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METRIC SPACES, GENERALIZED LOGIC, AND CLOSED
CATEGORIES

F. WILLIAM LAWVERE

Author Commentary:
ENRICHED CATEGORIES IN THE LOGIC OF GEOMETRY AND ANALYSIS

Because parts of the following 1973 article have been suggestive to workers in several
areas, the editors of TAC have kindly proposed to make it available in the present form.
The idea on which it is based can be developed considerably further, as initiated in the
1986 article [1]. In the second part of this brief introduction I will summarize, for those
familiar with the theory of enriched categories, some of the more promising of these further
developments and possibilities, including suggestions coming from the modern theory of
metric spaces which have not yet been elaborated categorically. (The 1973 and 1986
articles had also a didactic purpose, and so include a detailed introduction to the theory
of enriched categories itself.)

While listening to a 1967 lecture of Richard Swan, which included a discussion of the
relative codimension of pairs of subvarieties, I noticed the analogy between the triangle
inequality and a categorical composition law. Later I saw that Hausdorff had mentioned
the analogy between metric spaces and posets. The poset analogy is by itself perhaps not
sufficient to suggest a whole system of constructions and theorems appropriate for metric
spaces, but the categorical connection is! This connection is more fruitful than a mere
analogy, because it provides a sequence of mathematical theorems, so that enriched cate-
gory theory can suggest new directions of research in metric space theory and conversely,
unusual for two subjects so old (1966 and 1906 respectively).

The closed interval [0, co] of real numbers as objects, > as maps, + as “tensor” and
truncated subtraction as adjoint “hom”, constitute a bona fide example of a complete,
symmetric, monoidal closed category V. For any such V there is the rich system of con-
structions and theorems (worked out by Eilenberg and Kelly, Day, and others) involving

- V-valued categories;

- V-strong functors;
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- V-natural transformations as an object of V' and hence
- V-functor categories, A-transformation and double dualization;
- the Cayley-Hausdorff-Yoneda lemma;

- free V-categories (generated by V-graphs) whose adjointness expresses Dedekind-
Peano recursion via an objective geometric series;

- V-valued “relations” or bimodules and their convolution;
- Kan quantifiers which give extensions in particular well-defined situations.

All of these turn out to specialize, for the stated example V', to important results and
constructions for metric spaces:

V-functors are Lip; maps;

- the V-natural hom of two such turns out to be their sup-distance;

some embedding and extension theorems of the Polish school and of MacShane
follow from the general Yoneda-Kan lore;

profunctor composition is Bellman-Fenchel convolution.

It is important that, in general, metric spaces satisfy only the two axioms for a V-
category; the evidence is compelling that the usually-given more restrictive definition
was too hastily fixed. Note that our V itself is quite non-symmetric (from now on we
use “symmetry” of A to mean that A°® = A in an object-preserving way, rather than
to mean that the tensor is commutative). A metric space can always be symmetrized
(by one of two methods, + and max), but it is often better to delay that until the last
stage of a calculation, because the natural asymmetry carries considerable information
and also because the main rules for passing from one stage of a calculation to the next are
adjointness relations. Even though examples from pure geometry are symmetric, many
constructions arising in dynamics as well as many constructions in analysis lead naturally
to non-symmetric metric spaces; for example, the Hausdorff metric on subsets of a metric
space, or the usual distance between subsets of a probability space (usually discussed only
in their symmetrized form) yield in particular an “approximate inclusion” partial order
upon applying the standard monoidal functor (represented by the unit 0) from V' to the
cartesian-closed poset Vj of truth-values.

Likewise, metric spaces need not have all distances finite, but one can (when appropri-
ate) restrict consideration to those points which have finite distance to a given part. The
coproducts in V-cat naturally have infinite distance between points in different summands;
infinite distance corresponds to a vacuous hom-set in the case of ordinary categories.

The relation between truth-values V; and distances V' may be understood, informally,
in terms of the cost or work required to transform or move one point to another, and
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formally in terms of three adjoint monoidal functors. The inclusion of 1} into V' interprets
“true” as zero distance or “already achieved”, but interprets “false” as infinite distance
or “unattainably expensive”. This inclusion has a right adjoint which transforms any V-
category into the underlying Vj-category (or poset) as mentioned above; but it also has a
left-adjoint 7y which is also monoidal and hence transforms a V-category into a different
Vo-category ordered this time by finiteness of cost.

The symbol 7y for the “finiteness” monoidal truth functor was chosen by strict analogy
with the relation between simplicial sets and abstract sets, where the connected compo-
nents concept is indeed the left adjoint of a left adjoint and moreover monoidal (with
respect to cartesian product). Following the Hurewicz tradition we can define for any
V-category A a corresponding homotopy category mypA and in particular for V-functors
f1 and f, from A to B a corresponding homotopy value 7o(B4)(f1, f2).

The content of the resulting “homotopy theory” is largely about rotations: Defining
translations to mean automorphisms at finite distance from the identity, one sees that
these form a normal sub-group with a recognizable quotient group in the case of Euclidian
space, where the “search light effect” shows that these are indeed only the translations.

Closed subsets of a metric space have been identified with certain Lip; functions on the
whole space in both constructive analysis and variational calculus. More precisely, every
V presheaf is a V' colimit of representables, but among those are the mere Vj colimits
(infima) and indeed between those the sup metric is the same as the (non-symmetric)
Hausdorff metric. Every presheaf has in particular its zero set (and more generally sub-
level sets).

The interpretation of presheaves as refined subsets suggests the following further con-
struction: By definition, representables A are V-adequate in presheaves V4™, but how
co-adequate are they? That is measured by the monad which is the composite of the
Isbell conjugacies to and from (V4)°P, i.e. double dualization into the identity bi-module.
The action of this monad on subsets is the formation of the closed convex hull (at least
in case A itself is a closed convex subset of a suitably reflexive Banach space).

Although habitually the diameter is used as a measure of the size of a subset, for many
purposes a more appropriate (because more functorial) quantity is the radius, defined as
follows: The direct limit functor from V4 to V exists and in fact is just inf; given any
presheaf F on A

rad(F") = inf?(F™)

where ()* is Isbell conjugation.

V-cat is itself a monoidal closed category and moreover the monoidal endo-functors
of V act on it, giving rise to a fibered category whose maps include Lip, functions for
various A. But these monoidal functors are considerably more general than multiplication
by a constant so that Lipschitz continuity, as well as Hausdorff dimension, admit much
more refined measurements. Note that the square root, but not squaring, is monoidal.
This suggests a whole family of monoidal structures on V-cat interpolating between the
standard one given by V and the cartesian product at the other extreme (probably it
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already occurred to analysts that an equation like
1 1 1

+
p q T

indicates that the parameterization chosen may not have been the most natural.) Thus,
contrary to the apology in the introduction of the 1973 paper, it appears that the unique
role of the Pythagorean tensor does indeed have expression strictly in terms of the enriched
category structure.

