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A review of the Impulse Approximation (TA) for calculating Compton photon scattering probabilities by
bound electrons reveals a paucity of measured, double-differential cross-section (DDCS) data with
respect to angle and energy, especially for scattered photon with energies near that of the incident
photon energy E. The K-shell DDCSs derived from IA display undesirable discontinuities and poorly

match available experimental continuous DDCSs between the Compton energy E, and E. Similar

discrepancies with respect to experiment are displayed by the S-matrix results. Because numerical
evaluation of IA is so practical and straightforward, we have replaced the electron momentum in the
energy-momentum conservation with an ad hoc concept of partial electron momentum to show the
feasibility of reducing such discrepancies. In the proposed ad hoc DDCS, called here the blended
impulse approximation (BIA), this replacement is combined with the incoherent approximation. BIA
removes the undesirable discontinuities in the DDCS, indicates better agreement with existing
experimental data, and provides a general DDCS form for incorporating evaluated experimental data.
We suggest that the S-matrix energy-momentum conservation could also use the ad hoc concept of
partial electron momentum, for benefits similar to the IA case. Further development of BIA requires a
measurement of a comprehensive set of DDCSs to help finding an adequate set of shell-dependent
expressions for the partial electron momentum. In conclusion we suggest that the concept of partial
electron momentum may have a direct physical significance for the photon: the Compton interaction is
such that the photon sees only a part of the electron momentum. Alternatively, it might indicate the need
for a reviewed mechanism of the Compton effect, different for free and bound electrons.

PACS numbers: 32.80.Cy



L. INTRODUCTION

The experimental and theoretical studies of X-ray energy loss through scattering by atomic electrons
have a rich history [1, 2, 3, 4, 5, 6] beginning before Compton’s pioneering work. These studies have
continued to be an active area of research to the present day.

Measurement and theory indicate that the average scattered photon energy decreases as the scattering
angle increases from 0 to 7. At any given scattering angle 6, the energy distribution of the scattered
photons is not singular but takes the form of an asymmetric continuous distribution around the Compton

energy E’ given by

B, M
1+ E(1-cos®)

where E is the energy of the incident photon measured in units of electron rest energy (mc?). This
distribution is described by the double-differential cross section (DDCS) versus the energy and solid
angle of the emergent photon. -Experiments and theory indicate that the width of this distribution
decreases as the scattering angle approaches zero and as the target atomic number Z decreases.
Experimental data that characterize these distributions are scarce, especially for scattered photon with
energies near that of the incident photon energy E. Higher resolution measurements and the advent of
high-intensity monoenergetic synchrotron beams may improve the experimental characterization of
Compton scattering in the near future.

There are three basic theoretical approaches to the modeling of Compton scattering: the incoherent
scattering function (ISF) or the generalized form factor (GFF) approach, the impulse approximation
(IA), and the S-matrix theory. GFF [3,7] modifies the free-electron KN cross section by the incoherent
scattering factor, which is derived from a model of the bound electron wave functions. The ISF attempts
to correct for the reduced probability of scattering when the momentum transfer is small (forward
directions or low-energy incident photons). The resultant single differential cross section (SDCS),
which depends only on scattering angle, is widely used in dosimetry and radiation transport calculations.
IA generalizes [8] the Klein-Nishina cross section to the case where the target electron is in motion
according to its momentum distribution within the atom. The target electron is still treated as a free
electron, but with a momentum distribution derived from the bound electron wave function. The IA
assumes that the interaction is impulsive, i.c., it instantaneously transfers a large momentum, so that its
potential energy does not change during the interaction, and the electron can leave the atom. This
condition is not satisfied for small momentum transfers (weak impacts) occurring either when the
incident photon energy E is small or when E is large but the scattering angle is small. However, IA leads
[8] to approximate DDCSs that are very useful [9] in the calculation of fluence spectra at larger
scattering angles (with no discontinuities).

Applying energy and momentum conservation to the IA treatment of photon scattering by moving
electrons allows, in principle, the final scattered photon energy E to exceed E-U; and E, where U; is the
binding energy for the i-th shell. Such photons are not observed experlmentally To exclude such
events, the Compton effect is restricted to those photon-atom collisions in which an electron is ejected
from the atom in correlation with the emergent (scattered) photon. Thus, E > E-U; is not allowed. This
energy cut gives rise to a discontinuity at E-U..



