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A review of the Impulse Approximatior (IA) for calculating Comptol photon scatteriog probabilities by
bound electrons reveals a paucity of measured, double-differenlial cross-section (DDCS) data with
respect to angle and energy, especially for scattered photon with energies near that of the incident
photon en€rgy,E. The K-shell DDCSs derived Aom IA display undesirable discontinuities and poorly

match available experimental continuous DDCSs between the Compton energy Ef and E Sirnilar

discrepancies with respect to exp€riment are displayed by the S-matrix rcsults. Because numerical
evaluation of IA is so practical and straighforward, rre have replaaed the electron momentum in the
energy-momentum co[seryation with an ad hoc concept of partial electron momentum to show the
feasibility of reducing such discrepancies. In the proposed ad hoc DDCS, called here the blended
impulse approximation (BIA), this rcplacemcnt is combined with the iocoherent approximation. BIA
removes tle undesirable discootinuities in the DDCS, indicates better ageement with existing
experimental daia, ard provid€s a general DDCS form for incorporating evaluated gxperimental data.
We suggest that th€ S-matrix energy-momentum conservation could also use the ad hoc concept of
partial electron momentum, for belefits similar to the IA case. Further deYelopment of BIA requies a
measurement of a comprehensiv-e set of DDCS,3 to help finding an adequate set of shell-dependent
expressions for the partial €lectron momentum. In conclusion we suggest that the concept of partial
electon momentum may have a direct physical significance for the photon: the Compton interaction is
such that the photon sees only a part of the electron momenhrm. Altematively, it might indicate the ne€d
for a reviewed mechanism ofthe Compton effect, different for free and bound electrons.

PACS numbem: 32.80.Cy



I. INTRODUCTION

The experimental and theoretical studies of X-ray energy loss through scattering by atomic elecfons
have a rich history u, 2, 3, 4, 5, 6l beginning before Compton's pioneedng work. These studies have
continued to be an active area of research to the present day.

MeasuJemetrt and theory indicate that the average scattered photon energy decreases as the scattermg
angle increases from 0 to z. At any given scattering angle 4 the energy distribution of the scattered
photons is not singulax but takes the form of an aslrmetric cotrtinuous distribution arowrd the Compton

energy Ej given by
E ( l )

1+E(l-cosd) '
where E is the energy of the incident photon measuJed in units of electlon rest energy lrnc). This
distribution is described by the double-differential cross s€ction @DCS) versus the urergy and solid
angle of the emergent photon. Experiments and theory indicate that the width of this distribution
decreases as the scattering angle approaches zero and as the target atomic number Z decreases.
Experimental data that cha@cterize these distributions arc scarce, especially for scattered photon with
energies near that of the incident photon en€rgy E Higher resolution measuremEnls and the advent of
high-intensity monoenerg€tic synchrotrcn beams may improve the experimental characterization of
Compton scattering in the near future.

There are three basic theoretical approaches to the modeling of Compton scatt€rhlg: the incohercot
scattering f,rnction (ISF) or the generalized form factor (GFF) approach, the impulse approximation
(IA), and the S-matrix theory. GFF [3,7] modifies the free-elecfon KN cross scction by the incoherent
scattering factor, which is derived ftom a model ofthe bound elechoo wave functions. The ISF attempts
to corect for the reduced probability of scattering when the momentum transfer is small (forward
directions or low-energy incident photons). The resultaflt single differential cross section (SDCS),
which deperds only on scattering angle, is widely used in dosimetry and radiation transport calculations
IA generalizes [8] the Klgin-Nishina crcss section to ihe case where thg target electrcn is in motion
according to its momentum distribution within the atom. The target electron ris still tr€ated as a free
electron, but with a momsntum distribution derived from the bound electron wave function. The IA
assumes that the interaction is impulsive, i.e., it instantaneously trunsfers a la.rge momentum, so that its
potential energy does not change during the interaction, and the electon can leave the atom. This
condition is not satisfied for small momentum transfers (weak impacts) occurring eithel when the
incident photon energy E is small or when E is laxge but the scattering angle is small. However, IA leads

[8] to apprcximate DDCSS that are v€ry usefi.rl [9] in the calculation of fluence spectra at larger
scattering angles (with no discontiruities).

Applyiflg energy and momentum conservation to the IA treatment of photon scattering by moving
electrons allows, in principle, the final scattered photon energy -E to exceed E-Ui and E, where Ui is the
binding energy for the r-th shell. Such photons axe not observed experimentally. To exclude such
events, the Compton eITect is restricted to those photon-atom collisions in,which an elechon is ejected
from the atom in corelation with the emergent (scattered) photon. Thus, t > E-Ui is not allowed This
energy cut gives rise to a discofitinuity at ,E- Ur.



