0+5

where the first factor
∏l+4
m=1 p

#(Im)
m does not depend on x0. Thus f(x0) is a

primitive recursive function of x0. This completes the proof.

I1 Il+5 . . . Il+x0+4 Il+x0+5 I5 · · · Il+4 I2 I3

startONMLHIJK // R+
k+1

WVUTPQRS // R+
k+1

WVUTPQRS // . . . // R+
k+1

WVUTPQRS // R−
k+1

WVUTPQRS
//

e // T ′′ // R−
k+1

WVUTPQRS
cdabg̀ ==

e // R−
k+2

WVUTPQRS
��

e // stopONMLHIJK

x0 R+
k+1

WVUTPQRS
OO

I4

Figure 1.12: Parametrization

We can now prove that the Halting Problem is unsolvable.

Theorem 1.7.11 (Unsolvability of the Halting Problem). The Halting Problem
is unsolvable. In other words, the set

H = {x ∈ N | ϕ(1)
x (0) is defined}

of Example 1.7.5 is nonrecursive.
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Proof. Let H be as in Example 1.7.5 and let K be as in Example 1.6.6, i.e.,

K = {x ∈ N | ϕ(1)
x (x) is defined} .

We shall prove that K is reducible to H . Since K is known to be nonrecursive
(Example 1.6.6), it will follow by Lemma 1.7.8 that H is nonrecursive.

Consider the partial recursive function θ(x, y) ≃ ϕ
(1)
x (x). Note that θ is a

2-place function. By the Enumeration Theorem, θ is partial recursive. By the
Parametrization Theorem applied with k = 1, we can find a primitive recursive
function f : N → N such that

ϕ
(1)
f(x)(y) ≃ θ(x, y) ,

i.e.,

ϕ
(1)
f(x)(y) ≃ ϕ(1)

x (x)

for all x and y. In particular, if x ∈ K then ϕ
(1)
x (x) is defined, hence ϕ

(1)
f(x)(0) is

defined, i.e., f(x) ∈ H . On the other hand, if x /∈ K then ϕ
(1)
x (x) is undefined,

hence ϕ
(1)
f(x)(0) is undefined, i.e., f(x) /∈ H . Thus K is reducible to H via f .

This completes the proof.

Exercise 1.7.12. Show that the following sets and predicates are nonrecursive:

1. {x ∈ N | ϕ(1)
x : N

P−→ N is total}.

2. {x ∈ N | ϕ(1)
x is the empty function}.

3. {〈x, y〉 ∈ N × N | ϕ(1)
x = ϕ

(1)
y }.

4. {〈x, y〉 ∈ N × N | y ∈ rng(ϕ
(1)
x )}.

5. {x ∈ N | 0 ∈ rng(ϕ
(1)
x )}.

6. {x ∈ N | rng(ϕ
(1)
x ) is infinite}.

Exercise 1.7.13 (Rice’s Theorem). Let P be the class of 1-place partial recur-
sive functions. For C ⊆ P , define IC to be the set of indices of functions in C,
i.e.,

IC = {x ∈ N | ϕ(1)
x ∈ C} .

Show that if ∅ 6= C 6= P then IC is nonrecursive.

Solution. Let e0 be an index of the empty function. Let e1 be an index such

that ϕ
(1)
e1 ∈ C if and only if ϕ

(1)
e0 /∈ C. By the Enumeration and Parametrization

theorems, we can find a primitive recursive function f such that

ϕ
(1)
f(x)(y) ≃

{
ϕ

(1)
e1 (y) if ϕ

(1)
x (x) ↓,

↑ otherwise,
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for all x and y. Thus x ∈ K implies ϕ
(1)
f(x) = ϕ

(1)
e1 , while x /∈ K implies

ϕ
(1)
f(x) = ϕ

(1)
e0 . Thus f reduces K either to IC (if ϕ

(1)
e1 ∈ C) or to the complement

of IC (if ϕ
(1)
e1 /∈ C). In either case it follows that IC is not recursive.

1.8 The Recursion Theorem

In this section we present an interesting and mysterious theorem known as the
Recursion Theorem.

Theorem 1.8.1 (The Recursion Theorem). Let θ(w, x1, . . . , xk) be a partial
recursive function. Then we can find an index e such that, for all x1, . . . , xk,

ϕ
(k)
e (x1, . . . , xk) ≃ θ(e, x1, . . . , xk) .

Proof. Applying the Parametrization Theorem and the Enumeration Theorem,
we can find primitive recursive functions f and d such that, for allw, u, x1, . . . , xk,

ϕ
(k)
f(w)(x1, . . . , xk) ≃ θ(w, x1, . . . , xk) .

and
ϕ

(k)
d(u)(x1, . . . , xk) ≃ ϕ

(k)

ϕ
(1)
u (u)

(x1, . . . , xk) .

Let v be an index of f ◦ d, i.e., ϕ
(1)
v (u) = f(d(u)) for all u. Then

ϕ
(k)
d(v)(x1, . . . , xk) ≃ ϕ

(k)

ϕ
(1)
v (v)

(x1, . . . , xk)

≃ ϕ
(k)
f(d(v))(x1, . . . , xk)

≃ θ(d(v), x1, . . . , xk)

so we may take e = d(v). This completes the proof.

Example 1.8.2. As an example, if we take θ(w, x) = w+x, then we obtain an

index e such that ϕ
(1)
e (x) = e+ x for all x.

Example 1.8.3. As another illustration of the Recursion Theorem, we now
use it to prove that the Ackermann function λnx [An(x) ] (see Section 1.2) is
computable. The recursion equations defining the Ackermann function can be
written as

A0(x) = 2x

An+1(0) = 1

An+1(x+ 1) = An(An+1(x)) .

Writing A(x, y) = Ax(y), this becomes

A(0, y) = 2y

A(x+ 1, 0) = 1

A(x+ 1, y + 1) = A(x,A(x + 1, y))
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or in other words

A(x, y) =






2y if x = 0 ,

1 if x > 0 and y = 0 ,

A(x ·− 1, A(x, y ·− 1)) if x > 0 and y > 0 .

By the Enumeration Theorem together with the Recursion Theorem, we can
find an index e such that

ϕ
(2)
e (x, y) ≃






2y if x = 0 ,

1 if x > 0 and y = 0 ,

ϕ
(2)
e (x ·− 1, ϕ

(2)
e (x, y ·− 1)) if x > 0 and y > 0 .

It is then straightforward to prove by induction on x that, for all y, ϕ
(2)
e (x, y) ≃

A(x, y). This completes the proof.

Exercise 1.8.4.

1. Find a primitive recursive function f(x, y) such that, for all x and y,

ϕ
(1)
f(x,y) = ϕ(1)

x ◦ ϕ(1)
y .

2. Find a primitive recursive function g(x, y) such that, for all x and y,

dom(ϕ
(1)
g(x,y)) = dom(ϕ(1)

x ) ∩ dom(ϕ(1)
y ) .

3. Find a primitive recursive function h(x, y) such that, for all x and y,

dom(ϕ
(1)
h(x,y)) = dom(ϕ(1)

x ) ∪ dom(ϕ(1)
y ) .

Solution.

1. By the Enumeration Theorem and the Parametrization Theorem, find a
primitive recursive function f̂(w) such that

ϕ
(1)
bf(w)

(z) ≃ ϕ
(1)
(w)1

(ϕ
(1)
(w)2

(z))

for all w, z. Then f(x, y) = f̂(3x5y) has the desired property.

2. By the Enumeration Theorem and the Parametrization Theorem, find a
primitive recursive function ĝ(w) such that

ϕ
(1)
bg(w)(z) ≃ ϕ

(1)
(w)1

(z) + ϕ
(1)
(w)2

(z)

for all w, z. Then g(x, y) = ĝ(3x5y) has the desired property.
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3. By the Parametrization Theorem, find a primitive recursive function ĥ(w)
such that

ϕ
(1)
bh(w)

(z) ≃ least n such that (State((w)1, z, n))0 · (State((w)2, z, n))0 = 0

for all w, z. Then h(x, y) = ĥ(3x5y) has the desired property.

Exercise 1.8.5.

1. Find a primitive recursive function f(x) such that for all x, if ϕ
(1)
x is a

permutation of N, then ϕ
(1)
f(x) is the inverse permutation.

2. What happens if ϕ
(1)
x is assumed only to be partial and one-to-one, and

not necessarily a permutation?

Solution. Consider the partial recursive function θ(x, y) ≃ least w such that
(State(x, (w)1, (w)2))0 = 0 and (State(x, (w)1, (w)2))2 = y. By construction, if

ϕ
(1)
x (z) ≃ y then (θ(x, y))1 ≃ z. Therefore, by the Parametrization Theorem,

let f(x) be a primitive recursive function such that ϕ
(1)
f(x)(y) ≃ (θ(x, y))1. This

works even if ϕ
(1)
x is only assumed to be partial and one-to-one.

Exercise 1.8.6. Find m and n such that m 6= n and ϕ
(1)
m (0) = n and ϕ

(1)
n (0) =

m.

Solution. By the Parametrization Theorem, let f be a 1-place primitive recursive

function such that ϕ
(1)
f(x)(y) = x for all x, y. The construction of f in the proof of

the Parametrization Theorem shows that f(x) > x for all x. By the Recursion

Theorem, let e be such that ϕ
(1)
e (y) ≃ f(e) for all y. In particular we have

ϕ
(1)
e (0) ≃ f(e), ϕ

(1)
f(e)(0) = e, and f(e) > e. So take m = e and n = f(e).

1.9 The Arithmetical Hierarchy

In this section we study some important classes of number-theoretic predicates:
Σ0

1, Π0
1, Σ0

2, Π0
2, . . . . These classes collectively are known as the arithmetical

hierarchy.

Definition 1.9.1 (The Arithmetical Hierarchy). We define Σ0
0 and Π0

0 to be
the class of primitive recursive predicates. For n ≥ 1, we define Σ0

n to be the
class of k-place predicates P ⊆ Nk (for any k ≥ 1) such that P can be written
in the form

P (x1, . . . , xk) ≡ ∃y R(x1, . . . , xk, y)

where R is a k+1-place predicate belonging to the class Π0
n−1. Similarly, we

define Π0
n to be the class of predicates that can be written in the form

P (x1, . . . , xk) ≡ ∀y R(x1, . . . , xk, y)

where R belongs to the class Σ0
n−1.
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For example, a predicate P (x1, . . . , xk) belongs to the class Σ0
3 if and only if

it can be written in the form

∃y1∀y2∃y3R(x1, . . . , xk, y1, y2, y3)

where R is primitive recursive. Similarly, P belongs to the class Π0
3 if and only

if it can be written in the form

∀y1∃y2∀y3R(x1, . . . , xk, y1, y2, y3)

where R is primitive recursive.

Theorem 1.9.2. We have:

1. The classes Σ0
n and Π0

n are included in the classes Σ0
n+1 and Π0

n+1.

2. The classes Σ0
n and Π0

n are closed under conjunction and disjunction.

3. The classes Σ0
n and Π0

n are closed under bounded quantification.

4. For n ≥ 1, the class Σ0
n is closed under existential quantification.

5. For n ≥ 1, the class Π0
n is closed under universal quantification.

6. A predicate P belongs to Σ0
n (respectively Π0

n) if and only if ¬P belongs
to Π0

n (respectively Σ0
n).

Proof. Straightforward.

Theorem 1.9.3. A k-place predicate P ⊆ Nk belongs to the class Σ0
1 if and

only if P = dom(ψ) for some k-place partial recursive function ψ : Nk
P−→ N.

Proof. If P is Σ0
1, then we have

P (x1, . . . , xk) ≡ ∃y R(x1, . . . , xk, y)

where R is primitive recursive, hence P = dom(ψ) where

ψ(x1, . . . , xk) ≃ least y such that R(x1, . . . , xk, y) holds ,

and clearly ψ is partial recursive. Conversely, if P = dom(ψ), then letting e be
an index of ψ, we have as in the proof of the Enumeration Theorem

P (x1 . . . , xk) ≡ ∃n (State(e, x1, . . . , xk, n))0 = 0 ,

hence P is Σ0
1.

Corollary 1.9.4. P ⊆ Nk is Σ0
1 if and only if

P (x1, . . . , xk) ≡ ∃y R(x1, . . . , xk, y)

where R ⊆ Nk+1 is recursive (not only primitive recursive).

42



Remark 1.9.5. It follows that, in the definition of Σ0
n and Π0

n for n ≥ 1, we
may replace “primitive recursive” by “recursive”.

Exercises 1.9.6. If ψ is a k-place partial function, the graph of ψ is the (k+1)-
place predicate Gψ = {〈x1, . . . , xk, y〉 | ψ(x1, . . . , xk) ≃ y}.

1. Show that ψ is partial recursive if and only if the graph of ψ is Σ0
1.

2. Show that, for every (k+1)-place Σ0
1 predicate P (x1, . . . , xk, y) there exists

a k-place partial recursive function ψ(x1, . . . , xk) which uniformizes P , i.e.,
Gψ ⊆ P and dom(ψ) = {〈x1, . . . , xk〉 | ∃y P (x1, . . . , xk, y)}.

Definition 1.9.7. Let A be an infinite subset of N. The principal function of
A is the one-to-one function πA : N → N that enumerates the elements of A in
increasing order.

Lemma 1.9.8. Let A be an infinite subset of N. The set A is recursive if and
only if the function πA is recursive.

Proof. If A is recursive then the functions νA and πA defined by

νA(x) = least y such that y ≥ x and y ∈ A

πA(0) = νA(0)

πA(x+ 1) = νA(πA(x) + 1)

are obviously recursive. Conversely, if πA is recursive then we have

y ∈ A if and only if

y∨

x=0

πA(x) = y .

Since the class of recursive predicates is closed under bounded quantification, it
follows that A is recursive.

Theorem 1.9.9. For A ⊆ N, the following are pairwise equivalent:

1. A is Σ0
1;

2. A = dom(ψ) for some partial recursive function ψ : N
P−→ N;

3. A = rng(ψ) for some partial recursive function ψ : N
P−→ N;

4. A = ∅ or A = rng(f) for some total recursive function f : N → N;

5. A is finite or A = rng(f) for some one-to-one total recursive function
f : N → N.
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Proof. The equivalence of 1 and 2 is a special case of Theorem 1.9.3, and the
fact that 3 implies 1 is proved similarly. It is easy to see that 5 implies 4 and 4
implies 3. To see that 1 implies 5, suppose that A ⊆ N is infinite and Σ0

1, say

x ∈ A ≡ ∃yR(x, y)

where R is primitive recursive. Put

B =

{
2x3y

∣∣∣∣R(x, y) ∧ ¬
y−1∨

z=0

R(x, z)

}
.

Then B is an infinite primitive recursive set, so by Lemma 1.9.8, πB is a one-to-
one recursive function. Putting f(n) = (πB(n))0, we see that f is a one-to-one
recursive function and A = rng(f). This completes the proof.

Remark 1.9.10. A set A satisfying the conditions of Theorem 1.9.9 is some-
times called a recursively enumerable set.

Exercises 1.9.11.

1. Show that every nonempty recursively enumerable set is the range of a
primitive recursive function.

2. Find an infinite primitive recursive set that is not the range of a one-to-one
primitive recursive function.

Definition 1.9.12. For each n ∈ N, the class ∆0
n is defined to be the intersection

of the classes Σ0
n and Π0

n.

Theorem 1.9.13. A k-place predicate P ⊆ Nk belongs to the class ∆0
1 if and

only if P is recursive.

Proof. If P is recursive, it follows easily by Theorem 1.9.3 that P is ∆0
1. Con-

versely, if P is ∆0
1, then we have

P (x1, . . . , xk) ≡ ∃y R1(x1, . . . , xk, y) ≡ ∀y R2(x1, . . . , xk, y)

where R1 and R2 are primitive recursive. Define a total recursive function f by

f(x1, . . . , xk) = least y such that R1(x1, . . . , xk, y) ∨ ¬ R2(x1, . . . , xk, y) .

Then we have

P (x1, . . . , xk) ≡ R1(x1, . . . , xk, f(x1, . . . , xk)) ,

hence P is recursive.

44



Exercise 1.9.14. A function f : Nk → N is said to be limit-recursive if there
exists a recursive function g : Nk+1 → N such that

f(x1, . . . , xk) = lim
y
g(x1, . . . , xk, y)

for all x1, . . . , xk ∈ N. Show that a predicate P is ∆0
2 if and only if its charac-

teristic function χP is limit-recursive.

Solution. For simplicity, let x be an abbreviation for x1, . . . , xk.
First assume that χP is limit-recursive, say

χP (x) = lim
n
f(n, x)

for all x, where f(n, x) is a recursive function. Then we have

P (x) ≡ ∃m ∀n (n ≥ m⇒ f(n, x) = 1)

and
¬P (x) ≡ ∃m ∀n (n ≥ m⇒ f(n, x) = 0)

so P is ∆0
2.

For the converse, assume that P is ∆0
2, say

P (x) ≡ ∃y ∀z R1(x, y, z)

and
¬P (x) ≡ ∃y ∀z R0(x, y, z)

where R1 and R0 are primitive recursive predicates. Using the bounded least
number operator, define g(n, x) = the least y < n such that either ∀z <
nR1(x, y, z) or ∀z < nR0(x, y, z) or both, if such a y exists, and g(n, x) =
n otherwise. Thus g(n, x) is a primitive recursive function, and it is easy
to see that, for all x, g(x) = limn g(n, x) exists and is equal to the least y
such that ∀z R1(x, y, z) or ∀z R0(x, y, z). Now define h(n, x) = 1 if ∀z <
nR1(x, g(n, x), z), and h(n, x) = 0 otherwise. Thus h(n, x) is again a primi-
tive recursive function, and for all x, h(x) = limn h(n, x) exists. Moreover P (x)
implies h(x) = 1, and ¬P (x) implies h(x) = 0. Thus χP is limit-recursive. This
completes the proof.

Theorem 1.9.15 (Universal Σ0
n Predicate). For each n ≥ 1 and k ≥ 1, we can

find a predicate U = Un,k with the following properties:

1. U is a k+1-place predicate belonging to the class Σ0
n; and

2. for any k-place predicate P belonging to the class Σ0
n, there exists an e ∈ N

such that
P (x1, . . . , xk) ≡ U(e, x1, . . . , xk)

for all x1, . . . , xk.
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Proof. This is a straightforward consequence of the Enumeration Theorem. The
proof is by induction on n. For n = 1 we have

U1,k(e, x1, . . . , xk) ≡ ϕ(k)
e (x1, . . . , xk) ↓≡ ∃s (State(e, x1, . . . , xk, s))0 = 0

in view of Theorem 1.9.3. For n > 1 we have

Un,k(e, x1, . . . , xk) ≡ ∃y ¬Un−1,k+1(e, x1, . . . , xk, y) .

This completes the proof.

Lemma 1.9.16. Let A, B ⊆ N and assume that A is reducible to B. Assume
n ≥ 1. If B belongs to Σ0

n, then so does A. If B belongs to Π0
n, then so does A.

Proof. Suppose for example that B belongs to Σ0
3. Then we have

x ∈ B if and only if ∃y1 ∀y2 ∃y3R(x, y1, y2, y3)

where R ⊆ N4 is a primitive recursive predicate. If A is reducible to B via the
recursive function f , then we have

x ∈ A if and only if f(x) ∈ B

if and only if ∃y1 ∀y2 ∃y3R(f(x), y1, y2, y3) .

Note that the predicate R(f(x), y1, y2, y3) is recursive, hence ∆0
1. It follows that

the predicate ∃y3R(f(x), y1, y2, y3) is Σ0
1. Hence A is Σ0

3.

Definition 1.9.17. Given n ≥ 1, a set B ⊆ N is said to be complete Σ0
n if

1. B belongs to the class Σ0
n; and

2. for any set A ⊆ N belonging to the class Σ0
n, A is reducible to B.

The notion of complete Π0
n set is defined similarly.

Theorem 1.9.18. For each n ≥ 1 there exists a complete Σ0
n set. For each

n ≥ 1 there exists a complete Π0
n set. For each n ≥ 1, a complete Σ0

n set is not
Π0
n, and a complete Π0

n set is not Σ0
n.

Proof. By Theorem 1.9.15 let U(e, x) be a universal Σ0
n predicate. Obviously

the set {2e3x | U(e, x)} is Σ0
n complete. To show that a Σ0

n complete set can
never be Π0

n, it suffices by Lemma 1.9.16 to show that there exists a Σ0
n set which

is not Π0
n. A simple diagonal argument shows that the Σ0

n set {x | U(x, x)} is
not Π0

n. This completes the proof of the Σ0
n part of the theorem. The Π0

n part
follows easily by taking complements.

Corollary 1.9.19. For all n ∈ N we have

∆0
n ⊆ Σ0

n , ∆0
n ⊆ Π0

n , Σ0
n ∪ Π0

n ⊆ ∆0
n+1

and, except for n = 0, all of these inclusions are proper.
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Proof. Given n ≥ 1, let A be a complete Σ0
n set. Then the complementB = N\A

is complete Π0
n. Clearly A belongs to Σ0

n \ ∆0
n and B belongs to Π0

n \ ∆0
n.

Moreover it follows by Theorem 1.9.2 and Lemma 1.9.16 that the set

A⊕B = {2x | x ∈ A} ∪ {2x+ 1 | x ∈ B}

belongs to ∆0
n+1 \ (Σ0

n ∪ Π0
n).

Exercises 1.9.20.

1. Show that the sets

H = {x | ϕ(1)
x (0) is defined}

and
K = {x | ϕ(1)

x (x) is defined}
are complete Σ0

1 sets.

2. Show that the set
T = {x | ϕ(1)

x is total}
is a complete Π0

2 set.

Exercise 1.9.21. What reducibility and non-reducibility relations exist among
the following sets? Note that H , T , E, and S are index sets.

K = {x ∈ N | ϕ(1)
x (x) ↓},

H = {x ∈ N | ϕ(1)
x (0) ↓},

T = {x ∈ N | ϕ(1)
x is total},

E = {x ∈ N | ϕ(1)
x is the empty function},

S = {x ∈ N | dom(ϕ
(1)
x ) is infinite}.

Prove your answers.

Hint: Using the Parametrization Theorem as in the proof of Theorem 1.7.11,
show that H and K are Σ0

1 complete, S and T are Π0
2 complete, and E is Π0

1

complete. These completeness facts, together with Lemma 1.9.16 and Theorem
1.9.18, determine the reducibility relations among H , K, S, T , and E.
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Chapter 2

Undecidability of

Arithmetic

We are going to show that arithmetic is undecidable. This means that there is
no algorithm to decide whether a given sentence in the language of arithmetic
is true or false.

2.1 Terms, Formulas, and Sentences

By arithmetic we mean the set of sentences which are true in the structure
(N,+, ·, 0, 1,=). Here N = {0, 1, 2, . . .} is the set of non-negative integers, +
and · denote the 2-place operations of addition and multiplication on N, and =
denotes the 2-place relation of equality between elements of N. For the benefit
of the reader who has not previously studied mathematical logic, we shall now
review the concept of a sentence being true in a structure. Since we are only
interested in the particular structure (N,+, ·, 0, 1,=), we shall concentrate on
that case.

It is first necessary to define a language appropriate for the structure

(N,+, ·, 0, 1,=).

Our language contains infinitely many variables x0, x1, . . . , xn, . . . which are
usually denoted by letters such as x, y, z, . . . . Each of these variables is also a
term of our language. In addition the symbols 0 and 1 are terms. Other terms
are built up using the 2-place operation symbols + and ·. Examples of terms
are

1 + 1 + 1 , x+ 1 , (x+ y) · z + x .

