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THE INTUITIONS OF HIGHER DIMENSIONAL 
ALGEBRA FOR THE STUDY OF STRUCTURED SPACE*

Ronald BROWN and Timothy PORTER

RÉSUMÉ : Les algèbres de dimensions supérieures libèrent les mathématiques de
la restriction d’une notation purement linéaire. Elles aident ainsi à la modélisation de la
géométrie et procurent une meilleure compréhension et plus de possibilités pour les calculs.
Elles nous donnent de nouveaux outils pour l’étude de problèmes non-commutatifs,
de dimension supérieure qui assurent le passage du local au global, en utilisant la notion
d’« inverse algébrique de subdivision ». Nous allons exposer comment ces idées sont
venues aux auteurs en prolongeant initialement la notion classique de groupe abstrait à
celle de groupoïde abstrait, dont la composition n’est que partiellement définie, et qui
ajoute une composante spatiale à la théorie habituelle des groupes. La théorie des nœuds
nous fournit un exemple en indiquant comment une telle algèbre peut être utilisée pour
décrire la structure d’un espace. Le prolongement à la dimension 2 utilise des compo-
sitions de carrés dans deux directions et la richesse de l’algèbre qui en résulte est montrée
par certains calculs de dimension 2. La difficulté de la transition de la dimension 1 à la
dimension 2 est également illustrée par la comparaison de la notion de carré commutatif
à celle de cube commutatif – le traitement de cette dernière nécessitant de nouvelles
notions. L’importance de la théorie des catégories est expliquée, de même que les
possibilités de l’application d’algèbres de dimensions supérieures.

MOTS-CLÉS : algèbres de dimensions supérieures, théorie des nœuds, groupes, groupoïdes,
théorie des catégories, connections, méthodes cubiques.

ABSTRACT : Higher dimensional algebra frees mathematics from the restriction to a
purely linear notation, in order to improve the modelling of geometry and so obtain
more understanding and more modes of computation. It gives new tools for non-
commutative, higher dimensional, local to global problems, through the notion of
« algebraic inverse to subdivision ». We explain the way these ideas arose for the writ-
ers, in extending first the classical notion of abstract group to abstract groupoid, in
which composition is only partially defined, as in composing journeys, and which
brings a spatial component to the usual group theory. An example from knot theory is
used to explain how such algebra can be used to describe some structure of a space.
The extension to dimension 2 uses compositions of squares in two directions, and the
richness of the resulting algebra is shown by some 2-dimensional calculations. The
difficulty of the jump from dimension 1 to dimension 2 is also illustrated by the com-
parison of the commutative square with the commutative cube – discussion of the latter
requires new ideas. The importance of category theory is explained, and a range of
current and potential applications of higher dimensional algebra indicated.

KEYWORDS : higher dimensional algebra, knot theory, groups, groupoids, category theory,
connections, cubical methods.

* This is a development of a talk by Ronald Brown at the École normale supérieure on
30 May 2001, in the seminar series « Géométrie et Cognition » of Giuseppe Longo, Jean
Petitot, Bernard Teissier.
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ZUSAMMENFASSUNG : Die mehrdimensionale Algebra befreit die Mathematik von einer
rein linearen Notation. Sie ermöglicht eine Modellierung der Geometrie, erleichtert das
Verständnis von Rechnungen und stellt dafür eine größere Zahl von Hilfsmitteln zur Ver-
fügung. Sie liefert uns auch neue Werkzeuge für die Untersuchung « lokal-globaler » nicht-
kommutativer Probleme, indem der Begriff einer algebraischen Umkehrung der Subdi-
vision eingeführt wird. Wir werden zeigen, wie diese Vorstellungen entstanden sind. Der
klassische, abstrakte Grupenbegriff wurde zu einem abstrakten « Gruppoid » weiterent-
wickelt, dessen Zusammensetzung nur teilweise definiert ist und bei dem der herkömmli-
chen Gruppentheorie eine räumliche Komponente hinzugefügt wird. Die Knotentheorie
liefert dafür ein Beispiel, denn sie zeigt den Nutzen einer solchen Algebra für die
Beschreibung einer Raumstruktur. Bei der Ausweitung auf die zweite Dimension werden
in zwei Richtungen Zusammensetzungen von Quadraten benutzt, und der Reichtum der
daraus hervorgehenden Algebra wird durch einige Rechnungen in der zweiten Dimension
erläutert. Die Schwierigkeit des Übergangs von der ersten zur zweiten Dimension wird
durch den Vergleich des Begriffs « kommutatives Quadrat » mit dem Begriff « kommutati-
ver Würfel » erläutert. Um diesen zu behandeln, sind neue Ideen erforderlich. Ferner wird
die Bedeutung der Theorie der Kategorien erklärt, und es wird eine Reihe von bereits exi-
stierenden und potentiellen Anwendungen der mehrdimensionalen Algebra angegeben.

STICHWÖRTER : mehrdimensionale Algebra, Knotentheorie, Gruppe, Gruppoide, Theorie der
Kategorien, Verknüpfungen, kubische Methoden.

RIASSUNTO : L’algebra di dimensioni superiori libera la matematica dai limiti delle
notazioni puramente lineari, al fine di migliorare la modellizzazione della geometria ed
ottenere una migliore comprensione e migliori strumenti di calcolo. Fornisce inoltre nuovi
strumenti per strutture non-commutative, dimensioni superiori e passaggi dal locale al
globale, grazie alla nozione di « inverso algebrico della suddivisione ». Spieghiamo il
modo in cui gli autori sono pervenuti a queste idee, estendendo in primo luogo la nozione
classica di gruppo astratto a quella di gruppoide astratto, nel quale la composizione è
definita solo parzialmente, come nei « percorsi di composizione » in cui si aggiunge una
componenente spaziale alla usuale teoria dei gruppi. Viene usato un esempio della teoria
dei nodi al fine di spiegare come una tale algebra possa essere usata al fine di descrivere
alcune strutture spaziali. L’estensione a due dimensioni usa la composizione dei quadrati
in due direzioni e la ricchezza dell’algebra corrispondente è dimostrata da alcuni conti in
due dimensioni. La difficoltà del passare da una a due dimensioni è anche illustrata dal
raffronto del quadrato commutativo con il cubo commutativo, la cui discussione richiede
concetti nuovi. Si spiega infine l’importanza della teoria delle categorie e lo spazio delle
applicazioni attuali e possibili dell’algebra di dimensioni superiori.

PAROLE CHIAVE : algebra di dimensioni superiori, teoria dei nodi, gruppi, gruppoidi, teoria
delle categorie, connessione, metodi cubici.
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We would like to thank Giuseppe Longo for the invitation to give the talk by
the first author of which this article is a development, and for suggesting the
thrust in terms of explanation of the words in the title. For example he asked a
key question : how can an internal notion of algebraic dimension, besides vec-
torial independence, structure space ?