The geodesic re-metrization G is the co-monad on V-cat, resulting from a general
categorical idea: Namely, it measures the adequacy of a particular family of objects, in
this case a family of intervals parameterized by V itself.

Recent work of Gromov and others suggests that V-cat itself has a useful structure as
a V-category. Presumably the Gromov distance between two metric spaces A and B is
the symmetrization of a more refined invariant obtained as their Hausdorff distance in an
extremal metric on A + B; but the latter metrics are determined by bimodules, which is
a standard V notion!
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dell’ Universita di Perugia

METRIC SPACES, GENERALIZED LOGIC,
AND CLOSED CATEGORIES

(Conferenza tenuta il 30 marzo 1973)*

SUNTO. — In questo articolo viene rigorosamente sviluppata l’analogia fra
dist (@, by + dist (b, ¢) = dist (@, ¢} e hom (4, B) ® hom (B, C) > hom (4, C), giun-
gendo a numerosi risultati generali sugli spazi metrici, come conseguenza di
una «logica pura generalizzata s i cui «valori di veritd » sono scelti in una
arbitraria categoria chiusa.

INTRODUCTION.

It is a banality that all mathematical structures of a given kind
constitute the objects of a category; the sequence: elements/struc-
tures/categories thus has led some people to attempt to characterize
the philosophical significance of the theory of categories as that
of a « third level of abstraction ». But the theory of categories ac-
tually penetrates much more deeply than that attempted characteri-
zaion would suggest toward summing up the essence of mathema-
tics. The kinds of structures which actually arise in the practice of
geometry and analysis are far from being « arbitrary », and indeed
in this paper we will investigate a particular case of the way in
which logic should be specialized to take account of this experience
of non-arbitrariness, as concentrated in the thesis that fundamental
structures are themselves categories. Two cases of this thesis have
been known for 30 years; an ordered set (often called poset) is a
category in which for any ordered pair of objects there is at most
one morphism from the first to the second, while a group is a cate-
gory in which there is just one object and in which every morphism
is a isomorphism. That the thesis has non-vacuous implications for
these two cases follows from the facts that when the general idea

* Pervenuta in Redazione il 16 novembre 1973.
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of functor between categories is restricted to the special categories
(that is to the posets, respectively to the groups) it agrees with the
correct idea of morphism between these fundamental structures (i.e.
with order-preserving map, respectively group homomorphism) and
that a functor from one of the special categories to some category
(e.g. that of vector spaces) is itself an important structure (a direct
system of vector spaces, respectively a linear group-representation;
moreover the correct morphism between these structures are then
just the natural transformations). Two further cases of the thesis
have been developed in the past 10 years: functorial semantics, in
which categories with special properties are identified as theories
and special functors as interpretations or models, and the theory
of topoi, in which certain categories correspond to (usefully gener-
alized) topological spaces.

By taking account of a certain natural generalization of cate-
gory theory within itself, namely the consideration of strong cate-
gories whose hom-functors take their values in a given « closed
category » <U (not necessarily in the category S of abstract sets),
we will show below that it is possible to regard a metric space as a
(strong) category and that moreover by specializing the constructions
and theorems of general category theory we can deduce a large part
of general metric space theory. The theory of closed categories (and
of strong categories valued in them) was originally developed to
deal with more complicated examples such as compactly generated
topological spaces, Banach spaces, differential graded modules, ete.,
and moreover some of the publications on the subject seem forbid-
dingly technical to the beginner. I hope that this article can also
be read as an introduction to closed categories on the basis of the
guiding example of metric spaces considered as strong categories
valued in the closed category of nonnegative real quantities.

Since closed categories are just what is suficient to have a
reasonable theory of strong categories, we consider some examples
of the latter first in order to bring out the elementary nature of
the analogy on which the present work is based. In a metric space
X, we will denote by X(a, b) the non-negative real quantity (we will
allow the value «) of X-distance from the point a to the point b.
Then the laws satisfied by X are greater-than relations

X(a,b) + X (b,e) = XAa,0)
0 X (a, a) .

IV

(see below for remarks on the possible non-symmetry of the metric).
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In a category X, we will denote by X(a, b) the abstract set of X-
morphisms from the object a to the object 5. Then the composition
law and specification of identity morphisms for X are mappings

X{a,0) X X (,¢) — X(a,c)
I — X (a,aq)

(which are subject to associativity and unity axioms which may be
expressed as commutative diagrams of mappings betwen abstract
sets, using elementary properties of the cartesian product X of ab-
stract sets and of the one-element set 1). In a poset X, we will de-
note by X(a, b) the truth-value of the X-dominance of the element
a over the element b. Then the transitivity and reflexivity laws for
X are entailments '

X, ) A X, ¢) - X(a,c
true = X (a,a).

If K is a commutative ring, then in a K-additive category X we will
denote by X (a, b) the K-module of X-morphisms from the object a
to the object b. Then the composition and identity laws for X are
K-linear mappings

X(a,b) @ X(O,¢) — X (a,c)
K — X (a,d«)

(again subject to associativity and unity axioms which may be ex-
pressed by commutative diagrams of K-linear mappings of K-mo-
dules, using elementary properties of the K-tensor product ® of K-
modules and of the K-module K). Thus we are led to consider that
a greater-than-or-equal-to relation between nonnegative real quan-
tities is analogous to a K-linear mapping between K-modules, since
both are morphisms of possible hom-values for categories X, but in
two different closed categories <. Similarly, the sum of quantities
is analogous to the tensor product of modules, both because they
play the same role in the structure of a <Q-valued category and also
because they satisfy the same « elementary properties » (within <V
itself) of functoriality (i.e. monotonicity in the case of quantities),
of associativity and commutativity up to <Q-isomorphism (i.e. up
to equality in the case of quantities), and of having a unit object K
(the zero quantity). We have the table
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composition

‘domain of domain of
X hom-values law and ssition dentity 1
for X identity law COmMPpOsITIO laenuity law
for X law for X for X
metric nonnegative = sum Zero
space real quantities
category abstract sets mapping cartesian one element
product set
poset truth values entailment conjunction true
QY -valued  objects in<) morphism « tensor » unit object
category in @ product K for tensor
in Q@ product
in

The associativity and unity axioms which the composition law and
identity law of a <P-based category X must satisfy are automatic
in the case of metric spaces or posets since all diagrams in ¢ com-
mute if P =reals or <P = truth-values.

None of our results in this paper will depend on the additional
Frechet axioms:

if X (a,D) = 0 then ¢ =D
X(a,b) < oo
X (a, b) = X (b, a)..