Available experimental data suggest?! that the IA DDCS does not correctly describe the scattered photon
spectrum as E’ approaches E-U;. Figure 1(a) [10,11] shows significant and typical deviations of the

calculated K-shell IA scattering distribution from measured results in the interval (E,, E-Ug). The

measured scattering probability continuously decreases to zero as £ " approaches E-Ug, in contrast with
IA predictions. Figures 1(b) and 1(c) [10,12] illustrate the same trend. However, here the differences are
less dramatic since the Compton profile is less broad than in Fig. 1(a). In both cases, IA energy spectra
exhibit an unphysical discontinuity at E-Uy . The experimental spectrum shown by Fig. 1(d) [10,13]
reveals scattered photons exceeding significantly the E-Ug threshold while the calculated curve

discontinuously falls to zero at this energy. Here, the Compton energy, E. = 61.5 keV is much closer to

E-Ux = 61.02 keV, in contrast to Figures 1(a) - 1(c) (E’ of 169.2, 180.51 and 157.06 keV

respectively). Figures 1(a)-1(c) also show that S-matrix DDCSs, derived from the original published
figures, exhibit a similar pattern of discontinuities at E-Uk and deviations from measurements.

Restricting IA to collisions in which the target electron is ejected, leads to discontinuities in the total
DDCS, as illustrated by our calculations for Cu in Figures 2(a) and 2(b). If the experimental curves from
Figures 1 are true then the all-shell restricted DDCSs from Fig. 2 have an implausible shape suggesting
the need for further experimental and theoretical investigation. This conclusion is not necessarily in
contradiction with the discontinuous all-shell DDCSs reported in Ref. [14] for Pb, Sn and Cu for
photons of 279.1 and 661.7 keV. Indeed, the 279.1 keV DDCSs display a relatively smooth decrease
around E-U; that can be reconciled with the experimental trend identified above from Fig. 1. In the
higher energy case of 661.7 keV, the DDCSs may have sharper discontinuities. However, in this case the
DDCSs are presented on a broad energy scale that may enhance the impression that there is a sharp cut
in the DDCS. Hence, at least for lower photon energies, we conclude that there is a clear discrepancy

between the experimental and theoretical DDCSs in the range (E’, E-Uj), and that there is a need for a
consistent set of experimental DDCSs showing the details of the spectrum around the energies E-U..

To our knowledge, the above discrepancies between theoretical and experimental characterizations of
bound Compton scattering have not been previously recognized in the literature as indicating a major
need to improve theoretical modeling of this phenomenon. The purpose of our paper is to propose ad
hoc modifications of the current IA and GFF treatments of Compton scattering resulting in an improved

DDSC in the energy interval (E', E-U). The two central modifications are as follows. a) Use

modified energy and momentum conservation conditions, equivalent to assuming that only a part of the
momentum of the moving electron is observed by the incident photon. b) Include the ISF in the modified
DDCS such that its integral over solid angles and scattered energies yields a total cross section, is
numerically equal to that derived from the GFF approach. Therefore, the proposed procedure
incorporates electron-binding corrections as well as the IA electron momentum distributions. We call
this approach the blended impulse approximation (BIA)

FIG. 1. Double differential cross section for photons scattered by electrons. a) E = 320 keV scattered on
Au, K-shell, derived from Fig. 30(c) of Ref. 10 and Fig. 3 of Ref. 11; b) E=279.1 keV scattered on Sn,
K-shell, derived from Fig. 30(a) Ref. 10 and Fig. 8 of Ref. 12; ¢) E=279.1 keV scattered on Sn, K-
shell, derived from Fig. 30(b) of Ref. 10 and Fig. 9 of Ref. 12; d) E =70 keV scattered on Cu, K-shell,
derived from Fig. 32 of Ref. 10 and Fig. 2 of Ref. 13.



d2o/ dCYdE{mb /keVisr) d&’cr dOIIE (mb /keVisr)

d’o/ dOIE (mb fkeVisr)

d’of dQ/dE {mb /keVisr)

0.20

— i
i ” ]K:ﬁeu{
01s [ | L
. Il T I 1T e
0.10 [ ],
! =T "7 T~ 0
ZERi
0.05 [| —*—S matrix . .
L| -— 1A relativistic ' 1 (a) ]
| IA nonrelativistic T 1
| — Experimental ]
0.00 lp'f | BT P -I-'} ]
100 120 140 160 180 200 220 240
0.25 T r y—rry
[ | —®—S matrix
-— IA relativistic
0.20 [l ——IA nonrel.
| === Nonrel. form
[ factor calc.
045 EL— Experiment
[Sn {z$n),
0.10 [Kshell (U =29.2 keV,
[Ey = 279.1 keV
0.05 -anrnﬂ =801
i ( (b)
0.00 T L
0 50 100 150 200 250 300
0.35 e
tSn (ZF50), | |—*—S matrix
0.30 | U, = ~— 1A rel.
[ 1 |===I1A nonrel.
0.25 '29'2!9\0 s T N I f
[Ey=270.1KeV 1 onrel. form
3 __HL T factor calc
0.20 b scaft — Experiment
0415 :
0.10
0.05 f— ]1 ! : 3
(c) i
0.00 P
0 50 100 150 200 250 300 350
500 —_——
- | | 1 ]
| | —8—S matrix (d) 3
4.00 [| — Experiment T ]
300 [y
[ K shell [UK=B.98 keM) »
2.00 LEyw "‘.Hj-
"y 0° H ]
1,00 [ % 1
0.00 L. »—"i’ b bsaa e {{ 3.
35 40 45 50 55 60 65 7O 75