Since this article is based on a talk in a series including the area of « Cogni-
tion », we hope that these attempts to show a rôle of intuition in mathematics
will also be useful. Intuition clearly has a cognitive rôle ; it also has an emo-
tional rôle, in displacing fear. It also has a crucial rôle in planning research,
and in this area of higher dimensional algebra which Ronald Brown started
in 1965 the clarity of some of the intuitions was the force which kept the
project going despite a very slow start, and also despite a fairly wide skepti-
cism. However the idea would not go away.

These aspects of intuition, cognition, emotion, and planning are also rele-
vant to the study of the nature of the mathematical process ; one must presume
that a « complete » answer to this study would involve so many answers in
cognitive science itself that it is clear we can expect only partial answers. It
may also be that an adequate cognitive science description of mathematics will
in fact need some new mathematics ! The reason for this is that mathematics is
also a descriptive language, which may not be translatable.

For example, a photon or electron can be adequately described only in
mathematical terms. If instead you try to use ordinary language, then you seem
to have paradoxes, as you try to force analogies with events on a different
scale. So in the usual two slits experiments, we tend to say in ordinary lan-
guage that « the photon has to pass through one or the other slits », but this is
inadequate to describe what actually happens when an interference pattern
builds up in the experiment. It is even more difficult to describe in ordinary
language the phenomenon of entanglement, where the states of two particles
are linked over a macroscopic distance.

The development of a new mathematics for the description of the cognitive
bases of mathematics would correspond to the way in which attempts to give a
logical foundation for mathematics led to many new developments in mathe-
matics, and also in logic, so that logic came to be not a foundation for but a
part of mathematics (see for example the papers by Longo1). It would also
reflect the capacity for self reference which is an important part of logic. Part
of the interest in this seminar for us was that in preparing for giving it and then
writing it up, it would develop wider scientific contacts and might spark new

1.  LONGO, 1998 and 2001.
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ideas on what that kind of new mathematics might be. One would like mathe-
matics to be as effective in, say, neurological sciences as the article by Eugene
Paul Wigner2 suggests it has been in other sciences. That success has required,
as Wigner explains, the development and skillful exploitation of appropriate
mathematical concepts.

Mathematics is often thought of in the public mind as concerned with tech-
nique and performance, or with problem solving, rather than ideas, and it is
perhaps for this reason that the association of mathematics with fear is com-
mon. It would be better to see mathematics not as a subject capable of a
finished description and account, but as a process, involving refinement of
arguments and concepts, and where new fundamental ideas are still possible,
even if subject to the usual difficulties of any revolution in science. These new
ideas may in fact bypass the apparent and accepted priorities for solving
already formulated problems. The development of mathematics is also a socio-
logical process. The book of George Lakoff and Rafael Núñez, Where mathe-
matics come from. How the embodied mind brings mathematics into being3,
gives further discussion of related issues.

For Ronald Brown, the initial impetus towards higher dimensional algebra
came while writing a text on topology in the 1960s4. A basic result in topology
is known as the Van Kampen theorem : it allows the calculation, for a space
which is built up of smaller parts, of an invariant called the « fundamental
group ». It seemed useful to generalise this Van Kampen theorem to allow
wider calculations, and it turned out as shown in 1967 – in « Groupoids and
Van Kampen’s theorem5 » – that this could be done by generalising the theo-
rem from groups to what in 1926 were called « groupoids ». This notion will
be explained later. The notion of abstract group is widely regarded as a funda-
mental concept in mathematics and physics, as groups are considered the
mode for encapsulating notions of symmetry. So the above work raised
the question as to the wider advantages of replacing groups by groupoids – a
survey on this published in 1987 is « From groups to groupoids. A brief sur-
vey6 » – which also explains how one stimulus for the notion of groupoids
came from extending work of Gauss in arithmetic. Further thought also sug-
gested that the proof of the groupoid Van Kampen theorem could be extended
to all higher dimensions if certain key constructions could be carried out.
This conjectural theory was mentioned in the introduction to « Groupoids
and Van Kampen’s theorem7 ». There is a general idea here : find algebraic

2.  WIGNER, 1991.
3.  LAKOFF and NÚÑEZ, 2000.
4.  BROWN, 1968 and also 1988.
5.  BROWN, 1967.
6.  BROWN, 1987.
7.  BROWN, 1967.
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structures which enable one to describe the behaviour of at least some complex
systems in terms of the behaviour of their individual parts.

At the time, this notion of generalising the Van Kampen theorem was an
idea of a proof in search of a theorem. All that Brown then knew existed in
terms of proper mathematics, with the usual repertoire of definitions, exam-
ples, lemmas, theorems, proofs, counterexamples, was a definition and one
major example namely the double category of commutative squares in a cate-
gory as given by Charles Ehresmann in Catégories et structure8. So it was like
having a theme and climax for a play but without the major characters being
clear. With further clues being noticed and through fortunate collaborations
(Christopher Spencer, Philip Higgins and research students Keith Dakin and
Nick Ashley), the characters gradually appeared. A story valid in all dimen-
sions was published in 19819. It was very gratifying to find fifteen years or so
from the start that the intuitions had not only sustained the development of a
substantial new theory but were also neatly encapsulated in it. The subject is
still developing fast. In recent years much wider possibilities for these ideas
have become apparent, with applications not only in mathematics but also in
physics and computer science, as a web search on « higher dimensional alge-
bra » will show10.

One of the questions that arose from this success was the following. We
normally write mathematics on a line, made up of formulae in which each
symbol is related to those to the left and those to the right. (There are some
exceptions to this which we will ignore for the moment.) The question is
whether this « on a line » is a necessity or whether there are wider possibilities
with useful applications.

Here is a quote from John Baez, whose web site and papers11 have a lot on
this area :

« […] not only does higher-dimensional algebra seek to burst free of certain
habits of “linear thinking” that tend to go along with symbol string manipu-
lation, it also has been a bit outside the mainstream of mathematics until
recently.
« Now, when I speak of “linear thinking” I am not indulging in some vague
new-agey complaint against rationality. I mean something very precise : the
tendency to focus one’s energy on operations that are easily modelled by
the juxtaposition of symbols in a line. The primordial example is addition : we
have a bunch of sticks in a row :

| | | | |

8.  EHRESMANN, 1965.
9.  BROWN and HIGGINS, 1981a and 1981b.
10.  BROWN, 1996 ; STREET, 1996.
11.  BAEZ, 2001 and 2003*.
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and we say there are “5” sticks and write :

1 + 1 + 1 + 1 + 1 = 5.