Available experimental data suggestt that the IA DDCS does not conectly describe the scattered photon r
spectrum as Ei approaches E-U;. Figure l(a) U0,111 shows signiflcant and tnical deviations of the

calculated K-shell IA scattering distribution Aom measured results in the interval (t:, LUA. T\e

measured scattering probability continuously decreases to zero as -E approaches t-U(, in contrast with
IA predictions. Figures l(b) and 1(c) [10,12] illushate the same tend. However, here the diff€rcnces are
less dramatic since the Compton profile is less broad than in Fig. 1(a). In both cases, IA energy spectra
exhibit an unphysical discontinuity at E-Ux. T\e experimental spectrum shown by Fig. l(d) [10,13]
reveals scatt€red photons exceeding signifrcantly the t-U( threshold while the calculated curve
discontinuously falls to zero at this energy. Here. the Compton energy, t0 :61.5 kev is much closer to

E-Ux - 61.02 k€V, in contast to Figur€s l(a) - 1{c) (q of rc9.2. 180.51 and 157.06 keV

respectively). Figures l(a)-l(c) also show that S-matrix DDCSS, derived fiom the original published
figures, exhibit a similal pattem of discontinuities at t-Ur and deviations fiom measurements.

Restricting IA to collisions in which the ta.rget electon is ejected, leads to discontinuities in the total
DDCS, as illustrated by our calculations for Cu in Figures 2(a) arrd 2(b). Ifthe experimental curves flom
Figures 1 are true then the all-shell restricted DDCSS from Fig. 2 have an implausible shape suggcsting
the need for firther experimental and theoretical investigation. This conclusion is not necessaxily in
contradiction with the disco[tinuous all-shell DDCSs rcported in Ret [14] for Pb, Sn and Cu for
photons of 279.1 and 661.7 kev. Indeed, the 279.1 kev DDCSs display a relatively smooth decrease
around E-Ui that can be reconciled with the €xperimental tr€nd identified above from Fig. l. In the
higher en€rgy case of661.7 keV, the DDCSs may have sharper discontinuities. However, in this case the
DDCSS are presented on a broad energy scale that may enhaace the imprcssion that there is a sharp cut
in the DDCS. Hence, at least for lower photon energies, we conclude that there is a clear discrqrancy
between the experimental and theoretical DDCSs in the range (Ei , E-U), and' thal there is a need for a

consistent set ofexperimental DDCSS showing the details ofthe spectrum around lhe energres E-Ui.

To our knowledge, the above discrepancies between theoretical and experimental chaxacterizatioos of
bound Compton scattering have not been previously recognized in the litemhrre as indicating a major
need to improve theoretical modeling of this phenomenon. The purpose of our,paper is to prcpose ad
hoc modifications ofthe curre[t IA and GFF heatments of Comptofl scattering resulting in an improved
DDSC in the energy interval (E:, E-U). The two central modifications are as follows. a) Use

modified energy and momentum conse ation conditions, equivalent to assuming that only a part of the
momentum ofthe moving electron is observed by the incide[t photon. b) Include the ISF in the modified
DDCS such that its integal over solid aogles and scattered energies yields a total cross section, is
numerically equal to that derived fiom the GFF approach. Therefore, the proposed procedure
incorpomtes elechon-binding conections as well as the IA electron momentum distributions. We call
this approach the blended impulse approximation (BIA)

FIG. l. Double differential crcss section for photons scattered by electrons. a) E = 320 kev scattered on
Au, K-shell, derived from Fig. 30(c) of Ref. l0 and Fig. 3 of Ref. I l; b) E=279.1 kev scattered on Sn,
K-shell, derived from Fig. 30(a) Ref. l0 and Fig. 8 ofRef. 12; c) E=279.1 kev scattered on Sn, K-
shell, derived from Fig. 30(b) ofRef. l0 and Fig. 9 ofRef. 12; d) E = 70 keV scattered on Cu, K-shell,
derived ftom Fig. 32 ofRef. l0 and Fig. 2 ofRef. 13.
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FIG. 2. Comparison ofthe IA-DDCS for Cu, with and without the QM restrictions E < E-Ui. a) Photon
energy = 10 kev, scattering angle of90 degrees ard i = l, # of shells, alld b) Phoion energy = 70 keV, a
scattering angle of 90 degre€s, and i : shell K.