Energy (keV)



1.2

----- without E'<E Ui, | & (a)
1.0 [ i =1, #of shells I
_ ——with E' < E - Ui, ‘ﬁ
& 0.8 [ i=1,#ofshells
g A
[ 1] o ’ )
=< p.g[_Cu,all shells AN
= L Ey=10[keV / H |
W o4 a__=j0° 5
= 5 scatt. 3 %
) [
B 0z2f
g H P
0.0 fosrassoanstes "
o02b .. ..
8.5 9.0 9.5 10.0 10.5
0.0020 ey [~
L ——with
[ E'<E-U (b)
__0.0015 [
2 | ----- without
@ ! E'<E-U
= 0.0010 | K
0 3
E
2 . *
g 0.0005 | % =
"E [ / "3
r " Cu,/K shell 1
il Ev+ 10 KeV ]
— 6 | =9p°
+ acaft.
-0.0005 Ls sasdaanabiaaalaaa,
40 45 50 55 B0 65 70 75 80

Energy E' (keV)

FIG. 2. Comparison of the IA-DDCS for Cu, with and without the QM restrictions E' < E-Ui. a) Photon
energy = 10 keV, scattering angle of 90 degrees and i = 1, # of shells, and b) Photon energy =70 keV, a
scattering angle of 90 degrees, and i = shell K.

II. INCOHERENT SCATTERING (IS) and IMPULSE APPROXIMATION (IA) APPROACHES
TO ELECTRON-BINDING EFFECTS

A. The ISF approximation
The generalized form factor (GFF) approach describes Compton scattering by the following single-
differential cross section (SDCS):

[ s ] =% o (£8:7). )

dcosf dcosd
Here, 0, is the Klein-Nishina (KN) cross section [15, 16], Sis¢ is the incoherent scattering function

[3,17], E is the incident photon energy, @1is the polar angle of the emergent photon, and Z is the atomic
number of the interacting atom. The KN cross section is given by
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where 7, = e’ /(mc*) =2.8179380-10"" m is the classical electron radius. Sisr is given by [3]
Si(@.2)= Y | F.(§,2) (2b)
e>0
with
Z
F;(E;‘,Z):<‘I-‘E » exp(;’é’-ﬁ)|‘£‘o>, (2¢)
=

Here, W, is the ground state wave function of the atom, ‘', is the wave function for a stationary excited
(or ionized) state of energy € measured from the ground state, i g=p'-p = Ap (q is in units of 1/
length), where % = h/2 7 ; h=Planck's constant; p and p are, respectively, the initial and the final
momentum of the photon; and 7 is the position of the n-th electron in an atom with Z electrons. In the

forward direction, there is no energy transfer by inelastic scattering and hence no excitation or
ionization. Thus, W, =¥, and F.(§,Z) approaches the classical form factor F(g,Z) for elastic

scattering. However, Sisr approaches zero in this case due to the € > 0 restriction.

ISF neglects the Compton broadening effect and specifies a single emergent photon energy for each 6,
rather than a spectrum. Practical ISF computation assumes that electronic excitation energies are small
relative to E. The momentum transfer calculations assume that the incident and scattered photon
energies are equal. Finally, Eq. (2c) sums up all final states even when the corresponding transitions are
not allowed. However, S;sr has two important practical properties: a) it approaches zero as & (and
hence, |Ej |) goes to zero, and b) it approaches zero as E (and hence, |c}' |) goes to zero. In other words, Sisr
is zero for scattering angles for momentum transfers of zero. These properties are consistent with the
experimental data despite the approximate nature of the ISF derivation [17]

B. Impulse approximation

IA expands upon the simpler KN treatment of inelastic scattering by modeling effects due to motion of
the target electrons. The practical result of IA is a DDCS with respect to the final photon energy and
solid angle.