« Fine. But when we have a 2-dimensional array of sticks :

| | | |

| | | |

we are in a hurry to bring the situation to linear form by making up a new
operation, “multiplication”, and saying we have 2 × 4 sticks. This isn’t so bad
for plenty of purposes ; it’s not as if I’m against times tables ! But certain
things, particularly in topology, can get obscured by neglecting operations that
correspond most naturally to higher-dimensional forms of juxtaposition, and
Brown’s paper12 explains some of these, and how to deal with these problems.
The point is not to avoid linear notation ; it’s to avoid falling into certain men-
tal traps it can lead you into if you’re not careful13 ! »

This questioning of standard usage relates to a comment of Einstein :

« For when I turn to science not for some superficial reason […] then the
following questions must burningly interest me as a disciple of science : What
goal will be reached by the science to which I am dedicating myself ? To
what extent are its general results “true” ? What is essential and what is based
only on the accidents of development14 ? […] It is therefore not just an idle
game to exercise our ability to analyse familiar concepts, and to demonstrate
the conditions on which their justification and usefulness depend, and the way
in which these developed, little by little […]15. »

Recent developments in computer science suggest this « higher dimen-
sional algebra » relates to a « higher dimensional logic » which may have
important and practical applications16.

The great physicist, Paul Dirac, in one of his last addresses, explained his
own credo :

« One should allow oneself to be led in the direction which the mathematics
suggests […] [o]ne must follow up [a] mathematical idea and see what its
consequences are, even though one gets led to a domain which is completely
foreign to what one started with... Mathematics can lead us in a direction we
would not take if we only followed up physical ideas by themselves17. »

12.  BROWN, 1992.
13.  BAEZ, 1995.
14.  Our emphasis.
15.  Attributed to Einstein, see Mathematical Intelligencer, ser. 12, 2, p. 31.
16.  See for example MONTANARI, 2003*, and the references these papers contain.
17.  Quoted in FERRIS and FADIMAN, 1991, p. 63.



R. BROWN, T. PORTER : INTUITIONS OF HIGHER DIMENSIONAL ALGEBRA 179

SPACE

In this section we develop some general ideas on the mathematical notion
of space.

In the paper « The space of mathematics. Philosophical, epistemological
and historical explorations18 » of Friedrich William Lawvere, the point is
made that a space is both a domain for intensively and extensively variable
quantities, as well as an arena for « becoming », where becoming refers to the
objective processes of motion, development, and change. By analogy, subjec-
tive objects (such as data types) and subjective processes (such as encoding)
are sometimes objectified as taking place in space-like categories. In other
words, he suggests the important idea that the mathematical notion of space is
a repository for the encoding of motion. By « motion » we include « change of
data ».

From an evolutionary point of view the ability of an organism to deal with
changes in the environment is crucial, so that some method of internal coding
or mapping of such changes would develop, and clearly has developed. The
great geneticist Theodosius Dobzhansky has written in 1973 a famous paper :
« Nothing in biology makes sense except in the light of evolution19. »

We have moved from the greek view that there was only one geometry, to a
much more eclectic approach and in mathematics the word « space » is almost
overused. It comes with adjectives such as topological, vector, Hilbert, Eucli-
dean, hyperbolic, and many others. Euclidean space is concerned with the data
arising from angle and distance, governed by Pythagoras’ theorem ; vector
spaces are concerned with directions ; topological spaces are concerned with
continuity ; and so on.

Another illustrative idea is in the notion of « phase space » in physics. For
example, the motion of a simple pendulum can be represented by a point on a
circle, given by the angle of the pendulum to the vertical. But the « phase
space » for a double pendulum, which is a short rod fixed to the end of another
rod, is described by two circular coordinates and so is what mathematicians
call a « torus » and is more familiar as a doughnut or inner tube.

Notice once again that the surface of the torus looks locally flat, just like the
Earth, but that globally it is not, and also the torus differs globally from the
Earth. One of the aims of mathematics, and in particular the branch called
topology, is to show clearly and in a way which leads to calculation in what
these differences consist.

18.  LAWVERE, 1992.
19.  DOBZHANSKY, 1973.
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An important use of the notion of phase space was in celestial mechanics,
the study of the motions of the planets and stars. A problem Newton solved
was the two body problem : the motion of two bodies under an inverse square
law of gravitation. The problem of the motion of three bodies became an
important goal in the XIXth century. It gradually became clear that an explicit
solution similar to the two body case was not possible, so Poincaré initiated a
qualitative study. Each of the three bodies has three coordinates of position
and three of velocity, so that makes a total of 18 dimensions. However the
motion from a given starting impetus is governed also by the energy equation
E = constant, and this restricts the motion to a space ME of 17 dimensions.
A particular motion can be seen as a path in this space ME. Each point in ME
represents a particular configuration of the three bodies (a total of 9 coordi-
nates) but also has 9 other coordinates that represent the tangents to their
curves of motion, thus encoding their change of position. As a point moves
smoothly along a path in ME, the positions and velocities of the bodies in
the corresponding configurations change smoothly and their change will be
consistent with the energy constraint. So the emphasis was changed from a
study of one motion to a study of the phase space ME which encapsulated all
possible motions with a given energy E.

The space ME has a kind of structure called in mathematics a « 17 dimen-
sional manifold ». An example of a 2-dimensional manifold is a sphere. It is
usual to think of the surface of the Earth as a sphere and at a coarse-grained
observational level this is a good model. We can use this model in two ways.
(a) We can study abstract spheres in order to understand the geometry of
the surface of the Earth. (b) We can also use analogy, intuition and our expe-
rience of the surface of this planet, to develop and then to study properties
of abstract spheres, other 2-dimensional manifolds and, with care, higher
dimensional manifolds such as ME. For instance, it is standard that locally the
Earth seems flat, and so we can use flat charts to describe with reasonable
accuracy our immediate environment. However the whole Earth cannot be
accurately modelled by one flat map, because the Earth is round ! Instead one
needs a collection of charts called an atlas and as one travels the Earth one
has to switch from one chart to another. The general abstract situation for
this is the mathematics of « manifolds ». The set of charts give a particular
way of « structuring » our knowledge of the Earth, and one which is of course
important for, and indeed derived from, travel, in accordance with Lawvere’s
dictum.