When writing terms, we may employ the usual abbreviations. For instance
1 + 1 + 1 = 3 and x · x · x = x3. Thus a term is essentially a polynomial in
several variables with non-negative integer coefficients.
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An atomic formula is a formula of the form t1 = t2 where t1 and t2 are
terms. Examples of atomic formulas are

x+ 1 = y , x = 3y2 + 1 .

Formulas are built from atomic formulas by using the Boolean propositional
connectives ∧, ∨, ¬ (and, or, not) and the quantifiers ∀, ∃ (for all, there exists).
An example of a formula is

∃z (x + z + 1 = y) (2.1)

In this formula, x, y and z are to be interpreted as variables ranging over the
set N. Similarly the expression ∃z . . . is to be interpreted as “there exists a
non-negative integer z in N such that . . . .” Thus the formula (2.1) expresses
the assertion that x is less than y. From now on we shall write x < y as
an abbreviation for (2.1). This idea of introducing new relation symbols as
abbreviations for formulas allows us to expand our language indefinitely.

Another example of a formula is

x > 1 ∧ ¬∃y ∃z (y > 1 ∧ z > 1 ∧ x = y · z) . (2.2)

This formula expresses the assertion that x is a prime number. Thus we might
choose to abbreviate (2.2) by some expression such as Prime(x) or “x is prime.”

In any particular formula, a free variable is a variable which is not acted on
by any quantifier in that formula. For example, the free variables of (2.1) are x
and y, while in (2.2) the only free variable is x. A sentence is a formula with
no free variables. Examples of sentences are

∀x (∃y (x = 2y) ∨ ∃y (x = 2y + 1)) (2.3)

and
∀x∃y (x = y + 1) . (2.4)

When interpreting formulas or sentences in the structure (N,+, ·, 0, 1,=),
please bear in mind that the quantifiers ∀ and ∃ range over the set of non-
negative integers, N. Thus ∀x means “for all x in N,” and ∃x means “for some
x in N” or “there exists x in N such that . . . .” With this understanding, we
know what it means for a sentence of our language to be true or false in the
structure (N,+, ·, 0, 1,=). For example (2.3) is true (because every element of
N is either even or odd) and (2.4) is false (because not every element of N is the
successor of some other element of N).

Let F (x1, . . . , xk) be a formula whose free variables are x1, . . . , xk. Then for
any non-negative integers a1, . . . , ak ∈ N, we can form the sentence F (a1, . . . , ak)
which is obtained by substituting (“plugging in”) the constants a1, . . . , ak for
the free occurrences of the variables x1, . . . , xk. For example, let F (x, y) be the
formula

∃z (x2 + z = y)
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with free variables x and y. Then for any particular non-negative integers m
and n, F (m,n) is a sentence which expresses the assertion that m2 is less than
or equal to n. For instance F (5, 40) is true and F (5, 20) is false.

This completes our review of the concept of a sentence being true or false in
the structure (N,+, ·, 0, 1,=).

Exercise 2.1.1. Write a sentence expressing Goldbach’s Conjecture: Every
even number is the sum of two prime numbers.

2.2 Arithmetical Definability

We now present a key definition.

Definition 2.2.1 (Arithmetical Definability). A k-place partial function

λx1 · · ·xk [ψ(x1, . . . , xk) ]

is said to be arithmetically definable if there exists a formula

F (x1, . . . , xk, xk+1)

with free variables x1, . . . , xk, xk+1, such that for all m1, . . . ,mk, n ∈ N,

ψ(m1, . . . ,mk) ≃ n if and only if F (m1, ...,mk, n) is true.

(Of course it doesn’t matter whether we use the variables x1, . . . , xk, xk+1 or
some other set of k + 1 distinct variables.)

For example, the 1-place function λx [ 2x ] is arithmetically definable, by the
formula y = 2x. (Here we are using a formula with two free variables x and y.)
As another example, note that the 2-place functions λxy [ Quotient(y, x) ] and
λxy [ Remainder(y, x) ] (the quotient and remainder of y on division by x) are
arithmetically definable, by the formulas

∃u ∃v (y = u · x+ v ∧ v < x ∧ z = u)

and
∃u ∃v (y = u · x+ v ∧ v < x ∧ z = v)

respectively. (Here we are using formulas with free variables x, y, and z.)

Exercise 2.2.2. Show that the function

λxy [ least common multiple of x and y ]

is arithmetically definable.
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Remark 2.2.3. A more “mathematical” characterization of arithmetical de-
finability, not involving formulas, may be given as follows. Let us say that
a predicate P ⊆ Nk is strongly Diophantine if there exists a polynomial with
integer coefficients, f(x1, . . . , xk) ∈ Z[x1, . . . , xk], such that

P = {〈a1, . . . , ak〉 ∈ Nk | f(a1, . . . , ak) = 0}.
For Q ⊆ Nk+1, the projection of Q is given as

π(Q) = {〈a1, . . . , ak〉 ∈ Nk | 〈a1, . . . , ak, ak+1〉 ∈ Q for some ak+1 ∈ N} .
Then, the arithmetically definable predicates may be characterized as the small-
est class of number-theoretic predicates which contains all strongly Diophantine
predicates and is closed under union, complementation, and projection. Clearly
each arithmetically definable predicate is obtained by applying these operations
only a finite number of times.

Exercise 2.2.4. Show that the following number-theoretic predicates are arith-
metically definable, by exhibiting formulas which define them over the structure
(N,+, ·, 0, 1,=).

1. GCD(x, y) = z.

2. LCM(x, y) = z.

3. Quotient(x, y) = z.

4. Remainder(x, y) = z.

5. x is the largest prime number less than y.

6. x is the product of all the prime numbers less than y.

Remark 2.2.5. The principal result of this section, Theorem 2.2.21 below, is
that all recursive functions and predicates are arithmetically definable. From
this it will follow easily that there exists an arithmetically definable predicate
which is not recursive (Corollary 2.2.22 below). In addition, we shall character-
ize the class of arithmetically definable predicates in terms of the arithmetical
hierarchy (Theorem 2.2.23 below).

Lemma 2.2.6. The initial functions are arithmetically definable.

Proof. The constant zero function λx [ 0 ] is defined by the formula

x = x ∧ y = 0 .

The successor function λx [x + 1 ] is defined by the formula

y = x+ 1 .

For 1 ≤ i ≤ k, the projection function λx1 . . . xk [xi ] is defined by the formula

x1 = x1 ∧ . . . ∧ xk = xk ∧ y = xi .

This completes the proof.
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Lemma 2.2.7. If the functions g1(x1, . . . , xk), . . . , gm(x1, . . . , xk) and h(y1, . . . , ym)
are arithmetically definable, then so is the function

f(x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gm(x1, . . . , xk))

obtained by composition.

Proof. Let g1(x1, . . . , xk), . . . , gm(x1, . . . , xk), h(y1, . . . , ym) be defined by the
formulas

G1(x1, . . . , xk, y) , . . . , Gm(x1, . . . , xk, y) , H(y1, . . . , ym, z)

respectively. Then f(x1, . . . , xk) is defined by the formula

∃y1 · · · ∃ym(G1(x1, . . . , xk, y1) ∧ . . . ∧Gm(x1, . . . , xk, ym) ∧H(y1, . . . , ym, z))

which we may abbreviate as F (x1, . . . , xk, z). This proves the lemma.

A k-place predicate P (x1, . . . , xk) is said to be arithmetically definable if it
is definable over the structure (N,+, ·, 0, 1,=) by a formula with k free variables
x1, . . . , xk.

Lemma 2.2.8. If the k+1-place predicate R(x1, . . . , xk, y) is arithmetically
definable, then so is the k-place partial function

ψ(x1, . . . , xk) ≃ least y such that R(x1, . . . , xk, y) holds.

Proof. Our λx1 . . . xk[ψ(x1, . . . , xk)] is arithmetically definable by the formula

R(x1, . . . , xk, y) ∧ ¬ ∃z (z < y ∧ R(x1, . . . , xk, z))

which we may abbreviate as F (x1, . . . , xk, y). This proves the lemma.

It remains to prove:

Lemma 2.2.9. If the total k-place function g(y1, . . . , yk) and the total k+2-
place function h(x, z, y1, . . . , yk) are arithmetically definable, then so is the total
k+1-place function

f(x, y1, . . . , yk)

obtained by primitive recursion:

f(0, y1, . . . , yk) = g(y1, . . . , yk) ,

f(x+ 1, y1, . . . , yk) = h(x, f(x, y1, . . . , yk), y1, . . . , yk)) .

In order to prove Lemma 2.2.9, we need some definitions and lemmas from
number theory. Two positive integers m and n are said to be relatively prime if
they have no common factor greater than 1. A set of positive integers is said to
be pairwise relatively prime if any two distinct integers in the set are relatively
prime.
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Lemma 2.2.10. Given a positive integer k, we can find infinitely many positive
integers a such that the k integers in the set

a+ 1 , 2a+ 1 , . . . , ka+ 1

are pairwise relatively prime.

Proof. Let a be any positive integer which is divisible by all of the prime numbers
which are less than k. We claim that a + 1, 2a + 1, . . . , ka + 1 are pairwise
relatively prime. Suppose not. Let i and j be such that 1 ≤ i < j ≤ k and ia+1
and ja+1 are not relatively prime. Let p be a prime number which is a factor of
both ia+ 1 and ja+ 1. Then p cannot be a factor of m. Hence p is greater than
or equal to k. On the other hand p is a factor of (ja+ 1) − (ia+ 1) = (j − i)a.
Hence p is a factor of j − i. But j − i is less than k, hence p is less than k, a
contradiction.

Example 2.2.11. If k = 5, the primes less than k are 2 and 3, so we can take
a to be any multiple of 6. Then the integers a + 1, 2a + 1, 3a + 1, 4a + 1,
5a+ 1 will be pairwise relatively prime. Taking a = 6 we see that 7, 13, 19, 25,
31 are paiwise relatively prime. Taking a = 12 we see that 13, 25, 37, 49, 61
are pairwise relatively prime. And taking a = 600 we see that 601, 1201, 1801,
2401, 3001 are pairwise relatively prime.

Lemma 2.2.12 (Chinese Remainder Theorem). Let m1, . . . ,mk be a set of k
distinct positive integers which are pairwise relatively prime. Then for any given
non-negative integers ri < mi, 1 ≤ i ≤ k, we can find a non-negative integer r
such that Remainder(r,mi) = ri for all i.

Proof. Let m be the product of m1, . . . ,mk. For any non-negative integer r
less than m, define the remainder sequence of r to be the sequence 〈r1, . . . , rk〉
where ri = Remainder(r,mi). We claim that any two distinct non-negative
integers less than m have distinct remainder sequences. To see this, let r and
s be non-negative integers less than m. If r and s have the same remainder
sequence, then r − s is divisible by each of m1, . . . ,mk. Since m1, . . . ,mk are
pairwise relatively prime, it follows that r − s is divisible by m. Since r and
s are both less than m, we must have r = s. This proves the claim. Define a
possible remainder sequence to be any sequence 〈r1, . . . , rk〉 with 0 ≤ ri < mi

for all i. The number of possible remainder sequences is exactly m. From this
and the claim, we see that any possible remainder sequence must actually occur
as the remainder sequence associated with some r in the range 0 ≤ r < m. The
lemma follows immediately.

Example 2.2.13. Continuing the previous example, we see that for any non-
negative integers r1 < 7, r2 < 13, r3 < 19, r4 < 25, r5 < 31, there must be a
non-negative integer r less than 7 ·13 ·19 ·25 ·31 such that Remainder(r, 7) = r1,
. . . , Remainder(r, 31) = r5. We may view the integer r as a “code” for the
sequence (r1, r2, r3, r4, r5). The “decoding” is accomplished by means of the
key integer 6, since ri = Remainder(r, 6i+ 1).
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Definition 2.2.14. For any non-negative integers r, a, i, we define

β(r, a, i) = Remainder(r, a · (i+ 1) + 1) .

This 3-place function is known as Gödel’s β-function. Note that the β-function
is arithmetically definable.

The significance of the β-function is that it can be used to encode an ar-
bitrary sequence of non-negative integers 〈r0, r1, . . . , rk〉 by means of two non-
negative integers r and a. We make this precise in the following lemma.

Lemma 2.2.15. Given a finite sequence of non-negative integers r0, r1, . . . , rk,
we can find a pair of non-negative integers r and a such that β(r, a, 0) = r0,
β(r, a, 1) = r1, . . . , β(r, a, k) = rk.

Proof. By Lemma 2.2.10 (replacing k by k+ 1), we can find a positive integer a
such that r0 < a+1, r1 < 2a+1, . . . , rk < (k+1) ·a+1, and furthermore a+1,
2a+ 1, . . . , (k+ 1) · a+ 1 are pairwise relatively prime. Then by Lemma 2.2.12
we can find a non-negative integer r such that Remainder(r, a + 1) = r0,
Remainder(r, 2a+ 1) = r1, . . . , Remainder(r, (k + 1) · a+ 1) = rk. This proves
the lemma.

Exercise 2.2.16. Find a pair of numbers r, a such that β(r, a, 0) = 11, β(r, a, 1) =
19, β(r, a, 2) = 30, β(r, a, 3) = 37, β(r, a, 4) = 51.

Hint: First find an appropriate a by hand. Then write a small computer program
to find r by brute force.

We are now ready to prove Lemma 2.2.9.

Proof of Lemma 2.2.9. Let the total functions g(y1, . . . , yk) and h(x, z, y1, . . . , yk)
be defined by the formulas G(y1, . . . , yk, w) and H(x, z, y1, . . . , yk, w) respec-
tively. We wish to write down a formula F (x, y1, . . . , yk, w) which would say that
there exists a finite sequence r0, r1, . . . , rx such that G(y1, . . . , yk, r0) holds, and
H(i, ri, y1, . . . , yk, ri+1) holds for all i < x, and finally rx = w. If we could do
this, then clearly F (x, y1, . . . , yk, w) would define the function f(x, y1, . . . , yk).
This would prove the lemma. The only difficulty is that our language is not
powerful enough to talk directly about finite sequences of variable length in
the required way. Our language allows us to say things like “there exists a
non-negative integer r such that . . . ,” but it does not allow us to directly say
things like “there exists a sequence of non-negative integers r0, r1, . . . , rx (of
variable length, x) such that . . . .” The way to overcome this difficulty is to
use the β-function. Instead of saying “there exists a finite sequence r0, r1, . . . ,
rk,” we can say “there exists a pair of non-negative integers r and a which
encode the required sequence, via the β-function.” Namely, we write down a
formula F (x, y1, . . . , yk, w) which says, informally, there exist r and a such that
G(y1, . . . , yk, β(r, a, 0)) holds, and H(i, β(r, a, i), y1, . . . , yk, β(r, a, i + 1)) holds
for all i < x, and finally β(r, a, x) = w. By Lemma 2.2.15 it is clear that this
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formula defines the function f(x, y1, . . . , yk). Formally, let B(r, a, i, w) be a for-
mula which defines the β-function. We may then take F (x, y1, . . . , yk, w) to be
the formula

∃r ∃a (∃u (B(r, a, 0, u) ∧G(y1, . . . , yk, u)) ∧ B(r, a, x, w)∧
∀i ( i ≥ x ∨ ∃u ∃v (B(r, a, i, u) ∧B(r, a, i + 1, v) ∧H(i, u, y1, . . . , yk, v)) ) ) .

This completes the proof of Lemma 2.2.9.

Example 2.2.17. The exponential function λxy [ yx ] is arithmetically definable
by the formula

∃r ∃a (B(r, a, 0, 1) ∧ B(r, a, x, w)∧
∀i ( i ≥ x ∨ ∃u ∃v (B(r, a, i, u) ∧B(r, a, i+ 1, v) ∧ v = u · y) ) )

which we may abbreviate as Exp(x, y, w), meaning that yx = w.

Exercise 2.2.18. Consider the function f : N → N defined by

f(n) =

{
n/2 if n is even,

3n+ 1 if n is odd.

For each k ∈ N let
fk = f ◦ · · · ◦ f︸ ︷︷ ︸

k

,

i.e., f0(n) = n and fk+1(n) = f(fk(n)).
Write a formula F (x, y, z) in the language +, ·, 0, 1,=, < which, when in-

terpreted over the natural number system N, defines the 3-place predicate
fx(y) = z.

Exercise 2.2.19. Show that the function λx [ the xth Fibonacci number ] is
arithmetically definable.

Exercise 2.2.20. Which of the following number-theoretic predicates are arith-
metically definable? Prove your answers.

1. x is the sum of all the prime numbers less than y.

2. xy = z.

3. x! = y.

Theorem 2.2.21. Every partial recursive function is arithmetically definable.

Proof. Recall that the partial recursive functions have been characterized as the
smallest class of functions which includes the initial functions and is closed under
composition, primitive recursion, and the least-number operator. Lemma 2.2.6
says that the class of arithmetically definable functions includes the initial func-
tions. Lemmas 2.2.7, 2.2.8, and 2.2.9 say that the class of arithmetically de-
finable functions is closed under composition, the least-number operator, and
primitive recursion, respectively. It follows that the arithmetically definable
functions include the partial recursive functions.
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Corollary 2.2.22. There exists a set K ⊆ N which is arithmetically definable
but not recursive.

Proof. Recall that

K = {x ∈ N | ϕ(1)
x (x) is convergent}

is our basic example of a non-recursive set. By the Enumeration Theorem,

the 2-place partial function λxy[ϕ
(1)
x (y)] is partial recursive. Hence, by Theo-

rem 2.2.21 λxy[ϕ
(1)
x (y)] is arithmetically definable. Let F (x, y, z) be a formula

which defines this function. Then K is defined by the formula ∃zF (x, x, z). This
completes the proof.

More generally, recall our discussion of the arithmetical hierarchy in Chap-
ter 1, Section 1.9. The next theorem characterizes arithmetically definability
(Definition 2.2.1) in terms of the arithmetical hierarchy (Definition 1.9.1).

Theorem 2.2.23. Let P be a k-place predicate, P ⊆ Nk. The following are
equivalent:

1. P is arithmetically definable;

2. P belongs to the arithmetical hierarchy, i.e., P belongs to the class Σ0
n for

some n ∈ N.

Proof. Theorem 2.2.21 implies that every predicate in the class Σ0
0 (= Π0

0) is
arithmetically definable. From this it is straightforward to prove by induction
on n ∈ N that every predicate in the class Σ0

n ∪ Π0
n is arithmetically definable.

For the converse, put

Σ0
∞ =

⋃

n∈N

Σ0
n =

⋃

n∈N

Π0
n .

By Theorem 1.9.2, the class Σ0
∞ is closed under Boolean connectives ∧, ∨, ¬ and

universal and existential quantification ∀ and ∃. From this it follows that every
arithmetically definable predicate P belongs to the class Σ0

∞; this is proved by
induction on the number of symbols in a defining formula for P .

Exercise 2.2.24. Let A and B be subsets of N. Prove that if A is reducible to
B and B is arithmetically definable, then A is arithmetically definable.

Exercise 2.2.25. For each n ≥ 1 let Cn be a set which is Σ0
n complete. Consider

the set B = {2n3x | x ∈ Cn}. Prove that B is not arithmetically definable.

Remark 2.2.26 (Hilbert’s Tenth Problem). A refinement of Theorem 2.2.23
due to Matiyasevich 1967 is as follows. Let us say that P ⊆ Nk is Diophantine

if P = πl(Q) for some l ≥ 0 and some strongly Diophantine Q ⊆ Nk+l. Thus

P = {〈a1, . . . , ak〉 ∈ Nk | ∃〈b1, . . . , bl〉 ∈ Nl (f(a1, . . . , ak, b1, . . . , bl) = 0)}
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where f(x1, . . . , xk, y1, . . . , yl) is a polynomial with integer coefficients. Matiya-
sevich’s Theorem states that P is Diophantine if and only if P is Σ0

1.
A corollary of Matiyasevich’s Theorem is that, for example, the sets K andH

are Diophantine. Thus, we can find a polynomial f(z, x1, . . . , xl) with integer
coefficients, such that the set of a ∈ N for which f(a, x1, . . . , xl) = 0 has a
solution in N is nonrecursive. Here it is known that one can take l = 9, but
l = 8 is an open question.

Hilbert’s Tenth Problem, as stated in Hilbert’s famous 1900 problem list,
reads as follows:

To find an algorithm which allows us, given a polynomial equation in
several variables with integer coefficients, to decide in a finite number
of steps whether or not the equation has a solution in integers.

From Matiyasevich’s Theorem plus the unsolvability of the Halting Problem, it
follows that there is no such algorithm. In other words, Hilbert’s Tenth Problem
is unsolvable.

A full exposition of Hilbert’s Tenth Problem and the proof of Matiyasevich’s
Theorem is in my lecture notes for Math 574, Spring 2005, at

http://www.math.psu.edu/simpson/notes/.

Exercise 2.2.27. Recall that N = {0, 1, 2, . . .} = the natural numbers, while
Z = {. . . ,−2,−1, 0, 1, 2, . . .} = the integers. In our formulation of Matiyase-
vich’s Theorem, we have spoken of solutions in N. What happens if we replace
“solution in N” by “solution in Z”?

Hint: Use the following well-known theorem of Lagrange: For each n ∈ N there
exist a, b, c, d ∈ N such that n = a2 + b2 + c2 + d2.

2.3 Gödel Numbers of Formulas

For each formula F in the language of arithmetic, we shall define a unique
positive integer #(F ), which will be called the Gödel number of F . The number
#(F ) will serve as a “code” for the formula F .

Before assigning Gödel numbers to formulas, we shall first assign Gödel
numbers to terms. We define

#(0) = 1

#(1) = 3

#(xi) = 32 · 5i

#(t1 + t2) = 33 · 5#(t1) · 7#(t2)

#(t1 · t2) = 34 · 5#(t1) · 7#(t2)

For example, the Gödel number of the term 1 + x0 is

#(1 + x0) = 33 · 53 · 79
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since #(1) = 3 and #(x0) = 9.
We now define the Gödel numbers of formulas:

#(t1 = t2) = 2 · 5#(t1) · 7#(t2)

#(F ∧G) = 2 · 3 · 5#(F ) · 7#(G)

#(F ∨G) = 2 · 32 · 5#(F ) · 7#(G)

#(¬F ) = 2 · 33 · 5#(F )

#(∀xiF ) = 2 · 34 · 5i · 7#(F )

#(∃xiF ) = 2 · 35 · 5i · 7#(F )

For example, the Gödel number of the formula ∃x1(x1 = 1) is

#(∃x1(x1 = 1)) = 2 · 35 · 51 · 72·545·73

since #(x1) = 45, #(1) = 3, and #(x1 = 1) = 2 · 545 · 73.
If F is any collection of formulas, we denote by #(F) the collection of all

Gödel numbers of formulas in F . Let

Fml = #(all formulas) ,

Snt = #(all sentences) ,

and
TrueSnt = #(all true sentences) .

Note that Fml, Snt, and TrueSnt are subsets of N.

Theorem 2.3.1. The sets Fml and Snt are primitive recursive.

Proof. The proof is straightforward and we omit it.

We are going to prove that the set TrueSnt is nonrecursive. In other words,
the problem of deciding whether a given sentence of the language of arithmetic
is true or false is unsolvable. This result may be paraphrased as “arithmetical
truth is undecidable,” or simply, “arithmetic is undecidable.”

Theorem 2.3.2. Every arithmetically definable set A ⊆ N is reducible to
TrueSnt.

Proof. Given an arithmetically definable set A, let F (x1) be a formula with one
free variable x which defines A, i.e.,

A = {m ∈ N | F (m) is true} .