1. Energy and momentum conservation
The first step in deriving IA is to solve the relativistic energy and momentum conservation (EMC)
relations for photon scattering on a bound electron as a two-body elastic collision. For a collision that

occurs in a space specified by the vectors 7 and 7 (see Fig. 3), in an electron potential energy V, the
EMC relations are

p+p. =P +p, (3a)
E+E +V(F)=E+E. +V(r) (3b)
E,=\1+p, (3¢)
E=p 3d)



Here p stands for momentum in units of mc, while E stands for energy in units of mc” and the

unprimed and primed quantities describe the incident and scattered particle states, respectively. The
momentum and energy of electron and photon states are denoted by the subscripted (by e) and un-
subscripted quantities, respectively. As the collision is assumed to occur without appreciable change in

position, then ; =rand V drops out of Eq. (3b). The system (3) with no ¥ describes the free electron at
large distance from the atom (the observed electron) after the interaction with the photon, only if the
effect of the potential V after the collision is small.

Z=(p-P)/|p Pl (P~ P.)|P.~P.|

FIG. 3. The momentum conservation diagram for the collision of a photon with an electron. A useful
choice of the z-axis is illustrated (in the direction of momentum transfer).

The equation system (3) is valid only for scattering angles € > 0. When 6= 0, the EMC system is
different since the energy and momentum magnitude of the photon and electron remain unchanged after
collision. Hence, one must exercise caution in taking the limit 8 — 0 to solutions of (3).

Both exact and approximate solutions can be derived from Eqs (3). Assuming a stationary electron ( p. =
0) leads to equation (1). Using approximate but still relativistic forms of Egs. (3¢) and (3d), a common

implementation of TA[8] derives a one-to-one correspondence between the z-axis projection of ;; and

E'. A similar correspondence can be derived when using electron energy from classical mechanics
(nonrelativistic), by assuming £’ is close to E. The common IA approximation presented next, while the
exact solution is presented in the section on BIA.

The z-axis is chosen (Fig. 3) to denote the direction of the momentum transfer 4p = 2 g=p'-p.
Specifically, p'-p=|p'-p|Z, p,—P.=-(P'-P)=-|P'-P|Z, P, = P;» P, = P}> Pex = Pix>and
p., = p., -The first two equations can also be written as p, —p, =Ap,and p, —p,, =—Ap where

Ap=1 B —pl= | B+ 5 2| Pl p|cosé = VE? + E® —2EE cosb .
Hence,
E*=(E-E +E,),

(e)
pé‘!,z—pe,z :—Ap_ ’



Or,
pL=(E-EY+2AE-EW1+5 +pl,,
p..=P..=—Ap.
Assuming that m ~1 in Egs. (3f) leads to
EE'(1-cos@)+E'-E
A ;

(39)

p..(E,cosb,E) = (4a)

Solving for £ " we obtain,
0

E'(E,cos6,p,.) =1_%[1—p5280059+p8Z\/l—280086’+£2(l—pjz sin’ 9)], (4b)
, '_pe,zg ’ , ’

where e=E’ /E. Equation (4a) can be written as
1 1 P
———=(1-cosf)-Ap-—= 4c
rE ( )—Ap o (40)
The last term of (4¢) leads to the Doppler-like broadening of the scattered photon energy spectrum since

Pe changes from one scattering event to another. Setting p, =0 implies that E' = E_ . Hence, the
Compton peak is associated with p,, =0 (scattering on electrons at rest). It follows that p, , =—1 for

E'=0, p,, =0 for E=E, P..=E\(1-cos8)/2 =Esin€/2 for E =E, and p.,=1+E(l-cos8) for

E’'= oo . Hence, p, . varies over the interval [—1,1 +E(1-cos 9)] as E” varies from 0 to co.

2. The IA DDCS
The derivation of the IA-DDCS involves two steps. First Quantum Electrodynamics (QED) is used to

obtain the DDCS for the scattering of the photon, characterized by 4 momentum (,_t;,E ) ,on a free and

moving electron, of specified momentum and energy (;f,Ef) [8,16]. In the second step, the Compton

effect is extended to the scattering of photons by the electrons in motion about the atom. The derivation
assumes that electrons bound to an atom are simply free electrons with the momentum distribution
characteristic of the atom. In a detailed quantum mechanical treatment the motion of bound electrons is
restricted by the binding potential and by the rules of transitions. But in IA the beund moving electron
DDCS is approximated [10,18,19] by the product of the free-electron DDCS and the atomic electron
momentum distribution p(;;) , which is the Fourier transform of the square of the absolute value of the
position wave function, for each shell i. The QM cross section calculation assumes that the Compton
photon-electron interaction happens quickly (impulsively) such that the electron does not move
significantly during the interaction and the potential felt by the electron during the interaction is
constant. This allows the cross section to be computed from unperturbed wave functions. The removal
of the electron from the atom requires that the momentum transfer is large. Hence, from the QM point of
view, the validity of the IA approximation is conditioned by a quick and large momentum transfer.