Here is another illustration of the idea of space from knot theory. Figure 1
includes an illustration of a knot called a pentoil.
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In order to study the knot, it is convenient to study the space around the
knot, which we call the « knot space » for the pentoil. This is an important
point in the development of tools for understanding space. If one is exploring
a city or an individual building in a city, it is useful, if not essential, to travel
around it. The use of terms such as « maze » or « labyrinth » to describe the
structure of the street plan of an old quarter of a city is quite common and
when you have traced a tortuous route through narrow alleys arriving once
again in front of some distinctive key monument, the sense of achievement,
and sometimes relief, is often striking. You have managed to understand some-
thing more about the geometry of the city by tracing paths through it. Likewise
to understand the complexity of a knot, it is useful to travel (fly ?) in the space
around the knot. (Travelling around in the knot itself tells one very little. It is a
bit like studying the street plan of the city but never venturing outside of the
building you are in !) This space is a bit like a 3-dimensional labyrinth, yet
we note that this space looks locally like our ordinary 3-dimensional space.
Globally, however, it is quite different.

One of the major problems is how to analyse this difference in ways which
lead to deduction and calculation and to methods suitable for a wide range of
examples. As with many spatial problems, one possible way is to algebraicise
the problem in some way. Algebra, like other parts of the mathematical tool
kit, allows for a high degree of certainty in the validity of deductions and cal-
culations. If problems arise, it is usually at the level of the fitness of the algebra
to model the feature under study. Once modelled, the logical progression of
the algebraic machinery will, hopefully, lead to some greater understanding
of the feature. Such has been the experience of many developers or appliers of
mathematics and is the reason why mathematics is at the centre of high techno-
logy, from engineering and computer science through to biology and cognitive
science.

FIG. 1. – Flying around a knot
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ALGEBRA

In the case of the knot space, we regard flying around the space as probing
the space by means of paths, rather like knowledge of the Earth was found by
travelers. An important fact is that paths (journeys) can be composed : a path x
can be followed by a path y to give a path xy, called the « composition » of the
two paths. This is one way in which algebra comes into the study of structured
space.

A problem with considering all paths in our knot space is that there are too
many of them ! So we try to reduce the complication by classifying the paths,
and considering only the classes of equivalent paths. This is analogous to
considering species of animals instead of individuals. For our paths, we consi-
der two paths as « the same » if they start and finish at the same points, say p
and q, and also if one path can be deformed into the other keeping the end
points fixed at p, q. We cannot here go into the precise definition of « deforma-
tion » but the essential idea should be clear. We think of the paths as pieces of
string with a certain elasticity, so that in the deformation we can stretch or
shrink the string to a certain extent. (This analogy with string is not quite right
since in a deformation of a path we also allow the path to cross itself.)

The path classes have the remarkable property of forming under composi-
tion what mathematicians call a groupoid. A groupoid is a set X of « arrows »,
a set P of « objects » or « vertices », and two functions s, t : X → P called
the source and target maps ; we write x : s(x) → t(x) for any x in X, and write
X(p, q) for elements of X with source p and target q. Further there is a partial
composition xy for elements x, y of X defined if and only if the target t(x) of x
is the same as the source s(y) of y. This corresponds to the idea that journeys
do not have sudden jumps (« quantum leaps ») in the middle. We make further
assumptions that the composition is associative (i.e. x(yz) = (xy)z whenever
both sides are defined) ; that for each p in P there is an element 1p : p → p of X
which acts as an identity, so that 1sxx = x, x1tx = x for all x ∈ X ; and finally for
each x ∈ X there is an inverse x-1 : t(x) → s(x) such that xx-1 = 1sx, x-1x = 1tx.
Notice that we use a notation for the operation of standing still. This may seem
pedantic but is in fact crucial. This kind of pedantry, the paying attention to
simple aspects, is one of the ways in which mathematics progresses. Mathe-
matics was held back for centuries for lack of the number zero, which simply
counts the number of things in an empty box.

For those familiar with group theory, these rules can be thought of as axioms
for a « group with many identities » and the reason we get round the basic
proposition that a group has only one identity is that in a groupoid the compo-
sition xy is not always defined, and in fact is defined precisely under the
geometric condition t(x) = s(y). This is a key idea for higher dimensional
developments, which involve more complex shapes than arrows, and so it is
more complicated to say when a composition is defined.
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However groupoids were not defined until 1926, and so Poincaré’s theory
of paths was phrased in terms of groups, that is by looking in a space at the
paths that start and end at some single fixed « base point ». This leads to a
« fundamental group » for a pointed space, that is for a space with a choice of
basepoint. Following this, topologists of the early XXth century sought to
express higher dimensional phenomena in terms of generalisations of the fun-
damental group. In 1932 this direct approach was found to fail since « higher
dimensional groups » are less complicated than groups. In fact the mathema-
tician Eduard Cech submitted a paper on « higher homotopy groups20 » to
the 1932 International Congress of Mathematicians at Zurich : however two
famous topologists Pavel Sergeevich Alexandroff and Heinz Hopf quickly
proved that these structures were commutative, that is xy = yx for all x, y, and
so can not adequately capture higher dimensional phenomena. We explain this
result later. On this ground Cech was persuaded to withdraw his paper, and the
importance of his ideas was not realised until three years later.

A construction from geometric data of higher dimensional homotopy
groupoids, rather than groups, was achieved by Ronald Brown and Philip John
Higgins in 1974, and published in 197821. This gave an impetus to further
work with Philip John Higgins and with Jean-Louis Loday22.

The replacement of groups by groupoids has an effect of allowing the set P
of objects or vertices of the groupoid to give the notion of a group an addi-
tional « spatial component » – this allows for more powerful geometric appli-
cations. A group is a groupoid with only one vertex. Studying only groups
corresponds say to considering rail journeys from Bangor back to Bangor. But
some of us might like to stop off at intermediate stations and the description of
the journeys then requires groupoids rather than groups. This can be expressed
more mathematically as « subdivision leads from groups to groupoids ». It is
partly for this reason that groupoids have powerful applications to local to glo-
bal problems.

The importance of the passage from groups to groupoids is also suggested
by Alain Connes, in Non-commutative Geometry23, where he shows that
Werner Heisenberg, while not knowing the formal concept of groupoid, still
discovered quantum mechanics by looking at a groupoid of transitions of the
hydrogen spectrum rather than a group of symmetry. This confirms the intui-
tive basis of the concept.

The way we can calculate with groupoids is well seen by considering our
classes of paths around a knot. We draw a diagram of the knot, label the over-
passes and also give a direction to the knot so that we can say which way round

20.  CECH, 1932.
21.  BROWN and HIGGINS, 1978.
22.  BROWN and HIGGINS, 1981a and 1981b ; BROWN and LODAY, 1987.
23.  CONNES, 1994.
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a path goes if it is near to an overpass. We then label a loop class around an
overpass by the label of the overpass. But at each crossing we get a relation
shown in figure 2 which says that going under the

overpass y from left to right is equivalent to going under x from top to bottom,
then under z from left to right, and finally back under x again from bottom to
top : this is much more easily expressed in symbols as :

y = x–1zx

Thus for the pentoil we get 5 relations, one for each crossing, and we can
use them to eliminate all except x, y to get the relation :

xyxyxy–1x–1y–1x–1y–1 = 1 (1)

The left hand side of this equation corresponds to wrapping string around
the knot as in figure 3.