Define
f(m) = #(∃x1(x1 = m ∧ F (x1))) .
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Thus for all m ∈ N we have that m ∈ A if and only if f(m) ∈ TrueSnt. We
claim that the function f : N → N is primitive recursive. This is clear since

f(m) = 2 · 33 · 72·3·5#(x1=m)·7#(F (x1))

where
#(x1 = m) = 2 · 545 · 7#(m) ,

and #(m) = #(1 + . . .+ 1︸ ︷︷ ︸
m

) can be defined primitive recursively by

#(0) = 1 ,

#(m+ 1) = 33 · 5#(m) · 73 .

Thus A is reducible to TrueSnt via f . This proves the theorem.

Theorem 2.3.3. TrueSnt is not recursive.

Proof. By Corollary 2.2.22 we have an arithmetically definable set K which is
not recursive. By the previous theorem K is reducible to TrueSnt. Hence by
Lemma 1.7.8 TrueSnt is not recursive.

More generally we have the following theorem, which may be paraphrased
as “arithmetical truth is not arithmetically definable.”

Theorem 2.3.4 (Tarski). TrueSnt is not arithmetically definable.

Proof. Suppose that TrueSnt were arithmetically definable. Then by Theo-
rem 2.2.23 we would have that TrueSnt belongs to the class Σ0

n for some n.
By Theorem 1.9.18, let C be a complete Σ0

n+1 set. By Theorem 2.2.23 C is
arithmetically definable. Hence by Theorem 2.3.2 C is reducible to TrueSnt.
Hence by Lemma 1.9.16 C belongs to the class Σ0

n. This contradicts that fact
(Theorem 1.9.18) that a complete Σ0

n+1 set can never belong to the class Σ0
n.

This completes the proof.

Exercise 2.3.5. Prove that the set Fml of all Gödel numbers of formulas is
primitive recursive.

Exercise 2.3.6. Prove that the set Snt of all Gödel numbers of sentences is
primitive recursive.
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Chapter 3

The Real Number System

In Chapter 2 we have shown that TrueSntN is nonrecursive, i.e., the theory of
the natural number system is undecidable. In this Chapter we shall show that,
by contrast, TrueSntR is recursive, i.e., the theory of the real number system is
decidable.

3.1 Quantifier Elimination

Let LOR be the language of ordered rings, i.e.,

LOR = (+,−, ·, 0, 1, <,=)

where + and · are 2-ary operation symbols, − is a 1-ary operation symbol, <
and = are 2-place predicate symbols, and 0 and 1 are constant symbols. We
consider the LOR-structure

R = (R,+R,−R, ·R, 0R, 1R, <R,=R) ,

i.e., the real number system, the ordered field of real numbers. Formulas of LOR
are interpreted with reference to R, i.e., ∃x . . . means “there exists x ∈ R such
that . . . ,” etc.

Two LOR-formulas F and G are said to be equivalent if they have the same
free variables x1, . . . , xk and define the same k-place predicate P ⊆ Rk. An
equivalent condition is that the sentence

∀x1 · · · ∀xk (F (x1, . . . , xk) ⇔ G(x1, . . . , xk))

is true in R.
We are going to prove the following theorem, due originally to Tarski:

Theorem 3.1.1 (Quantifier Elimination). For any LOR-formula F , we can find
an equivalent quantifier free LOR-formula F ∗.
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Example 3.1.2. The formula

∃x (ax2 + bx+ c = 0)

is equivalent to the quantifier free formula

(a = 0 ∧ b = 0 ∧ c = 0) ∨ (a = 0 ∧ b 6= 0) ∨ (a 6= 0 ∧ b2 − 4ac ≥ 0) .

Exercise 3.1.3. Find quantifier-free formulas in the language +,−, ·, 0, 1, <,=
which are equivalent, over the real number system R, to:

1. ∃x (ax2 + bx+ c > 0).

2. ∃x (ax3 + bx2 + cx+ d > 0).

3. ∃x (ax4 + bx3 + cx2 + dx+ e > 0).

Exercise 3.1.4. Does there exist a constant c such that the following holds?

Given a formula F (x) in the language +, ·, 0, 1,= with exactly one
free variable x, we can find a formula F ∗(x) in the same language
which is equivalent to F (x) over the natural number system N, and
which contains at most c quantifiers.

Prove your answer.

Remark 3.1.5. The only properties of R that will be used in the proof of
Theorem 3.1.1 are: (1) R is a commutative ordered field; and (2) R has the
intermediate value property for polynomials, i.e.,

(x < y ∧ p(x) < 0 < p(y) ) ⇒ ∃z (x < z < y ∧ p(z) = 0 )

for any polynomial p(x) ∈ R[x]. An ordered field with these properties is called
a real closed ordered field. This is related to Hilbert’s 17th Problem.

Remark 3.1.6. The proof of Theorem 3.1.1 which we shall present below is
due to P. J. Cohen. In order to present the proof, we shall define and study a
class of functions called the effective functions. This notion of effectivity has no
importance beyond the proof of Theorem 3.1.1. See also Corollary 3.1.21 below.

Definition 3.1.7. A predicate A on the reals, i.e., A ⊆ Rk, is said to be ef-

fective if it is definable over R by a quantifier free formula. That is, A is a
Boolean combination of sets in Rk which are defined by equations and inequa-
tions p(x1, . . . , xk) = 0, p(x1, . . . , xk) > 0, where p ∈ Z[x1, . . . , xk].

Remark 3.1.8. If we allow parameters from R, we get semi-algebraic sets.
Thus “effective = semi-algebraic with parameters from Z”.

Definition 3.1.9. A function f : D → R, D ⊆ Rk is said to be effective if
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1. D is effective, and

2. for every effective predicate A(x1, . . . , xk, y, z1, . . . , zn), the predicate

B(x1, . . . , xk, z1, . . . , zn) ≡ A(x1, . . . , xk, f(x1, . . . , xk), z1, . . . , zn)

is effective.

Example 3.1.10. It can be shown that the function
√
x is effective. This is

because, first, the domain of
√
x is the effective set {x ∈ R | x ≥ 0}, and second,

for instance,
√
x > 3 ≡ x > 9.

In order to prove Theorem 3.1.1, we shall build up a library of effective
functions. We shall use notations such as x and y to abbreviate sequences of
variables such as x1, . . . , xk and y1, . . . , ym.

Lemma 3.1.11. The functions x+ y, x · y, −x and x/y are effective.

Proof. For x+ y, x ·y and −x there is nothing to prove. For x/y, note first that
the domain is {(x, y) | y 6= 0} which is obviously effective. It remains to show
that if A(z, . . .) is an effective predicate then so is A(x/y, . . .). The latter is a
Boolean combination of predicates of the form

an

(
x

y

)n
+ . . .+ a1

(
x

y

)
+ a0 > 0

and this is equivalent to the atomic formula

anx
n + an−1x

n−1y + . . .+ a1xy
n−1 + a0y

n > 0 ,

assuming as we may that n is even.

Corollary 3.1.12. Any rational function

f(x1, . . . , xk) ∈ Q(x1, . . . , xk)

is effective.

Lemma 3.1.13. The composition of effective functions is effective.

Proof. Consider for instance f(g(x)) where f and g are effective 1-place func-
tions. If D(y) is a quantifier-free formula defining the dom(f), then D(g(x))
defines the dom(fg), which is therefore effective. If A(y, z) is any effective pred-
icate, then clearly A(f(y), z) is effective, hence A(f(g(x)), z) is effective.

Lemma 3.1.14. The function

sgn(x) =






1 if x > 0

0 if x = 0

−1 if x < 0.

is effective.
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Proof. Let A(y, z) be an effective predicate. Then A(sgn(x), z) is equivalent to
equivalent to

(x > 0 ∧ A(1, z)) ∨ (x = 0 ∧ A(0, z)) ∨ (x < 0 ∧ A(−1, z))

which is again effective. This proves the lemma.

More generally we have:

Lemma 3.1.15. If a function f(x) takes only finitely many values, all integers,
then f(x) is effective if and only if for each j ∈ Z, the predicate f(x) = j is
effective.

Proof. If: Let j1, . . . , jn be the finitely many values. For any effective predicate
A(y, z), the predicate A(f(x), z) is equivalent to

(f(x) = j1 ∧A(j1, z)) ∨ · · · ∨ (f(x) = jn ∧A(jn, z))

and is therefore effective.
Only if: Trivial.

Lemma 3.1.16 (Definition by Cases). If two functions f1(x) and f2(x) and a
predicate A(x) are effective, then the function

f(x) =

{
f1(x) if A(x),

f2(x) if ¬A(x)

is effective.

Proof. We must show that, for each effective predicate B(y, z), the predicate
C(x, z) ≡ B(f(x), z) is effective. This is so because C(x, z) is equivalent to

(A(x) ∧B(f1(x), z)) ∨ (¬A(x) ∧B(f2(x), z)) .

Since f1(x) and f2(x) and B(y, z) are effective, B(f1(x), z) and B(f2(x), z) are
effective. Since A(x) is effective, it follows that C(x, z) is effective. This proves
the lemma.

The extension of the previous lemma to more than two cases is obvious.

Lemma 3.1.17. A function f(x) is effective if and only if for every positive
integer d ≥ 1 and every polynomial q(y) ∈ R[y] of degree d, sgn(q(f(x))) is an
effective function of x and the d+ 1 coefficients of q(y).

Proof. Only if: Trivial, since for instance

sgn(q(f(x))) = 1 ≡ q(f(x)) > 0 ≡ A(f(x)),

where A(y) is the predicate q(y) > 0.
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If: We must show that if A(y, z) is effective then A(f(x), z) is effective. Note
that A(y, z) can be viewed as a Boolean combination of atomic predicates of the
form p(y, z) > 0, for various polynomials p(y, z) with coefficients in Z. It suffices
to show that the predicates p(f(x), z) > 0 are effective. In order to show this,
write p(y, z) = q(y) ∈ Z[z][y] i.e., q(y) is a polynomial in y whose coefficients
are polynomials in z with integer coefficients. Then

p(f(x), z) > 0 ≡ sgn(q(f(x))) = 1 .

By assumption sgn(q(f(x))) is an effective function of x and the cofficients of
q; hence by composition sgn(q(f(x))) is an effective function of x and z.

The next lemma says that the real roots of a polynomial are effective func-
tions of the coefficients. For example, the quadratic formula

x =
−b±

√
b2 − 4ac

2a

shows that the roots of ax2 + bx+ c are effective functions of a, b and c.

Lemma 3.1.18 (Main Lemma). Let p(x) = anx
n + · · · + a1x + a0 ∈ R[x].

Write a = a0, . . . , an. There are n+ 1 effective functions ξ1(a), . . . , ξn(a), and
k = k(a) such that

ξ1(a) < · · · < ξk(a)

are all of the real roots of p(x).

Proof. By induction on n. Let

p′(x) = nanx
n−1 + · · · + 2a2x+ a1

be the derivative of p(x). This is of degree ≤ n−1. By inductive hypothesis, the
roots of p′(x) are among t1 < · · · < tm, m = n − 1, where the ti’s are effective
function of a. Note that p(x) is monotone on each of the open intervals

(−∞, t1) , (t1, t2) , . . . , (tm−1, tm) , (tm,+∞)

So, in each of these intervals, there is at most one root of p(x). In addition the
ti’s could be roots of p(x). Thus the number of roots is determined by sgn(p(ti)),
1 ≤ i ≤ n − 1 and sgn(p′(t1 − 1)) and sgn(p′(tn + 1)). We can therefore use
definition by cases to obtain k(a) as an effective function of a.

It remains to show that the roots themselves are effective functions of a.
Consider for example a root ξ = ξ(a) in the interval (t1, t2) where p(t1) > 0 and
p(t2) < 0. By the previous lemma, it suffices to show that, for each d ≥ 1 and
polynomial q(x) of degree d, sgn(q(ξ)) is effective (as a function of a and the
coefficients of q).

Replacing q(x) by its remainder on division by p(x), we may assume deg(q(x)) <
n. [Details: Long division gives q(x) = p(x) · f(x) + r(x), where deg(r(x)) < n
and the coefficients of r(x) are effective functions of the coefficients of p(x) and
q(x). We can replace q(x) by r(x).]
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By induction hypothesis, the roots of q(x) can be found effectively. Let the
roots of q(x) be among u1 < · · · < um. Then the sign of q(x) on the m + 1
intervals

(−∞, u1) , (u1, u2) , . . . , (um−1, um) , (um,+∞)

is given by m+ 1 effective functions

sgn(q(u1−1)) , sgn

(
q

(
u1 + u2

2

))
, . . . , sgn

(
q

(
um−1 + um

2

))
, sgn(q(um+1)) .

Moreover the position of ξ relative to the ui’s is determined by the positions of t1
and t2 relative to the ui’s and by the sgn(p(ui))’s. Thus we can use definition by
cases to obtain sgn(q(ξ)) as an effective function. In view of the previous lemma
characterizing effective functions, this shows that ξ is an effective function. The
proof of the Main Lemma is now complete.

Lemma 3.1.19. If A(x1, x2, . . . , xk) is an effective predicate, then the predicate

B(x2, . . . , xk) ≡ ∃x1A(x1, x2, . . . , xk)

is effective.

Proof. The predicate A(x1, x2, . . . , xk) may be viewed as a Boolean combination
of polynomial inequalities of the form pi(x1) > 0, 1 ≤ i ≤ l, where the coeffi-
cients of the pi(x)’s are polynomials in x2, . . . , xk with integer coefficients. By
the Main Lemma, the roots of the pi(x)’s are effective function of x2, . . . , xk. Let
ξ1, . . . , ξm be all of these roots. Hence the pi(x)’s change sign only at ξ1, . . . , ξm.
It follows that

∃x1A(x1, x2, . . . , xk)

is equivalent to a finite disjunction

A(η1, x2, . . . , xk) ∨ · · · ∨ A(ηn, x2, . . . , xk) ,

where η1, . . . , ηn is a list of all the ξi’s and (ξi + ξj)/2’s and ξi ± 1’s. Since the
ηi’s are effective functions of x2, . . . , xk, it follows that the above disjunction is
an effective predicate of x2, . . . , xk. This proves the lemma.

Theorem 3.1.20. Any predicate A ⊆ Rk which is definable over R is effective.

Proof. A ⊆ Rk is defined over R by a formula F (x1, . . . , xk) of LOR. Therefore,
it suffices to show that any formula F of LOR is equivalent over R to a quantifier
free formula F ∗. We shall prove this by induction on the number of symbols in
F .

If F is quantifier free, we may take F ∗ ≡ F .
If F ≡ ¬G, then we may take F ∗ ≡ ¬G∗.
If F ≡ G ∧H , then we may take F ∗ ≡ G∗ ∧H∗.
If F ≡ ∃xG, let F (y) ≡ ∃xG(x, y), where y is a list of the free variables

of F . By the inductive hypothesis, G(x, y) is equivalent to a quantifier-free
formula G∗(x, y). Then G∗(x, y) defines an effective predicate B(x, y). By the
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previous lemma, the predicate A(y) ≡ ∃xB(x, y) is effective, i.e., is defined by
a quantifier free formula F ∗(y). Clearly F is equivalent to F ∗. This completes
the proof.

Corollary 3.1.21. For a predicate A ⊆ Rk the following three conditions are
equivalent:

1. A is effective.

2. A is definable over R.

3. A is definable over R by a quantifier free formula.

Similarly for functions f : D → R, D ⊆ Rk.

Proof. For predicates this follows immediately from Theorem 3.1.20. Consider
now a function f . Note first that if f is effective then the predicate y = f(x) is
effective, i.e., definable by a quantifier free formula. Conversely, suppose that f
is definable. Then for any effective predicate A(y, z), the predicate A(f(x), z) is
equivalent to the definable predicate ∃y (y = f(x) ∧A(y, z)), which is therefore
effective in view of what has already been proved. Thus f is effective.

Theorem 3.1.22 (Quantifier Elimination). If a predicate A ⊆ Rk is definable
over R, then it is definable over R by a quantifier free formula.

Proof. This is merely a restatement of the previous corollary.

Proof of Theorem 3.1.1. Theorem 3.1.1 is a restatement of the previous theo-
rem.

3.2 Decidability of the Real Number System

Theorem 3.2.1. Given a formula F of LOR, there is an algorithm to find an
equivalent quantifier free formula F ∗.

Proof. The algorithm can be obtained by tracing back through the proof of
Theorem 3.1.22.

Theorem 3.2.2. Given a sentence S of LOR, there is an algorithm to determine
whether or not R satisfies S, i.e., whether S is true in the real number system.

Proof. Given a sentence S, a special case of the previous theorem is that we can
algorithmically compute S∗, an equivalent quantifier free sentence. But then S∗

is a Boolean combination of atomic sentences of the form t1 = t2 and t1 < t2
where t1 and t2 are variable-free terms, for example 1+(0+1) < (1+1)·−(1+0),
and the truth value of such sentences is easily computed. This completes the
proof.
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Corollary 3.2.3. The set

TrueSntR = {#(S) | S is a sentence ∧ S is true in R}

is recursive.

Proof. This follows from the previous Theorem plus Church’s Thesis. Alterna-
tively, we can convert the proof of Theorem 3.1.1 into a rigorous proof that the
function taking #(F ) to #(F ∗) is primitive recursive.

Exercise 3.2.4. Recall that N = {0, 1, 2, . . .} = the natural numbers, Z =
{. . . ,−2,−1, 0, 1, 2, . . .} = the integers, and R = (−∞,∞) = the real numbers.

Show that TrueSntN and TrueSntZ are not recursive. (This is in contrast to
the fact that TrueSntR is recursive.)

Theorem 3.2.5. The theory of the ordered ring of real numbers is decidable.

Proof. This is a restatement of the previous corollary.

Corollary 3.2.6. Plane and solid geometry are decidable.

Proof. By the methods of Cartesian analytic geometry, the theory of points,
lines and circles in the plane is interpretable into the theory of the real numbers.
For example, a point is an ordered pair (x, y) where x and y are real numbers.
A line is an ordered quadruple (a, b, u, v) where (u, v) 6= (0, 0). A point (x, y)
lies on a line (a, b, u, v) if and only if

∃t (x = a+ tu ∧ y = b+ tv) .

Two lines are considered identical if and only if they contain the same points.
A circle is an ordered triple (a, b, r) where r > 0. A point (x, y) lies on a circle
(a, b, r) if and only if (x − a)2 + (y − b)2 = r2. A triangle consists of three
non-collinear points, the vertices of the triangle. Etc., etc.

Similarly for the theory of points, lines, planes, circles, and spheres in space.

Exercise 3.2.7. Write sentences of the language +,−, ·, 0, 1, <,= which, when
interpreted over the real number system, express the following statements of
Euclidean plane geometry.

1. For every two points, there is a unique line passing through them.

2. For every three non-collinear points, there is a unique circle passing through
them.

3. For every line L and circle C, the intersection of L and C consists of at
most two points.

4. Given a line L and a point P , among all points on L there is exactly one
which is at minimum distance from P .
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5. For every circle C and point P lying on C, there exists one and only one
line L such that L ∩ C = P . (I.e., a tangent line.)

6. Every line segment has a unique midpoint.

7. Every angle can be uniquely bisected.

Exercise 3.2.8. Explain in detail how you would translate the following state-
ments of Euclidean plane geometry into sentences of the language +,−, ·, 0, 1, <
,= over the real number system.

1. The three angle bisectors of any triangle meet in a single point.

2. Every angle can be uniquely trisected.

Exercise 3.2.9. Recall that N = {0, 1, 2, . . .} = the natural numbers, Z =
{. . . ,−2,−1, 0, 1, 2, . . .} = the integers, and R = (−∞,∞) = the real numbers.
According to Matiyasevich’s Theorem, we can find a polynomial

f(w, x1, . . . , xk)

with integer coefficients, such that the set of a ∈ N for which the equation
f(a, x1, . . . , xk) = 0 has a solution in N is noncomputable.

1. Discuss the analogous question in which “solution in N” is replaced by
“solution in Z”.

2. Discuss analogous questions in which “solution in N” is replaced by “so-
lution in R”.
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Chapter 4

Informal Set Theory

The purpose of this chapter is to develop set theory in an informal, preaxiomatic
way. A good reference for this material is Näıve Set Theory by P. R. Halmos.

4.1 Operations on Sets

Informally, a set is any collection of objects which may be regarded as a com-
pleted totality. We use capital letters X , Y , . . . to denote sets. If a is any
object and X is any set, we write a ∈ X to mean that a belongs to X , and
a /∈ X to mean that a does not belong to X . Synonyms for “belongs to” are “is
an element of”, “is a member of”, and “is contained in”.

Since a set is nothing but a collection of elements, the set itself having no
further structure, it follows that two sets are equal if and only if they contain
exactly the same elements. Symbolically,

X = Y ⇔ ∀a (a ∈ X ⇔ a ∈ Y ) .

This is known as the principle of extensionality. It can be taken as a definition
of equality between sets.

If P (a) is any definite property that an object a may or may not have,
we use the notation {a | P (a)} to denote the set of all objects a which have
property P , if such a set exists. (If such a set exists, it will be unique in view
of extensionality.)

In order to be a set, a collection of objects must be limited in size and
definite. These requirements are rather vague, but we shall try to give some
explanation of what they entail. Definiteness means that any object a either
belongs or does not belong to the collection, i.e., there is no third possibility.
Limitedness means that the collection is in some sense not too large. The need
for some limitation-of-size requirement will be shown below in connection with
the Russell paradox.

One of the most basic concepts in set theory is that of one set being included
in another. We say that Y is a subset ofX , symbolically Y ⊆ X , if every element
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of Y is an element of X , i.e.,

∀a (a ∈ Y ⇒ a ∈ X) .

If P (a) is any definite property as above, and if X is any set, we can form
a subset Y = {a ∈ X | P (a)}, consisting of all elements a of X which have
property P . Thus

∀a(a ∈ Y ⇔ (a ∈ X ∧ P (a))) .

Note that any set X is itself a mathematical object and as such can be an
element of another set. Indeed, given a set X , we can form a set

P(X) = {Y | Y ⊆ X} ,

called the power set of X , whose elements are all possible subsets of X .
We now prove a theorem which implies that not all definite collections of

mathematical objects are sets. This means that some limitation-of-size principle
is needed.

Theorem 4.1.1 (Russell Paradox). The collection of all sets is not itself a set.

Proof. Suppose to the contrary that there were a set S consisting of all sets.
Form the subset D consisting of all sets which are not members of themselves.
Symbolically,

D = {X ∈ S | X /∈ X} .
ThenD ∈ D if and only if D /∈ D, a contradiction. This completes the proof.

The Russell Paradox shows that we cannot form sets with complete freedom.
Nevertheless, a wide variety of sets can be formed. Some examples of sets are ∅
(the empty set, i.e., the unique set which has no elements), {∅} (the one-element
set whose unique element is the empty set), {∅, {∅}}, etc. For any objects a,
b, and c, we can form the set {a, b, c} whose elements are exactly a, b, and c.
The cardinality of this set will be one, two or three depending on which of a,
b, and c are equal to each other. Some examples of infinite sets are N (the
set of natural numbers), R (the set of real numbers), P(N), P(R), P(P(R)),
etc. Another source of examples is subsets defined by properties, for example
{n ∈ N | n is prime} and {X ⊆ R | X is countably infinite}. Further sets can
be obtained using the set operations discussed below.

Given two objects a and b, there is an object (a, b) called the ordered pair of
a and b. The ordered pair operation is assumed to have the following property:

(a, b) = (a′, b′) ⇔ (a = a′ ∧ b = b′) .