The first of these is not very natural from the categorical viewpoint
since it corresponds to requiring that isomorphic objects are equal;
passage to the quotient can be avoided (as it must be for ordinary
categories) by employing equivalence (broader than isomorphism) of
strong categories. Allowing o« among the quantities is precisely
analogous to including the empty set among abstract sets, and it is
done for similar reasons of completeness; a metric space can be ana-
lyzed as a structured system of metric spaces with finite distances
by considering the equivalence relation defined by « X (e, b) < o« and
X(b, a) < » ». The non symmetry is the more serious generalization,
and moreover occurs in many naturally arising examples, such as
X (a, b) = work required to get from o to b in mountainous region
X. Also within analysis itself a naturally arising metric is often
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non-symmetric but traditionally symmetrized by one of the two
procedures
X (a,b) + X (b,a)
max (X (a,b) , X (b, a))

which in fact could be applied to any metric; we mention three
common examples where this nonsymmetry exists. If M is any Boo-
lean algebra equipped with an outer measure, then

Ma,b) = M (b — a)
def

(where b—a=0Na" in the Boolean algebra and M(c) denotes
the measure of ¢) defines a metric space in which

0= M(a,b) iff a Db

almost everywhere.

(For more about this example see the section below on closed
functors).

If K is any convex set we may define a metric on it by

K(a,b) = f}?ib{—log (ar) }

where f:a — b means that f € K with ¢ on the open segment from f
to b, with o, then denoting the 0 <o <1 with e = (1 —a) f + a b.
(The proof of the triangle inequality follows from the fact that K
is actually a « normed category », since if g:b — ¢ we can define
fg:a—c by

1 — oy

fg o= My ML)

1 —ayag 1 — oy oy ’

note that this is associative and that a;, =o;a,, and adjoin iden-
tities formally). The notion of « normed category » can also be
related to the (nonsymmetric) Hausdorff metric

2X(A,B) = sup inf X (a,d)
aCA  bEB

for subsets A, B of a metric space X: let f: A — B mean that f is
any mapping from A to B and define

[l = sup X(a,af);
ac A
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then by the axiom of choice

X(4, B) = inf |f

and the fundamental property of a normed category

Fl+lgl=1ry

leads to a proof of the triangle inequality. We will leave as an exer-
cise for the reader to define a closed category S (R) such that
« normed categories » are just S (R)-valued categories and a « closed
functor » inf: S (R)— R which induces the passage from any
« normed category » to a metric space with the same objects. Another
approach to the Hausdorff metric will be evident from the discussion
below of the comprehension scheme. The canonical symmetrization
procedure actually applies to categories valued in any given closed
category <V ; in general, symmetry of a < -valued category X has
to mean (not a property but) a given structure consisting of Q-
isomorphisms
oap: X (a,b) — X (b, «)

subject to suitable coherence axioms, and the first canonical proce-
dure (specializing to the sum in the case of a metric space) is

sym (X)) (a,b) = X(a,b) ® X (0, a).

We still have not, in this introduction, touched on the property
of closed categories for which they are calied « closed ». Basically,
closed categories are closed with respect to the operation of forming
the hom of two objects, so that <P itself is a fundamental example
of a U -category. The internal Hom (@, ¢) in < is related to the
internal tensor product in 0 by adjointness so that there is a na-
tural one-to-one correspondence between the <Q-morphisms

b — Hom («, ¢)

and the <P-morphisms
a®b— c.

Thus in the closed category R = [0; «] in which metric spaces are
valued

ce—a if c=u

Hom (@, ¢) =
-0 if a=c
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so that the Hom-& adjointness reduces (if we denote by « minus »
this truncated subtraction) to the if-and-only-if

b=¢ — a
a +b=¢'

whereas in the closed category S in which ordinary categories are
valued, it reduces to the rule of lambda conversion

B — (4
AX B —0C

and in the closed category 2 in which posets are valued, it reduces
essentially to modus ponens and the « deduction theorem »

o=y
aN\p oy

i.e. the internal Hom for truth-values is implication. We will also
assume that our closed categories <U0 have cartesian products and
coproducts over arbitrary index sets as well as equalizers and co-
equalizers, i.e. that they are complete and cocomplete. From general
properties of adjoint functors it follows that & preserves direct
limits in each variable separately, while

Hom (lim a;,¢) = lim Hom (ai, ¢)
ﬁ‘ +_.

Hom (a, lim ¢) = lim Hom (a, ¢)
<— “~—

For example in R, lim means sup and lim means inf; in particular
< —>

0 is the empty lim and « is the empty lim so that
< —

CL-—*—OO:OO
¢ — oo =
0 —a

This completeness of <@ itself will be necessary for most of our
general constructions. We will not consider (categorical) comple-
teness of <P-valued categories; but on the other hand we will see
that completeness in the Cauchy sense does have a meaning for
categories valued in any closed <.
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The general constructions of functor categories, free categories,
left and right Kan extensions, and « discrete » fibrations reduce in
the very special case U = 2 to higher types, transitive closure of
a relation, existential and universal quantification, and the prin-
ciple of set abstraction. Like the operation of implication mentioned
above, the position of all these constructions in the general scheme
as well as their fundamental properties of transformation are uni-
quely determined by adjointness. Since logic signifies formal rela-
tionships which are general in character, we may more precisely
identify logic with this scheme of interlocking adjoints and then
observe that all of logic applies directly to structures valued in an
arbitrary closed category < (not only to structures valued in truth-
values). For example, in quantitative logic (the case U — R with
which we will be mainly concerned in this paper) the isometric
embedding of a metric space into a space of functions with sup
metric is the application of the exactly same principle of logic which
in the case U — 2 gives Dedekind’s representation of a poset by
order ideals, and the upper and lower integrals of a real function are
precisely cases of the generalized universal and existential quanti-
fication. This vast generalization is quite compatible with the spe-
cialization of logic called for in the first paragraph: although for any
given U we could consider « arbitrary » <@ -valued structures, there
is one type of such structure which is of first importance, namely for
<D respectively truth-values, quantities, abstract sets, abelian groups,
the structure of respectively poset, metric space, category, additive
category (a very natural generalization of ring) is the generally
useful first approximation possible with <Q)-valued logic for ana-
lyzing various problems; it even seems that there is a natural se-
cond approximation, namely the structure of a « rigidly <U-closed
<D -category » which in the four cases mentioned specializes roughly
to partially ordered abelian group, normed abelian group, rigidly
closed category, and (in the additive case) to a common generali-
zation of the category of locally free modules on an algebraic space
and the category of finite-dimensional representations of an alge-
braic group. Detailed discussion of this second approximation awaits
further investigation, as does the extension of the results of this
paper to an arbitrary base topos, i.e. the extension from the constant
abstract sets which we consider here to continuously variable sets as
«sets» of points for metric spaces, as index «sets» for products, etc.