FIG. 2. – Relation at a crossing

FIG. 3. – Wrapping string around the pentoil
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The fact that the left hand side of the equation (1) is « = 1 » means that the
string can be undone from the knot without cutting, as was demonstrated in
the seminar using a pentoil made of copper tubing. No other formula for tying
string on the knot will allow the string to come off the knot. In this way we
show how algebra can give to a spatial problem an exact and surprising appli-
cation. In effect, algebra can show some of the structure of a space.

This knot trick also suggests a typical higher dimensional problem. The
equation (1) relates to the fact that the loop of string comes off the knot.
The next question is to classify the ways in which it will come off. Is there
« essentially » only one way, or are there more than one ? For questions of this
type, a higher dimensional approach has been found to give new answers and
new computations24.

FROM GEOMETRY TO COMPUTATION

The previous section has given some of the intuitive ideas behind the
path or Poincaré groupoid π1(P) of a space P. This groupoid gives rise to path
groups π1(P, p) for each point p of P, made up of classes of loops at p, i.e. paths
from p to itself. The Poincaré group was for a long time considered as more
significant mathematically than the Poincaré groupoid. However when Brown
was writing a textbook on topology in the mid 1960s it became clear to him
that the whole theory made more sense and, possibly as a consequence, the
methods of calculation that ensued were more powerful, if the exposition was
given in terms of groupoids rather than groups25. The basic reason was that
groupoids are better than groups for expressing subdivision. This led him to
consider the possible use of groupoids in higher dimensional topology. The
excitement of this possibility was that groups play a very significant rôle in
mathematics, but it now appeared that they could be just level 1 of a range of
new structures for studying higher dimensional phenomena. Thus a naive
viewpoint is that n-dimensional geometry requires for its proper expression
n-dimensional algebra (as suggested in 198726). This is part of a general
progress in mathematics :

with the aim of enhancing geometrical insight by extensive calculation. Each of
these stages requires a different kind of work, and appeals perhaps to different

24.  BROWN, 1996.
25.  BROWN, 1967.
26.  BROWN, 1987.

geometry →
underlying
processes

→ algebra → algorithms →
computer
implementation
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people. The first stage is one that often requires a new range of concepts to
describe the « underlying processes », while the algebra can be considered as
giving the laws which these concepts have to obey. The advantage of having
new algorithms is that immediately you can get new answers, though some-
times computers are needed to do more than the easiest of examples.

Another way of putting the first stage of this process is that to solve some
geometric problems may require a new structured language. For the Greeks,
this language was the geometry of Euclid. The most notable recent instance of
success of this approach of developing a new language to solve problems is the
monumental work of Alexander Grothendieck, which laid necessary founda-
tions for the work of Andrew Wiles on Fermat’s last theorem. We have a letter
from Grothendieck in which he speaks of « the difficulty of bringing new
concepts out of the dark », and this suggests that he also saw as an aim for
mathematics the development of language for an area, regardless of its success
in a well known problem.

HIGHER DIMENSIONAL ALGEBRA

Now we must get to more details on the intuitions of higher dimensional
algebra. Let us start with a basic picture and its algebraic expression :

abc–1d

This is the mathematics of reversible processes : groupoids rather than
groups. The formula abc–1d (in which c–1 denotes the reverse path) gives a
kind of « algebraic inverse » to the subdivision represented by the diagram.

Again, given a square diagram as follows :

it is easy to say that the square is « commutative » if :

ab = cd,   or   a = cdb–1

In words, going one way round the square is the same as going round the
other way. The formulae given make excellent sense as part of say the theory of
groups or of groupoids, and are part of the standard repertoire of mathematics.

a b c d

a  

c b

d
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The problem comes when we try to express similar ideas in just one dimen-
sion higher. How can one write down algebraically the following picture,
where each small square is supposed labelled ?

The diagram shows a square (strictly a rectangle) cut up into little squares
but we wish for an algebra which will put them together again. The mathema-
tical word for cutting up is « subdivision », so we can give the slogan of « find-
ing an algebraic inverse to subdivision » in dimension 2. We require an algebra
which can express this kind of multiple composition in two directions.

This algebra should also have the property that any multiple composition of
commutative squares is commutative. This is a property which is used cru-
cially in the proof of the Van Kampen theorem for the fundamental group or
groupoid, that is in the 1-dimensional theorem.

A further problem is to write down algebraically a formula corresponding
to one for the above commutative square, but now for the 3-dimensional cube :

What does it mean for the faces of the cube to commute, or for the top face
to be the composition in some sense of the other faces ? This question goes to
the historical roots of algebraic topology, namely the question of expressing
what could be meant by a « composition » of the pieces into which a space
may be subdivided. We often use a subdivision to give a structure to a space,
cutting it up into small comprehensible pieces, but we wish also to know methods
and laws which describe how the space will behave when it is put together.
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This is modelled by compositions of cubes and, assuming we know what a
commutative cube is, we want to know that any composition of commutative
cubes is commutative.

Cech’s 1932 work on higher homotopy groups mentioned above can be
described as considering a set with two group structures and a compatibility
condition called the interchange law. This gave rise to commutative groups, as
we can now explain in some detail.

Suppose given a set X with two group structures, say o1, o2, with identities
e1, e2. These structures could be thought of as given by the following pictures :

(2)
x o1 z                        x o2 y

These structures should be « compatible » in some way, and the natural
condition to impose is that the following diagram of composites

(3)

can be interpreted in only one way. This is called the « interchange law ».
It is convenient to use a matrix notation. So we write :

   for   x o1 z,       [x   y]   for   x o2 y

and finally :

for the multiple composition in (3). Notice that these matrices denote not
arrays but instead the compositions of the elements formed from the array.

Theorem 4.1 Let G be a set with two binary operations o1, o2, each with
identities, and satisfying the interchange law. Then the two binary operations
coincide, and are commutative and associative27.

Here is the proof of the theorem.

27.  The terms commutative and associative are explained below.
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We use some special cases of the interchange law. Let e1, e2 denote the
identities for the structures o1, o2. We evaluate a matrix composition in two
ways yielding easily that :

We write then e for e1.
Now we consider the matrix composition :

Interpreting this in two ways yields :

x o1 w = x o2 w (4)

So we write o for each of o1, o2.
Finally we consider the matrix composition :

(5)

and find easily that :

y o z = z o y

This is what we mean by saying the binary operation is commutative.
We leave the proof of associativity (that the rule x o (y o z) = (x o y) o z

always holds) to the reader. This completes the proof.
This seemed from 1932 onwards to be the end of higher dimensional alge-

bra in algebraic topology ! It showed that higher dimensional groups are just
commutative groups. This was a tremendous disappointment. Nonetheless the
homotopy groups defined by Cech28 were developed by Witold Hurewicz
in 193529 and have become an important area of research in mathematics.