II.INCOHERENT SCATTERING (IS) and IMPULSE APPRO) MATIoN (IA) APPROACHES
TO ELECTRON-BINDING EFFECTS

A. Tbe ISF approximation
Th€ generalized form factor (GFF) approach describes Compton scattering by the following single-
differential cross section (SDCS):

l:+1 =++s,s,tE.o.zt.
L 4 COS r/ .l7sF A COS C/

Here, o*, is the Klein-Nishina (I(N) closs section u5, 161, Srsr is the incoherent scattering function

[3,17], .g is the incident photon energy, B is the polar angle ofthe emergent photon, and Z is the atomic
number ofthe interacting atom. The KN closs section is given by

(2)

u'' l ii (a)
| l
i t

Et= 1l i/
/ \

..-.-7
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wiere ro=a2 11yns21= 2.8179380 10 15m is the classical electron radius. Srsr
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is given by [3]
(2b)

(2c)

Here, \Po is the ground state wave fiDction ofthe atom, ry. is the wave function for a stationary excited

(or ionized) state ofenergy e measured from the gormd state, h 4 = F'- F = 4i (4 is in units of l/

length), where h = h/2E , ft: Planck's coistant; F ar.d F are, respectively, the initial and the frnal

momentum ofthe photo4 and i, is the position of the n-th electron in an atom with Z electrons ln the

forward direction, ther€ is no energy transfer by inelastic scattering and hence no excitation or
ionization. Thus, Y. = Vo and -{ (i, Z) approaches the classical form factor F(d,z) for elastic

scattering. However, S^F approaches zero in this case due to the e > 0 restriation.

ISF neglects the Compton broadening effect and specifies a single emergent photon energy for each 0,
mther than a spectrum. Practical ISF computation assumes that electronic excitation energies arc $nall
relative to E The momentum transfer calculations assune that the incident aIId scattered photon
energies are equal. Finally, Eq. (2c) sums up all final states even when the corresponding hansitions arc
not allowed. However, Sr,sr has two important practical properties: a) it approaches zero as d (and

hence, lfl) goes to zero, and b) it approaches zero as E (and hence, l4l) Soes to zero, In other words, Srsr

is zcro for scatkring angles for momenhrm transfers of zero. These prcp€rties are consistent with the
experimental data despite the approximate natue ofthe ISF derivation [l7]

B. ImPulse aPProximation

IA expands upon the simpler KN treatment of inelastic scattering by modeling effects due to motion of
the targ€t elechons. The practical result of IA is a DDCS with respect to the final photon energy and
solid angle.

l. Enet'gl dnd momenlum conseflation
Thg flrst step in deriving IA is to solve the relativistic energy and momeltum conservation (EMC)
relations for photofl saatkdng on a bound electlon as a two-body elastic collision- For a collision that

occurs in a space specified by the vectors r and r (see Fig. 3), in an electron potential energy V, the
EMC relations are

E + E"+V(;)--  E +E"+r( ;  )  (3b)

-  E:1 (3c)
(3d)

(3a)



,l

Here f stands for momentum in units ofrnc, while E stands for energy in units of mc2 and the

unprimed and primed quantities describe the incident and scatt€rcd particle states, respectively. The
momentum and energy of electon and photon states arc denoted by the subscripted @y e) and un-
subscripted quatrtities, respectively. As the collision is assumed to occur without appreciable change in

position, then i = i and I/ drops out of Eq. (3b). The system (3) with no Z describes the ftee electron at
large distance from the atom (the observed electron) after the intenction with the photon, only if the
effect of the potential Z after the collision is small.

z = (F - F) / | F - l, F O," - il/ | F.- F.l

FIG. 3. The momentum conservation diagram for the collision of a photon with an electron. A useful
choice ofthe z-axis is illustated (in the dircction ofmome[tum tansfer).

The equation system (3) is valid only for scattedng angles A > 0. When A= 0, the EMC system is
different since the energy and momentum mag[itude ofthe photon and electron rcmain utrchaflged aft€r
collision. Hence, one must exercise caution in taking the limit 0 J 0 to solutions of(3).

Both exa.t ard apprcximate solutions can be derived from Eqs (3). Assuming a stationary electron (p" =

0) leads to equation (1). Using apFoximate but still relativistic forms of fus. (39) and (3d), a common
implemeotation of IA[8] derives a one-to-one correspondence between the z-axis projection of p" and

,EJ . A similar correspondence can be derived when using electron energy from classical mechanics
(nonrelatMstic), by assuming,A'is close to t The commoo IA approximation presented next, while the
exact solution is pres€nted in the section on BIA.

The z-axis is chosen (Fig. 3) to denote the direction ofthe momentum tansfer /t = h 4=F'- F.
speci f ical ly,  i ' -1,=ln '  Fl2,  i  -F":-G'-F)=- lF ' -p l t ,  p,=p:,  py=p;,  p. , ,= p ' . . , ,ard

p.,, = pi," .The first two equations can also be written as p', - p, = Ap , and p;,, - p",, - -Lp where

np=lp-pl- , l lFf . lFf  ZFl lF =JE'-Er-rEE*"0.