Assuming an isotropic p(Z) distribution the following IA DDCS result can be derived [8, 20, 21] for
the i-th shell containing Z; electrons,
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The variable py;, is the minimum of p = J pl4p,+ p., when —o< p, <ocoand —o<p, <oo.If

e is assumed to be independent of p, ; and p.., then , ppin = peAE, cos , E’) leading to Eq. (4a) or
similar approximations. But if p, . is dependent on p. . and p.,, as we will see in the BIA section, we use
Prmin=PeAE, c0s , E’, pex =0, pey =0) in Egs. (5). The Compton profile, Ji(pe2), as parameterized [20]
by Eq. (5¢), depends only on the parameter J; . Tabulated [22] J; ¢ values for all atomic shells are
available based on the Hartree-Fock symmetric atomic model. The function J; (p.;) has a peak of
height J;, at p. = 0 and attains a value of 0.5 J;, at p..= p.; =0.9216/2J,, and |E. - E(p*,cosh)|.

The parameter J;, varies over the range of 1 to 250 (in units of 1/mc; 1/mc unit = 1/137 of the

#/ me* unit used in tabulation [22]). Hence, the function J;, and the DDCS have significant values only
for low values of p, .. Notice also that

I dpe,z‘;r' (pe,z) = 1 (6)

If only energy and momentum conservation of free electrons moving according to the probability
distribution p(p) are considered, then events with £ > E are not excluded. In practical calculations it is
assumed that (QM conditions) E’ < E-U; and E > U,

With the above restrictions, the IA DDCS for a mixture of atoms with the atomic fraction, f;, becomes
[20, 21]
A o _ : 7 E,cos0,E

RN P Yy O ) (P ) o

dE dcos@ E 1+ p2, . Ap
where O(x)is the Heaviside function (0 ifx < 0, 1 if x> 0), and p..(E’) given by Eq. (4). The ©
function discontinuously reduces the i-th shell contribution to zero for £ "larger than E - Uj, leading to
the discontinuities shown in Figures. 2(a) and 2(b). Since we assume that £'> 0, the i-th shell
contributes nothing to the total DDCS when E < U, and hence, the DDCS decreases to zero when the
incident photon energy E falls below the smallest binding energy, min(U,), of the mixture

Eq. (7) can be rewritten as
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do EY _E'E
KN _ _ 2 ¢ X , X 8b
dcosé T [ E } = w=F E! (58)

2 '
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Ef: E 1+ p X Ap

J(p..)=D OE-E -U)f,ZJ(p.,.(E,cosé, E)Y).

The last expression is zero for all E' > max(E-U,) = E —min(U,) . Itis also zero forall E < min(U,).

i i

Also, we can write

d’c _ dogy
F(E:086,.0,: 0 9a
dp,.d cos@ " dcosf (E,cos8,p,.)J(p..) (9a)
where
Y n2
F(E,cos6,p,.)=G(E,cos¥, E) {EJ 1 X Ap(E,) W
\/1+p Ap

The function F is unity at p,, = 0 (where E = ' Ec_ andJ(p,,) =Jio = maxtmum). Significant deviation

from unity occurs only when J(p,,;) differs significantly from zero and can therefore be approximated
[21] by a linear function around 1. This range is centered about zero and is usually, but not always,
included in the interval (-1,1).

3. The Impulse Approximation SDCS
The energy integration of the i-th atomic shell contribution Eq. (5a), leads to

[ - ] - 4% g (£,6,2), © (o)
dcos@ |, dcos@
where
S, (E,0,Z)= z f.Z®(E-U,)S,(E,cos6,U,), (10b)
E-U;
S,(E,cos0,U)= [ dE'G(E,cos6,E)J(p,,(E,cos6,E)),  (10c)
0
i, max
ez
or S/(E,cos0,U)= | dp,,F(E,p,..cos0)J(p..) (10d)

with
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III. BLENDED IMPULSE APPROXIMATION

A. A more exact energy-momentum relation
An exact solution of the EMC Egs. (3f) leads to the following expression for p, ,

P (E,cos6,E,p . p. )=
ApEE (1-cos6) £ J(EE'(l —cos#))’ +2EE (1-cosO)(1+ p. +p. ) | E-E | (11a)
2EE (1-cos#)