Given two sets X and Y , the Cartesian product X × Y is the set of all ordered
pairs (a, b) such that a ∈ X and b ∈ Y .

For any set X , a function with domain X is a rule f associating to each
object a ∈ X a definite, unique object f(a). In this case we write dom(f) = X
and rng(f) = {f(a) | a ∈ X}. The latter is again a set, called the range of F .
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If f is a function and Z is a set, there is a unique function f↾Z, the restriction

of f to Z, whose domain is dom(f) ∩ Z and such that (f↾Z)(a) = f(a) for all
a in its domain.

We write f : X → Y to mean that f is a function, dom(f) = X , and
rng(f) ⊆ Y . The set of all such functions is denoted Y X .

Summarizing some of the above points, we have the following binary opera-
tions on sets:

X ∪ Y = {a | a ∈ X ∨ a ∈ Y } (union) ,

X ∩ Y = {a | a ∈ X ∧ a ∈ Y } (intersection) ,

X \ Y = {a | a ∈ X ∧ a /∈ Y } (difference) ,

X × Y = {(a, b) | a ∈ X ∧ b ∈ Y } (product) ,

XY = {f | f : Y → X} (exponential) .

By an indexed collection with index set I, we mean simply a function f
whose domain is I. In discussing indexed collections, we use notation such as
f = 〈ai〉i∈I where ai = f(i). For example, an ordered n-tuple 〈a1, . . . , an〉 is
a function whose domain is {1, . . . , n}, and a sequence 〈an〉n∈N is a function
whose domain is N.

Given an indexed collection of sets 〈Xi〉i∈I , the following operations are
defined.

⋃
i∈I Xi = {a | ∃i ∈ I (a ∈ Xi)} (union) ,

⋂
i∈I Xi = {a | ∀i ∈ I (a ∈ Xi)} (intersection) ,

∏
i∈I Xi = {〈ai〉i∈I | ∀i ∈ I (ai ∈ Xi)} (product) .

If in the latter operation we take all of the sets Xi to be the same set X , we get
the Cartesian power

∏
i∈I X = XI

which is the same as the previously mentioned exponential.
The Axiom of Choice is the assertion that, for any indexed collection of sets

〈Xi〉i∈I , if ∀i ∈ I (Xi 6= ∅) then
∏
i∈I Xi 6= ∅. This implies that it is possible

to choose one element ai ∈ Xi for each i ∈ I. In the early years of set theory,
there was some controversy about the Axiom of Choice. Nowadays the Axiom of
Choice is accepted as being intuitively obvious, but we shall follow the custom
of indicating which proofs use it.

4.2 Cardinal Numbers

A function f is said to be one-to-one if for all a, a′ ∈ dom(f), a 6= a′ implies
f(a) 6= f(a′). Note that in this case there is an inverse function f−1 with
dom(f−1) = rng(f) and rng(f−1) = dom(f), defined by

f−1(b) = a ⇔ f(a) = b .
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Definition 4.2.1. If X and Y are sets, we say X is equinumerous with Y ,
written X ≈ Y , if there exists a one-to-one correspondence between X and Y ,
i.e., a one-to-one function f with dom(f) = X and rng(f) = Y .

Lemma 4.2.2.

1. X ≈ X .

2. X ≈ Y if and only if Y ≈ X .

3. X ≈ Y and Y ≈ Z imply X ≈ Z.

Proof. Straightforward.

Because of the preceding lemma, we can associate to any set X an object
card(X), the cardinality or cardinal number of X , in such a way that

X ≈ Y ⇔ card(X) = card(Y ) .

If X is finite, we take card(X) to be the number of elements in X . For infinite
sets X , it is not important at this stage what sort of object the cardinal number
card(X) is, so long as the above property holds. We use Greek letters κ, λ, µ,
ν, . . . to denote cardinal numbers.

Definition 4.2.3. We write X 4 Y to mean that X ≈ X1 for some X1 ⊆ Y .

Lemma 4.2.4.

1. If X ≈ X ′ and Y ≈ Y ′, then X 4 Y if and only if X ′ 4 Y ′.

2. X 4 X .

3. X 4 Y and Y 4 Z imply X 4 Z.

4. X 4 Y and Y 4 X imply X ≈ Y .

5. For all sets X and Y , either X 4 Y or Y 4 X .

Proof. Parts 1, 2, and 3 are straightforward. Parts 4 and 5 will be proved
later, as consequences of the Well-Ordering Theorem. Part 4 is known as the
Cantor-Schroeder-Bernstein Theorem.

We can now make the following definition for cardinal numbers: κ ≤ λ if and
only if X 4 Y where κ = card(X) and λ = card(Y ). This does not depend on
the choice of X and Y , as noted in part 1 of Lemma 4.2.4. The rest of Lemma
4.2.4 implies that ≤ is a linear ordering of the cardinal numbers, i.e., we have:

1. κ ≤ κ.

2. (κ ≤ λ ∧ λ ≤ µ) ⇒ κ ≤ µ.

3. (κ ≤ λ ∧ λ ≤ κ) ⇒ κ = λ.
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4. ∀κ ∀λ (κ ≤ λ ∨ λ ≤ κ).

Definition 4.2.5 (Cardinal Arithmetic). For cardinal numbers κ = card(X)
and λ = card(Y ), we define

1. κ+ λ = card(X ∪ Y ).

2. κ · λ = card(X × Y ).

3. κλ = card(XY ).

(In the definition of κ+ λ, it is assumed that X ∩ Y = ∅.)

For example, 2κ = card(P(X)) where κ = card(X).

Theorem 4.2.6. For cardinal numbers κ, λ, and µ, we have

1. κ+ λ = λ+ κ.

2. (κ+ λ) + µ = κ+ (λ+ µ).

3. κ · λ = λ · κ.

4. (κ · λ) · µ = κ · (λ · µ).

5. κ · (λ+ µ) = κ · λ+ κ · µ.

6. κλ+µ = κλ · κµ.

7. κλ·µ = (κλ)µ.

8. κ+ 0 = κ, κ · 0 = 0, κ · 1 = κ.

Proof. Straightforward.

Later we shall prove that, for infinite cardinal numbers κ and λ,

κ+ λ = κ · λ = max(κ, λ) .

Theorem 4.2.7 (Cantor’s Theorem). For any cardinal number κ, we have
2κ > κ. In other words, for any set X , we have X 4 P(X) and P(X) 64 X .

Proof. We have X 4 P(X) via the one-to-one function f : X → P(X) where
f(a) = {a}. Suppose now that P(X) 4 X holds. Let g : P(X) → X be
one-to-one. Put

D = {a ∈ X | a ∈ rng(g) ∧ a /∈ g−1(a)} .

Then g(D) ∈ D if and only if g(D) /∈ D, a contradiction.
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Exercise 4.2.8. Define ℵ0 = card(N). Without using the Cantor-Schroeder-
Bernstein Theorem, prove that

ℵ0 = card(Z) = card(Q)

and
2ℵ0 = card(R) = card(C) = card([0, 1]) = card([0, 1] × [0, 1]).

Definition 4.2.9. If 〈κi〉i∈I is an indexed set of cardinal numbers, we define

1.
∑

i∈I κi = card(
⋃
i∈I Xi)

2.
∏
i∈I κi = card(

∏
i∈I Xi)

where κi = card(Xi). In the definition of
∑

i∈I κi, it is assumed that Xi∩Xj = ∅
for all i, j ∈ I with i 6= j.

Exercise 4.2.10 (König’s Theorem). Suppose that 〈κi〉i∈I and 〈λi〉i∈I are in-
dexed sets of cardinal numbers with the same index set I. Show that if κi < λi
for all i ∈ I, then ∑

i∈I

κi <
∏

i∈I

λi .

Remark 4.2.11. Cantor’s Theorem may be viewed as the special case of
König’s Theorem with κi = 1 and λi = 2. The Axiom of Choice may be
viewed as the special case of König’s Theorem with κi = 0 and λi > 0.

4.3 Well-Orderings and Ordinal Numbers

Definition 4.3.1. Given a set A, a relation on A is a set R ⊆ A × A. A
relational structure is an ordered pair (A,R) where A is a set and R ⊆ A × A.
We sometimes write aRa′ instead of (a, a′) ∈ R.

Definition 4.3.2. Given two relational structures (A,R) and (B,S), an isomor-

phism from (A,R) to (B,S) is a one-to-one function f such that dom(f) = A,
rng(f) = B, and

aRa′ ⇔ f(a)Sf(a′)

for all a, a′ ∈ A. We say that (A,R) is isomorphic to (B,S), symbolically
(A,R) ∼= (B,S), if there exists an isomorphism from (A,R) to (B,S).

Lemma 4.3.3.

1. (A,R) ∼= (A,R).

2. (A,R) ∼= (B,S) if and only if (B,S) ∼= (A,R).

3. (A,R) ∼= (B,S) and (B,S) ∼= (C, T ) imply (A,R) ∼= (C, T ).
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Proof. Straightforward.

Because of the preceding lemma, we can associate to any relational structure
(A,R) a mathematical object type(A,R), the isomorphism type of (A,R), in
such a way that

(A,R) ∼= (B,S) ⇔ type(A,R) = type(B,S) .

It is not important at this stage exactly what sort of mathematical object
type(A,R) is, so long as the above property holds.

Definition 4.3.4. A relational structure (A,R) is said to be well-founded if for
every nonempty set X ⊆ A, there exists a ∈ X such that there is no b ∈ X with
bRa. Such an a might be called an R-minimal element of X .

Lemma 4.3.5. A relational structure (A,R) is well-founded if and only if there
is no infinite descending R-sequence. (By an infinite descending R-sequence we
mean a sequence 〈an〉n∈N such that an+1Ran for all n ∈ N.)

Proof. If 〈an〉n∈N is an infinite descending R-sequence, then X = {an | n ∈ N}
is a counterexample to well-foundedness of (A,R). Conversely, suppose that
X ⊆ A is a counterexample to well-foundedness. Then we have X 6= ∅ and
∀a ∈ X ∃b ∈ X bRa. By the Axiom of Choice, there is a function f : X → X
such that f(a)Ra for all a ∈ X . Pick an element a0 ∈ X and define 〈an〉n∈N

recursively by putting an+1 = f(an) for all n ∈ N. This is an infinite descending
R-sequence. The lemma is proved.

Definition 4.3.6. A linear ordering is a relational structure (A,R) with the
following properties: aRb and bRc imply aRc; and for all a, b ∈ A exactly one of
aRb, a = b, bRa hold. A well-ordering is a linear ordering which is well-founded.

Note that if (A,R) is a well-ordering and X is a nonempty subset of A, then
X has an R-least element, i.e., there is a unique a ∈ X such that aRb holds for
all b ∈ X , b 6= a.

Definition 4.3.7. An ordinal number is the isomorphism type of a well-ordering.

For n ∈ N, we identify n with the ordinal number which is the order type of
all n-element well-orderings. Another important ordinal number is ω, the order
type of N itself (more precisely of (N, <) = (N, {(m,n) ∈ N × N | m < n})).
The following definition and exercise show how to generate further examples of
ordinal numbers.

Definition 4.3.8. Let α = type(A,R) and β = type(B,S) be ordinal numbers.
We define

1. α+ β = type(A ∪B,R ∪ S ∪ (A×B)). Here we assume that A ∩B = ∅.

2. α · β = type(A×B, {((a, b), (a′, b′)) | bSb′ ∨ (b = b′ ∧ aRa′)}).
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Thus we have operations of ordinal addition, α+ β, and ordinal multiplication,
α · β. (Later we shall define an analogous operation of ordinal exponentiation,
αβ .) Note that the commutative laws fail, for example 1 + ω = ω 6= ω + 1 and
2 · ω = ω 6= ω · 2 = ω + ω. However, we have the following properties.

Exercise 4.3.9. Prove the following laws of ordinal arithmetic.

1. (α+ β) + γ = α+ (β + γ).

2. (α · β) · γ = α · (β · γ).

3. α · (β + γ) = α · β + α · γ.

4. α+ 0 = 0 + α = α, α · 0 = 0 · α = 0, α · 1 = 1 · α = α.

Give an example showing the failure of (α+ β) · γ = α · γ + β · γ.

Definition 4.3.10. If (A,R) is a linear ordering, an initial segment of (A,R)
is any subset of A of the form {b | bRa}, where a ∈ A. Note that

({b | bRa}, {(c, b) | cRb ∧ bRa})

is again a linear ordering, and we sometimes identify the initial segment with
this ordering.

Theorem 4.3.11 (Comparability of Well-Orderings). Let (A,R) and (B,S) be
well-orderings. Then exactly one of the following holds.

1. (A,R) ∼= (B,S);

2. (A,R) ∼= some initial segment of (B,S);

3. (B,S) ∼= some initial segment of (A,R).

Moreover, in each case, the isomorphism is unique.

Proof. We first prove that the isomorphism is unique. Suppose for instance that
f1 and f2 are two different isomorphisms from (A,R) to (B,S) or to some initial
segment of (B,S). Then {a ∈ A | f1(a) 6= f2(a)} is a nonempty subset of A, so
let a be its R-least element. Then f1(a′) = f2(a′) for all a′Ra but f1(a) 6= f2(a),
say f1(a)Sf2(a). Then f1(a) /∈ rng(f2), contradicting the fact that rng(f2) is B
or an initial segment of B with respect to S.

Now let f be a function with dom(f) ⊆ A and rng(f) ⊆ B, defined by
putting f(a) = the unique b ∈ B such that

({a′ | a′Ra}, {(a′′, a′) | a′′Ra′ ∧ a′Ra}) ∼= ({b′ | b′Sb}, {(b′′, b′) | b′′Sb′ ∧ b′Sb}) ,

provided such a b exists. If for a given a ∈ A no such b exists, f(a) is undefined.
If b exists, its uniqueness follows from what we have already proved. It is clear
that a′Ra and a ∈ dom(f) imply a′ ∈ dom(f), and b′Rb and b ∈ rng(f) imply
b′ ∈ rng(f).
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We claim that dom(f) = A or rng(f) = B or both. If not, let a be the
R-least element of A \ dom(f), and let b be the S-least element of B \ rng(f).
Then f is an isomorphism from ({a′ | a′Ra}, {(a′′, a′) | a′′Ra′ ∧ a′Ra}) to ({b′ |
b′Sb}, {(b′′, b′) | b′′Sb′ ∧ b′Sb}). This implies that a ∈ dom(f), a contradiction.
The claim is proved.

If both dom(f) = A and rng(f) = B, then we have (A,R) ∼= (B,S). If
dom(f) 6= A, then letting a be the R-least element of A \ dom(f), we see that
f is an isomorphism from ({a′ | a′Ra}, {(a′′, a′) | a′′Ra′ ∧ a′Ra}) to (B,S). If
rng(f) 6= B, then letting b be the S-least element of B \ rng(f), we see that
f is an isomorphism from (A,R) to ({b′ | b′Sb}, {(b′′, b′) | b′′Sb′ ∧ b′Sb}). This
completes the proof of the theorem.

Definition 4.3.12. For ordinal numbers α and β, we define α < β to mean
that (A,R) ∼= some initial segment of (B,S), where α = type(A,R) and β =
type(B,S). We define α ≤ β to mean α < β ∨ α = β.

Lemma 4.3.13. For all ordinal numbers α and β, exactly one of α < β, α = β,
and β < α holds. Moreover α < β and β < γ imply α < γ.

Proof. The first part follows from comparability of well-orderings. The second
part is straightforward.

Exercise 4.3.14. For ordinal numbers α, β, γ, prove that α < β if and only if
α+ γ = β for some γ > 0.

Lemma 4.3.15. If (A,R) is a well-ordering and B ⊆ A, then (B,R∩ (B×B))
is a well-ordering, and

type(B,R ∩ (B ×B)) ≤ type(A,R) .

Proof. Straightforward, using comparability of well-orderings.

The next theorem implies that any well-ordering is isomorphic to an initial
segment of the ordinal numbers.

Theorem 4.3.16. For any ordinal number α, the relational structure

({β | β < α}, {(γ, β) | γ < β < α})

is a well-ordering of type α.

Proof. Let (A,R) be some fixed well-ordering of type α. Define f : A → {β |
β < α} by

f(b) = type({c ∈ A | cRb}, {(d, c) | dRc ∧ cRb}) .

It is straightforward to verify that f is an isomorphism from (A,R) onto

({β | β < α}, {(γ, β) | γ < β < α}) .

This proves the theorem.
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Corollary 4.3.17. For any ordinal number α, there is a set {β | β < α}
consisting of all smaller ordinal numbers.

Proof. This follows from the previous theorem.

Lemma 4.3.18. Let X be a set of ordinal numbers. Then there is an ordinal
number γ = supX which is the least upper bound of X under <, i.e., ∀α (α ∈
X ⇒ α ≤ γ) and ∀β (β < γ ⇒ ∃α (α ∈ X ∧ β < α)).

Proof. Put

A = {α | ∃β (β ∈ X ∧ α < β)} =
⋃

β∈X

{α | α < β} .

It is straightforward to verify that

(A, {(α, β) ∈ A×A | α < β})

is a well-ordering. Let γ be the type of this well-ordering. It is straightforward
to verify that A = {α | α < γ} and that γ = supX .

Exercise 4.3.19. If α is an ordinal number and X is a nonempty set of ordinal
numbers, show that α+supX = sup{α+β | β ∈ X} and α · supX = sup{α ·β |
β ∈ X}.

Lemma 4.3.20. Let X be a nonempty set of ordinal numbers. Then X has a
smallest element under <.

Proof. Put α = supX . Then X is a nonempty subset of {β | β ≤ α}. The latter
set of ordinal numbers is well-ordered under <, hence X has a least element.

Theorem 4.3.21 (Burali-Forti Paradox). The class Ord of all ordinal numbers
is not a set.

Proof. If Ord were a set, then by the above lemmas, (Ord, <) would be a well-
ordering. Letting α be the type of this well-ordering, we see that (Ord, <) would
be isomorphic to an initial segment of itself, namely ({β | β < α}, {(γ, β) | γ <
β < α}). This contradiction completes the proof.

4.4 Transfinite Recursion

By a class we mean a collection of objects which is not necessarily a set. Every
set is a class, but not every class is a set. Examples of classes which are not sets
are Set = {X | X is a set} and Ord = {α | α is an ordinal}. These classes are
“too big” to be sets. We have seen this in connection with the Russell Paradox
and the Burali-Forti Paradox.

If C is a class, then by a function with domain C we mean a rule F which
associates to each element a of C a uniquely defined object F (a). For example,
although the class Ord of all ordinal numbers is not a set, we shall be interested
in functions with domain Ord. The next theorem gives us a powerful method
for defining such functions.
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Theorem 4.4.1 (Transfinite Recursion). Let F be the class of all functions
whose domain is an initial segment of Ord. Suppose that G is a function with
domain F . Then there is a unique function F with domain Ord such that, for
all ordinal numbers α,

F (α) = G(F ↾{β | β < α}) .

Proof. Let us say that f ∈ F is good if for all β ∈ dom(f), f(β) = G(f↾{γ |
γ < β}). We claim that for all ordinal numbers α, there is at most one good f
with dom(f) = {β | β < α}. If not, let f1 6= f2 be two such f ’s. Let γ be the
smallest β < α such that f1(β) 6= f2(β). Then f1↾{β | β < γ} = f2↾{β | β < γ},
hence

f1(γ) = G(f1↾{β | β < γ}) = G(f2↾{β | β < γ}) = f2(γ) ,

a contradiction.
Using the above claim, let fα be the unique good f with dom(f) = {β |

β < α}, if it exists. We claim that fα exists for all α. If not, let α be the
smallest counterexample. Then fβ exists for all β < α, and it is easy to check
that {(β,G(fβ)) | β < α} is good. This contradicts the choice of α. Thus fα
exists for all α. Define F by putting F (α) = G(fα) for all α. It is easy to check
that F ↾{β | β < α} = fα and that F satisfies the desired conclusions. This
completes the proof.

As an example of transfinite recursion, we define the following operations of
ordinal arithmetic.

Definition 4.4.2.

1. α+ β = sup{α, (α+ γ) + 1 | γ < β}.

2. α · β = sup{(α · γ) + α | γ < β}.

3. αβ = sup{1, αγ · α | γ < β} (assuming α > 0).

Exercise 4.4.3. Show that parts 1 and 2 of Definition 4.4.2 agree with parts 1
and 2 of Definition 4.3.8. In the next exercise we show how to extend Definition
4.3.8 to encompass part 3 of Definition 4.4.2.

Exercise 4.4.4. Let α = type(A,R) and β = type(B,S) be ordinal numbers.
Show that αβ = type(C, T ) where C is the set of all f : B → A such that, for
all but finitely many b ∈ B, f(b) = a0, where a0 is the R-least element of A.
Here T is the set of all (f1, f2) ∈ C ×C such that f1(b′)Rf2(b′), where b′ is the
S-greatest b ∈ B such that f1(b) 6= f2(b).

Exercise 4.4.5. If α is an ordinal number and X is a nonempty set of ordinal
numbers, show that

1. α+ supX = sup{α+ β | β ∈ X},
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2. α · supX = sup{α · β | β ∈ X}, and

3. αsupX = sup{αβ | β ∈ X}.

Exercise 4.4.6. For ordinal numbers α, β, and γ, show that

1. (α+ β) + γ = α+ (β + γ).

2. (α · β) · γ = α · (β · γ).

3. α · (β + γ) = α · β + α · γ.

4. αβ+γ = αβ · αγ .

5. αβ·γ = (αβ)γ .

6. α+ 0 = 0 + α = α, α · 0 = 0 · α = 0, α · 1 = 1 · α = α.

7. α0 = 1.

8. 0α = 0 provided α > 0.

9. α1 = α, 1α = 1.

Exercise 4.4.7. Show that β < γ implies the following:

1. α+ β < α+ γ;

2. α · β < α · γ provided α > 0;

3. αβ < αγ provided α > 1.

Definition 4.4.8. A successor ordinal is an ordinal number of the form α+ 1.
A limit ordinal is an ordinal number δ such that δ > 0 and α + 1 < δ for all
α < δ. Examples of limit ordinals are ω and ω · 2.

Exercise 4.4.9. Show that α+ 1 is the smallest ordinal number β > α. Show
that every ordinal number is either 0, a successor ordinal, or a limit ordinal.
Show that δ > 0 is a limit ordinal if and only if δ = sup{α | α < δ}. Show that
δ > 0 is a limit ordinal if and only if δ = ω · α for some α > 0.

Exercise 4.4.10. Show that the operations of ordinal arithmetic could have
been defined by transfinite recursion as follows (letting δ denote a limit ordinal):

1. α+ 0 = α, α+ (β + 1) = (α+ β) + 1, α+ δ = sup{α+ β | β < δ}.

2. α · 0 = 0, α · (β + 1) = (α · β) + α, α · δ = sup{α · β | β < δ}.

3. α0 = 1, αβ+1 = (αβ) · α, αδ = sup{αβ | β < δ} (assuming α > 0).

Exercise 4.4.11. For an ordinal number δ > 0, show that the following are
equivalent.

1. α+ δ = δ for all α < δ.
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2. α+ β < δ for all α, β < δ.

3. δ = ωα for some α ≤ δ.

An ordinal number with these properties is said to be additively indecomposable.

Exercise 4.4.12. Show that for any ordinal number α, there is one and only
one way to write α in the form α = α1 + · · · + αn where α1 ≥ · · · ≥ αn > 0 are
additively indecomposable, and n ∈ N.