Of course the really deep results in a subject depend very much
on the particularity of that subject and the results we offer here in
the field of metric spaces, taken individually, will justly appear



METRIC SPACES, GENERALIZED LOGIC, AND CLOSED CATEGORIES 143

shallow to those with any experience. Indeed for me the surprising
aspect was that methods originally devised to deal with quite dif-
ferent fields of algebra and geometry could yield any significant
known theorems at all (for example the known theorem on extension
of Lipschitz maps in section three). But there are many particular-
ities, for example the special role of quadratic metrics, which I do
not see how could be a result of « generalized logic ».

1. - CLOSED CATEGORIES, STRONG CATEGORIES, STRONG FUNCTORS,
CLOSED FUNCTORS.

In this paper we use the term « closed category » as short for
« bicomplete symmetric monoidal closed category ». That is, a closed
category <U has equalizers, coequalizers, set-indexed products and
coproducts plus a « monoidal » structure, which is symmetric and
closed. A monoidal structure is a given functor

XK .
D X VD — <D
which is symmetric
u@v=0vQR u
and associative
v WR®w = (u®v) X w

and has a unit object k satisfying
E@Qv=v= Rk,

more precisely, the symmetry, associativity, and unitary isomor-
phisms are in general required to be given, natural, and «coherent»,
but since these conditions are automatic in the particular examples
we consider, we do not emphasize them (MacLane). That the mo-
noidal structure is closed means that we are further given a functor

Hom

Doy X VUV — D

and two natural transformations

A
u —> Hom (a, a @ u)

€
a @ Hom (a,v) — v
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such that the two processses

S A Hom (a, 1)
a® u— v ~>u— Hom(a,a® u) ——— Hom (a, v)

g @ (X)g €
w — Hom (a,?) ~—> a® v —— a ® Hom (a,v) — v

are inverse bijections,

a @ u —> v
v S Hom (4, 0)

Thus in particular there is a natural bijection

a — v
k — Hom (a,v)

between <U-morphism a — v and <P-morphisms from the unit object
to the object Hom(a, v) for any two objects a, v of <V, in terms of
which the natural transformation € behaves as an « evaluation »
morphism, and two successive applications of appropriate instances
of evaluation corresponds to a <QP-morphism

Hom (a,bd) ® Hom (b,¢) — Hom (a, ¢)

which represents a « strong » form of composition. There is mo-
reover a natural double-dualization morphism

w — Hom (Hom (u, d), b)

for any fixed object b.

The simplest non-trivial example 2 of a closed category, which
serves as the values for classical logic, has two objects false and
k = true and three morphisms

false F false
false |-~ true
true H true

with conjunction and implication as the tensor and Hom. Conjunct-
ion is of course symmetric and associative and since

U~ a—=— (a N\ u)
a N\ (a = v) v
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always, we have the bijection

a /\ U=
b (a =)

i.e. for any assignments of false, true to the three variables a, u, v
either both or neither of these entailments exist. In particular

at— v
true - a —> v
and
@@= A b=>0c)F a=>c
and

W (0 —=>b) = b.

A somewhat more general and « dual » example is as follows:
let M be any system of subsets of a given finite set which con-
tains the empty subset &k = ¢j and which is closed with respect to
finite unions and with respect to set-theoretic difference; for
a,veE M let a—- v mean that a o v, and let ¢ @ u mean a U u.
Then < is a closed category since

a U u o0
v v —

(Even if 97 is not finite, our condition of bicompleteness can often
be achieved by considering e.g. measurable sets modulo null sets).

Our central example R has as objects all non-negative real
quantities (including «), as morphisms ¢ — v the greater-than-or-
equal-to relations a > v, and as «tensor» a ® u=—a + u the sum
of quantities. Then Hom is forced to be truncated subtraction

vV — a v

v

«
Hom (a,v) =
0 a = v

(dehoted simply as subtraction) where in particular

o — oo = 0
© —a = oo if a3 o

T — o0 ='0
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(bicompleteness holds since

II v = sup o
i€T €T
2 a; = inf @
icI icI

and equalizers and coequalizers are trivial). We have in particular

a = v
O0=9v—a

b—a 4+ (¢ —b) =¢ — «a

u=5b—(0b—wu).

The « original » example of a closed category is the category
S of abstract sets and mappings with the (unique) closed structure
in which tensor means cartesian product, k=1 is a one-element
set, and Hom(e, v) is the (abstract) set of (indices for) all the map-
pings a — v.

Given a closed category <UJ, a strong category valued in <, or
simply a <P-category X is any structure consisting of a specified
set of X-objects a, b, c... together with the assignment of an object
X (a, b) of P to every ordered pair of X-objects (a, b), the assign-
ment of a <P-morphism

X(a,0) @ X(b,¢) s X(a,c)

to every ordered triple {a, b,c) of X-objects, and the assignment
of a <Y-morphism

na
k — X (a,aq)

to every X-object a, subject to the conditions that the following
diagrams in @ always commute

X(a,b) & pevea

X (a,0) ® (X (b,e) ® X(¢,d)) —— > X (a,0) ® X (b, d)
D — assoc = l

(X (a,b) ® X(b,c)® X(cd) Habd
pave Q X (¢, d) J

X(b,e) ® X(e,a) X(a,d)

MUbed
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VD —unitary = na @ X (a,b)
X (a,b) EQ X (a,b) - X(a,a) @ X(a,b)
U — unitary = j N
X(ah) @k N id N Hava
X(a,b) ® m J N
X (a,b) ® X (b, b) X (a,b)
Habb

Thus an S-category is just an ordinary (small) category-whe-
reas if Q== Ab the category of abelian groups then an Ab-category
with one object is just an ordinary ring (and more general Ab-cate-
gories arise in linear algebra just as naturally as do rings, e.g. all
finite rectangular matrices over a given field form an Ab-category
with the natural numbers as objects). The associativity and identity
axioms (i.e. the above commutative diagrams) are (like coherence)
automatic in case <P itself is a poset, and hence, as claimed in the
introduction, a 2 -category is an arbitrary poset while an R-category
is an arbitrary (generalized) metric space.

Every <pD-category X has an opposite X with the same objects
and units but with

Xor(a,b) = X(b,a)
and
Xor(a, ) ® X* (b, c) pe Xer (a, ¢)
X (b, a) (% X(6b) = X(6bh)Q X (b a) — )|£|'(c,a)
chba

If we define also
sym (X) (a,b) = X (a,b) @ X (b, a)

with
Hape
sym (X) (e, b) (>|? sym (X)(b, ) sym (X) (a, ¢)
(X (a0,0) @ X, a)) QI) (&b 0) ® X(, ) H
(X (a,0) @ X (b, 0))®(X(0 b) ® X (b, @) — X (a,0) @ X (¢, a)
Uabe ® Uceba

and
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Mo
k — sym (X') (@, a)
l e @ 7a l ,
E® k - X(a,a) @ X(a, a)

then sym(X) is a <V-category isomorphic with its opposite in an
object-preserving manner.