A crucial feature of the above proof is that all the compositions are defined.
If you try and write out a similar proof for a set with two groupoid structures
you find that all that is proved is that the structure contains a family of commu-
tative groups, but it does not reduce the whole structure to something simpler.
This is one of the basic insights for the development of higher dimensional group

28.  CECH, 1932.
29.  HUREWICZ, 1935 and 1936.

e1
e1 e2
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theory and of higher dimensional algebra. It seems that double groupoids are
in some sense « more non-commutative » than groups (or groupoids) and so
this does raise the question of their potential future rôle in non-commutative
geometry as developed Connes30.

One aspect of the general spirit of higher dimensional algebra is that it is
dealing with algebraic structures involving operations defined under geometric
conditions. This combination allows a marriage of algebra and geometry. So
just as a path is given with two end points, a square is supposed to have four
edges and four vertices, and we keep the spirit of diagrams (1) by supposing
that the compositions there are defined if and only if the obvious geometric
conditions are satisfied. The boundary of a composite square is to be as
expected from the geometry : for example, two of the boundary edges of x o2 y
are composites of the edges and the other two are edges of x or of y. We also
impose the law (2) which is called the interchange law.

Next we need identity squares corresponding to the edges, but in fact we
need more as given by the following list.

Here the top line gives the boundaries of the squares and the bottom line
gives a notation we shall use. Also any identity edge is written just 1 though in
fact there are many identities, corresponding to the points. The first square is a
double identity and does not alter a square wherever it is put, provided the
composition is defined. The second and third are identities in each direction,
so we have equations such as :

The fourth and fifth are new types of square which are called « connec-
tions », and which do alter the boundary of the square. They correspond to the
idea that in two dimensions you can not only move in each direction, stop, or
turn back, but you can also turn left and right. Thus we begin to see that
2-dimensional algebra holds new possibilities.

So why on earth restrict to dimension 1 ? You will surely know the famous
book Flatland by Abbott31, and where the supposed author visited Lineland,

30.  CONNES, 1994.
31.  ABBOTT, 1976.
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whose inhabitants had very restricted modes of interaction compared to the
denizens of Flatland.

When you move up a dimension you get a richer structure which includes
the old one and this enables the formulation of new theorems and new proofs.
It also turns out that some 1-dimensional phenomena can be best understood
from a higher dimensional viewpoint. This is analogous to the fact that the
geometry of the Earth is best seen from an orbit outside it.

We now impose the following rules.

Rules 4.2    

The first two rules are showing the consequences of turning first left and
then right, or the other way around, while the other two rules, called the
« transport laws », say turning left (right) with arm outstretched is the same as
turning left (right).

Using this extra structure of connections we can also answer the question of
what a « commutative cube » might mean. One of the problems here is that a
cube has six faces and it is therefore not obvious as to how to form an equation
of the type « the composition of the even faces is the same as the composition
of the odd face ». Using the connections we can write down a sensible formula
of the type required ; the cube is to be commutative if its faces satisfy :

where  gives the + (front and back) faces of the cube α in the direction i.
You should check by drawing a 3-cube and labeling the edges that the above
formula does give agreement for the edges of the two sides of the above equa-
tion. Notice that the cube is 3-dimensional but that the connections are used in
an essential way to write down a formula in dimension 2. This tension between
different dimensions is one of the features of higher dimensional algebra and is
one of its potential strengths, for example in describing and computing with
hierarchical systems.

These connections first arose for double groupoids in work of Brown and
Spencer in 197632 and were later developed in all dimensions by Brown

32.  BROWN and SPENCER, 1976.
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and Higgins in 197933. They have been shown crucial in recent work on con-
currency in computer science34. It is quite difficult to give analogous formulae
for commutative cubes in all dimensions but a method is given in two papers35.

We will now give a flavour of this « two dimensional algebra » by showing
a fairly elaborate calculation with these elements, which involves taking a big
composition and then reducing it in two different ways.

We would like to prove the equality of the following two 2-dimensional
compositions in the case we are given edges a, b, c, d such that the 1-dimen-
sional compositions ab, cd are defined and are equal. This is why the middle
rectangles in the following two compositions are well defined.

(6)

To prove this we construct a common « subdivision ». One that is appropri-
ate for this case is :

(7)

33.  BROWN and HIGGINS, 1981a and 1981b.
34.  GAUCHER, 2000 ; GOUBAULT, 2000.
35.  AL-AGL, BROWN and STEINER, 2002 ; GAUCHER, 2000.
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From this diagram, we may compose parts of the second and third rows
using the transport law and then rearrange things once more, getting the left
hand side of (6) as indicated below :

A similar reduction, left as an exercise, gets the right hand side. (This calcu-
lation is in the paper by Ronald Brown and Ghafar H. Mosa36, which contains
more details on the formal definitions.)

Even if you do not follow the details of this argument, we hope it shows
enough to illustrate the richness of higher dimensional algebra and to help build
some intuition of how one might more accurately model higher dimensional
phenomena by what might be called the algebra of higher dimensional paths.

With this intuition available, let us look briefly at how complex processes
such as those found in the biological and cognitive science contexts might be
modelled. One possibility might be via some high dimensional manifold,
consisting of the various choices of all the observable parameters of the
context constrained by various « conservation laws ». Here the geometry will
depend strongly on those conservation laws (think back to the three body
problem with 18 coordinates constrained by the energy conservation rule). How
is one to model conservation of knowledge or belief ? How is one to measure
those quantities ? This task seems, to two non-specialists, impossibly difficult,
although we will discuss it later. It may however be trying to put the cart
before the horse. Our thought experiment would go like this. Imagine such a
cognitive phase space could be found as a non-trivial model for some signifi-
cant aspect of behaviour, knowledge, belief or whatever. How would one study
it ? For many spaces initial information on their structure can be gleaned
from their « homotopy type », that is, their more combinatorial structure after
deformation. It is exactly this sort of structure that the higher dimensional
algebra was designed to model, so instead of aiming at a large spatial model as

36.  BROWN and MOSA, 1999.
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might be appropriate for a model of a purely physical situation, we might look
for evidence or ideas for the applicability of models using higher dimensional
algebra directly to handle the processes of cognitive science and related areas
both of biology and of the computer science/artificial intelligence interface.