4.5 Cardinal Numbers, Continued

Lemma 4.5.1. Given a set X , there exists a choice function for X , i.e., a
function

c : P(X) \ {∅} → X

such that c(Y ) ∈ Y for all Y ⊆ X , Y 6= ∅.

Proof. Consider the indexed set of sets 〈Xi〉i∈I , where I = P(X) \ {∅} and
Xi = i for all i ∈ I. By the Axiom of Choice,

∏
i∈I Xi is nonempty, i.e., there

exists 〈ai〉i∈I such that ai ∈ Xi for all i ∈ I. Putting c(i) = ai we obtain our
choice function.

Theorem 4.5.2 (Well-Ordering Theorem). Given a set X , we can find a rela-
tion R ⊆ X ×X such that (X,R) is a well-ordering.

Proof. We shall prove the theorem in the following equivalent formulation: For
any set X , there exists an ordinal number α such that X ≈ {β | β < α}.
(Neither α nor the one-to-one function from X onto {β | β < α} is asserted to
be unique.)

Fix a choice function c for X . Fix an object a0 such that a0 /∈ X . By
transfinite recursion, define

F (α) =

{
c(X \ rng(F ↾{β | β < α})), if X \ rng(F ↾{β | β < α}) 6= ∅
a0 otherwise.

We claim that F (α) = a0 for some α. If not, we would have F (α) ∈ X for
all α, and F (α) 6= F (β) for all α 6= β. Form the set

Y = rng(F ) = {a ∈ X | ∃α(F (α) = a)} .

Then F−1 is a function with domain Y , and we have rng(F−1) = Ord, hence
Ord is a set. This contradiction proves the claim.

Let α be the smallest ordinal number such that F (α) = a0. Then F ↾{β |
β < α} is one-to-one, and rng(F ↾{β | β < α}) = X . Thus {β | β < α} ≈ X .
Our theorem is proved.

81



Remark 4.5.3. The previous theorem shows that the Axiom of Choice implies
the Well-Ordering Theorem. There is also a converse: the Well-Ordering Theo-
rem implies the Axiom of Choice. To see this, suppose we have an indexed set
of nonempty sets 〈Xi〉i∈I . Put A =

⋃
i∈I Xi. By the Well-Ordering Theorem,

there exists R ⊆ A × A such that (A,R) is a well-ordering. Define 〈ai〉i∈I by
putting ai = the R-least element of Xi. Thus 〈ai〉i∈I ∈ ∏i∈I Xi and we have
proved the Axiom of Choice from the Well-Ordering theorem.

Exercise 4.5.4. Let X be a set of sets. By a chain within X we mean a set
C ⊆ X such that for all U, V ∈ C either U ⊆ V or V ⊆ U . A chain within X is
said to be maximal if it is not properly included in any other chain within X .

Use the Axiom of Choice plus transfinite recursion to prove that there exists
a maximal chain within X .

Note: This is a version of Zorn’s Lemma.

Definition 4.5.5. An initial ordinal is an ordinal number α such that, for all
β < α,

{γ | γ < α} 6≈ {γ | γ < β} .
The finite ordinal numbers 0, 1, 2, . . . are initial ordinals, as is the first

infinite ordinal number ω. But it is easy to see that ordinal numbers such as
ω + 1, ω + 2, . . . , ω · 2, ω · 2 + 1, . . . are not initial ordinals. Another simple
fact worth noting is that every infinite initial ordinal is a limit ordinal.

Definition 4.5.6. For any set X, we define |X | to be the smallest ordinal
number α such that X ≈ {β | β < α}. (The existence of such an ordinal is a
consequence of the Well-Ordering Theorem.) Clearly |X | is an initial ordinal.
In fact, |X | is the unique initial ordinal such that X ≈ {β | β < α}.

Lemma 4.5.7. If X ⊆ {β | β < α}, then |X | ≤ α.

Proof. Immediate from Lemma 4.3.15.

Theorem 4.5.8. For all sets X and Y we have

X ≈ Y if and only if |X | = |Y | ,

and
X 4 Y if and only if |X | ≤ |Y | .

Proof. The first equivalence is obvious, as is the fact that |X | ≤ |Y | implies
X 4 Y . Suppose now that X 4 Y . Then X ≈ Z for some Z ⊆ {β | β < |Y |}.
By the previous lemma it follows that |X | = |Z| ≤ |Y |. This completes the
proof.

Remark 4.5.9. By the previous theorem, we have card(X) = card(Y ) if and
only if |X | = |Y |, and card(X) < card(Y ) if and only if |X | < |Y |. Thus we may
identify cardinal numbers with initial ordinals. From now on we shall make
this identification, writing card(X) = |X |. For instance, the finite cardinal
numbers are now identified with the finite ordinal numbers, and the smallest
infinite cardinal number is the same as the ordinal number ω.
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Theorem 4.5.10.

1. If X 4 Y and Y 4 X , then X ≈ Y .

2. For all sets X and Y , either X 4 Y or Y 4 X .

Proof. Both parts follow from the previous theorem plus the fact that |X | and
|Y | are ordinal numbers, hence exactly one of |X | < |Y |, |X | = |Y |, |Y | < |X |
holds.

4.6 Cardinal Arithmetic

We now present some basic results about the arithmetic of infinite cardinal
numbers. Most of these results are easy consequences of the following lemma.

Lemma 4.6.1. For infinite cardinals κ, we have κ · κ = κ.

Proof. If not, let κ be the smallest counterexample. Note that κ is an infinite
initial ordinal, and λ · λ < κ for all λ < κ.

Put A = {α | α < κ} and R = {(α′, α) | α′ < α < κ}. Thus (A,R) is a
well-ordering of type κ. Note that |A| = κ but every initial segment I of (A,R)
has |I| < κ.

Put B = A×A and define S ⊆ B ×B by

(α′, β′)S(α, β) if and only if

max(α′, β′) < max(α, β) ∨
(max(α′, β′) = max(α, β) ∧ α′ < α) ∨
(max(α′, β′) = max(α, β) ∧ α′ = α ∧ β′ < β) .

It is straightforward to verify that (B,S) is a well-ordering.
If J ⊆ B is any initial segment of (B,S), we have J ⊆ I × I where I is

an appropriately chosen initial segment of (A,R). Thus every initial segment
of (B,S) has cardinality < κ. Hence (A,R) cannot be isomorphic to an initial
segment of (B,S). From comparability of well-orderings, it follows that (B,S)
is isomorphic to (A,R). In particular B ≈ A. In other words, A×A ≈ A, hence
κ · κ = κ. This completes the proof.

Theorem 4.6.2. For infinite cardinals κ and λ, we have

κ+ λ = κ · λ = max(κ, λ) .

Proof. Put µ = max(κ, λ). Then by the previous lemma we have

µ ≤ κ+ λ ≤ µ+ µ = 2 · µ ≤ µ · µ = µ

and
µ ≤ κ · λ ≤ µ · µ = µ .

This proves the theorem.

83



Theorem 4.6.3. For λ infinite and 2 ≤ κ ≤ 2λ, we have κλ = 2λ.

Proof. 2λ ≤ κλ ≤ (2λ)λ = 2λ·λ = 2λ.

For any set X , let X∗ be the set of finite sequences of elements of X , i.e.,

X∗ = {〈ai〉i<n | n < ω, ai ∈ X for all i < n} .
Theorem 4.6.4. For any infinite set X , we have |X∗| = |X |.
Proof. Putting κ = |X |, we have κ2 = κ · κ = κ and it is easy to prove by
induction on n that κn = κ for all n ≥ 1, n < ω. Hence we have

|X∗| =
∑

n<ω

κn = ω · κ = κ .

This proves the theorem.

Definition 4.6.5. For any ordinal β we define β+ = the smallest initial ordinal
κ > β. To each ordinal number α we associate an infinite initial ordinal ωα as
follows, by transfinite recursion:

1. ω0 = ω,

2. ωα+1 = ω+
α ,

3. ωδ = supα<δ ωα for limit ordinals δ.

Remark 4.6.6. It is easy to see that 〈ωα〉α∈Ord is a strictly increasing enumer-
ation of all the infinite initial ordinals, i.e., the infinite cardinals. It follows that
the class Card = {κ | κ is an infinite cardinal} is not a set.

Exercise 4.6.7. Prove that there exist arbitrarily large ordinals α such that
α = ωα.

Remark 4.6.8. Although cardinals are now the same thing as initial ordinals,
the notation ℵα = ωα is sometimes used in order to maintain a notational
distinction between cardinals and initial ordinals. ℵα is taken to be a cardinal,
while ωα is an initial ordinal. For example, even though ℵ0 is the same thing
as ω, ℵ0 is thought of as the cardinality of the set of natural numbers, while ω
is thought of as the order type of the natural numbers under <.

Theorem 4.6.9. Let N, Q, and R be the set of natural numbers, the rational
numbers, and the real numbers respectively. The cardinalities of these sets are
given by |N| = |Q| = ℵ0, |R| = 2ℵ0 .

Proof. The fact that |N| = ℵ0 is obvious. Since N ⊆ Q and each rational number
q ∈ Q is of the form q = ±m/n for some (m,n) ∈ N × N, we have

|N| ≤ |Q| ≤ 2 · |N| · |N| = |N|
so |Q| = |N| = ℵ0. For the real numbers, note first that P(N) 4 R via the
function which sends X ⊆ N to

∑
n∈X 2/3n. Hence 2ℵ0 ≤ |R|. On the other

hand, R 4 P(Q) ≈ P(N) via the function which sends x ∈ R to {q ∈ Q | q < x}.
Thus |R| = 2ℵ0 .
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Exercise 4.6.10. Prove that |RN| = 2ℵ0 and |RR| = 22ℵ0
.

The most important problem of infinite cardinal arithmetic is the Continuum

Problem: What is the cardinality of R? Equivalently, what is the ordinal number
β such that 2ℵ0 = ℵβ? By Cantor’s Theorem we have 2ℵ0 ≥ ℵ1. The assertion
that 2ℵ0 = ℵ1 is known as the Continuum Hypothesis, or CH.

More generally, for any infinite cardinal κ, Cantor’s Theorem tells us that
2κ ≥ κ+, and we can ask whether 2κ = κ+. The assertion that 2κ = κ+ for
all infinite cardinals κ (equivalently, 2ℵα = ℵα+1 for all ordinal numbers α) is
known as the Generalized Continuum Hypothesis, or GCH.

Exercise 4.6.11. Prove that 2ℵ0 6= ℵω. (Hint: Use König’s Theorem.)

4.7 Some Classes of Cardinals

A cardinal is said to be uncountable if it is > ℵ0. In this section we introduce
some important classes of uncountable cardinals.

Definition 4.7.1. Let λ be an uncountable cardinal. We say that λ is a suc-

cessor cardinal if λ = κ+ for some κ < λ. We say that λ is a limit cardinal if
κ+ < λ for all κ < λ. We say that λ is a strong limit cardinal if 2κ < λ for all
κ < λ.

Note that λ is a successor cardinal if and only if λ = ℵα+1 for some successor
ordinal α + 1, and λ is a limit cardinal if and only if λ = ℵδ for some limit
ordinal δ. The first few uncountable successor cardinals are ℵ1, ℵ2, . . . . The
first uncountable limit cardinal is ℵω. Clearly every strong limit cardinal is a
limit cardinal, and the GCH implies that every limit cardinal is a strong limit
cardinal.

Lemma 4.7.2. Every uncountable cardinal is either a successor cardinal or a
limit cardinal, and exactly one of these possibilities holds.

Proof. Obvious.

Definition 4.7.3. An infinite cardinal λ is said to be regular if it is not the sum
of fewer than λ cardinals each less than λ. In other words, for any indexed set
of cardinals 〈κi〉i∈I with |I| < λ and κi < λ for all i ∈ I, we have

∑
i∈I κi < λ.

Trivially ℵ0 is regular, since it is not the sum of a finite set of finite cardinals.

Theorem 4.7.4. Every uncountable successor cardinal is regular.

Proof. Let λ be an uncountable successor cardinal. Thus λ = κ+ where κ is an
infinite cardinal. Given an indexed set of cardinals 〈κi〉i∈I , we see that κi < λ
implies κi ≤ κ, also |I| < λ implies |I| ≤ κ, hence

∑

i∈I

κi ≤
∑

i∈I

κ = |I| · κ ≤ κ · κ = κ < λ.

This shows that λ is regular.
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In particular ℵ1, ℵ2, . . . are regular. An infinite cardinal is said to be sin-

gular if it is not regular. The first singular cardinal is ℵω, since ℵω =
∑
n∈N ℵn.

Exercise 4.7.5. Let α be an ordinal number which is > ω. Show that α is
a regular cardinal (i.e., a regular initial ordinal) if and only if, for every set of
ordinal numbers X with supX = α, we have type(X) = α.

Definition 4.7.6. Let λ be an uncountable cardinal. The cofinality of λ,
written cf(λ), is the smallest cardinal κ such that λ =

∑
i∈I λi for some indexed

set of cardinals λi < λ, i ∈ I, with |I| = κ.

Exercise 4.7.7. Prove the following facts.

1. cf(λ) is regular.

2. λ is regular if and only if cf(λ) = λ.

3. λ is singular if and only if cf(λ) < λ.

4. λcf(λ) > λ. (Hint: Use König’s Theorem.)

5. For any infinite cardinal κ we have cf(µκ) > κ for all µ > 1. In particular,
cf(2κ) > κ.

Exercise 4.7.8. Let κ be an infinite regular cardinal. Show that there exist
arbitrarily large strong limit cardinals λ such that cf(λ) = κ. Moreover, for all
such λ we have λµ = λ for all µ < κ.

Exercise 4.7.9. Assuming the GCH, prove that for all infinite cardinals κ and
λ we have

λκ =





λ if κ < cf(λ),

λ+ if cf(λ) ≤ κ ≤ λ,

κ+ if κ ≥ λ.

Definition 4.7.10. An inaccessible cardinal is an uncountable, regular, strong
limit cardinal. A weakly inaccessible cardinal is an uncountable, regular, limit
cardinal.

Remark 4.7.11. Clearly every inaccessible cardinal is weakly inaccessible, and
the GCH implies that every weakly inaccessible cardinal is inaccessible. It can
be shown that every weakly inaccessible cardinal is a fixed point of the ℵα’s, i.e.,
such cardinals are of the form λ = ℵλ. Moreover, every strongly inaccessible
cardinal has λκ = λ for all κ < λ.

The existence of inaccessible and/or weakly inaccessible cardinals is not ob-
vious. Indeed, we shall see later that the existence of such cardinals cannot be
established using the accepted axioms of set theory.
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4.8 Pure Well-Founded Sets

A set X is said to be transitive if, for every set Y such that Y ∈ X , we have
Y ⊆ X .

Lemma 4.8.1. Given a set X , there is a smallest transitive set TC(X) including
X . (TC(X) is called the transitive closure of X .)

Proof. Define U(X) =
⋃{Y | Y ∈ X,Y a set}. By recursion on n < ω define

TC0(X) = X

TCn+1(X) = U(TCn(X)) .

Then TC(X) =
⋃
n∈N TCn(X) is easily seen to be the smallest transitive set Y

such that Y ⊇ X .

For any set A, we write

∈|A = {(b, a) | a, b ∈ A, a is a set, b ∈ a} .
Definition 4.8.2. A set X is said to be well-founded if the relational structure
(TC(X),∈|TC(X)) is well-founded.

Applying Lemma 4.3.5 to the relational structure (TC(X),∈|TC(X)), we see
that X is well-founded if and only if there is no infinite sequence of sets 〈Xn〉n∈N

with
X = X0 ∋ X1 ∋ · · · ∋ Xn ∋ · · · .

Definition 4.8.3. A set X is said to be pure if every element of TC(X) is a
set. In other words, X is a pure set if not only X but also all the elements of
X , elements of elements of X , . . . , are sets.

By transfinite recursion we define transitive sets Rα, α ∈ Ord, as follows:

R0 = ∅
Rα+1 = P(Rα)

Rδ =
⋃
α<δ Rα for limit ordinals δ .

By transfinite induction on α ∈ Ord, it is clear that β < α implies Rβ ∈ Rα,
hence β ≤ α implies Rβ ⊆ Rα.

Theorem 4.8.4. X ∈ ⋃α∈OrdRα if and only if X is a pure, well-founded set.

Proof. It is straightforward to prove by transfinite induction on α that all el-
ements of Rα are pure and well-founded. Conversely, suppose X is pure and
well-founded. We claim that, for all Y ∈ TC({X}), there exists an ordinal
number α such that Y ∈ Rα. If not, let Y ∈ TC({X}) be ∈-minimal such that
no such α exists. For each Z ∈ Y , let f(Z) be the least ordinal number β such
that Z ∈ Rβ . Put γ = supZ∈Y f(Z). Then Y ⊆ Rγ , hence Y ∈ P(Rγ) = Rγ+1,
a contradiction. This proves the claim. In particular, X ∈ Rα for some α. This
proves the theorem.
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The class of all pure, well-founded sets is denoted V . Thus we have

V =
⋃

α∈Ord

Rα .

If X is a pure, well-founded set, we define the rank of X to be the least ordinal
number α such that X ⊆ Rα. Then clearly

rankX = sup{rankY + 1 | Y ∈ X} .

Moreover, for all ordinals α we have

Rα = {X | X is a pure well-founded set of rank < α} ,

and rankRα = α.

Exercise 4.8.5. Assuming the GCH, prove that |Rω+α| = ℵα for all ordinals
α.

4.9 Set-Theoretic Foundations

In the next chapter we shall begin the study of axiomatic set theory. In ax-
iomatic studies of set theory, the set concept is usually restricted to pure,
well-founded sets. This restriction tends to isolate set theory from the rest
of mathematics. Nevertheless, the restriction is partially justified by the fact
that many or most mathematical objects can be reconstructed or redefined as
pure, well-founded sets.

For example, the natural numbers 0, 1, 2, . . . are not ordinarily regarded as
being sets, but within the universe of pure, well-founded sets, it is possible to
define a structural replica of the natural numbers. Thus, from a certain per-
spective, natural numbers can be viewed as certain kinds of pure, well-founded
sets.

A similar remark applies to each of following mathematical concepts: natural

number, real number, ordinal number, cardinal number, ordered pair, function.
For each concept in this list, it is possible to identify mathematical objects of
the given type with certain pure, well-founded sets. The purpose of this section
is to show exactly how these identifications can be made. We begin with ordered
pairs and progress to functions, ordinal numbers, and real numbers.

Definition 4.9.1. For any two objects a and b, let us write

(a, b) = {{a}, {a, b}} .

Thus (a, b) is a set. Note that if a and b are pure, well-founded sets, then so is
(a, b).

Lemma 4.9.2. If (a, b) = (a′, b′) then a = a′ and b = b′.
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Proof. Putting X = (a, b), we see that a is the unique element of
⋂
Y ∈X Y , and

b is the unique element of
⋃
Y ∈X Y \ {a} if the latter is nonempty, otherwise

b = a. Thus a and b can be recovered from (a, b) by single-valued set-theoretic
operations. The lemma follows.

By the above lemma, we may view (a, b) as the ordered pair formed from a
and b. From now on we shall make this identification, which is customary in
pure set theory.

In an earlier section of these notes, we defined a function with domain X
to be a rule associating to each a ∈ X a unique b. In pure set theory, it is
customary to replace this definition by the following, which we shall use from
now on.

Definition 4.9.3. A function is a set of ordered pairs, f , which is single-valued,
i.e.,

∀a ∀b ∀c (((a, b) ∈ f ∧ (a, c) ∈ f) ⇒ b = c) .

The domain of f is dom(f) = {a | ∃b ((a, b) ∈ f)}. If f is a function and
a ∈ dom(f) we write f(a) = the unique b such that (a, b) ∈ f .

The pure set-theoretic reconstruction of the ordinal numbers, due to von
Neumann, is as follows:

Definition 4.9.4. A von Neumann ordinal is a transitive, pure, well-founded
set A such that (A,∈|A) is a well-ordering.

Note that if A is a von Neumann ordinal, then for each b ∈ A, the initial segment
B = {a | a ∈ b} is again a von Neumann ordinal.

Lemma 4.9.5. For each ordinal number α, there is a unique von Neumann
ordinal Aα such that type(Aα,∈|Aα) = α. Moreover, the rank of Aα is α.

Proof. By transfinite recursion we define Aα = {Aβ | β < α} for all ordinals α.
By transfinite induction on α, it is straightforward to verify thatAα is the unique
von Neumann ordinal such that type(Aα,∈|Aα) = α, and that rank(Aα) =
α.

Remark 4.9.6. It is customary in pure set theory to identify the ordinal number
α with the von Neumann ordinal Aα. From now on we shall make this identifi-
cation. Thus we have 0 = ∅ = {}, 1 = {0} = {{}}, 2 = {0, 1} = {{}, {{}}}, . . . ,
ω = {0, 1, 2, . . .} = N. Moreover, for all ordinals α we have α = {β | β < α}
and α+ 1 = α ∪ {α}. Also, if X is any set of ordinals, then

supX =
⋃
X =

⋃

α∈X

α .

As for cardinal numbers, we have already seen how cardinal numbers may be
identified with certain ordinal numbers, namely, the initial ordinals. Thus, we
already know how to identify cardinal numbers with certain pure, well-founded
sets.
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Finally, we turn to the set-theoretic construction of the real number sys-
tem. The construction emplys the usual factorization of a set by an equivalence
relation, as per the following definitions and remark.

Definition 4.9.7. Let A be a set. An equivalence relation on A is a binary
relation R ⊆ A×A with the following properties: aRb and bRc imply aRc; aRb
implies bRa; and aRa for all a ∈ A.

Definition 4.9.8. Let R be an equivalence relation on A. For any a ∈ A we
write [a]R = {b ∈ A | aRb}, the equivalence class of a with respect to R. We
write A/R = {[a]R | a ∈ A}.

Remark 4.9.9. Let R be an equivalence relation on A. Then aRb if and only
if [a]R = [b]R. Moreover A/R is a partition of A, i.e., a collection of pairwise
disjoint sets whose union is A.

Definition 4.9.10 (the real number system). In order to define the real num-
ber system, we follow Dedekind and begin with the natural number system
(N,+, ·, 0, 1,=, <).

The integers are defined by putting Z = (N × N)/≡Z, where (m,n) ≡Z

(m′, n′) if and only if m+n′ = m′ +n. The ordered ring structure of Z is given
by

[(m,n)] +Z [(m′, n′)] = [(m+m′, n+ n′)]

[(m,n)] ·Z [(m′, n′)] = [(mm′ + nn′,mn′ +m′n)]

−Z [(m,n)] = [(n,m)]

0Z = [(0, 0)]

1Z = [(1, 0)]

[(m,n)] = [(m′, n′)] ⇔ m+ n′ = m′ + n

[(m,n)] <Z [(m′, n′)] ⇔ m+ n′ < m′ + n

The rationals are defined by putting Q = (Z × Z+)/≡Q, where Z+ = {b ∈
Z | b > 0}, and (a, b) ≡Q (a′, b′) if and only if a · b′ = a′ · b. The ordered ring
structure of Q is given by

[(a, b)] +Q [(a′, b′)] = [(ab′ + a′b, b · b′)]
[(a, b)] ·Q [(a′, b′)] = [(aa′, bb′)]

−Q [(a, b)] = [(−a, b)]
0Q = [(0, 1)]

1Q = [(1, 1)]

[(a, b)] = [(a′, b′)] ⇔ ab′ = a′b

[(a, b)] <Q [(a′, b′)] ⇔ ab′ < a′b

Finally, the reals are defined by putting R = S/≡R. Here S is defined to be
the set of Cauchy sequences over Q, i.e., sequences 〈qn〉n∈N ∈ QN satisying

∀ε > 0 ∃m ∀n (n > m⇒ |qm − qn| < ε) .
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And ≡R is the equivalence relation on S defined by putting 〈qn〉n ≡R 〈q′n〉n if
and only if limn |qn − q′n| = 0, i.e.,

∀ε > 0 ∃m ∀n (n > m⇒ |qn − q′n| < ε) .