In case the objects of < can be indexed by a set (which by
bicompletness actually forces <P to have a poset as its underlying
category) then <@ itself is an example of a <P-category (more ge-
nerally any small part of © becomes a <VU-category) by setting

U (a¢,bd) = Hom (a,Dd)

Thus 2 is an example of a poset, while R is a (highly non-sym-
metric) example of a metric space. But sym(R) is the usual
metric on the reals.

f
If X and Y are two <U-categories, then by a <U-functor X - Y
is meant any structure consisting of mapping of the objects of X
into the objects of Y together with an assignment of a Q-morphism

Jab
X(a,b) — Y(fa,fb)

to every ordered pair (a,b) of X-objects, subject to the commuta-
tivity of the following diagrams in <.

Hae
X(a,b) @ X (b,0) X (a,c)
fab ® fbc \L J/ fac
Y(fa,fo)® Y (b fo) Y (fa,fe)
/ufa b fe
X (a,a)
775/ |
14
I+
Y(fa, fa)

Thus an S-functor is just an ordinary functor between (small)
categories, an Ab-functor is just an additive functor (e.g. a ring
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homomorphism in case X has only one object) while a 2 functor
(satisfying

X(a,b) = Y(fa,fd))

is an arbitrary order-preserving mapping from the poset X to the
poset Y, and an R-functor (satisfying

X(a,b) = Y(fa, fb))

is an arbitrary distance-decreasing map (Lipschitz map of Lipschitz
constant < 1) from the metric space X to the metric space Y.

J g
If X—>Y and Y > Z are <P-functors we can define (9f). as
the composition

. Jav SN R
X(a,b) —— Y(fa, fb) —.Z(gfa, gb)

in U to obtain a U -functor X iZ and thus a category <P -Cat
whose objects and morphisms are all the <Q-categories and <P-funec-
tors. In the next section we will see that <J-Cat (e.g. the category
of metric spaces and distance-decreasing maps) is itself a closed

category.
@
A morphism between closed categories QU — QO is basically

the concentrated expression of a process which takes every <QJ-cate-
gory X into a qQQ -category @ X with the same objects, every <V -
functor f into a qQQ0-functor @f and in general interprets <J-valued
category-theory as <QQ-valued category-theory; in view of many
examples it is too restrictive to require that @ « strictly » preserves
the tensor product and Hom, so we adopt the following definition.

<4
A closed functor is a triple comsisting of a functor U — O, a
QO-morphism

@0

and a natural transformation
] Puv
D)@ D) — D (u v
1Y) v

subject to compatibility between themselves and with the given
symmetry, associativity and unitary isomorphisms in @ and O
(Eilenberg-Kelly).
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For example, any locally small closed category <0 has a cano-
nical closed functor
D — S
to the category of abstract sets defined by
V(u)y = set of all QU-morphisms k— u

’
1.5 V(k) — the identity <U-morphism k — k

with
Dy ug

Vi) X Vi(ug) — Viuy @ uy)

5 fa
the mapping taking any ordered pair k— u;, k— us into

.fi ®j‘2

ko — k K@k — u, @ u,.

If 91 is a Boolean ring of sets made into a closed category
with union as tensor as above then a closed functor

M
mM—-R
is any order-preserving real-valued function on <91 satisfying
0 = M(9)

M(a) + M) = M (a Ub)

i
i.e. an « outer measure ». The closed functors R — R are just the
« subadditive » order-preserving functions, i.e.

Uy = Uy = AUy = L Uy
0= 10"

Ay + Auy = A(uwy 4+ uy).

P
If @ — QO is any closed functor and X any <P -category, then

(P X)(a,0) = @ (X(a,)))
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(D )ave
(@ X)(a,b) ® (D X) (o) (P X)(a, )
W
v @ |
DX (a,b) @ X(b,0)) D (X (a,c))
- D D(pabe)
(Pn)a ,
kqp ———— 7(@]1)((1,(0
o\ /P (1)
e
D (k)

defines a <Q0-category @X with the same set of objects as X. Mo-

reover if X —f> Y is any <QU-functor by defining @f to be the same
mapping as f on objects and (Pf), =— D@ (f.») We obtain a QO — func-
tor #X — @Y, and moreover this process is compatible with com-
position of <U-functors (and more). For example, any <P -category
X has an underlying S-category VX because of the closed functor

v
D — S.
D
In particular if < is small and Q@ — QO is a closed functor,

then @ P is a QO -category. As an example, any Boolean ring of

M
sets M equipped with an outer measure <] — R becomes a metric
space.

2
If R — Ris a closed functor X and Y are metric spaces, then
an R-functor :

!
A X — Y
is just a function satisfying
A(X(a,b)) = Y (fa, fb).

Since multiplication by a given constant is subadditive and thus a
closed functor, we see that the study of (a very natural generali-
zation of) arbitrary Lipschitz mappings X — Y is naturally incor-
porated into the functorial set-up.

A special class of closed categories are those in which the
tensor product is actually the categorical product, which amounts to

w — v @ v,
U —> vy, U —> Vy
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further « rule of inference of propositional Logic »; such closed ca-
tegories are usually called cartesian closed. S and 2 are cartesian
closed, while Ab and R are not. If a category admits a cartesian
closed structure, then that structure is essentially unique. Ab does
not admit a cartesian closed structure, but the underlying category
of R does admit the cartesian closed structure R.,: in which

u @ v = max (u,v)
vV > a

a,v) =
Hom (a, v) 0 a=u

An R..-category is just an ultrametric space, so that all of our
general results may be reinterpreted as applying to ultrametric spa-
ces. Moreover, the identity mapping R..: — R is a closed functor
(i.e. @ + v = max(a, v)) which induces the inclusion

R..+-Cat — R-Cat

of ultrametric spaces into all metric spaces.

2. - FUNCTOR CATEGORIES, YONEDA EMBEDDING, ADEQUACY,
COMPREHENSION SCHEME.

If A and X are two <U-categories then there is a <P-category
A X X whose objects are the ordered pairs (a,x) of objects and
whose hom-values are

(A4 X X)(a,z),{aya)) = A(a,a) X X (2, a)

the last being the cartesian product (e.g. max. in the case of R) in
<D. But if 9 is not cartesian closed, there is another more impor-
tant <V-category structure on the same objects, defined by

(4 ® X)(a,z)(a/,2')) = A(a,a) Q® X(z,a).

This gives, for example, the l;-style metric on the product of two
metric spaces. The unit & for this tensor product has one object *
with k(x, *)=F%.