At the level of category theory, which is not in itself higher dimensional,
there are attempts to model perception categorically in the work of Zippora
Arzi-Gonczarowski37 ; considerable discussion of modelling complex hierar-
chical systems in work of Andree Ehresmann and Jean-Paul Vanbremeersch38 ;
and some discussion of issues of categorical pattern recognition by Porter39.
These, in a sense, correspond to looking at single processes (analogous to
paths) so only use the low dimensional model. If we look at concurrency within
computer science, higher dimensional phenomena intervene, Éric Goubault40

and Philippe Gaucher41 model deadlock detection in, for instance, access
problems to distributed databases. When modelling true concurrency, the use
of Petri nets (due to Carl Adam Petri42) is standard in both the analysis of
control systems, for concurrency and for manufacturing systems. Petri nets
lead to a special kind of 2-dimensional category and in the papers already
referred to43, Fabio Gadducci and Ugo Montanari have shown how going
beyond Petri net models, beyond 2-categories, to double categories and their
tile models, can allow more complex interacting processes to be studied. (The
intuition in their models is very near to the geometric intuition used in the
development of our own flavour of higher dimensional algebra even though
they were not aware of the constructions coming from the topological context.)

So in a small way, higher dimensional algebra is making its appearance in
these areas. Perhaps the use of purely « linear » mathematics (in the sense of
« written on a line » or « 1-dimensional ») may soon be augmented in highly
significant ways by its (underdeveloped as yet) higher dimensional relatives. If
this is so then the above equations raise again the important point of subdivi-
sion as an inverse for composition.

If one analyses a number, say, 45, one has little choice as to how to
« deconstruct » it multiplicatively : 45 = 3 × 3 × 5. We have argued elsewhere
that this extremely simple model can tell us a lot about the difficulties that face
reduction to simpler parts44. Here our point is slightly different : looking at

37.  ARZI-GONCZAROWSKI and LEHMANN, 1998.
38.  EHRESMANN and VANBREMEERSCH, 2001.
39.  PORTER, 1994 ; CORDIER and PORTER, 1989.
40.  GOUBAULT, 2000.
41.  GAUCHER, 2000.
42.  PETRI, 1973.
43.  GADDUCCI and MONTANARI, 2000 ; MONTANARI, 2003*.
44.  In a paper, in preparation, by BROWN (Ronald), PATON (Ray) and PORTER (Timothy),

« Categorical hierarchical models for cell systems ? ».
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ways of decomposing a higher dimensional « multi process » into simpler
processes raises questions such as :

(a) Are there unique « atomic multi processes », (analogous to prime
numbers) ?

(b) What decomposition rules apply ? (We know 45 = 3 × 3 × 5 but it is also
5 × 3 × 3. Order does not matter. For 2-dimensional decompositions, we know
the equation (5) above applies and the analysis of Al-Agl, Brown and Steiner45

can be interpreted as giving a complete set of rules for one interpretation of
decompositions in higher dimensions. However the tile compositions used in
the papers cited in the publications web page of Montanari46 are more general.)

(c) If one decomposes into some choice of « generators » i.e. some generating
« atomic » multi processes, how can one « rewrite » for another choice ?

(The choice of generators corresponds to a choice of language, and a choice
of the logic for handling that language corresponds to the decomposition rules.
Those decomposition rules can be interpreted as « rewrite » rules in the sense
of rewriting theory but, interestingly, rewrite theory leads back into higher
dimensional algebra47. Is this by chance or is it saying something deep about
our cognitive processes when « modelling » ?)

Consider composition of arrows in a category or groupoid. We tend to write
this as an equation :

x o y = z

identifying z as the outcome of applying the composition process to the arrows
x and y :

but the use of « equals » conveys the wrong impression since the left hand side
is an expression and the right hand side is an element. It seems that the equation
may be causing an example of the old error of identifying the end with the means,
the result of a process with the process itself. Nearly always it is the process
that ends up being the more important aspect so we will replace x o y = z by
some notation such as :

x o y ⇒ z

45.  AL-AGL, BROWN and STEINER, 2002.
46.  MONTANARI, 2003*.
47.  See, for instance, BROWN and SPENCER, 1976 ; EHRESMANN and VANBREMEERSCH, 2001.
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indicating x followed by y « rewrites to » z. The arrow formalism can even be
written in a geometrical fashion :

Here o is the black box (process) which does the calculation.
Now the geometrical views of processes and « processes of processes »

yield higher dimensional geometries, and so higher dimensional algebra. Here
are two quotes on this, which show a geometricisation of ideas of processes,
and seem quickly to capture some key ideas. They are taken with permission
from two out of forty-three personnal statements for a National Science Foun-
dation research grant proposal by John Baez and Peter May on « n-categories,
foundations and applications » :

« The idea at the center of my work since 1991 is that a collection of processes
cooperating together to run some program can be modelled as a geometric
shape or “space of configurations”. There is a need to characterise the shapes
coming from the semantics of concurrent programs . » (Éric Goubault, 1991)

« An “operation” is something which takes several things as input and produces
one thing as output ; we naturally picture this as a black box with the inputs as
wires coming into the top and the output as a wire coming out at the bottom.
Operations can be composed, and then the input is a planar tree of black boxes
wired together and giving output from a single box. The process can be
iterated leading to shapes of ever higher dimensions. » (Tom Leinster, 2001)

The above has given some indication of one strand in the development of
higher dimensional algebra. Other workers have taken up the ideas in different
ways and for different purposes – a web search on « higher dimensional alge-
bra » shows applications not only in mathematics but also in physics and com-
puter science. In particular the work of Baez48 looks for higher dimensional
algebra to give a handle on unified field theories. One aspect of this is that the
notion of equality needs to be weakened, since two structures are rarely equal
but they are often « isomorphic ». So one gets new kind of algebraic structures

48.  BAEZ, 2003*.
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with laws which hold only « up to isomorphism ». This theory is still being
worked out, and there are many candidates for it49.

LANDMARK THEOREMS

What from the point of view of this article are major difficulties and results
in the area of higher dimensional algebra ?

In dimension 1 the shapes which could form a basis for a geometric view of
algebra consist only of a point and a line segment with an arrowhead imposed.
In dimensions more than 1 the number of usable figures is infinite.

The figure 4 shows the first few in dimension 2 : disc, globe, triangle (or 2-
simplex), square. Handling this variety of shapes in an algebraic manner is one
of the chief problems of developing the theory, as is showing that in some
cases different descriptions are equivalent. The use of globes and simplices is
central to much work in this area, as shown in the survey of Ross Street50.