The ordered ring structure of R is given by

[〈q〉n] +R [〈q′n〉n] = [〈qn + q′n〉n]

[ 〈qn〉n] ·R [〈q′n〉n] = [〈qn · q′n〉n]

−R [〈qn〉n] = [〈−qn〉n]

0R = [〈0〉n]

1R = [〈1〉n]

[ 〈qn〉n] = [〈q′n〉n] ⇔ ∀ε > 0 ∃m ∀n (n > m⇒ |qn − q′n| < ε)

[ 〈qn〉n] <R [〈q′n〉n] ⇔ ∃ε > 0 ∃m ∀n (n > m⇒ qn + ε < q′n)

Exercise 4.9.11. Show that the real number system is complete, i.e., every
nonempty bounded subset of R has a least upper bound.

Remark 4.9.12. In this section we have shown how many or most mathemati-
cal objects may be redefined or reconstructed as pure, well-founded sets. In this
sense, pure set theory may be said to encompass virtually all of mathematics,
and one may speak of the set-theoretic foundations of mathematics. This is why
set theory is viewed as being of fundamental or foundational importance.
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Chapter 5

Axiomatic Set Theory

This chapter is an introduction to axiomatic set theory.

5.1 The Axioms of Set Theory

Definition 5.1.1. We define L∈, the language of set theory. The language
contains variables x, y, z, . . .. The atomic formulas of the language are x = y
and x ∈ y, where x and y are variables. Formulas are built up as usual from
atomic formulas by means of propositional connectives ∧, ∨, ¬ , ⇒, ⇔ and
quantifiers ∀, ∃. The notion of free variable is defined as usual. A sentence is a
formula with no free variables.

Remark 5.1.2. The standard or intended interpretation of L∈ is that the
variables are to range over the class of pure, well-founded sets. Thus formulas
and sentences are normally interpreted as making assertions about pure, well-
founded sets. This standard interpretation or model of L∈ is sometimes known
as the real world.

Example 5.1.3. An example of a sentence of L∈ is

∀x∀y (x = y ⇔ ∀u (u ∈ x⇔ u ∈ y)) .

This sentence asserts the extensionality principle for pure, well-founded sets:
two pure, well-founded sets are equal if and only if they contain the same pure,
well-founded sets as elements.

Example 5.1.4. An example of a formula of L∈ is

∀u (u ∈ z ⇔ (u = x ∨ u = y)) .

This formula has free variables x, y, and z. It asserts that z is the unordered
pair {x, y}, i.e., the set whose only elements are x and y.
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As mentioned above, the standard interpretation of L∈ is in terms of the
real world, i.e., the class of pure, well-founded sets. In later sections of this
chapter, we shall consider interpretations or models of L∈ other than the real
world. Such alternative interpretations play an essential role in axiomatic set
theory.

We can expand the language L∈ indefinitely by introducing abbreviations.
Some important abbreviations are given in the following definition.

Definition 5.1.5.

1. (unordered pair) z = {x, y} is an abbreviation for

∀u (u ∈ z ⇔ (u = x ∨ u = y)).

2. (singleton) z = {x} is an abbreviation for z = {x, x}.

3. (ordered pair) z = (x, y) is an abbreviation for z = {{x}, {x, y}}, i.e.,

∃u ∃v (u = {x} ∧ v = {x, y} ∧ z = {u, v}).

4. (subset) x ⊆ y is an abbreviation for ∀u (u ∈ x⇒ u ∈ y).

5. (powerset) z = P(x) is an abbreviation for

∀y (y ∈ z ⇔ y ⊆ x).

6. (union of a set of sets) z =
⋃
x is an abbreviation for

∀u (u ∈ z ⇔ ∃v (v ∈ x ∧ u ∈ v)).

7. (union of two sets) z = x ∪ y is an abbreviation for z =
⋃{x, y}, i.e.,

∃w (w = {x, y} ∧ z =
⋃
w).

8. (intersection of a set of sets) z =
⋂
x is an abbreviation for

∀u (u ∈ z ⇔ ∀v (v ∈ x⇒ u ∈ v)).

9. (intersection of two sets) z = x∩y is an abbreviation for z =
⋂{x, y}, i.e.,

∃w (w = {x, y} ∧ z =
⋂
w).

10. (empty set) x = ∅ and x = {} are abbreviations for ∀u (u /∈ x).

Using these abbreviations, we can write down sentences expressing some of
the axioms of Zermelo-Fraenkel set theory:

Definition 5.1.6 (Some Axioms of Set Theory).
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1. Axiom of Extensionality: ∀x∀y (x = y ⇔ ∀u (u ∈ x⇔ u ∈ y)).

2. Empty Set Axiom: ∃x (x = ∅).

3. Pairing Axiom: ∀x∀y ∃z (z = {x, y}).

4. Union Axiom: ∀x∃z (z =
⋃
x).

5. Power Set Axiom: ∀x∃z (z = P(x)).

6. Axiom of Foundation: ∀x (x 6= ∅ ⇒ ∃u (u ∈ x ∧ u ∩ x = ∅)).

Most of the above axioms are self-explanatory. Only the Axiom of Founda-
tion needs explanation. The Axiom of Foundation is an attempt to express the
idea that all of the sets under consideration are well-founded. This is expressed
by saying that, for all sets x, if x is nonempty then x contains an element u
which is ∈-minimal. Note that, for u ∈ x, u ∩ x = ∅ means that u is ∈-minimal
among elements of x, i.e., there is no element v of x such that v ∈ u.

We now introduce some more abbreviations and axioms.

Definition 5.1.7.

1. (Cartesian product) z = x× y is an abbreviation of

∀w (w ∈ z ⇔ ∃u ∃v (u ∈ x ∧ v ∈ y ∧ w = (u, v))).

2. (function) Fcn(f) is an abbreviation for a formula saying that f is a func-
tion, i.e.,

∀w (w ∈ f ⇒ ∃x∃y (w = (x, y)))∧∀x∀y ∀z (((x, y) ∈ f∧(x, z) ∈ f) ⇒ y = z) .

3. (value of a function) y = f(x) is an abbreviation of

Fcn(f) ∧ (x, y) ∈ f .

4. (domain of a function) z = dom(f) is an abbreviation of

Fcn(f) ∧ ∀x (x ∈ z ⇔ ∃y (x, y) ∈ f).

5. (generalized Cartesian product) z =
∏
f is an abbreviation of

Fcn(f)∧∀g (g ∈ z ⇔ (dom(g) = dom(f)∧∀x (x ∈ dom(f) ⇒ g(x) ∈ f(x)))) .

Definition 5.1.8. The Axiom of Choice is the sentence

∀f ((Fcn(f) ∧ ∀x (x ∈ dom(f) ⇒ f(x) 6= ∅)) ⇒∏
f 6= ∅).

Definition 5.1.9. The Axiom of Infinity is the sentence
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∃z (∅ ∈ z ∧ ∀x (x ∈ z ⇒ x ∪ {x} ∈ z)).

The purpose of the Axiom of Infinity is to assert the existence of at least
one infinite set. This is accomplished by asserting the existence of a set that
contains all of the sets 0 = {} = ∅, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2}, . . . .

We now introduce the two remaining axioms of Zermelo-Fraenkel set theory.
Actually, these two so-called axioms are not individual axioms, but rather axiom
schemes. An axiom scheme is an infinite set of axioms all of which have a
common form.

Recall that, if F is a formula with free variables x1, . . . , xn, then the universal

closure of F is the sentence ∀x1 · · · ∀xn F .

Definition 5.1.10.

1. The Comprehension Scheme is an infinite set of axioms, consisting the
universal closures of all formulas of the form

∃z ∀u (u ∈ z ⇔ (u ∈ x ∧ F (u))) ,

where F (u) is any formula in which z does not occur freely.

2. For any formula F (u), we write z = {u ∈ x | F (u)} as an abbreviation for

∀u (u ∈ z ⇔ (u ∈ x ∧ F (u))) .

The Comprehension Scheme is our attempt to express the principle that,
given a set x and a property P that particular elements of x may or may
not have, there necessarily exists a set z ⊆ x consisting of all elements of x
which have the given property P . Since our language L∈ does not enable us to
discuss or quantify over arbitrary properties, we restrict attention to properties
that are definable, i.e., expressible by means of a formula F (u). The syntactical
requirement that the variable z does not occur freely in F (u) is imposed in order
to avoid obvious contradictions such as z = {u ∈ x | u /∈ z}, the idea being that
the set z should be in some sense logically subordinate to the property P .

The Comprehension Scheme is extremely useful and important. For example,
given a function f , the Comprehension Scheme together with the Union, Pairing,
and Power Set Axioms logically imply the existence of a set z which is the domain
of f ,

z = domf = {x ∈ ⋃⋃ f | ∃y ((x, y) ∈ f)},

and of the generalized Cartesian product
∏
f = {g ∈ PPP(

⋃⋃
f ∪⋃⋃⋃ f) | domg = z ∧ ∀x (x ∈ z ⇒ g(x) ∈ f(x))}.

Definition 5.1.11.

1. We write ∃ !x to mean “there exists exactly one x such that”. In other
words, for any formula F (x) in which x occurs as a free variable, ∃ !xF (x)
is an abbreviation of

∃y ∀x (F (x) ⇔ x = y) .

95



2. The Replacement Scheme is an infinite set of axioms, consisting of the
universal closures of all formulas of the form

∀u (u ∈ x⇒ ∃ ! v F (u, v)) ⇒ ∃y ∀v (v ∈ y ⇔ ∃u (u ∈ x ∧ F (u, v))) ,

where F (u, v) is any formula in which y does not occur freely.

The Replacement Scheme is our attempt to express the principle that, given
a set x and a rule associating to each element u of x a unique object v, there
exists a set y consisting of all the objects v which are associated to elements of x.
Since our language L∈ does not enable us to discuss or quantify over arbitrary
rules, we restrict attention to rules that are definable, i.e., expressible by means
of a formula F (u, v). The syntactical requirement that the variable y does not
occur freely in F (u, v) is imposed in order to avoid obvious contradictions.

We have now introduced all of the axioms of Zermelo/Fraenkel set theory.
We have, finally:

Definition 5.1.12 (Zermelo/Fraenkel Set Theory). The axioms of Zermelo/Fraenkel
set theory are as follows: the Axiom of Extensionality, the Empty Set Axiom,
the Pairing Axiom, the Union Axiom, the Power Set Axiom, the Axiom of Foun-
dation, the Axiom of Infinity, the Comprehension Scheme, and the Replacement
Scheme. We use ZF as an abbreviation for “Zermelo/Fraenkel set theory”.

Definition 5.1.13 (ZFC). The axioms of ZFC consist of the axioms of ZF plus
the Axiom of Choice.

The Zermelo/Fraenkel axioms together with the Axiom of Choice constitute
the commonly accepted, rigorous, set-theoretic foundation of mathematics. A
mathematical theorem is regarded as proved if and only if it is clear how to de-
duce it as a theorem of ZFC, i.e., a logical consequence1 of the ZFC axioms. It
can be shown that all of the theorems of 19th and 20th century rigorous math-
ematics are logical consequences of the ZFC axioms. In particular, essentially
all of the results of Chapter 4 can be stated and proved as theorems of ZFC.

5.2 Models of Set Theory

As mentioned above, the intended interpretation of L∈ is the so-called real world,
i.e., the class of pure, well-founded sets. However, the general notion of pure,
well-founded set is rather vague. In order to study and delimit this vagueness,
axiomatic set theorists frequently consider alternative interpretations of L∈.

One important class of interpretations of L∈ is given in terms of relational
structures. Recall that a relational structure is an ordered pair (A,E) where A
is a set and E ⊆ A × A. Given a relational structure (A,E) and a sentence F
of L∈, it makes sense to ask whether F is true in (A,E), i.e., true when the
variables are interpreted as ranging over A and x ∈ y is interpreted as xEy, i.e.,
(x, y) ∈ E.

1The notions of theorem and logical consequence that we are using here will be explained

in the next section.
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Examples 5.2.1. The Axiom of Extensionality is true in a particular relational
structure (A,E) if and only if (A,E) is extensional, i.e., for all a, b ∈ A, a 6=
b implies {c | cEa} 6= {c | cEb}. Note that some relational structures are
extensional and some are not. An example of an extensional relational structure
is any linear ordering. An example of a nonextensional relational structure is
(A,E) whenever |A| ≥ 2 and E = ∅.

Thus a relational structure is extensional if and only if it is a model of
(i.e., satisfies) the Axiom of Extensionality. The general point here is that any
collection of sentences of L∈ defines a property of relational structures, namely
the property of satisfying the given sentences. We formalize this in the following
definition.

Definition 5.2.2. Let S be any set of sentences of L∈. A model of S is a
relational structure (A,E) such that all of the sentences of S are true in (A,E).
We say that S is consistent if there exists a model of S. If F is another sentence
of L∈, we say that F is a logical consequence of S, written S ⊢ F , if F is true
in every model of S.

Note that if S is inconsistent then all sentences are logical consequences of S,
so the notion of logical consequence is uninteresting in this case. If however S is
consistent, then it is meaningful to ask which sentences are logical consequences
of S, i.e., what conclusions follow when the sentences of S are assumed as
axioms. This is the kind of question which axiomatic set theory seeks to answer.
Naturally the focus is on sets of sentences which make assertions that could
reasonably be true in the intended model, i.e., the real world, i.e., the class of
all pure, well-founded sets.

As an easy example of the notion of logical consequence, note that the sen-
tence ∀x (x /∈ x) is a logical consequence of the Axiom of Foundation plus the
Pairing Axiom. This is so because x ∈ x would imply that {x} has no ∈-minimal
element.

Specializing Definition 5.2.2 to S = ZF and S = ZFC, we have:

Definition 5.2.3. A model of ZFC is a relational structure (A,E) such that
(A,E) satisfies all of the Zermelo/Fraenkel axioms plus the Axiom of Choice.
A theorem of ZFC is any sentence which is a logical consequence of the ZFC
axioms. The notions model of ZF and theorem of ZF are defined similarly.

Axiomatic set theory is essentially the study of models of ZF and of ZFC,
with an eye to discovering which set-theoretic propositions follow or do not
follow from these axiom systems. For instance, one of the important results2 of
axiomatic set theory is that there exists a model of ZF which is not a model of
ZFC. In other words, the Axiom of Choice is not a logical consequence of the
ZF axioms. Another key result is that both the Continuum Hypothesis and its
negation are consistent with ZFC. In other words, CH is independent of ZFC.
Thus the ZFC axioms, although powerful and flexible, do not suffice to answer
basic set-theoretic questions such as the Continuum Problem.

2This result will not be proved here.
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We end this section by presenting some general definitions and results con-
cerning relational structures.

Definition 5.2.4. Let (A,E) be a relational structure. A k-place predicate P ⊆
Ak is said to be definable over (A,E) if there exists a formula F (x1, . . . , xk, y1, . . . , ym)
of L∈ and parameters b1, . . . , bm ∈ A such that

P = {〈a1, . . . , ak〉 ∈ Ak | (A,E) satisfies F (a1, . . . , ak, b1, . . . , bm)} . (5.1)

More generally, given B ⊆ A, we say that P ⊆ Ak is definable over (A,E)
allowing parameters from B if there exists a formula

F (x1, . . . , xk, y1, . . . , ym)

of L∈ and parameters b1, . . . , bm ∈ B such that (5.1) holds.

Definition 5.2.5. Let (A,E) be a relational structure. Then Def((A,E)) is the
set of all subsets of A that are definable over (A,E). Note that Def((A,E)) ⊆
P(A).

Lemma 5.2.6. Let (A,E) be a relational structure.

1. If A is finite, then Def((A,E)) = P(A) and |Def((A,E)| = 2|A|.

2. If A is infinite, then |Def((A,E))| = |A|.

Proof. For finite A the result is obvious. Suppose now that A is infinite. By
Gödel numbering, the set of all formulas of L∈ is countable. Since any element
of Def((A,E)) is determined by a formula and a finite sequence of parameters
from A, we have

|Def((A,E))| ≤ ℵ0 · |A∗| = |A| .
On the other hand {{a} | a ∈ A} ⊆ Def((A,E)), hence |A| ≤ |Def((A,E))|.
This completes the proof.

Definition 5.2.7. Let (A,E) and (A′, E′) be relational structures. We say that
(A′, E′) is a substructure of (A,E), abbreviated (A′, E′) ⊆ (A,E), if A′ ⊆ A
and E′ = E ∩ (A′ × A′). We say that (A′, E′) is an elementary substructure

of (A,E), abbreviated (A′, E′) ⊆elem (A,E), if (A′, E′) ⊆ (A,E) and, for all
formulas F (x1, . . . , xn) and a1, . . . , an ∈ A′, (A,E) satisfies F (a1, . . . , an) if and
only if (A′, E′) satisfies F (a1, . . . , an).

Lemma 5.2.8. Given (A′, E′) ⊆ (A,E), we have (A′, E′) ⊆elem (A,E) if and
only if every nonempty subset of A which is definable over (A,E) allowing
parameters from A′ has a nonempty intersection with A′.

Proof. Straightforward.

Recall that a relational structure (A,E) is said to be countable if the under-
lying set A is countable.
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Theorem 5.2.9 (Löwenheim/Skolem Theorem). For any relational structure
(A,E), there exists a countable elementary substructure (A′, E′) ⊆elem (A,E).

Proof. Let c : P(A) \ {∅} → A be a choice function for A. We define recursively
a sequence of sets An ⊆ A, n ∈ N, by A0 = ∅, An+1 = {c(X) | ∅ 6= X ⊆ A∧X is
definable over (A,E) allowing parameters from An}. Note that An ⊆ An+1 for
all n. By induction on n it is straightforward to show that An is countable for all
n. Hence A′ =

⋃{An | n ∈ N} is countable. Moreover c(X) ∈ A′ for all X 6= ∅
definable over (A,E) allowing parameters from A′. Hence by Lemma 5.2.8 we
have (A′, E′) ⊆elem (A,E), where E′ = E ∩ (A′ × A′). This completes the
proof.

Corollary 5.2.10 (Skolem Paradox). If ZFC is consistent, then there exists a
countable model of ZFC.

Proof. Assume that ZFC is consistent. Then there exists a model (A,E) of
ZFC. By Theorem 5.2.9 (A,E) has a countable elementary submodel, (A′, E′).
Then (A′, E′) is a countable model of ZFC.

The Skolem Paradox is called a paradox for the following reason: the exis-
tence of a countable model of ZFC would seem to contradict the fact that the
existence of uncountable sets is a theorem of ZFC. Actually, there is no contra-
diction here, because a set that is uncountable within a particular model (A,E)
may be countable in the real world. In other words, the notion of countability
is relative to the model under consideration (as are many other set-theoretic
notions).

A straightforward generalization of Theorem 5.2.9 is:

Theorem 5.2.11 (Generalized Löwenheim-Skolem Theorem). Let κ be an in-
finite cardinal. Let (A,E) be a relational structure such that |A| ≥ κ, and let
X ⊆ A be a subset of A such that |X | ≤ κ. Then there exists an elementary
substructure (A′, E′) of (A,E) such that X ⊆ A′ and |A′| = κ.

Proof. Straightforward.

Exercise 5.2.12. Prove Theorem 5.2.11.

5.3 Transitive Models and Inaccessible Cardi-

nals

In this section we study an important class of models. Recall that a set T is
transitive if and only if every element of T is a subset of T .

Definition 5.3.1. Let S be a set of sentences of L∈. A transitive model of

S is any transitive, pure, well-founded set T such that the relational structure
(T,∈|T ) satisfies all the sentences of S. In this context it is customary to identify
the transitive set T with the relational structure (T,∈|T ).
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Note that every transitive model is well-founded and extensional. The fol-
lowing theorem provides a converse and thereby characterizes transitive models
up to isomorphism among arbitrary models.

Theorem 5.3.2. Let (A,E) be a relational structure which is well-founded
and extensional. Then there exists a transitive, pure, well-founded set T such
that the relational structures (A,E) and (T,∈|T ) are isomorphic. Moreover the
transitive set T and the isomorphism f : (A,E) ∼= (T,∈|T ) are unique.

Proof. Fix an object a0 /∈ A. By transfinite recursion on the rank of an arbitrary
pure, well-founded set x, define F (x) as follows: F (x) = the unique a ∈ A such
that rng(F ↾x) = {b | bEa} if such an a exists; F (x) = a0 otherwise. Note
that F (x) = F (y) ∈ A implies x = y. Hence T = rng(F−1↾A) is a set. It is
easy to verify that T is a transitive, pure, well-founded set and that F ↾T is an
isomorphism of (T,∈|T ) onto (A,E). Hence f = F−1↾A is an isomorphism of
(A,E) onto (T,∈|T ). It is straightforward to verify that T and f are unique.

Corollary 5.3.3. If (A,E) is a relational structure, then the following asser-
tions are equivalent:

1. (A,E) is isomorphic to some transitive model (T,∈|T );

2. (A,E) is well-founded and extensional.

The rest of this section is devoted to the study of transitive models, i.e.,
relational structures of the form (A,∈|A) where T is a transitive, pure, well-
founded set. The following definition concerning transitive models is of general
interest.

Definition 5.3.4. Let T be any transitive, pure, well-founded set. A k-place
predicate P ⊆ T k is said to be definable over T if and only if it is definable over
(T,∈|T ) (allowing parameters from T ). We write

Def(T ) = Def((T,∈|T )) = {X ⊆ T | X is definable over T } .

Of particular interest are transitive models of ZFC. The following lemma
consists of some simple remarks characterizing which transitive models satisfy
which axioms of ZFC.

Lemma 5.3.5. Let T be a transitive, pure, well-founded set.

1. T always satisfies the Axiom of Extensionality.

2. T always satisfies the Axiom of Foundation.

3. T satisfies the Pairing Axiom if and only if T is closed under pairing, i.e.,

∀a ∀b ((a ∈ T ∧ b ∈ T ) ⇒ {a, b} ∈ T ).

4. T satisfies the Union Axiom if and only if T is closed under union, i.e.,
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∀a (a ∈ T ⇒ ⋃
a ∈ T ).

5. T satisfies the Empty Set Axiom if and only if ∅ ∈ T .

6. T satisfies the Axiom of Infinity if and only if ∃a (a ∈ T ∧ ω ⊆ a).

7. T satisfies the Power Set Axiom if and only if

∀a (a ∈ T ⇒ P(a) ∩ T ∈ T ).

8. T satisfies the Axiom of Choice if and only if, for every indexed family of
nonempty sets 〈ai〉i∈I ∈ T , we have T ∩∏i∈I ai 6= ∅.

9. T satisfies the Comprehension Scheme if and only if, for all X ∈ Def(T ),
we have

∀a (a ∈ T ⇒ a ∩X ∈ T ).

10. T satisfies the Replacement Scheme if and only if for all functions F : T →
T such that F ∈ Def(T ), we have

∀a (a ∈ T ⇒ rng(F ↾a) ∈ T ).

Proof. Straightforward.

We shall now show that inaccessible cardinals give rise to transitive models
of ZFC. Recall that an inaccessible cardinal is a regular, uncountable, strong
limit cardinal. Recall also that we have identified cardinals with initial von
Neumann ordinals (cf. Sections 4.4.5 and 4.4.8).