This tensor product of <PU-categories always has a « Hom »
adjoint to it, making <QJ-cat itself into a closed category. This Hom
always has a concrete interpretation in terms of « strong natural
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transformations » ; we are going to denote it by Y4, and its objects
are just all the QUJ-functors A — Y. Recall that in the usual S-valued

J1, fa
case, a natural transformation f; — f» (where A —— Y) is a family
of Y-morphisms indexed by the objects of A, more exactly, an ele-

ment of the set I Y(f,a, f-a) subject to equations indexed by the
acd

elements of the A(a, b). In the <P-valued case, we define directly
(not the set of but) the <P-object of natural transformations
YA(f1, f2) by the equalizer in <0 of the two morphisms

in

YA (fi,fo) — I Y(fia,fya) 3 I Hom (A(a,b), Y(fia,fb))

a€A ab€4

whose constructions we leave to the reader. A <Q-morphism
I — YA(f:, f-) may then be identified with a strong natural transfor-
mation f; — fo. In case P is itself a poset, as with @ = R, the
two morphisms are already equal so that Y4(f,, fz)—_—_—g Y (f,a, f2q)

in such a case. Since I in R means sup, we deduce that
YA (fi, /) = OSLIEIB Y(fia,foa)

in the case of metric spaces, i.e. that the sup metric on the space
of 1-Lipschitz maps is a special case of the general notion of -
natural transformations. The reader should be able to verify that
there is a bijection

AR X —»Y
X — Y4

between the two indicated sets of <U-functors at least in the case
D =R.

Of special interest is the case U A°?, because of the existence
of the basic Yoneda embedding

A — a?

which is the <PD-functor whose value at an object @ of A is the
D-functor A? — P defined by

« ~— A(a, a)
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and which works on A-morphism objects precisely by use of A-com-

s
position. Saying that a <O -functor A — Y is <QU-full-and-faithful iff
each of the <U-morphisms

fab
Afa,b) — Y(fa,fb)

is actually an isomorphism, we have the important Yoneda Lemma
(Eilenberg-Kelley): The Yoneda embedding is, for any closed <
and any <QD-category A, a <P-full-and-faithful <P-functor.

As a simple example, note that for QO = 2, an order-preserving
map A — 2 is equivalent to an order-ideal in A, and the Yoneda
embedding is simply Dedekind’s representation of a poset by its
principal ideals. In the case VU = S or VY= k-Modules, the Yoneda
embedding is often (especially when A has one object) called the
regular representation of 4, and Yoneda’s Lemma includes Cayley’s
theorem on representing an abstract group by transformations. For
a metric space A and for each point a, the function assigning to any
point o’ its distance to a is a distance decreasing function, and Yone-
da’s Lemma states that assigning to each a the just-described func-
tion is an isometric embedding of A into the space R A% where the
last is equipped with the sup metric.

More generally, given any <P -functor A -;X, we can consider
the Yoneda representation of X restricted to A, i.e. the composite
<D-functor

P
X — DI? . qQa”?

which assigns to each x the functor A% — < defined by
o/ ~— X (w’, x). In case this restricted representation is still <p-full-
-and-faithful on all X, we say after Isbell that ¢ is <P-adequate,
or in case 7 is an inclusion that A is a <P-adequate subcategory of
X. This concept is the basis of much representation theory of cate-
gories, especially for algebraic categories and topoi, since it often
happens that a quite small category A is adequate in a quite large
one X. (We hasten to point out that this paragraph is meaningful
even when < is not small; for example QU A° can be interpreted
in terms of « modules » as in the following section). For example, if
QU = abelian groups and A is any ring, then A (considered as a
QD -category with only one object) is adequate in any category X of
A-modules, no matter how large.
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In particular, to say that a subspace A of a metric space X is
adequate is to say that for any two points «;, 2 of X, the inequality

X (g, 05) = S%% (X (a, z5) — X (a, )]
a

is actually an equality, i.e. that for any d > 0 there exists a € A with

X(a,2) + X(@,2) < X(a,z,) + d.

For example, the unit circle is adequate in the unit disc (this simple
example was pointed out to me by Prof. Isbell). A more restricted
notion is that of <-density, by which we mean (here differing in
terminology with some authors) that i, 0i* = 14 in the sense of the
next section on bimodules; this reduces in the case of metric spaces
to the requirement that

X (2, x,) = ifelg[X (@), ta) + X (ia, ;)] .

Proposition. - If a distance-decreasing map A — X of metric
spaces is R-dense, then it is R-adequate.

Proof. - We always havé
Xa,2,) + Xy, @) = X(a,a,) + X (2, a0) + X(a,2,) .

But by taking x,==2; in the definition of density, we see that
X(a, zy) + X (%1, 0) < d for suitable a € A, as required.

Define a particular metric space A whose points are the na-
tural numbers and for which

‘ (0 1 = m

A (nym) = O n=m

Then R A° is just the space of all sequences of nonnegative reals,
with the (nonsymmetric) sup metric. Say that a metric space X is
separable iff there exists an R-dense map A — X. Then

Corollary. - Any separable metric space X can be isometrically
embedded in the space of all sequences of non-negative reals with
the sup metric.

To discuss the « comprehension scheme » we will limit ourselves
to those closed categories <P in which K =1, i.e. in which the unit
object for the tensor product is also the terminal object of <
thus for this form of the comprehension scheme, 99 may be car-
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tesian closed, e.g. S or 2, but more generally e.g. R satisfies this
condition, as does the category of so-called « affine modules » over
a given commutative ring (but not the usual category of modules).
This has the effect that for any <P -category E, there is a canonical
« augmentation » E(e, ¢) — K. Thus we may simply consider the
category <UD -Cat/B of all @ -categories equipped with with a -
-functor with codomain B, and compare it with the category <U? of
all @ -functors with domain B and the fixed codomain <J. Namely,

given any F iB, we define ¢,: B — <P by the coequalizer diagram
in
SE@ )@ B@@,h) 3 ZB(@E,b) > ¢p)

where one of the two morphisms in induced by the functor p follo-
wed by composition in B, while the other is induced by the augmen-
tation. In the case <YU=R, this simply means that for any distance-
decreasing map p from a metric space E to the fixed metric space
B, we define a real-valued function on B by

@p (b)) = inf B(p(e),b)

i.e. the distance from the image of p to the variable point b.
In the case YU =2, ¢, is the order-preserving map B — 2
defined by

@p (b) = true iff Je[p(e) dominates b in B]

In the case VU =S, ¢,(b) may be interpreted as the set of compo-
B
nents of the category »/b whose objects are pairs e, § with p(e)— b

in B and whose morphisms are morphisms e-—§-> ¢’ in E such that
B=p(pf in B.

