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Abstract. In this talk, we review the basics concepts of fuzzy physics and quantum field
theory on the Groenewold—Moyal Plane as examples of noncommutative spaces in physics.
We introduce the basic ideas, and discuss some important results in these fields. At the end
we outline some recent developments in the field.
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1 Introduction

Noncommutative geometry is a branch of mathematics due to Gel’fand, Naimark, Connes, Rieffel
and many others [1, 2, 3]. Physicists in a very short time adopted it and nowadays use this phrase
whenever spacetime algebra is noncommutative.

There are two such particularly active fields in physics at present

1. Fuzzy Physics,
2. Quantum Field Theory (QFT) on the Groenewald-Moyal Plane.

Item 1 is evolving into a tool to regulate QFT’s, and for numerical work. It is an alternative
to lattice methods. Item 2 is more a probe of Planck-scale physics. This introductory talk will
discuss both items 1 and 2.

2 History
The Groenewold-Moyal (G-M) plane is associated with noncommutative spacetime coordinates:
[Ty, 2] = 10,

It is an example where spacetime coordinates do not commute.
The idea that spatial coordinates may not commute first occurs in a letter from Heisenberg
to Peierls [4, 5]. Heisenberg suggested that an uncertainty principle such as

1
Az, Az, > 5]9#1,], 6, = const

*This paper is a contribution to the Proceedings of the O’Raifeartaigh Symposium on Non-Perturbative and
Symmetry Methods in Field Theory (June 22-24, 2006, Budapest, Hungary). The full collection is available at
http://www.emis.de/journals/SIGMA /LOR2006.html
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can provide a short distance cut-off and regulate quantum field theories (qft’s). In this letter,
he apparently complains about his lack of mathematical skills to study this possibility. Peierls
communicated this idea to Pauli, Pauli to Oppenheimer and finally Oppenheimer to Snyder.
Snyder wrote the first paper on the subject [6]. This was followed by a paper of Yang [7].

In mid-90’s, Doplicher, Fredenhagen and Roberts [8, 9] systematically constructed unitary
quantum field theories on the G-M plane and its generalizations, even with time-space noncom-
mutativity.

Later string physics encountered these structures.

3 What is noncommutative geometry

According to Connes [1, 2, 3], noncommutative geometry is a spectral triple,
(Aa D7 H)7

where A = a C*-algebra, possibly noncommutative, D = a Dirac operator, H = a Hilbert space
on which they are represented.

If A is a commutative C*-algebra, we can recover a Hausdorff topological space on which
A are functions,using theorems of Gel’fand and Naimark. But that is not possible if A is
not commutative. But it is still possible to formulate qft’s using the spectral triple. A class of
examples of noncommutative geometry with .4 noncommutative is due to Connes and Landi [10].

If some of the strict axioms are not enforced then the examples include SU(2),, fuzzy spaces,
the G-M plane, and many more.

The introduction of noncommutative geometry has introduced a conceptual revolution. Mani-
folds are being replaced by their “duals”, algebras, and these duals are being “quantized”, much
as in the passage from classical to quantum mechanics.

4 Fuzzy physics

In what follows, we sketch the contents of “fuzzy physics”. Reference [11] contains a detailed
survey. For pioneering work on fuzzy physics, see [12, 13, 14].
4.1 What is fuzzy physics [11]

We explain the basic ideas of fuzzy physics by a two-dimensional example: S%.
Consider the two-sphere S?. We quantize it to regularize by introducing a short distance
cut-off. For example in classical mechanics, the number of states in a phase space volume

AV = d3pd3q
is infinite. But we know since Planck and Bose that on quantization, it becomes

AV .
——— = finite.

B3
This is the idea behind fuzzy regularization.
In detail, this regularization works as follows on S2. We have

S?=[feR®: & ¥=r?.
Now consider angular momentum L;:

[Li, L]] = iﬁijkLka EZ == l(l + 1)
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Set
L;

(0+1)

A 2 PN r . N
T3 =r" [T, &5] = ———=l€ijK T,

10+ 1)

where Z; € Matg; 11 = space of (21+1) x (214+1) matrices. Asl — oo, they become commutative.
They give the fuzzy sphere S% of radius r and dimensions 2/ + 1.

4.2 Why is this space fuzzy

As #;, 2; (i # j) do not commute, we cannot sharply localize Z;. Roughly in a volume Ar?
there are (2] + 1) states.

4.3 Field theory on fuzzy sphere

A scalar field on fuzzy sphere is defined as a polynomial in Z;, i.e.,
A scalar field ® = A polynomial in ; = A (2] + 1) — dimensional matrix.
Differentiation is given by infinitesimal rotation:
L;®=[L;, P|.
A simple rotationally invariant scalar field action is given by

S(®) = p'Tr [Li, ) [L;, ] + % Tr (®T®) + A Tr (013)2.

Simulations have been performed [15, 16] on the partition function Z = [ d®e~%(®) of this model
and the major findings include the following:

e Continuum limit exists.

o If
b= Z clmfflm, Ylm = spherical tensor,

then there are three phases:

1. Disordered : (3" |eim|?) = 0.
2. Uniform ordered: (|cgo|?) # 0, {|cim|?) = 0 for I # 0.
3. Non-uniform ordered: (|ci,|?) # 0, (|c3, ) =0 for I # 1.

The last one is an analogue of the Gupser—Sondhi phase [17, 18, 19].

4.3.1 Dirac operator

S% has a Dirac operator including instantons and with no fermion doubling [20, 21, 22, 23, 24,
25, 26).