Lemma 5.3.6. Let δ be a limit ordinal > ω. Then Rδ is a transitive model of
all of the ZFC axioms except possibly the Replacement Scheme.

Proof. We apply Lemma 5.3.5. The Axioms of Extensionality and Foundation
hold in Rδ because Rδ is a transitive, pure, well-founded set. The Empty
Set, Power Set, Pairing, and Union Axioms and the Axiom of Choice and the
Comprehension Scheme hold in Rδ because δ is a limit ordinal. The Axiom of
Infinity holds in Rδ because ω ∈ Rδ, since ω < δ.

Lemma 5.3.7. An infinite cardinal λ is regular if and only if, for all X ⊆ λ,
|X | < λ implies supX < λ.

Proof. Straightforward.

Lemma 5.3.8. If λ is an inaccessible cardinal, then

1. ∀x ((x ⊆ Rλ ∧ |x| < λ) ⇒ x ∈ Rλ).

2. ∀x (x ∈ Rλ ⇒ |x| < λ).
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3. |Rλ| = λ.

Proof. 1. Define ρ : x → λ by ρ(u) = rank(u). Then |rngρ| ≤ |x| < λ.
Since λ is regular, it follows by the previous lemma that sup(rngρ) < λ, say
rngρ ⊆ α < λ. Hence x ⊆ Rα, hence x ∈ Rα+1 ⊆ Rλ since λ is a limit ordinal.

2. By transfinite induction on α < λ we prove |Rα| < λ. We have R0 = ∅.
If |Rα| = κ < λ, then |Rα+1| = |P(Rα)| = 2κ < λ since λ is a strong limit
cardinal. For limit ordinals δ < λ, we have inductively |Rδ| = |⋃α<δ Rα| =
supα<δ |Rα| < λ, since |Rα| < λ and λ is regular.

3. |Rλ| = supα<λ |Rα| = λ.

Theorem 5.3.9. Let λ be an inaccessible cardinal. Then Rλ is a transitive
model of ZFC.

Proof. Clearly λ is a limit ordinal > ω, hence by Lemma 5.3.6 we see that Rλ
satisfies all of the ZFC axioms except possibly the Replacement Scheme.

Let F : Rλ → Rλ and a ∈ Rλ be given. Then rng(F ↾a) ⊆ Rλ and
|rng(F ↾a)| ≤ |a| < λ, hence by the previous lemma rng(F ↾a) ∈ Rλ. Spe-
cializing this to the case when F is definable over Rλ, we see by Lemma 5.3.5
that the Replacement Scheme holds in Rλ. This completes the proof.

Corollary 5.3.10. If there exists an inaccessible cardinal, then ZFC is consis-
tent.

Proof. Immediate from the theorem.

Exercise 5.3.11. A hereditarily finite set is a finite set x such that all elements
of x, elements of elements of x, . . . , are finite sets. Show that Rω is the set of
all hereditarily finite, pure, well-founded sets. Show that Rω is a model of all
of the axioms of ZFC except the Axiom of Infinity.

Exercise 5.3.12. Define E ⊆ N by putting mEn if and only if 2m occurs in
the binary expansion of n, i.e., m = ni for some i where n = 2n1 + · · · + 2nk .

1. Show that (N, E) ∼= (Rω ,∈|Rω).

2. Conclude that P ⊆ ωk is definable over Rω if and only if P is arithmetical.

Theorem 5.3.13. If there exists an inaccessible cardinal, then the existence of
an inaccessible cardinal is not a theorem of ZFC.

Proof. Assume that there exists an inaccessible cardinal. Let λ be the smallest
inaccessible cardinal. By the previous theorem, Rλ is a model of ZFC. We claim
that Rλ also satisfies “inaccessible cardinals do not exist”. To see this, suppose
that Rλ satisfies “there exists at least one inaccessible cardinal”. Let κ ∈ Rλ
be such that Rλ satisfies “κ is an inaccessible cardinal”. Then it is easy to see
that κ is also an inaccessible cardinal in the real world. But clearly κ < λ.
This contradicts the choice of λ. Thus Rλ is a model of ZFC + “inaccessible
cardinals do not exist”.
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The previous theorem shows that, if we assume only the axioms of ZFC,
then we cannot hope to prove the existence of inaccessible cardinals.

Exercise 5.3.14. Show that, if two or more inaccessible cardinals exist, then
the existence of two or more inaccessible cardinals is not a theorem of ZFC +
“there exists at least one inaccessible cardinal”.

Theorem 5.3.15. If there exists an inaccessible cardinal, then there exists a
countable, transitive model of ZFC.

Proof. Let λ be an inaccessible cardinal. Then (Rλ,∈|Rλ) is a model of ZFC.
By the Löwenheim-Skolem Theorem, there exists a countable set A ⊆ Rλ such
that (A,∈|A) is an elementary submodel of (Rλ,∈|Rλ). Thus (A,∈|A) is a
countable, well-founded, extensional model of ZFC. By Theorem 5.3.2, (A,∈|A)
is isomorphic to a transitive model (T,∈|T ). Thus (T,∈|T ) is a countable,
transitive model of ZFC.

Exercise 5.3.16. Let λ be an inaccessible cardinal. Prove that there ex-
ists a limit ordinal δ < λ such that (Rδ,∈|Rδ) is an elementary submodel of
(Rλ,∈|Rλ).

5.4 Constructible Sets

Recall that, if T is any transitive, pure, well-founded set, Def(T ) is the set of all
subsets of T that are definable over T (i.e., over (T,∈|T )) allowing parameters
from T .

Definition 5.4.1. By transfinite recursion we define Lα, α ∈ Ord, as follows:

L0 = ∅
Lα+1 = Def(Lα)

Lδ =
⋃
α<δ Lα for limit ordinals δ .

A set X is said to be constructible if X ∈ Lα for some ordinal α. The class of
all constructible sets is denoted L.

Lemma 5.4.2. For all ordinals α, Lα is a transitive, pure, well-founded set,
and Lα ⊆ Rα.

Proof. For any transitive, pure, well-founded set T , we have T ⊆ Def(T ) ⊆ P(T )
and hence Def(T ) is again a transitive, pure, well-founded set. With these
observations, the lemma follows easily by transfinite induction on α.

Lemma 5.4.3. For all ordinals α, we have α = Lα ∩ Ord.

Proof. If T is any transitive, pure, well-founded set, then for any a ∈ T we
have that a is an ordinal (i.e., a von Neumann ordinal) if and only if T satisfies
“a is transitive and (a,∈|a) is a linear ordering”. Thus T ∩ Ord ∈ Def(T ).
With this observation, the lemma follows easily by transfinite induction on (von
Neumann) ordinals α.
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We are going to show that the constructible sets form a model of ZFC.
Some of the axioms of ZFC are straightforwardly verified in L using Lemma 5.3.5.

For instance, the Union Axiom holds in L because x ∈ Lα implies
⋃
x ∈ Lα.

The Pairing Axiom holds in L because x, y ∈ Lα implies {x, y} ∈ Lα+1. The
Empty Set Axiom holds in L because ∅ ∈ L1. The Axiom of Infinity holds in
L because ω ∈ Lω+1. The Axioms of Extensionality and Foundation hold in L
because L is transitive and consists of pure, well-founded sets.

To show that the Power Set Axiom holds in L, let X be any constructible
set. For each Y ∈ P(X) ∩ L put ρ(Y ) = the least β such that Y ∈ Lβ. Put
α = sup{ρ(Y ) | Y ∈ P(X) ∩ L}. Thus P(X) ∩ L ⊆ Lα. Hence P(X) ∩ L is
definable over Lα; namely, it is the set of all Y ∈ Lα such that Lα satisfies
Y ⊆ X . Hence P(X) ∩ L ∈ Def(Lα) = Lα+1. We have now shown that for all
X ∈ L, P(X)∩L ∈ L. From this it follows by Lemma 5.3.5 that the Power Set
Axiom holds in L.

To show that Comprehension and Replacement hold in L, we shall need the
following lemmas.

Lemma 5.4.4. Let f1, . . . , fk be functions from Ord to Ord. Then there exist
arbitrarily large ordinals α such that α is closed under f1, . . . , fk, i.e., fi(β) < α
for all β < α, 1 ≤ i ≤ k.

Proof. Given an ordinal γ, define an increasing sequence of ordinals αn, n ∈ N

inductively by α0 = γ, αn+1 = max(αn + 1, sup{fi(β) | β < αn, 1 ≤ i ≤
k}). Putting α = sup{αn | n ∈ N} we see that α > γ and α is closed under
f1, . . . , fk.

Lemma 5.4.5 (reflection). Let F (x1, . . . , xn) be a formula of L∈ with free vari-
ables x1, . . . , xn. Then there exist arbitrarily large ordinals α such that, for all
a1, . . . , an ∈ Lα, L satisfies F (a1, . . . , an) if and only if Lα satisfies F (a1, . . . , an).

Proof. Replacing ∀ by ¬∃¬ as necessary, we may safely assume that F contains
no occurrences of ∀. Now let ∃y Gi, i = 1, . . . , k be a list of the subformulas of F
of the form ∃y G. Write Gi ≡ Gi(y, xi1, . . . , xini

) where xi1, . . . , xini
are the free

variables of ∃y Gi. For a1, . . . , ani
∈ L, put gi(a1, . . . , ani

) = the least ordinal
β such that a1, . . . , ani

∈ Lβ and such that, if L satisfies ∃y Gi(y, a1, . . . , ani
),

then L satisfies Gi(b, a1, . . . , ani
) for some b ∈ Lβ. Define fi : Ord → Ord by

fi(β) = sup{gi(a1, . . . , ani
) | a1, . . . , ani

∈ Lβ}. By the previous lemma, there
exist arbitrarily large ordinals α such that that α is closed under f1, . . . , fk. It
is straightforward to verify that such an α has the desired property.

Remark 5.4.6. The proof of the previous lemma used only the following prop-
erties of the constructible hierarchy: α ≤ β implies Lα ⊆ Lβ; and Lδ =

⋃
α<δ Lα

for limit ordinals δ. Since the Rα hierarchy also has these properties, the same
lemma holds for the Rα hierarchy as well. This has the following interesting
consequence: If F1, . . . , Fk is a finite set of sentences that are true in the real
world, then there exist arbitrarily large ordinals α such that F1, . . . , Fk are true
in Rα.
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Lemma 5.4.7. L satisfies the Comprehension and Replacement Schemes.

Proof. To show that the Replacement Scheme holds in L, let f : L → L be a
function which is definable over L. We must prove that, for all a ∈ L, rng(f↾a) =
{f(u) | u ∈ a} also belongs to L. Note first that, since f is definable over L,
we have parameters c1, . . . , cn ∈ L and a formula F (u, v, z1, . . . , zn) with free
variables u, v, z1, . . . , zn such that, for all u ∈ L, f(u) = the unique v ∈ L such
that L satisfies F (u, v, c1, . . . , cn). Now given a ∈ L, put b = rng(f↾a). We
must show that b ∈ L. Let β be an ordinal so large that a, c1, . . . , cn ∈ Lβ
and b ⊆ Lβ . By Reflection, let α be such that α > β and, for all u, v ∈ Lα,
L satisfies F (u, v, c1, . . . , cn) if and only if Lα satisfies F (u, v, c1, . . . , cn). We
claim that b is definable over Lα. This is clear since

b = {v ∈ L | L satisfies ∃u (u ∈ a ∧ F (u, v, c1, . . . , cn))}
= {v ∈ Lα | Lα satisfies ∃u (u ∈ a ∧ F (u, v, c1, . . . , cn))} .

Thus b ∈ Def(Lα) = Lα+1, whence b ∈ L. This shows that the Replacement
Scheme holds in L. The proof that the Comprehension Scheme holds in L is
similar.

We introduce some more abbreviations:

Definition 5.4.8.

1. Const(x) is an abbreviation for a formula asserting that a given pure, well-
founded set x is constructible. In more detail, Const(x) asserts the exis-
tence of a transfinite sequence of sets 〈Lβ〉β≤α such that Lβ =

⋃{Def(Lγ) |
γ < β} for all β ≤ α, and x ∈ Lα.

2. Recall that V is the class of all pure, well-founded sets, and L is the
class of all constructible sets. We use V = L to abbreviate ∀xConst(x).
Thus V = L is a sentence asserting that all pure, well-founded sets are
constructible.

Theorem 5.4.9. The class L of constructible sets satisfies the ZF axioms plus
V = L.

Proof. The above lemmas show that L satisfies the ZF axioms. It is tedious but
straightforward to show that L satisfies V = L.

Lemma 5.4.10. For all ordinals α ≥ ω, we have |Lα| = |α|.

Proof. By Lemma 5.2.6 we have |Lω| = ℵ0 and, for α ≥ ω, |Lα+1| = |Def(Lα)| =
|Lα|. From this the lemma easily follows by induction on α ≥ ω.

Theorem 5.4.11. The class L of constructible sets satisfies the Axiom of
Choice.
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Proof. Lemma 5.4.10 implies that each Lα is well-orderable. Refining the proof
of Lemma 5.4.10, we can explicitly define by transfinite recursion a function
F : Ord → V such that, for all ordinals α, F (α) is a well-ordering of Lα. Since
the definition of F is explicit, its validity does not depend on the Axiom of
Choice. Hence by Theorem 5.4.9 the definition of F can be carried out within L.
In particular L satisfies that each Lα is well-orderable. Hence by Remark 4.5.3
L satisfies the Axiom of Choice. This argument actually shows that the Axiom
of Choice follows from ZF plus V = L.

Our remaining goal with respect to constructible sets is to show that L
satisfies the GCH.

Lemma 5.4.12. There is a sentence S of L∈ with the following property. For
all transitive sets A, A satisfies S if and only if A = Lα for some limit ordinal
α.

Proof. The construction of the sentence S is straightforward but tedious. Roughly
speaking, S is identical with the sentence V = L of Definition 5.4.8. For de-
tails of the construction of S, see Boolos and Putnam, “Degrees of unsolvability
of constructible sets of integers,” Journal of Symbolic Logic, Volume 33, 1968,
pages 497–513.

Lemma 5.4.13. If a is any constructible subset of ω, then a ∈ Lα for some
countable ordinal α. More generally, if a ∈ P(κ) ∩ L where κ is an infinite
cardinal, then a ∈ Lα for some ordinal α such that |Lα| = κ.

Proof. Let κ be an infinite cardinal. Suppose that a ⊆ κ and a is constructible.
Let δ > κ be a limit ordinal such that a ∈ Lδ. By the Generalized Löwenheim/-
Skolem Theorem (Theorem 5.2.11), we can find a set A ⊆ Lδ such that κ ∪
{a} ⊆ A, |A| = κ, and (A,∈|A) is an elementary submodel of (Lδ,∈|Lδ). By
Theorem 5.3.2 and Lemma 5.4.12, we have (A,∈|A) ∼= (Lα,∈|Lα) for some
limit ordinal α. Since κ ∪ {a} is a transitive subset of A, it follows by another
application of Theorem 5.3.2 that κ ∪ {a} ⊆ Lα. In particular a ∈ Lα. Clearly
|Lα| = κ, and this completes the proof.

Lemma 5.4.14. For any infinite cardinal κ, we have |P(κ) ∩ L| ≤ κ+.

Proof. From the previous lemma we have P(κ)∩L ⊆ Lκ+ . The desired conclu-
sion is immediate, since |Lκ+ | = |κ+|.

Theorem 5.4.15. The class L of constructible sets satisfies the Generalized
Continuum Hypothesis.

Proof. Since L satisfies the axioms of set theory, the proof of the previous lemma
can be carried out within L. Thus for all infinite cardinals κ of L, we have within
L that |P(κ)| = κ+, hence 2κ = κ+. This proves the theorem.

Theorem 5.4.16.
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1. If ZF has a transitive model, then so does ZFC + GCH.

2. If ZF is consistent, then so is ZFC + GCH.

Proof. Let A be a transitive model of ZF. Within A we can carry out the
definition of L to obtain a transitive submodel B (sometimes called an “inner
model”) consisting of the constructible sets of A. (It can be shown that B =
Lα where α is the least ordinal that is not an element of A.) The proofs of
theorems 5.4.9, 5.4.11, and 5.4.15 then show that B is a model of ZF plus
V = L plus the Axiom of Choice plus the GCH. This proves the first part. The
proof of the second part is similar, starting with a model (A,E) that is not
necessarily transitive.

Remark 5.4.17. The previous theorem, due to Gödel 1939, is one of the most
significant achievements of axiomatic set theory. The second part is sometimes
described as a relative consistency result: ZFC + GCH is consistent relative to
ZF.

5.5 Forcing

Let M be a countable transitive model of ZFC. Let P = (P,≤) be a partially
ordered set belonging to M . We say that p, q ∈ P are compatible if there exists
r ∈ P such that r ≤ p and r ≤ q. If p, q ∈ P are incompatible, we write p ⊥ q.

Definition 5.5.1. A filter on P is a set G ⊆ P such that

1. p, q ∈ G implies ∃r ∈ G (r ≤ p, q);

2. p ∈ G, p ≤ q imply q ∈ G.

Definition 5.5.2. D ⊆ P is dense open if

1. ∀p ∈ P ∃q ≤ p (q ∈ D);

2. ∀p ∈ D ∀q ≤ p (q ∈ D).

Definition 5.5.3. A filter G ⊆ P is said to be M -generic if G ∩D 6= ∅ for all
dense open D ⊆ P such that D ∈M .

Lemma 5.5.4. Given p ∈ P we can find an M -generic filter G ⊆ P such that
p ∈ G.

Proof. Let {Dn | n ∈ N} be an enumeration of {D ∈ M | D dense open in P}.
Put p0 = p and, given pn, let pn+1 ≤ pn be such that pn+1 ∈ Dn. It is easy to
verify that G = {q ∈ P | ∃n (pn ≤ q)} is an M -generic filter.

Definition 5.5.5. Let G be an M -generic filter. We put

M [G] = {aG | a ∈M},
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where

aG = {bG | (p, b) ∈ a for some p ∈ G}.

Remark 5.5.6. Think of each a ∈ M as a “name” for aG ∈ M [G]. We shall
show that M [G] is a countable transitive model of ZFC containing M .

Lemma 5.5.7. M [G] is a countable transitive set. We have M [G] ⊇M ∪ {G},
and Ord ∩M [G] = Ord ∩M .

Proof. It is obvious from the definition that M [G] is a countable transitive set.
For all a ∈ M we have a = (ȧ)G, where ȧ = P × {ḃ | b ∈ a}. We also have
G = (Ġ)G, where Ġ = {(p, ṗ) | p ∈ P}. Thus M ∪ {G} ⊆ M [G], and from this
it follows that Ord ∩M ⊆ Ord ∩M [G]. On the other hand, for each a ∈M we
clearly have rank(a) ≥ rank(aG), hence Ord ∩M ⊇ Ord ∩M [G].

A major result is:

Theorem 5.5.8. M [G] is a countable transitive model of ZFC.

Remark 5.5.9. The proof of Theorem 5.5.8 is long and employs a new method
known as forcing. However, some parts of the proof are easy and do not require
forcing.

For example, given a, b ∈ M , put c = P × {a, b}, then cG = {aG, bG}. This
shows that M [G] satisfies the Pairing Axiom. Also, M [G] satisfies the Axiom of
Infinity because ω = (ω̇)G ∈M [G]. Furthermore, M [G] satisfies Extensionality
and Foundation automatically, because M [G] is a transitive set.

So far we have not used the assumption that G is an M -generic filter.
In order to prove the rest of Theorem 5.5.8, we now introduce the method

of forcing.

Definition 5.5.10. The forcing language consists of binary relation symbols ∈
and = plus constant symbols a for each a ∈M . Sentences of the forcing language
are of the form F (a1, . . . , an), where F (x1, . . . , xn) is a formula of L∈ with free
variables x1, . . . , xn, and a1, . . . , an ∈M . We have M [G] |= F (a1, . . . , an) if and
only if F (a1, . . . , an) is true in M [G], where quantifiers are interpreted as ranging
over M [G], and a1, . . . , an are interpreted as (a1)G, . . . , (an)G respectively.

Definition 5.5.11 (forcing). Let p ∈ P and let F be a sentence of the forcing
language. We say that p ‖− F (read p forces F ) if and only if M [G] |= F for all
M -generic filters G such that p ∈ G.

Lemma 5.5.12 (the extension lemma). If p ‖− F and q ≤ p, then q ‖− F .

Proof. This is obvious, because q ∈ G, q ≤ p imply p ∈ G.

Lemma 5.5.13 (definability of forcing). For each formula F (x1, . . . , xn) there
is a formula F ∗(p, x1, . . . , xn) such that, for all p ∈ P and a1, . . . , an ∈M ,

p ‖− F (a1, . . . , an) if and only if M |= F ∗(p, a1, . . . , an).
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Lemma 5.5.14 (forcing equals truth). M [G] |= F if and only if ∃p ∈ G (p ‖− F ).

Proof. We shall prove Lemmas 5.5.13 and 5.5.14 by simultaneous induction on
the number of connectives and quantifiers in F . We assume that F contains
only ∧, ¬ , and ∀ (not ∨, ⇒, ⇔, ∃).

For the base step, we need to find formulas ∈∗(p, x, y) and =∗(p, x, y) of
L∈ defining the relations p ‖− a ∈ b and p ‖− a = b, respectively, over M . The
formulas ∈∗ and =∗ are defined by a rather complicated simultaneous transfinite
recursion within M . The properties

p ‖− a ∈ b if and only if M |= ∈∗(p, a, b)

and

p ‖− a = b if and only if M |= =∗(p, a, b)

are proved by transfinite induction on rank(a) and rank(b). We omit the details.
For the inductive step, note that

p ‖− F1 ∧ F2 if and only if p ‖− F1 and p ‖− F2,

and

p ‖− ∀xF (x) if and only if p ‖− F (a) for all a ∈M .

Thus we may define (F1 ∧ F2)∗ = F ∗
1 ∧ F ∗

2 and (∀xF (x))∗ = ∀xF ∗(x). This
takes care of ∧ and ∀. For ¬ , we claim that

p ‖− ¬F if and only if ¬∃q ≤ p (q ‖− F ).

To see this, assume the right hand side. Let G be generic with p ∈ G. To show
M [G] |= ¬F . Otherwise, M [G] |= F so let q ∈ G be such that q ‖− F . Let
r ∈ G be such that r ≤ p and r ≤ q. Then r ≤ p and r ‖− F , contradicting
our assumption. For the converse, assume the left hand side. Suppose q ≤ p,
q ‖− F . Let G be generic such that q ∈ G. Then M [G] |= F . Also p ∈ G since
q ≤ p. Therefore p does not force ¬F , contradicting our assumption.

Thus, for definability of forcing, we may take

(¬F )∗(p, a1, . . . , an) ≡ ¬ (∃q ≤ p)F ∗(q, a1, . . . , an).

For focing equals truth, suppose M [G] |= ¬F . To show (∃p ∈ G) p ‖− ¬F . Put
D = {p | p ‖− F or p ‖− ¬F}. Clearly D is dense open. By definability of
forcing, D ∈ M . Let p ∈ D ∩ G. If p ‖− F , then M [G] |= F , a contradiction.
Hence p ‖− ¬F .

We now proceed to the proof of Theorem 5.5.8.

Lemma 5.5.15. M [G] |= the Comprehension Scheme.

Proof. Given a, a1, . . . , an ∈M , to find c ∈M such that

M [G] |= ∀u (u ∈ c⇔ (u ∈ a ∧ F (u, a1, . . . , an))).

Put
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c = {(p, b) | b ∈ ⋃⋃ a and p ‖− b ∈ a ∧ F (b, a1, . . . , an)}.