F2 - tF-t ;  ! I : \2

Hence,

(3e)



Or,
p"."-(E-E) +2(E-E\, l l+P'  + p: ." .

p;., - p"."=-ry.

EE'(l-cos0)+ E'- E

(30

Assuming that Ji p' = t in Eqs. (30 leads to

P.. . (  E.cosq, E l=

sotung lor -c . we oDnm.
Fcl

t tz.cosl, r,,l=1_fu;lt- p!.,t"o"0 * p.,,rlr-zr*"e **111'","i"41

$lherc FE JE. Eqtatior (4a) aan be written as
l, | = r'-coso\- Lp-P"',
E E 'EE

(4a)

]' tarr

(4c)

The last term of (4c) leads to the DopplerJike broadening of the scattered photon en€rgy spectrum sinc€
po changes ftom one scattering event to another. Setting p.,. = 0 implies that -E = E:. Hence, the

Compton peak is associated with p.,, = 0 (scattering on elechons at rest). It follows thatp,,, = -l for

E'=0, p".,=a for E =E!, p..,=EJO-*"ey2=Esin0/2 forE'=E,ard p,,, =1+tr(l-cosa) for

E'= 
-.Hence, 

p","varies over the interval [-l,l + E( 1- cos aJ] as E' varies from 0 to -.

2- The IA DDCS
The derivation ofthe IA-DDCS involves two steps. Fi$t Quartum ElectrodlaEmics (QED) is used to

obtain the DDCS for the scattering ofthe photon, characterized by 4 momentum (/. f ). on a free and

moving electron, ofspecified momenhun ana e"etgy (l,rl) [8,16]. Io the second step, the compton

effect is extended to the scattering ofphotons by the electons in motion about the atom. The derivation
assumes that electrons bound to an atom axe simply Aee electrons with the momentum dishibution
characteristic of the atom. In a detailed quantum mechanical treatrnent the motion ofbould electrons is
restricted by the binding potential and by the rules of transitions. But in IA the bound moving electrcn
DDCS is approximated [10,18,19] by the product ofthe fre€-electron DDCS and the atomic €lectron

momentum distribution p(t) , which is the Fouri€r transform of the square of the absolute value of the

position wav€ function, for each shell i. The QM cross section calculatiod assumes that the Compton
photon-electron intemction happens quicHy (impulsively) such that the electron does not move
significantly during the interaction ard the potential felt by the electron during the interaction is
constant. This allows th€ cross section to be computed from unperturbed wave functions. The removal
of the electron from the atom requires that the momentum tansfer is large. Hence, from the QM point of
view, the validity of the IA approximation is conditioned by a quick and large momentum tlansfer.

Assuming an isotopic p@l) distribution the following IA DDCS rcsult can be derived [8, 20, 21] for

the i-th sh€ll containing Z electrons,



' ' )

|  1'" |  - , , ;E--J:- xtp.pr.7.r,rp" ' , t  .
ldEdcosql ,  

"  E , ! t ,  p,*  Lp
(5a)

" = "1^,*1 = 4*f .,(+-+).(+-+i, (sb)

t* pi.,* pt^'"l= I otloo' o o<
(5c)

The variablep.a is the minimum of p = f i '+ p3.,+ p?..  when--<p,"<-and *<p.. ,<-. I f

p." is assumed to be independent ofpa, and p",r,lJ|.et,p-i.: p"."(E, cos , E') leading to Eq. (4a) or

similar apprcximations. But if pa, is dependent o[P",' andp",], as we will see io the BIA section, we use

p-t =pa"(E,cos,E',p"o=0,p"r:0)inEqs.(5) The compton profiIe, Ji(p".), as parameterized [20]
by Eq. (5c), depends only on the pararneter Jr,6 Tab.ulatedp2f J;6 values for all atomic shells are
available based on the Hartlee-Fock symmetric atomic model. f\e fnction & @",) has a peak of

height Ji." at pe." = 0 and attains a value ofO.5 Jl.atp","= p2)=0.9216l2J,.o andp"- E'(p!j,cos9)1.

The paxameter -/i, varies over the range of 1 to 250 (in uoits of l/mc; l/mc unit = 1/137 of the

t / n e'unit rrsed in tabulation [22]). Hence, the function "/i. and the DDCS have significant values only
for low values ofp"". Notice also that

*n"." l = r(.I*p3' +(E-E)pd,lAp), R =R-EE(l-cose)'

I  dp-_J_lp-- t= r

J,(p-i")= J dp..- I aP"}P\

,l"r,." lp* l)
2

-  ( t+zIr

I'dp. pp(p) = J'o0+2J,,0 p-, l) exp' " !

(6)

If only eflergy ard momentum coDseryation of free electons moving according to the probability

distribution pfp, are considercd, th€n events with E > E are not excluded. In practical calculations it is
assumed that (QM conditions) t' < E - Ui al:.d E > Ui.