J1+ B* +e(1+ p2 -1+ p*)—£cosOp?, D
d ’ : (11b)
[1+8(1/1+ﬁ2 —1)} -&'pl,

or,

E(E,cos6,p;..,p..,p.,)=E¢€

where e=E’/E and

D=

2 2 a1
[\/l-kjiz+£(1+j52—\/1+ﬁ2)—£cost9piz} —Hus(,hﬂa?—l)} Hezp:,z](1+pix+piy) (He)

The double sign term in Eq. (11a) is zero at E' = E, and the minus and plus sign should be used below
and above E' = E, respectively. The minus sign in Eq. (11b) is valid for p., < 0, while the plus sign is
valid for p,; > 0 (D is zero at p,, = 0). In contrast to Eqgs. (4a) and (4b), p.. and E are no longer in a
one-to-one relation, because p. . and p.,, occur as free parameters. Figures 4(a) — 4(c) show the
dependence of E on p., as given by Egs. (4) and (11b), assuming average values for p_, and piy .

To evaluate the integral J in the IA-DDCS (Eq. (5a)), we assumed Eq. (4a) where p. . is independent of
Pex and p., and hence, p_., = p, .(E,cos6,E"). In contrast, when Eq. (11a) is used, then we use ppi» =

pe,z(E,- cos ,E’ pe,x=0, pe,y=0)-

Figures 4(a)-4(c) show LogE is approximately linear in p,, € (=1,1) for Eq. (11a), in contrast with the
approximate case Eq. (4a). Secondly, the slope of energy-momentum dependence strongly decreases as
the scattering angle approaches zero. Since Eqs. (11) are approximated by Egs. (4) for small values of
Dex ,Pey > Dez, WE can estimate the value of the constant slope dLogE /dpez from Eqgs. (4) for small p, ..
We have:

A

| cxact AEE ) E°'Ap(E)/E/E _ Ap(E,) (114)
E dp,, |- |E e 1-p, E°(E —Ecos®)/(EAp(E)) | E
Piy’n E 2 _g ’ PO

Pe

where E°=E (Pai=ps y= Dez =0).
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at 8 and 180 degrees. a) 10 keV photons, b) 50 keV and c) 500 keV.



Finally, a few values of p,. are as follows: p,, =—e forE'=0, p,, =0 for E '=E, =
E:’(1+E(1—0059)f(1+pix +pf,y)) , P, =E\(-cos6)/2=Esin8/2 for E =E, and P, = forE =

+ 0. Hence, p. . varies from -0 to +o when £ > varies from 0 to + o, a different behavior than in the
standard implementation of [A.

B. The concept of electron partial (or rescaled) momentum _
The main purpose of our paper is to propose an ad hoc modification to the relationship E =E (p, ;) that
eliminates the IA-DDCS sharp discontinuities and improves agreement with experiment in the vicinity

of E-U;. As in the IA, p, , is used to parameterize Ji( p,, ). But now we assume that only a part pf_{ of
Pe.- , denoted by pjfz , can participate in the the momentum transfer between the electron and the photon.
We seek a monotonic nonlinear transformation g: p, , = g( pfi ). We require g to restrict the energy

E=E( pfg, P..=0,p,, =0), calculated by Eq. (11b), to the interval /0,E]. Thus g must confine p:fz to
the interval (—oo, EJ(1-cos®)/2 ) . Therefore, acceptable rescaling functions, g, must satisfy

g:(—o0, E\J(1-cos@)/2] —22 5 (—oo,+c0). In addition, the condition g(0)=0 has to be satisfied if
we wish to preserve the position of Compton peak maximum. But this condition is not strictly necessary.

Also, a shell dependent p, , = g( pjg) could be proven useful for a more detailed description of both
total and shell DDCS. Here, our purpose is only to illustrate the method and hence, we use only
.. =g(p) with g(0)=0. To simplify the notation, we will write p, ,(pe)instead of g(p’) and

-4

pZ(p,,) instead of g (p..)-

Application of a scaling function g subject to the above constraints is equivalent to limiting the target
electron momentum that can participate in the collision to a fraction of that available. In the absence of
a theoretical foundation for “partial electron momentum,” g can be selected empirically. One simple
implicit form of g with g(0) = 0, is:

P..=P..(pZ) =P (1-E (pZ)/ E)+b, (12a)

where E ( pfg) is calculated from Eq. (11b). Two simpler explicit forms are

a-pﬂf(l—pjgz’EJ(l—cosﬁ)z’2)+b if OSpfg <E./(1—cos8)/2
p:£+b if pZ<0

pL [(1—[pZ 1 EJA—cos8)/2)+b if 0% pd <E\[1-cos6)/2 %)
pfi +b if pfg <0

where a and b are constants to be chosen. Egs. (12b) and (12c) are easily invertible, a useful property
for Monte Carlo simulations. With these definitions, E =E'( p:i s Per =0,p,,=0)€[0,E], while J; from

p..(p) = { , (12b)

p. (pT)=

Eq. (5¢) describing the electron momentum distribution in the atom, is still a function of p, . Notice

that p,,(pZ = 0) =0if b =0 and hence, the DDCS peak value occurs when either the actual or

rescaled momentum is zero. We use here only the case of b = 0. However, through selection of the
additive constant b, Egs. (12) can be used to shift the Compton peak according to experimental data.



C. Blended Impulse Approximation
We combine the ISF and IA approximations to yield a DDCS that can be adapted systematically to
match experimental data, such that its integral over energy is equal to the ISF SDCS, or to an
experimentally corrected ISF SDCS. Combining the incoherent-scattering function with a Compton
profile has been used previously [9] to obtain a non-adaptable IA-DDCS. Our approach allows
independent adjustment of the DDCS energy spectrum shape, via pe, scaling, and the adjustment of the
SDCS and total-cross-sections from an ISF database.

First, similar with IA, Eq. (8a), we can write
[ d’c } _ doy, G(E,c0s0,E)J(p,,)
BIA

dEdcosf | — dcos® S, (E.60,Z)
_ doy, G(E,cos6,E)J(p,.) (139
dcos@ > . fZsy ’
where
S”(E,cos8) = J.dE'G(E, cosS,E')Ji.(pe,z(E, cosd,E)) =
’ (13b)

I dpe,zF(E3 cos 6’ pe,z )‘;1 (pe,z )

J(p..)= 2. ZI(p..(E,cos6,E) .

Note that no restrictions of the form E < E-E; and E-E; > 0 are placed on the limits of integration.
Integrating over E’ for fixed 6, yields exactly the ISF SDCS. S is very close to unity for all shells

except the tightly bound (K) shells. Notice that the above procedure can also be applied to shell ISF
data if available. In this case, Eq. (13a) becomes

e _ Z[ s ] G(E,cos0,E) f,.ZJ(p,.) . (130)
dEdcosé |,, dcosf | ;. ; Y. FZST

Eq. (13a) will allow scattered photons to exceed E, as shown by Fig. 2(a). An ad hoc form of the DDCS,
one that retains the Compton profile maximum position and follows the trend of the experimental
values, is obtained by using partial electron momentum rescaling to map Eq. (13a) from the interval
E'e[0,) into the interval E < [0, £], and by rescaling it with the adequate multiplication constant to

give the proper E  integral, i.e., the ISF SDCS .

Using p? =e(E")and p,, =e(E') for Eq. (11a) and p,, = g(pZ) = g(e(E")) for Egs. (12a) to (12c)
then e(E)=g(e(E")) or E =¢”'(g (e(E"))) and E =e"'(g ' (e (E'))). The desired DDCS in the
energy E  is then defined as
2 G(E,cos8,E (E"))J (E
[ d*c } _dog C(E, c0s6) (E,cos0,E (E))J(p,.(p,(E)))
BIA

: if E <E <E (14a)
dE dcos@ dcosf a(E,cos8)




2 G(E,c0s6,E)J(p, (E)) . .
¢ _ 9% (5. c0sg) S EREV P E)) o g <E.  (14b)
dEdcos® |, dcosf a(E,cosf)
Here,
E
a(E,cos ) = j dE'G(E,cos6,E (E)J(p,. (P (E")) (14c)
0

We included with Egs. (14a) and (14b) a multiplicative correction factor C(E, cos(&) ), whose values are

unity unless we can evaluate from experiment better values, to increase its adaptability to the
experimental values..

Since Eq. (14¢) contains the whole atom ISF function, the values of C derived from experiment are
likely to be close to unity in most of the cases, in view of the comparisons of the whole atom ISF results
with the experiments [17]. If ISF data are available for individual shells, Eq. (14¢) can be appropriately
changed, similarly to eq (13c¢). In this case, the correction factor is split into individual shell correction
factors, which could be significantly different from unity for lower shells.