The « comprehension scheme » then refers to the right adjoint
of the functor

V—Cat| B — VP

defined by p ~— ¢, . Namely, given any By — <U, define a category
{B|g} whose objects are pairs (b, x) such that k —gi) @(d) in P
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and for which {Ble} ((b,z), (b’,2")) is defined by the following
pullback diagram in <P

n
{Ble} (b,z),,x)) > k
7 xx’ i i x’
B(®,V)=Lk& B(@®,V) — @9(0) @ B(b, V) — ¢ ()
x @ id

where ¢(b) ® B(b, b’) — ¢(b’) is the « action » of B on ¢ adjoint to
the functoriality of ¢ [note that <P-functors with codomain <P al-
ways have an equivalent interpretation as « right modules » over the
domain category]. The morphism » is unique since we have assumed
k=1, but without that assumption it would provide the < -category
{B|lp} with an « augmentation » structure in addition to the struec-
tural functor n. In the case VY = S, {Bl¢} is sometimes called the

category of all elements of ¢, and the functor {B]qo}—iB is the
discrete fibration corresponding to the set-valued functor ¢. In case
D =2

{Ble} = {beB|p() = true }

(accounting for the terminology « comprehension scheme ») and we
have of course

Im(p) € {B|¢}
pp = @

But in the case 99 = R, we have for any « quantity-valued propo-
gitional function » ¢ on the metric space B that

{Bleo} ={0eB|0 = @)}

and for any E’iB ,

Im (p) € {B]| ¢}
inf B(p(e),b) < @(b), all b

To what extent are objects in one of the categories <@ -Cat/B,
DE « equivalent » to objects in the other via this adjoint pair? For

D = S, 2, R respectively, E —p>B must be respectively a discrete
fibration, the inclusion of an order-ideal, the inclusion of a closed
subset in order to have p = {|@,}. On the other side, for V=R
there are distance decreasing maps B — R not of the form « di-
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stance from a certain closed set », but for YV =S or V= 2 every
@ € VD® is of the form ¢, .

3. - BIMODULES, KAN QUANTIFICATION, CAUCHY COMPLETENESS.

For any <U-category Y, we have the canonical Yoneda embed-
ding Y - <Pr* which means in particular that we can consider that
the concept of a Q-functor X — P is a generalization of the
concept of a <P-functor X — Y. Such a generalized < -functor

X~ Y is equivalent to a <O-functor Yo ®X -qi> VU, and may be
considered as a « <P-valued relation » from X to Y, ¢(y, ) being
the « truth-value of the ¢-relatedness of y to = ». In particular,

every <U-functor X —f-> Y thus yields a X |ﬁ> Y defined by
Ju () = Y(y,f(z))

but also yields | Yni;X defined by
SE@y) = Y(f(@),y) .

We first give an alternate description, without recourse to the no-
tion of <P -functor, of such <VP-valued relations as bimodules. We
are using, by the way, the notational convention that inside a
<D -category composition is written from left to right, while com-
position of <PJ-functors and of bimodules (= « relations ») is written
from right to left.

If X, Y are <U-categories, a bimodule X :; Y (also called a
right X, left Y-module) consists of a family ¢(y, ) of objects of
<V indexed by the objects of ¥ and X together with morphisms

Y,y @ oy, x) = ¢, x)
W) @ X (x,v) — @,z

in © which behave as « actions » in the sense that the five axioms
(commutative diagrams in <) of X-unity, X-associativity, Y-unity,
Y-associativity, and mixed associativity (= commutativity of X-ac-
tion with Y-action) hold. Thus in case Q@ = ADb, this is just the
usual notion of bimodule suitably extended to «ringss X and Y
with more than one object. In case P = S, bimodules are someti-
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mes called « profunctors » or « distributeurs ». In case VO =R, a

bimodule X ii)Y between two metric spaces is just a real-valued
function on the product Y X X satisfying

inf [Y(?/lv'y) =+ qs(y,m)] = <P(?/',T/)
Y
inf [y, z) + X(&2)] = @y,r) .

The latter is clearly equivalent to putting a metric on the sum X 4 Y
extending the given metrics and having d(x, y)=oo for x €¢ X, y €Y,
and indeed this alternate mode of description works generally, re-
calling that the infinite quantity corresponds to the empty copro-
duct in <U.

@ h Yo
If X Y Z are bimodules, then composition X > Z is de-

fined by the following coequalizer diagram in <D

2y (5Y) @YU, Y) @ @) 3 é'yw(z,y) ® ¢y x) = (yep)(2))

Y1.Y2

Thus in case <P is itself a poset, v - ¢ reduces to a « matrix
product »

2wy ® ey,
yey

where the sigma denotes coproduct in <V, but in general we take
fﬁéﬁuo’cient of the matrix product modulo the discrepancy between
the two actions of Y in the middle, just as in the familiar case
QP = Ab where one often writes more explicitly

veg=yvQg.
In particular for U = 2
(e o) =3ylyky N\ ¢y, o]
is the usual relational product, While for 9 = R we have
(e (z,0) = infly 2,y + @ )],

!
It can be verified in general that if X — Y—9—>Z are <P -functors,
then

(9 )% = g ° Ja
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where isomorphism of bimodules has an obvious sense; also 1x de-
fined by

Ix(x, o) = X (»,2)

plays the role of identity with respect to composition with any bi-
modules (not only those of the form f,). Further, the composition
of bimodules is associative up to (coherent) isomorphism, but in
general not commutative. Note that the endobimodules of the one-
object category k are in correspondence with the objects of <, with
the composition of these reducing to the tensor product in <.

The concept Hom, right adjoint to & in < has two extensions to
mixed Hom of bimodules, right adjoint on opposite sides to the
composition of bimodules. That is, given any three <D-categories

X, Y, Z and a bimodule X :-)->Z, there are two universal problems:
given any X :-> Y, there is a Y —Z denoted by Hom*(a, ¢) which

B
is « best » in the sense that for any bimodule Y +Z there is a na-
tural bijection of morphisms of bimodules

g — Hom X («, ¢)
peooa— g

likewise for given g there is a « best a », denoted by Hom; (3, ¢) sa-
tisfying

a« — Homy (8, ¢)
feoa—gq

for any .
Explicitly, Hom*(a, ¢) is defined by an equalizer diagram in <

Hom¥ (a, ) (2,y) — ]gXHom (@ (y,2)p, (2,2) 3 II Hom (X (z,, x,),
Hom (OL (y7 f[}i), @ (27 .%’2)))

and similarly Homy(8, ¢) (¥, ) is defined by an equalizer condition
as a subobject of

II Hom (/3(273/): (p(z,x)) .
2€Z

For some bimodules X 1—a> Y, the operation of composing with a,
f~— B> a, has not only the right adjoint ¢ ~— Hom*(«, ¢) but has
also a left adjoint. The typical such bimodule « is one of the form
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7
o=—7f,, where X — Y is a U -functor; presently we will also discuss
the extent to which « all » such bimodules o« are induced by func-
tors f.