With the above restrictions, the IA DDCS for a mixtue of atoms with the atomic fraction'r, becomes

120,2rl
dzo ,E I  t t^  tF?csq.El)

-  - , rn -- , r ' to{  E-E -u) f ,2." ' ""  "" ' '  r , t
dEdcos9 " E Jt-p|,, 7 ^P

where o(.x) is the H€ayiside fimction (0 ifx < 0, lif x> 0), afi p"."(E') givenby Eq. (4). The 6

function discontinuously reduces the i-th shell conribution to zero for,E' larger than E - Ui' leading to
the discontinuities shown in Figures. 2(a) and 2(b). Since we assume that E') 0 , the i-th shell
contributes nothing to the total DDCS when E < U;, and hence, the DDCS decreases to zero when the

incident photon energy E falls below the smallest binding energy, min(U,), ofthe mixture

Eq. (7) can be rewritten as



, -  / , / -

d'o , lE:  I  . ,
, -7=r, i l :  l  X tu lGtE.cose.E )Jt  p, , , , t=

dltacogd \E. l
)^
:"_!a;G I E -cos 0 - E tJ ( p 

",,1d cosa

rvherc

(.orr^=*il4l x^,.
dCOSA \L.)

-{* 
= 

-1----"-ttn' r,

The last expression is zerc for all E > max(t- U,) = t-min(U,). Itis also zero for allE < min(U,).

(8a)

Also, we can write
d,o

dp.,d cosg

where

= !9L F (E,cos e. p.., rJ ( p,.,)

(8b)

(8c)

'  (10)

(l0b)

(9a)

'wnerc

F(E,cose,p,')=G(E,.."e,8 )+=l +]'4 J 
qtlt='i . tt' 'dp", \E. ) ,,!t + pj., x* 

^p
The firnction F is unity at p".,= 0 (whqeE : E" andJ1p.,,)=J;o : maximuu). Significant deviation

from unity occurs only when l(p") differs significardy ftom zero arrd can therefore be approximated

[2U by a linear fimction axound 1. This range is centered about zero and is usually, but not always,
included in the interval 1-.1,1).

3 . The Impulse Approximation SDCS
The energy integation ofthe i-th atomic shell contribution Eq. (5a),leads to

Eui
f  , -^.-

S,(1' .cos9,U l -  |  dLA(t-cosa,E )J, lp"J lL-cosa.L D, { luc)

,do =] = 4.o* ^su1r,e,zt .ld cosa Ju d cosv

S il(E,0, z\ = > lz p(E - u,)5,(E,cos 0,u,),

i. max

t.
S (E.cos d.U )  |  dp--FlE.p-- .cose\J.(p. . \- t  -"  J

with

(10d)



F(E, p".,,cos0) = G(8,E (p".,,aose)'cose)* dE /dp",.

1;T = p.,"(X,x = z-U,,cosd) 
(l0e)

III. BLENDED IMPULSE APPROXIMATION

A. A morc exact energy-momenfum relation
An exact solution ofthe EMC Eqs. (3f) leads to the following expression forpe,,
p".z( L.cos A. L, p;,,. p;,, | =

L?EE \1 cos?)I"l@E Q-cos?))'?+2EE (r-cosq{;r+ p:,,+ p:.,) E-E l (l la)

@

(l rb)

lJl+-n'+rtr+i'-,[l+n') rcostp.l.l '- l lr+ ,r^lr*V -ttf ' -r'p,i 
lrr*r;..*p;,r' 

(1r')

The double sign term in Eq. (1 la) is zero at ,' = ,E, and the minus and plus sign should be used below
and above -E' : -E, respectively. The minus sign in Eq. (1lb) is valid forp." < 0, while dre plus sign is
valid for p"," > O (D is zero 

^t 
p.,":0). In cotrtast to Eqs. (4a) afi (4b), p"" and E are no longer in a

one-to-one lelation, because p", andp", occw as ftee paxametem. Figures 4(a) - 4(c) show the
dspendence oft' on p.,, as given by Eqs. (4) and (l1b), assuming average values for pi,r and p!,".

To evaluate the integral "/ in the IA-DDCS (Eq. (5a)), we assumed Eq. (4a) wherep', is independent of
p"." ?,ndp",, 

^I..dherrce, 
p^" = p4,(E,cosq,E ). In contmst, when Eq. (1la) is u6e4 then we usep,r, =

p",.(8, cos , E', p",'=0, p".r=0).
Fignres 4(a)-4(c) show ZogE is approximately linear in p.."e (l,l) for Eq. (l1a), in contmst with the

approimate case Eq. (4a). Secondly, the slope of energy-momenhm dependence strongly deQt9ases as
the scattedng angle approaches zero. Since Eqs. (11) are approximated by Eqs. (4) for small values of
pe,,,p.,y, paz, we aan estimate the value of the constant slope dLogE /dp"." fiomBqs. (4) for smallp.,.
We have:

E ( E-cose, p:.,. p:.,. p:,j) = Et

wnefe €=t1 J|, a'I(l

D=

f - tz^^

I I +r(Jr+ i' -1) ) - t'pj.,

I f''
t l

l rdE'  l r  l  I
lz ap,.. 