Then c ∈ M , by Definability of Forcing in M . Then, by the Forcing Equals
Truth Lemma, we have

cG = {bG | b ∈ ⋃⋃ a and M [G] |= F (b, a1, . . . , an)}.

Lemma 5.5.16. M [G] |= the Power Set Axiom.

Proof. Given a ∈M , put c = P × P(P ×⋃⋃ a) ∩M . We claim that

cG ⊇ P(aG) ∩M [G].

To see this, given eG ∈M [G], let d = {(p, b) ∈ P ×⋃⋃ a | p ‖− b ∈ e ∩ a}. By
definability of forcing, d ∈ M , hence dG ∈ cG. Moreover dG = eG ∩ aG. This
proves our claim. The Power Set Axiom follows by Comprehension in M [G],
since P(aG) ∩M [G] = {dG ∈ cG |M [G] |= d ⊆ a}.

Lemma 5.5.17. M [G] |= the Union Axiom.

Proof. This is similar to the Power Set Axiom. Given a ∈M put

c = P ×⋃⋃⋃⋃ a.

Then cG ⊇ ⋃ aG, and the Union Axiom follows by Comprehension in M [G].

Lemma 5.5.18. M [G] |= the Replacement Scheme.

Proof. It suffices to prove that M [G] |= the Bounding Scheme:

∀w1 · · · wn [ ∀u ∃ ! v F (u, v, w1, . . . , wn) ⇒ ∀x∃y ∀u ∈ x∃v ∈
y F (u, v, w1, . . . , wn) ].

This is because Bounding plus Comprehension implies Replacement.
Given a, a1, . . . , an ∈ M , let c ∈ M be such that, for all (p, b) ∈ P ×⋃⋃ a,

if there exists d ∈ M such that p ‖− F (b, d, a1, . . . , an), then c contains such a
d. We then have

M [G] |= ∀u ∃ ! v F (u, v, w1, . . . , wn) ⇒ ∀u ∈ a ∃v ∈ c′ F (u, v, a1, . . . , an),

where c′ ∈M , namely c′ = P × c. Thus M [G] |= Bounding.

Lemma 5.5.19. M [G] |= the Axiom of Choice.

Proof. Given aG ∈ M [G], let f ∈ M map an ordinal α onto
⋃⋃

a. Since
M ⊆ M [G], we have f = (ḟ)G ∈ M [G]. Composing f with the function
b 7→ bG, we obtain in M [G] a mapping of α = (α̇)G onto {bG | b ∈ ⋃⋃ a} ⊇ aG.
Thus aG is well orderable in M [G].

The proof of Theorem 5.5.8 is now complete.
As a first application, we prove the independence of V = L.

Theorem 5.5.20. There exists a countable transitive model of ZFC plus V 6= L.
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Proof. Let M be a countable transitive model of ZFC. Let P be the set of finite
partial functions from ω into 2 = {0, 1}. Partially order P by putting p ≤ q if
and only if p extends q. Then P ∈ M . Let G be an M -generic filter on P . By
Theorem 5.5.8 we have M [G] |= ZFC.

Note that p, q ∈ P are compatible if and only if p ∪ q ∈ P . Thus g =
⋃
G

is a partial function from ω into 2. We claim that dom(g) = ω. To see this,
given n ∈ ω, put Dn = {p ∈ P | n ∈ dom(g)}. Clearly Dn is dense open, and
Dn ∈M . Letting p ∈ G ∩Dn, we see that n ∈ dom(p), hence n ∈ dom(g).

Thus g : ω → 2 and g ∈M [G]. We claim that g /∈M . If g ∈M , then clearly
G = {p ∈ P | p ⊆ g} ∈M , so let D = P \G = {p ∈ P | p /∈ G}. Then D ∈M ,
and clearly D is dense open. But G ∩D = ∅, a contradiction.

We claim that M [G] |= V 6= L. In fact,

M [G] |= ġ /∈ L ∧ ġ : ω → 2

where (ġ)G = g.

5.6 Independence of CH

As in the previous section, let M be a countable transitive model of ZFC, let P
be a partially ordered set belonging to M , and let G be an M -generic filter on
P . We begin with a discussion of cardinal collapsing and cardinal preservation
in M [G].

Remark 5.6.1. Clearly every cardinal of M [G] is a cardinal of M . However,
the converse does not always hold. Cardinals of M can be collapsed in M [G].

Example 5.6.2. Let κ be an uncountable cardinal of M . Let P be the set of
finite partial functions from ω into κ, ordered by p ≤ q if and only if p extends
q. Let G be an M -generic filter on P . Put g =

⋃
G. As in the proof of Theorem

5.5.20, we see that g : ω → κ.
We claim that rng(g) = κ. To see this, give α < κ, put Dα = {p ∈ P | α ∈

rng(p)}. Clearly Dα ∈ M . Because ω is infinite, Dα is dense open. Letting
p ∈ G ∩Dα, we see that α ∈ rng(p), hence α ∈ rng(g).

Thus g ∈ M [G] maps ω onto κ. It follows that M [G] |= “κ̇ is a countable
ordinal”. In particular κ is not a cardinal of M [G].

On the other hand, cardinals of M are often preserved, i.e., remain cardinals
in M [G].

Lemma 5.6.3. Suppose M |= “κ is a cardinal > |P |”. Then M [G] |= “κ is a
cardinal”. In other words, all cardinals > |P | in M are preserved in M [G].

Proof. Suppose not, say fG : λ → κ, λ < κ, rng(fG) = κ, fG ∈ M [G]. Then in
M we have

∀α < κ ∃β < λ ∃p ∈ P (p ‖− f | λ̇→ κ̇ and p ‖− f(β̇) = α̇).
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By the Pigeonhole Principle, we can find p ∈ P , β < λ, α1 < α2 < κ such that
p ‖− f : λ̇→ κ̇ and p ‖− f(β̇) = α̇1 and f(β̇) = α̇2. This is a contradiction.

Definition 5.6.4. An antichain in P is a set A ⊆ P such that the elements
of A are pairwise incompatible. P is said to have the countable chain condition

(c.c.c.) if every antichain of P is countable.

Lemma 5.6.5. Suppose M |= P is c.c.c. Then all cardinals of M are preserved
in M [G].

Proof. Suppose not, say κ > λ, M |= “κ is a cardinal”, M [G] |= “f maps λ̇ onto
κ̇”. Fix p ∈ P such that p ‖− “f maps λ̇ onto κ̇”. Reasoning within M , for α < κ
and β < λ say that α is a possible value of f(β) if ∃q ≤ p (q ‖− f(β̇) = α̇). Let
Xβ = {α | α is a possible value of f(β)}. Note that κ =

⋃
β<λXβ . Therefore,

some Xβ is uncountable. Fix such a β. For each α ∈ Xβ let qα ≤ p be such

that qα ‖− f(β̇) = α̇. Note that α1, α2 ∈ Xβ , α1 6= α2 implies qα1 ⊥ qα2 . Thus
Aβ = {qα | α ∈ Xβ} is an uncountable antichain in P . This contradicts the
assumption that P is c.c.c.

We now proceed to the independence of the Continuum Hypothesis.

Definition 5.6.6. A ∆-system is an indexed family of sets 〈Xi〉i∈I such that,
for some fixed set D, Xi ∩Xj = D for all i, j ∈ I, i 6= j.

Lemma 5.6.7 (the ∆-system lemma). Any uncountable family of finite sets
contains an uncountable subfamily which is a ∆-system.

Proof. Let 〈Xi〉i∈I be an uncountable family of finite sets. We may safely assume
that |I| = ℵ1 and that

⋃
i∈I Xi ⊆ ω1. Passing to an uncountable subfamily, we

may assume that ∃n ∀i ∈ I |Xi| = n. For each i ∈ I, let Xi(1) < · · · < Xi(n) be
the elements of Xi.

Case 1: For each k = 1, . . . , n, {Xi(k) : i ∈ I} is countable. In this case,⋃
i∈I Xi is countable. Hence, by passing to an uncountable subfamily, we may

assumeXi = Xj for all i, j ∈ I. In particular, we have an uncountable ∆-system.
Case 2: Otherwise. Let k be as small as possible such that {Xi(k) | i ∈ I}

is uncountable. Then, for each l < k, {Xi(l) | i ∈ I} is countable. By passing
to an uncountable subfamily, we may assume Xi(l) = Xj(l) for all l < k and all
i, j ∈ I. Thus we have a fixed finite set D = {Xi(l) | 1 ≤ l < k} for all i ∈ I.
Since {Xi(k) | i ∈ I} is uncountable, we may use transfinite recursion to define
a function f : ω1 → I such that, for each α < ω1, Xf(α)(k) > supβ<αXf(β)(n).
Then 〈Xf(α)〉α<ω1 is an uncountable ∆-system contained in 〈Xi〉i∈I .

Lemma 5.6.8. Let X be any set. Let P be the set of finite partial functions
from X into {0, 1}, ordered by putting p ≤ q if and only if p ⊇ q. Then P is
c.c.c.

Proof. Suppose not. Let 〈pi〉i∈I be an uncountable antichain in P . By the
∆-system lemma, we may pass to a subfamily such that 〈dom(pi)〉i∈I is a ∆-
system. Say dom(pi)∩dom(pj) = D for all i, j ∈ I, i 6= j. There are only finitely
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many functions from D into {0, 1}, so by passing to an uncountable subfamily
we may assume that pi↾D = pj↾D for all i, j ∈ I. Then for all i, j ∈ I we have
that pi ∪ pj is a function, hence pi and pj are compatible, a contradiction.

Theorem 5.6.9. Let M be a countable transitive model of ZFC. Let κ be an
uncountable cardinal of M . Then there exists a countable transitive model M ′

of ZFC extending M such that (1) M ′ satisfies 2ℵ0 ≥ κ, and (2) M ′ has the
same ordinals and cardinals as M .

Proof. Let P be the set of finite partial functions from κ × ω into {0, 1}. Let
G be an M -generic filter on P . By Lemma 5.5.7 and Theorem 5.5.8, M [G] is a
countable transitive model of ZFC which includes M and has the same ordinals
as M . By Lemma 5.6.8 P is c.c.c. By Lemma 5.6.5 M [G] has the same cardinals
as M .

Put g =
⋃
G. As in the proof of Theorem 5.5.20 we see that g ∈M [G] and

g : κ× ω → {0, 1}. For α < κ define gα : ω → {0, 1} by gα(n) = g((α, n)). We
claim that gα 6= gβ for all α < β < κ. To see this, let Dαβ be the set of p ∈ P
such that p((α, n)) 6= p((β, n)) for some n ∈ ω such that (α, n), (β, n) ∈ dom(p).
Clearly Dαβ ∈M and is dense open. Hence G ∩Dαβ 6= ∅. Hence gα 6= gβ .

It is now clear that M [G] |= 2ℵ0 ≥ κ̇. Thus we may take M ′ = M [G].
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Chapter 6

Topics in Set Theory

6.1 Stationary Sets

Definition 6.1.1. Let S be a set of ordinals. We say that S is unbounded in a
limit ordinal δ if sup(S ∩ δ) = δ. We say that S is closed in κ if S ⊆ κ and, for
all limit ordinals δ < κ, if S is unbounded in δ then δ ∈ S. A closed unbounded

set in κ (sometimes called a club of κ) is any subset of κ which is closed in κ
and unbounded in κ.

Lemma 6.1.2. Let κ be a regular uncountable cardinal.

1. If Ci, i ∈ I, is a collection of closed unbounded sets in κ, and if |I| < κ,
then

⋂
i∈I Ci is again a closed unbounded set in κ.

2. If Cα, α < κ is a collection of closed unbounded sets in κ indexed by the
ordinals less than κ, then the diagonal intersection

△α<κCα = {β < κ | β ∈ Cα for all α < β}

is again a closed unbounded set in κ.

Proof. Straightforward.

Definition 6.1.3. Let κ be a regular uncountable cardinal. A set S ⊆ κ is said
to be stationary in κ if S ∩ C 6= ∅ for every closed unbounded set C in κ.

Lemma 6.1.4. Let κ be a regular uncountable cardinal, and let S ⊆ κ be
stationary in κ. Suppose S =

⋃
i∈I Si where |I| < κ. Then Si is stationary for

some i ∈ I.

Proof. Suppose the conclusion fails. Then for each i ∈ I let Ci be a closed
unbounded set such that Si ∩ Ci = ∅. By Lemma 6.1.2.1, C =

⋂
i∈I Ci is a

closed unbounded set. Since S is stationary, S ∩C is nonempty, say α ∈ S ∩C.
Then for each i ∈ I we have α /∈ Si, a contradiction.
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Theorem 6.1.5 (Fodor’s Theorem). Let κ be a regular uncountable cardinal,
and let S ⊆ κ be stationary in κ. Suppose f : S → κ is such that f(α) < α for
all α ∈ S. Then f is constant on a stationary set. In other words, there exist a
stationary S0 ⊆ S and a β0 < κ such that f(α) = β0 for all α ∈ S0.

Proof. Similar to the proof of the previous lemma, using 6.1.2.2 instead of
6.1.2.1. The details are left as an exercise for the reader.

Theorem 6.1.6. For any regular uncountable cardinal κ, there exists a sta-
tionary set S ⊆ κ such that κ \ S is also stationary.

Proof. . . .

We state without proof the following theorem of Solovay.

Theorem 6.1.7. Let κ be a regular uncountable cardinal. Any stationary set
S ⊆ κ can be decomposed into κ pairwise disjoint stationary sets.

6.2 Large Cardinals

Definition 6.2.1 (hyperinaccessible cardinals). For each n < ω we define a
class of cardinals called the n-hyperinaccessible cardinals. We define κ to be 0-
hyperinaccessible if it is inaccessible. We define κ to be n+1-hyperinaccessible
if it is inaccessible and

{λ < κ | λ is n-hyperinaccessible}

is unbounded in κ.

Definition 6.2.2 (Mahlo cardinals). For each n < ω we define a class of cardi-
nals called the n-Mahlo cardinals. We define κ to be 0-Mahlo if it is inaccessible.
We define κ to be n+1-Mahlo if it is inaccessible and {λ < κ | λ is n-Mahlo} is
stationary in κ.

Exercise 6.2.3. Show that n+1-hyperinaccessible implies n-hyperinaccessible.
Show that n+1-Mahlo implies n-Mahlo. Show that 1-Mahlo implies n-hyperinaccessible
for all n < ω.

Lemma 6.2.4. Let δ be a limit ordinal. Suppose κ < δ and n < ω. Then κ is
n-hyperinaccessible if and only if Rδ satisfies “κ is n-hyperinaccessible.” Also,
κ is n-Mahlo if and only if Rδ satisfies “κ is n-Mahlo.”

Proof. Straightforward.

Theorem 6.2.5.

1. The existence of an n+1-hyperinaccessible cardinal is not provable in ZFC
+ “for all α there exists κ > α such that κ is n-hyperinaccessible” (as-
suming this theory is consistent).
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2. The existence of an n+1-Mahlo cardinal is not provable in ZFC + “for
all α there exists κ > α such that κ is n-Mahlo” (assuming this theory is
consistent).

Proof. Straightforward using the previous lemma.

Lemma 6.2.6.

1. If κ is a cardinal, then L satisfies “κ is a cardinal.”

2. If κ is a regular cardinal, then L satisfies “κ is a regular cardinal.”

3. If κ is n-hyperinaccessible, then L satisfies “κ is n-hyperinaccessible.”

4. If κ is n-Mahlo, then L satisfies “κ is n-Mahlo.”

Proof. Straightforward.

Theorem 6.2.7.

1. If ZFC + “there exists an n-hyperinaccessible cardinal” is consistent, then
so is ZFC + V = L + “there exists an n-hyperinaccessible cardinal.”

2. If ZFC + “there exists an n-Mahlo cardinal” is consistent, then so is ZFC
+ V = L + “there exists an n-Mahlo cardinal.”

Proof. Straightforward using the previous lemma.

6.3 Ultrafilters and Ultraproducts

Definition 6.3.1. Let I be a nonempty set. A filter on I is a set F ⊆ P(I)
such that

1. ∅ /∈ F and I ∈ F ;

2. if X1, . . . , Xn ∈ F then X1 ∩ . . . ∩Xn ∈ F ;

3. if X ∈ F and X ⊆ Y ∈ P(I) then Y ∈ F .

Examples 6.3.2.

1. F = {I}.

2. F = {X ⊆ I | X ⊇ X0}, where ∅ 6= X0 ⊆ I. Such an F is called a
principal filter .

3. F = {X ⊆ I | X is cofinite, i.e., I \X is finite} (assuming I is infinite).

4. F = {X ⊆ I | |I \X | < κ}, where κ is any infinite cardinal ≤ |I|.

5. I = Rn, F = {X ⊆ Rn | Rn \X has Lebesgue measure 0}. Here we could
replace Rn by any measure space.
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6. I = Rn, F = {X ⊆ Rn | Rn \X is meager}. Here we could replace Rn by
any complete metric space.

7. Let I = κ where κ is a regular uncountable cardinal. Then

F = {X ⊆ κ | X ⊇ C for some closed unbounded set C ⊆ κ}

is a filter, known as the closed unbounded filter on κ.

8. Let A be an uncountable set. Put

I = Pc(A) = {Y ⊆ A | Y is countable} .

Recall that A<ω is the set of finite sequences of elements of A. Given
f : A<ω → A, put

Cf = {Y ∈ Pc(A) | Y is closed under f, i.e., f [Y <ω] ⊆ Y } .

Then
Fc(A) = {X ⊆ Pc(A) | X ⊇ Cf for some f}

is a filter known as the closed unbounded filter on Pc(A).

Definition 6.3.3. Let κ be an infinite cardinal. A filter F is said to be κ-
additive if

⋂
i∈I Xi ∈ F whenever Xi ∈ F for all i ∈ I, |I| < κ.

Examples 6.3.4.

1. Every filter is finitely additive, i.e., ℵ0-additive.

2. The Lebesgue and Baire filters on Rn are countably additive, i.e., ℵ1-
additive.

3. For any infinite cardinal κ ≤ |I|, the filter {X ⊆ I | |I − X | < κ} is
κ-additive.

4. For any regular uncountable cardinal κ, the closed unbounded filter on κ
is κ-additive.

5. For any uncountable set A, the closed unbounded filter on Pc(A) is count-
ably additive.

Definition 6.3.5. An ultrafilter on I is a filter U on I such that for all X ⊆ I
either X ∈ U or I \X ∈ U .

Remark 6.3.6. The filters in 6.3.2.3–8 are not ultrafilters. Indeed, it is diffi-
cult to find explicit examples of nonprincipal ultrafilters. However, as we shall
now show, nonprincipal ultrafilters can be constructed by means of transfinite
recursion plus the Axiom of Choice.

Theorem 6.3.7. Any filter F on I can be extended to an ultrafilter U on I.
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Proof. Say that G ⊆ P(I) has the finite intersection property (f.i.p.) if Y1∩ . . .∩
Ym 6= ∅ for all Y1, . . . , Ym ∈ G.

By the well-ordering theorem, let κ = |P(I)|, say

P(I) = {Xα | α < κ} .

We shall use transfinite recursion to define a sequence of sets Fα ⊆ P(I), α ≤ κ,
each of which has the f.i.p.

Stage 0. Put F0 = F . Note that F has the f.i.p. since it is a filter.
Stage α + 1. Assume inductively that Fα has the f.i.p. We claim that

at least one of Fα ∪ {Xα}, Fα ∪ {I \ Xα} has the f.i.p. Otherwise we would
have Xα ∩ Y1 ∩ . . . ∩ Ym = ∅, Y1, . . . , Ym ∈ Fα, (I \Xα) ∩ Z1 ∩ . . . ∩ Zm = ∅,
Z1, . . . , Zn ∈ Fα. Then Y1 ∩ . . . ∩ Ym ∩ Z1 ∩ . . . ∩ Zn = ∅ so Fα does not have
the f.i.p., a contradiction. We therefore set

Fα+1 =

{
Fα ∪ {Xα} if this has the f.i.p.,

Fα ∪ {I \Xα} otherwise.

Then clearly Fα+1 has the f.i.p.
Stage δ, where δ is a limit ordinal. Put Fδ =

⋃
α<δ Fα. Clearly this has the

f.i.p.
Finally put U = Fκ =

⋃
α<κ Fα. Clearly U has the f.i.p. and for every

X ∈ P(I) either X ∈ U or I \X ∈ U . It follows easily that U is an ultrafilter.
This completes the proof.

Lemma 6.3.8. Any principal ultrafilter U on I is of the form

U = {X ⊆ I | i0 ∈ X}

for some fixed i0 ∈ I.

Proof. Let U be a principal ultrafilter on I. By definition we have

U = {X ⊆ I | X ⊇ X0}

where ∅ 6= X0 ⊆ I. If |X0| ≥ 2, let Y ⊆ I be such that Y ∩ X0 6= ∅ and
(I \ Y ) ∩ X0 6= ∅. Then Y, I \ Y /∈ U , a contradiction. Thus |X0| = 1, i.e.,
X0 = {i0} for some i0 ∈ I. This proves the lemma.

Theorem 6.3.9. For every infinite set I there exists a nonprincipal ultrafilter
U on I.

Proof. Consider the filter F = {X ⊆ I | I\X is finite}. By Theorem 6.3.7, let U
be an ultrafilter on I such that F ⊆ U . For all i0 ∈ I we have I \ {i0} ∈ F ⊆ U ,
hence {i0} /∈ U . Thus U is nonprincipal.

Definition 6.3.10. A structure is a relational structure, i.e., an ordered pair
(A,E) where A is a nonempty set and E ⊆ A×A.
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Definition 6.3.11 (ultraproduct). Suppose we are given an indexed family of
structures 〈(Ai, Ei)〉i∈I and an ultrafilter U on the index set I. We are going to
define a structure

(A,E) =
∏

U

〈(Ai, Ei)〉i∈I

known as an ultraproduct . Recall that

∏

i∈I

Ai =

{
f

∣∣∣∣ f : I →
⋃

i∈I

Ai, f(i) ∈ Ai for all i ∈ I

}
.

For f, g ∈ ∏i∈I Ai define

f ≈ g ⇔def f ≈U g
⇔def {i ∈ I | f(i) = g(i)} ∈ U .

This is an equivalence relation. We define

[f ] =def [f ]U =def

{
g ∈

∏

i∈I

Ai

∣∣∣∣ f ≈U g

}

and

A =
∏

U

〈Ai〉i∈I =
∏

i∈I

Ai

/
U =

{
[f ]U

∣∣∣∣ f ∈
∏

i∈I

Ai

}
.

Finally, for f, g ∈∏i∈I Ai, we define

([f ], [g]) ∈ E ⇔def {i ∈ I | (f(i), g(i)) ∈ Ei} ∈ U .

Note that this last definition is independent of representatives, i.e., f ≈ f ′,
g ≈ g′, ([f ], [g]) ∈ E imply ([f ′], [g′]) ∈ E. Thus E ⊆ A×A is well-defined, and
so (A,E) is a structure.

Theorem 6.3.12 ( Loś’s Theorem). Let (A,E) =
∏

U 〈(Ai, Ei)〉i∈I be an ultra-
product. Let ψ(x1, . . . , xk) be a formula with free variables among x1, . . . , xk.
Then for all [f1], . . . , [fk] ∈ A we have

|=(A,E) ψ([f1], . . . , [fk]) ⇔ {i ∈ I | |=(Ai,Ei) ψ(f1(i), . . . , fk(i))} ∈ U .

6.4 Measurable Cardinals

6.5 Ramsey’s Theorem
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