Also S%, can nicely describe topological features. Hence it seems better suited for preserving
symmetries than lattice approximations.
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4.3.2 Supersymmetry

If we replace SU(2) by OSp(2,1), the fuzzy sphere becomes the N = 1 supersymmetric fuzzy
sphere and can be used to simulate supersymmetry [20, 21, 27, 28, 29, 30, 31, 32]. Simulations
in this regard are already starting.

4.3.3 Strings [33]

If N D-branes are close, the transverse coordinates ®; become N x N matrices with the action
given by

S=\Ir [(I)Z, Q)]]T[(I)“ (I)J] + Zfz]kq)zq)jq)k»

where f;;;, are totally antisymmetric.
The equations of motion

[D;, Dj] =i fijnPr

give solutions when f;;, are structure constants of a simple compact Lie group. Thus we can
have

P, = cl;, fijk = C€ijk, ¢ = const, L; = angular momentum operators.

If L; form an irreducible set, then we have
L-L=1(+1), (21+1)=N,

and we have one fuzzy sphere. Or we can have a direct sum of irreducible representations:
Li=eLF, L™ L=l +1), > (@2k+1)=N.

Then we have many fuzzy spheres.
Stability analysis of these solutions including numerical studies has been done by many
groups.

5 The G-M Plane

5.1 Quantum gravity and spacetime noncommutativity: heuristics

The following arguments were described by Doplicher, Fredenhagen and Robert in their work
in support of the necessity of noncommutative spacetime at Planck scale.

5.1.1 Space-space noncommutativity

In order to probe physics at the Planck scale L, the Compton wavelength Mic of the probe must
fulfill
h

h
e <L or M > Te ~ Planck mass.

Such high mass in the small volume L3 will strongly affect gravity and can cause black holes to
form. This suggests a fundamental length limiting spatial localization.
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5.1.2 Time-space noncommutativity

Similar arguments can be made about time localization. Observation of very short time scales
requires very high energies. They can produce black holes and black hole horizons will then
limit spatial resolution suggesting

AtA|Z| > L2, L = a fundamental length.

The G-M plane models above spacetime uncertainties.

5.2 What is the G-M plane

The Groenewald-Moyal plane Ag(R%+1) consists of functions «, 3, ... on R with the *-pro-
duct

i HV_)
axf=ae2 903

For spacetime coordinates, this implies,
[T, ] = xp*xy — 2y * 2y =10,

Conversely these coordinate commutators imply the general x-product up to certain equivalen-
cies.
The G-M plane also emerges in quantum Hall effect and string physics.

5.3 How the G-M plane emerges from quantum Hall effect and strings
5.3.1 Quantum Hall effect (the Landau problem) [34]

Consider an electron in 1-2 plane and an external magnetic field B= (0,0, B) perpendicular to
the plane. Then the Lagrangian for the system is

1
L= Emmg + eilA,,

where

B
A, = _Eeabmba a,b=1,2,
is the electromagnetic potential and x, are the coordinates of the electron.

Now if eB — oo, then

eB . .
L ~ 7(.7}1.%2—.1‘2.%1).

This means that on quantization we will have

7

[fi‘aa:i‘b] = eiBeab

which defines a G-M plane.
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Figure 1. The tangled web: emergence of noncommutative spaces from different fields.

5.3.2 Strings [35]

Consider open strings ending on Dp-Branes. If there is a background two-form Neveu—Schwarz
field given by the constants B;; = —Bj;, then the action is given by

1 L L
Sy = T / [gijaaxlaaazj — 27Ta'Bij8ax’81,asje“b + spinor terms] dodt.
yiyes b

As B — oo or equivalently g;; — 0,

2
Sp =% dea: A da? = [/ /} -
00 oxt

= [szacJ g ] = 30k or (25, Tk] = (B_ )jk

which is just a G-M plane.
Fig. 1 indicates different sources wherefrom fuzzy physics and the G-M plane emerge. The
question mark is to indicate that the G-M plane may not regularize qft’s.

5.4 Prehistory (before 2004/2005)
Until 2004/2005, much work was done on

e QFT’s on the G-M plane and its renormalization theory, uncovering the phenomenon of
UV/IR mixing [36].

e Phenomenology, including the study of the effects of noncommutativity on Lorentz invari-
ance violation (from 6, in [x,,z,]« = i0,,), C, CP and CPT.

5.5 Modern era

In 2004/2005, Chaichian et al. [37, 38] and Aschieri et al. [39, 40] applied the Drinfel’d twist [41]
which restores full diffeomorphism invariance (with a twist in the “coproduct”) despite the
presence of constants 6, in [Z,,2,] = i6,,. This twist also twists statistics [42, 43]%.

Much of this was known to Majid [47], Oeckl [48], Fiore and Schupp [49, 50, 51] and Watts [52
53]. So the Drinfel’d twist twists both

IThere are claims to the contrary, see [44, 45, 46] for the debate.
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1. action of diffeomorphisms, and

2. exchange statistics.

This brings into question much of the prehistory-analysis. Examples include the following
new results:

1. The Pauli principle can be violated on the G-M plane.
2. (Twisted) Lorentz invariance need not be violated even if 6,,, # 0.

3. There need be no ultraviolet-infrared (UV-IR) mixing in the absence of gauge fields [54].

There is also a striking, clean separation of matter from gauge fields due to the Drinfel’d
twist [55], (in the sense that they have to be treated differently) reminiscent of the distinction
between particles and waves in the classical theory.

Literature should be consulted for details of these developments.
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