":.- | e' an, | |- _i,=o 
L ac, ),1,=" 

-

where gl =E (p".,=p"r: p"." :0).

-  LP(E,\  ( l td)
E

Lp(E)/E/E lt- p4,Eo (E - E cos 0) /(E Lp(E ))
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Finally, afew values ofp', .  are as fol lows: p","=* forE'=0, p.,.=O for E =Ec=

E t(1+ E(1-cos9)/(r+ pi.,+ fi,)), n.,"=E.l(l-cos4)/2 = Esit4l2 for E =E,and p".,=- forE :

*-. Hence,p", varies from -@ to +e when fr varies Aom 0 to +-, a different behavior than in the
standard implementation of IA.

B. The concept ofelectron partial (or rescaled) momenhrm
The main purpose of oul paper is to propose an ad hoc modification to the relationship E =E (p",) thal
eliminates the IA-DDCS sharp discontinuities and improves agreement with expedment in the vicility
ofE-Ui. As in the IA, p,," is used to parametartze 4 p"..)- But now we assume tbat only a parr pfl of

p",", denobdby p{. , can partrcipate in the the momentum tmnsfer between the el€cton and the photon.

We seek a monotonic nonlinear transformat ion g: p,,, = g( p{, t . We require g to restrict the energy

E':E ( p{, p.," =0, p,., = 0 ), calculated by Eq. (l lb), to the interval Io,t/. Thus g must confne p"{ to

the interval (--, zaftt - cos 4l Z ) . Thercfore, acceptable rescaling functions, g, must satisry

C : (*, EJ(l- cos A) /21 --!!4!!:-> (*, +-) . In addition, th€ condition gfo) =0 has to be satisfied if

we wish to preserve the position of Compton peak maximum. But this condition is not strictly necessary.
Also, a shell dependefi p.., = g@'{,) could be proven useful for a more detailed description ofboth

total and shcll DDCS. Here, our purpose is only to illustrate the method and hence, we use only
p..,= c@{") with g(0)=0. To simptry the rotation, we will write p.,.(p{") irctead of g(p"{") aad

p{1p..,) itrstead of g-'(p.,) .

Application ofa scaling function g subject to the above coustaints is equivalent to limiting the taxget
electron momentum that can paticipate in the collision to a fraction ofthat available. In the absence of
a theoretical foundatiotr for "paxtial electon momentum," g can be selected empirically. One simple
implicit folm ofg with g(0) = 0, is:

p"." = p".,(p{,) = p{ /(r- E (p{,) / E)+b,

where E (p,{) is oalculated from Eq. (l1b). Two simpler explicit forms are

i t  i< nq <F
(r 2b)

o<p{,<E
(12c)

where a and 6 are constants to be chosen. Eqs. (12b) and (12c) are easily irwertible, a usei.rl property

for Monte Cailo simulations. With these definiliols,E'=E ( py", p"., =0, p"." = 0)e10, El, while j Aom

Eq. (5c) describing the electron momentum distdbution in the atom, is still a function of p",, . Notice

that p".. ( p{ = 0) : 0 if D = 0 and hence, the DDCS peak value occurs when either the actual or

lescaled momentum is zerc. We use here only the case ofD = 0. However, tirough selection ofthe
additive constart b, Eqs. (12) can be used to shift the Compton peak according to experimental data

(r2a)

*]

n-"t t]
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C. Blended Impulse Approximation
We combine the ISF and IA apFoximatioDs to yield a DDCS that can be adapted systematically to
match experimental data, such that its int€gral over energy is equal to th€ ISF SDCS, or to an
experimentally corrected ISF SDCS. Combining the incoherent-scattering function with a Compton
profile has been used previously [9] to obtain a non-adaptable IA-DDCS. Ow approach allows
independent adjustment ofthe DDCS energy spectum shape, via pe, scaling, and the adjustm€nt of the
SDCS and total-cross-sections from a.n ISF databas€.

First, similar with IA, Eq. (8a), we can wdte
d'o ) dotsF GlE.cosq.E lJ(p.,,1

at a .xJse _",,= a;;a s-,eaJl

_ dorsF G(E,cose,E )J(P.,,)
d cos7 >Lz,S:

where

S; (E,cosq = 
! dE G(E,cos',E')J,(p..,(E, cos A, E )) =

Idp ".,F 
(E,cos e , p 

".,)J lp "..)
J \p..,1->f,Z.J,(P, (8.cosa,f )) .