A further problem is to develop invariants analogous to the fundamental
group or groupoid in these higher dimensions. In fact John Henry Constantine
Whitehead in the 1940s developed work based on discs (giving a new concept
of crossed module), and the relation of this with work based on squares (i.e.
double groupoids) was a major feature of the generalisations of the Van Kam-
pen theorem to higher dimensions51. The development of higher dimensional
versions of this theory was a major task52. Michael Atiyah53 suggests that key
themes of XXth century mathematics have included local to global problems,
non commutative methods, and higher dimensions. Higher dimensional algebra
combines these three themes, and in particular, the work on higher dimensional

49.  See, for example, LEINSTER, 2002.

FIG. 4. – Shapes

50.  STREET, 1996.
51.  BROWN, HARDIE, KAMPS and PORTER, 2002 ; BROWN and HIGGINS, 1978.
52.  BROWN and HIGGINS, 1981a and 1981b ; BROWN and LODAY, 1987.
53.  ATIYAH, 2001.
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Van Kampen theorems has given a lead on the types of algebraic structures
suitable for such combined work.

It is important that the cubical work of Brown and Higgins in « The algebra
of cubes54 » was a stimulus to work in concurrency theory55. The start of the
use of cubical methods was due to Vaughan Pratt56 and is based on the idea
that the use of a number say N of processors should be represented by time of
N dimensions. So one has to develop higher dimensional analogues of paths,
in terms of multiple compositions of small pieces.

There is also a large theory of what are called « weak n-categories » which
is still being worked out – see again the account by Leinster57. This theory
seems to be essential for some applications in physics58 and in some areas of
computer science and geometry. Thus there is a great « buzz » of develop-
ments and prospects.

Also, there has to be a way of constructing a space from the algebra, like
constructing a real building from a number of diagrammatic charts. One looks
at small pieces of algebra and constructs a space from that, and then shows
how larger pieces of algebra lead to larger spaces. There is a lot of active
research in this area (which is known as « classifying space theory »).

COMPUTATIONAL ISSUES

A well established model of computation is that of Turing, where a basic
tool is a tape on which symbols are printed or erased. In this model, the array
given in our introduction has to be translated into a list of lists, i.e. we have
to replace the array by 8 or by 2 × 4. One of the questions is whether there
are other possible modes of computation in which the higher dimensional
structure is not lost.

There is an important point here related to the confidence we have in mathe-
matics. There are several reasons for this confidence. One is the open nature of
mathematics, so that all the results and proofs are available for inspection. In
this way sometimes quite long standing errors have been discovered. Another
is its abstract nature, so that particular systems such as vector spaces, or
homology theories, have evolved over a long period of time, and are tested in
many instances. Another feature here is the modular nature of mathematics.

54.  BROWN and HIGGINS, 1981a.
55.  GAUCHER, 2000.
56.  PRATT, 2003*.
57.  LEINSTER, 2002.
58.  BAEZ, 2001.
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A less well recognised feature is its structural nature. Thus mathematicians
are often « certain » of a proof even when not all the logical details have been
checked – indeed, mathematics is not usually written in a way which enables
the details to be checked at what one might call a machine logical level. But
would such a check give certainty ? A contrast could be given between
describing a route to a railway station by listing a few turns and instead by list-
ing all the cracks, etc., in the pavements on that route. The former method is
more certain than the latter – within limitations, such as avoiding manholes !
We do need theorem provers, which could help analogously to finding a route
through a maze, but they need to work at the appropriate conceptual level. So
the problem can be summarised : how can we reflect in computation the
conceptual, modular, hierarchical structure of mathematics ? How can one do
structural mathematical computations (if that is the right phrase) ? If the struc-
tural features by which we understand the mathematics of an algorithm are lost
in the passage to a program, then the programmer also may make errors which
are hard to detect. It will be very interesting to see if the development of new
type theories and the languages which use them can solve this problem and
still work in an efficient way to express complex algorithms to solve real com-
putational problems.

Another point to make here is that there are very well used Computer Alge-
bra Systems which usually give a very nice interface for calling some efficient
algorithms. There are three potential problems with these : (a) sometimes to
cope with a new problem, or to improve the methods, these algorithms really
need to be tweaked or modified, and this can be difficult to accomplish ;
(b) the computer algebra system may carry overheads which make it difficult
to achieve the greatest efficiency ; (c) if for commercial reasons the mathe-
matics of the algorithms is hidden, what confidence should the user have in the
results the algorithms provide ?

A great contribution to the progress of mathematics is exposition and expla-
nation, so that it is not just a question of doing a calculation to verifying some-
thing, but also of knowing why something is true. That is, mathematicians are
looking also for higher levels of explanation, however one defines such levels,
so that a result has to be true because of the way it fits with general structural
concepts. This theme is related to the role of intuition in the development of
mathematics, and perhaps also to the role of beauty, as has been emphasised
by many scientists.

Computers have proved very useful in applying algorithms to complex
situations, but in higher dimensional algebra there are not so many of these
algorithms. The finding of these for doing calculations that are needed is one
of the challenges.

Higher dimensional ideas have proved useful for formulating and proving
theorems, but turning these into computational tools has required a translation
into a « linear » framework. Thus different views of the « same » kind of object
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have been necessary to turn theory into practice. It is hoped that this method
will prove more widely useful.

Is the linear model of computation adequate for mathematics ? Would a
truly concurrent programming style use a higher dimensional concept of com-
putation ?

There are a number of indications that more is needed. Several papers by
Gadducci and Montanari59 give a 2-dimensional model using double catego-
ries for problems related to processes and to concurrency. This also reacts with
models for modal logics, which deal with the problems of conservation of
knowledge, and of belief revision. The study of computation within such
models and within quite general multiagent systems would seem to need some
of the techniques and conceptual models of higher dimensional algebra.

It is the aim of this article to point a possible way and to stimulate further
investigation. The basic intuitions are very strong and as Brown wrote provo-
catively in 1987 « n-dimensional geometry requires n-dimensional algebra60 »,
thus suggesting a broader aspect of the 1982 article « Higher dimensional group
theory61 ».

Ronald BROWN and Timothy PORTER*

(February 2003).

59.  See, for example, GADDUCCI and MONTANARI, 2000.
60.  BROWN, 1987, p. 128.
61.  BROWN, 1982.
* We would like to thank : Giuseppe Longo for the invitation to lecture to his seminar ;

Posina Venkata Rayudu of the National Brain Research Centre, Gurgaon, India, for helpful
comments ; and Andree Ehresmann for helpful comments and additional references
– readers interested in applications of category theory in biology should explore the web site
<http://perso.wanadoo.fr/vbm-ehr/>. The works of Charles Ehresmann in category theory
and of John Henry Constantine Whitehead in topology have been a strong influence in the
development of this theory. We are grateful also to Laurie Catteeuw for her help in preparing
the paper for this publication.
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