Figures 5(a) and 5(b) compare BIA (Egs. (14), (12b) with a = 2), IA, and S-matrix calculations to
experimental results to show the feasibility of the DDCS improvement by using momentum rescaling.
The Gold K-shell BIA-SDCS of Fig. 5(a) was scaled (as suggested above) by setting C = 1.667 to better
fit the experimental data. It shows that the BIA-DDCS shape differs essentially from IA and S-matrix
and that it follows the decrease shown by the experiment in the vicinity of £ - Uk . For scattering of 70
keV photons by Cu , BIA also removes the sharp decrease in the DDCS , Fig. 5(b). From this figure it
can be seen that while BIA inherently does not allow photon energies largepthe incident photon energy.

it does allow Compton scattered photons of energy higher than E — Ux. The p,; - pj';’ relationship, Eq.
(12¢), leads to similar results for Gold., Hence, an appropriate ad hoc fraction of the electron momentum

can improve dramatically the DDCS. If studied systematically for different shells and atoms, this
procedure might also lead to physical consequences for the photon or for its scattering mechanism.

For Tin, we found that the BIA-DDCS derived from Eq. (12¢) decreases faster than the experimental
curve shown in Fig. 1(b) in the vicinity of E — Uk, indicating that a more appropriate p, . - p:ff
relationship is needed for this case. Clearly the BIA model can accommodate this task by a selection of
shell dependent-constant C and of the scaling function g( p:{ ), to match the experimental DDCSs.

However, meaningful work in this direction requires a consistent set of sufficiently accurate
experimental DDCSs, for a range of incident photon energies.

Fig. 5(c) compares the total (all-shell) BIA-DDCS, using Egs. (14) and p, , = g( pj{ )of Eq. (12b) with a

=4, to the energy-restricted total IA-DDCS for photons of 10 keV scattered by Cu. In contrast to IA-
DDCS, the BIA-DDCS has no discontinuities and goes smoothly to zero in the vicinity of the incident
photon energy. Again, such a difference must be tested experimentally in detail, and depending on the

results, this will help choosing a shell-dependent or a shell-independent p, , = g( p:j’z )«
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IV. CONCLUSIONS
A review of the Impulse Approximation (IA) for calculating Compton photon—lectron scattering
probabilities reveals a paucity of measured, double-differential cross-section (DDCS) data with respect
to angle and energy, especially for scattered photons in the energy region near the incident photon
energy E. The K-shell DDCSs derived from IA display undesirable discontinuities and poorly match

available experimental continuous DDCSs between the Compton energy E and E. Similar discrepancies

with respect to experiment are displayed by the S-matrix results. Because numerical evaluation of 1A is
so straightforward, we have proposed an ad hoc modification, called the blended impulse approximation
(BIA) that combines the incoherent scattering approximation, an IA-like approximation for the DDCS,
and an ad hoc concept of partial (rescaled) electron momentum that replaces the electron momentum in
the energy-momentum conservation relations. The empirical relationship between the rescaled (partial)
momentum and original target electron momentum, can be manipulated to improve the agreement
between predicted and measured DDCSs, and to eliminate unphysical discontinuities.

The BIA method results in a DDCS that has a number of advantages. BIA removes the undesirable
discontinuities in the DDCS, indicates better agreement with existing experimental data, and provides a
general DDCS form for incorporating evaluated experimental data. Its energy integral exactly
reproduces the SDCS obtained by correcting the Klein-Nishina distribution by the ISF factor. A
multiplicative constant, assumed to be unity in the absence of experimental data, can be used to improve
the ISF approximation. This constant can be manipulated to improve the fit to experimental data when
available. Further improvement requires finding an optimal partial electron momentum function, and the
evaluation of an ISF scaling factor as experimental data becomes available. A comprehensive DDCS
measurement for the Compton effect on bound electrons is necessary for finding an optimal partial
electron momentum function. The ad hoc BIA-DDCS method that uses a parameter-free partial
momentum transformation, can be readily used in Monte Carlo photon transport codes. Therefore, the
BIA procedure and the electron momentum rescaling provide, at this stage, an empirical tool for
systematically improving agreement with the experimental data for the DDCS and the SDCS, in photon
scattering on bound electrons.

Finally, we suggest two more powerful resources associated with the concept of partial electron
momentum. a) Since S-matrix DDCS’s display similar behavior as the IA-DDCS in the vicinity of E-Uk,
the ad hoc concept of partial electron momentum could also be used in the context of S-matrix with
similar benefits. b) The partial electron momentum might have a direct physical significance for the
photon: the Compton interaction is such that the photon sees only a part of the electron momentum. If
further considerations do not allow such a direct physical significance, then the partial electron
momentum might indicate the need for a revised mechanism of the Compton effect, different for free
and bound electrons. The experiment of looking for electron-electron correlations in the Compton effect
might be a starting point toward a revised mechanism.
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