Note that no restrictions ofthe formE'< E-Ei?flrdE-Ei> 0 are placed on the limits of integation.
Integrating over E' for fxed fl yields exactly the ISF SDCS. S,- is very close to unity for all shells

except the tightly bound (K) shells. Notice that the above procedure can also be applied to shell ISF
data ifavailable. In this case, Eq. (l3a) becomes

G(E,cose,E \IZJlp

(l3a)

(13b)

(13c)

Eq. (13a) will allow scattered photons to exceed E, as sholvn by Fig. 2(a). An ad boc form ofthe DDCS,
one that rctains the Compton profile maximum position and follows the trend ofthe experimenta.l
values, is obtained by using padial €lectron momentum rescaling to map Eq. (13a) ftom the intewal
E'€ [0,-) into the interval E 'e 

[0, E], and by rescaling it with the adequate multiplication constart to
give the proper E integral, i.e., the ISF SDCS .

Using p! =s1s'1ar\d p"., = e(E) forEq.(1la)and p.." = c@{,)= ck@^)) forEqs. (12a)to (l2c)

then e(E)= g(e(E")) or E =et(s (e(r'))) and E =e'(c '@ (E'))). The desired DDCS in the

energy E is then defined as

| , l:" ,l = -!91;, - crr,"o"a,G(E'"o"0'E \!=\)t(!, '(p{'@'))) ir E"<E <E (14a)
LdE dcose )",, dcose q(E,cos9)

I  o '"  I  =r[do,* l
lE d cose )"" lld cos0 )",,,, , S rz s-



.  t ;_

I  a 'o I  ao^"  ̂ .  -  ^ .G(E.cose.E vtp"
t_ |  _ 

-(  te.coso' l_
ldE d cosq )",,  dcosq a(E.cosa)

(r')
,  i f  O<E" =E !E,. (l4b)

Here,

a(E ,cos q = 
! dE"G(E ,cos 0 ,E (E"))J (p 

",,( 
p{.(E )))

We included with Eqs. (l4a) and (l4b) a multiplicative conection factor C(E, cos(d)), whose values are

unity unless we aan evaluate fiom expedm€nl better values, to increase its adaptability to tho
experimental values..

Since Eq. (14c) contains the whole atom ISF function, the values of C derived from experiment are
likely to be close to rmity in most ofthe cases, in view of the comparisons of the whole atom ISF results
with the experiments [7]. IfISF data are available for individual shells, fu. (14c) can be appropriately
changed similarly to eq (l3c). In this case, the corection factor is split illto indMdual shell correction
factors, which could be significandy different from unity for lower shells.

Figures 5(a) and 5(b) compare BIA (Eqs. (14), (lzb) with a:2),IA, and S-matrix calculatiotrs to
experimental rcsllts to show the feasibility ofthe DDCS improvement by using momentum rescalirg.
The Gold K-shelt BIA-SDCS ofFig. 5(a) was scaled (as suggested above) by setting C = l-667 to better
fit the expcrimental data. It shows that the BIA-DDCS shape differs essentially from IA and S-matrix
and that it follows the decrease shown by the experiment in the vicinity ofE - Ur . For scattering of70
kev photons by Cu , BIA also removes the sharp deqease in the DDCS , Fig. 5ft). From this figure it
can be seen thit while BIA ilherently does not allow photon energies larger)th6ficidEnti-FotoD encigy
it does allow Compton scattered photons of energy higher than E tlr. T\e p",, - /g relationship, Eq.

(l2c), leads to similar results for Gold., Hence, an appropriate ad hoc ftaction ofthe electron momentum
can imprcve dramatically the DDCS. If studied systematically for different shells and atoms, this
plocedule might also lead to physical consequences for the photon or for its scattering mechardsm.

For Tin, we found that the BIA-DDCS derived ftom Eq. (l2c) decreases faster than the experimetrtal
curve shown in Fig. l(b) in the vicinity oft - UK, indicating that amore appropiate p", - p{,

relationship is needed for lhis case. Clearly the BIA model can aacommodate this task by a selection of
shell dq)endent-constant C and ofthe scaling tuJrctiot g( py). to match the expcrimental DDCSs.

Howevel meaningfirl work in this direation rcquires a consistent set of sufficiently accurate
experimental DDCSS, for a range of incident photon energies.

Fig. 5(c) compares the total (all-shell) BIA-DDCS, using Eqs. (14) arLd p"., = gl p"!,lofEq. (l2b) witb a
= 4, to the €nergy-restricted total IA-DDCS for photons of 10 keV scattered by Cu. In contrast to IA-
DDCS, the BIA-DDCS has no discontinuities and goes smoothly to zerc in the vicidty ofthe incident
photon energy. Again, such a difference must be tested experimentally in detail, and depending on the
results, this will help choosing a shell-dependert or a shell-independelt p.,, = g(p{,| .

( l4c)



T T T
T\

9ko

Ir,l,NI
l -

i

\ "

i,
t_

-.6- BtA (
--.-s-m:

Erp. (a)

rq

o

0.20

--t-
th

(c)- - - - - rA elrh E'< E. ul ,
l=1, toa.h. l l8

f
/i

---/./
\

c
I  0. t5

; .0.r0

t 0.05

E 4.00

; 3.00

iii
3 2.oo

t

s 0.8

:  0. .
E
iii
P 0,4

E 0,2

0.00
240180'| 60114120100

75

1.2

0,0

65 t  o 
tn" ' . f t l , "u,  'o 

o 10s

FIG. 5. a) Compaxison ofBlA-DDCS (a:4) with IA, S-matrix and experimental data, E = 320 kev
photons scattered on the K-shell ofAu at 115 degrees. b) Comparison ofBIA-DDCS (a = 4) with the
IA-DDCS and experiment, E = 70 kev scattered on the K-shell ofCu at 90 degrees, c) Compa.rison of
the BIA-DDCS (a = 2) and the IA-DDCS, for ar incidetrt energy E = l0 kev scattered on Cu (all shells)
at scattering angle of90 degrees.

.-e- B|A (a =4) , )
FS-matrl)
- Exp€rlr

Cu
KB el l ( l B ke' ,*

1..,
t

0 o' j

& .ia #' to

' { Tr +



i t '

IV, CONCLUSIONS
A review of the Impulse Approximation (IA) for calculating Compton photon-electron scattenng
probabilities reveals a paucity of measwed, double-differential cross-section (DDCS) data with respect
to angle and energy, especially for scattered photons in the energy region near the incident photon
energy E The K-shell DDCSs derived ftom IA display undesirabl€ discontinuities alld poorly match

available experimental continuous DDCSs between the Compton energy t"'and E. Similar discrepancies

with respect to expedment are displayed by the S-matrix results. Bocause fiumerical evaluation ofIA is
so straightforward, we have proposed an ad hoc rnodification, called the blended impulse approximation
(BIA) that combines the incoherent scattering approximation, an IAJike apFoximation for the DDCS,
and an ad hoc concqrt ofpaxtial (rescaled) electron momentum that replaces the electron momentum in
the energy-momentum cons€rvation relations. The empirical relationship between the rescaled (partial)
momentum and original target electon momeltum, aan be manipulated to improv€ the agrcement
betweeo predicted and measured DDCSs, and to eliminate unphysical discontinuities.

The BIA method results in a DDCS that has a nurnber of advantages. BIA rcmoves the undesirable
discontinuiti€s in the DDCS, indicates betler agreement with existing expedmental data, and provides a
general DDCS form for incorporating evaluated experimental data lts eoergy inte$al exacdy
reproduces the SDCS obtained by correcting the Klein-Nishina distribution by the ISF factor. A
multiplicative constant, assumed to be unity in the absenae ofexperimental dat4 call be used to improve
the ISF approximation. This constant can be manipulated to improve the fit to expsrimental data wh€n
available. Further improvgment rcquires finding an optimal partial elecfon momefltum function, and the
evaluation of an ISF scaling factor as expedmental data becomes available A comprehensive DDCS
measurcment for the Compton effect on bound el€ctrons is necessary for fnding an optimal paxtial
electron momentum function. The ad hoc BIA-DDCS method that uses a paxameter-ftee partial
momentum transfomation, can be readily used in Monte Carlo photon transport codes. Therefore, the
BIA procadue and the electlon momenhrrn rescaling provide, at this stage, afl empirical tool for
systematically improving ageement with the experimental data for the DDCS and the SDCS, in photon
scattering on bound elechons.

Finally, we suggest two morc powerful rcsources associated with the concept of paxtial electron
momentum. a) Since S-matrix DDCS'S display similar behavior as the IA-DDCS in the vicinity of t-U.&
the ad hoc concept of partial elecaon mome[tum could also be used in the context of S-matrix with
similar benefits. b) The partial electron momentum might have a direct physical signihcance for the
photon: the Compton interaction is such that the photofl sees only a part of the electrcn momentum lf
further considerations do not allow such a direct physical significance, then the partial electron
momentum might indicate the need for a revised mechanism of the Compton effect, different for free
and bound electrons. The experiment of looking for electron-el€ctron correlations in the Compton effect
might be a staiting point toward a revised mechanism.
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