!
Lemma. - For any <VQ-functor X — Y and any <QU-bimodule

B
Y > Z, there is a natural isomorphism
f Vs = Hom¥ (f* p)
of bimodules X > Z.

Proof. - One verifies that both sides are naturally isomorphic
to the bimodule whose typical component is

p (&, f () -

Theorem. - For a=1{f,, composition g~ f- a has as left
adjoint the operation of composing with f*

p o~ o fF
Proof. -
p=f*—p
@ — HomY (f% )
@ —> B o fy

!
Corollary. - (Kan quantification). For any <U-functor X —» Y,
the functor « composition with f»

N2
DY — PX

has both left and right adjoints. On ¢ ¢ %, the left adjoint
gives as a result the functor ¢ - f*, whose value at y is the quo-
tient of

2@ ® Y@,y
« modulo the distinction between the two actions of X in the middle »,

while the right adjoint gives as a result the functor HomX*(f,, ¢)
whose value at y is that subobject of

I Hom (Y(y,f(x)), ¢ ()

« on which the two actions of X agree ». In the special case that f
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is U -full-and-faithful, <’ is also full and faithful, or equivalently
the two Kan quantifications are actually extensions, in the sense
that

(pof*) ofe =
HomX ( fi, <P) o fy =

| =

for any ¢.

Proof. - The corollary is for the most part just a summary of
the preceding discussion for the special case Z = Fk (Indeed the co-
rollary remains valid if <QUis replaced by <Oz for any (small)
<D-category Z).

The assertion that, under the assumption that f is <@ -full-and-
faithful, first « extending » ¢ along f (in either of the two adjoint
ways) and then « restricting » along f gives again ¢, is proved in
very much the same way as the Lemma above.

!
Corollary. - Let X — Y be an isometric embedding of a metric

space X into a metric space Y. Then any Lipschitz function X —Z R
can be extended to Y, with the same Lipschitz constant i. In fact,
among all extensions there is a largest one and a smallest one, given
respectively by

@ (y) = inf [p (@) + 2 Y(f(@),9)]

@y = sup (@) — 4 Y(y, f(x)].

Proof. - Apply the preceding discussion to the diagram

Af
AX — 1Y
‘z
II/
N //,’
44
<

noting that 1f as a function is the same as the inclusion f.

As an example of the last corollary, we could take for X the
space of nonnegative step functions on a probability space S and
for Y the space of all nonnegative functions with the natural sup
metric, (so that Y (¥, ¥1) =0 iff ¥, > ¥.), and consider as ¢ the
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elementary integral; thus in general we might call ¥ g-integrable
if o (¥) = p(¥). : : o

The (non standard) name Kan quantification was suggested by
the case Y= 2, in which the adjointness rules reduce to the usual
rules of inference for quantification, ¢ being thought of as property
or relation, i.e. '

(pof*)z,y) = Fzlpz,2) A\ f(®) =y
Hom* (i, 9)(z,9) = Vely = (@) = ¢z, 2)]

But for other choices of <), induced representations and relatively
free universal algebras can be shown to arise as special cases of
these two constructions.

The essential property of a bimodule of the form f, is that
there exists another bimodule f* which is right adjoint to it, in the
sense that there are morphisms

ly — f* o fs
faof* — 1y
satisfying the usual two adjunction equations.

Proposition. - In order that a metric space Y be Cauchy-com-
plete, it is necessary and sufficient that every adjoint pair of bi-
modules

f*
X=2Y%
f*

f
be induced by a Q-functor X —» Y.

Proof. - It suffices to consider X = 1 and show that an adjoint
pair of R-valued bimodules 1 < Y is essentially just a point in the
completion of Y. But adjointness just means that

X (2, 2") = ir;f [f* (@, y) + f*(y, «)]

it [, @) + /%@ 0= Y,v)

in addition to the bimodule property for each of f,, f*. In case
X =1, we have then

0 = igf LS5 @) + fe (®)]

Je ) + f*W) = Y(y,v) -
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Thus for each n we can choose ¥, satisfying, for example

FE) + Faln) < —

n
and then
1

1
l . m < - -
(Yn: Ym) + -

so that we have a Cauchy sequence, and any other choice ¥, sa-
tisfying the same condition would have

o

Y (oo < "
i.e. would be an equivalent Cauchy sequence. Conversely, any equi-
valence class of Cauchy sequences yields an adjoint pair of bimo-
dules by the definition
SE@y) = lim Y (ya,y)

n — oo

Je(y) = lim Y (y, yn) .

n - 00

It can be shown that the suggested definition of « <) -Cauchy-
completeness » means in case <P=Ab that a « point of the com-
pletion » of an additive category Y is simply any finitely generated
projective module over Y, while in case QU= S, it means that Y is
Cauchy-complete iff all idempotents in Y split in Y.

4. - FREE <P -CATEGORIES.

Defining a <U-graph to be a pair consisting of any set X and
any X X X-indexed family of objects of <9J, and a morphism

s
(X,y)—>(Y,d) to be any pair consisting of a mapping X — Y and
any family

y (@, ) — 0 (f(x), f(x))
of morphisms in <J, we have an obvious forgetful functor

<D-Cat — <PU-Graph.
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This forgetful functor has a left-adjoint called taking the free
D -category generated by a <U-graph. Explicitly, the free category
has as objects the vertices of the generating graph, and as hom
from « to x’ has the coproduct in U

Zw y(@,2) @ y@,%) @ ... ® (&a, )

%

over all finite sequences «;...x, of vertices. For example with
<V = k-modules, this formula contains the construction of the
tensor algebra over a vector space, or with U = .S, we have as a
special case the word algebra (= free monoid) over a given set.
For the case U =R, an R-graph is just an arbitrary assignment
vy of quantities to pairs of points, and in the « free metric space »
over such, the distance from x to x” is

inf [y(r,x) + y@,x,) + ..... + 9 (@n, )]
xl...,x

n

the well-known « least-cost » distance.

The adjointness of the free <-category construction contains
the essence of the notion of recursion, especially when one considers
it in relation with bimodules, where it leads for example to the
iteration of endobimodules.

5. - FURTHER REMARKS.

We already remarked that the composition of bimodules is
similar to matrix multiplication, and indeed the analogy with linear
algebra goes further. For example, if bimodules rather than <
functors are considered as the « morphisms » between <P-catego-
ries, then A” ® Y plays the role of « Hom ». Either further deve-
loping that remark in the case A =Y, or proceding directly, it is

natural to define, for any endobimodule Af—>A, Tr (o) to be the
object of <U defined by coequalizer
2 Ab,a) @ a(a,b) 2 2 a(a,a) — Tr (a).
abEA > ac4
The injections a(a, @) — Tr(a), denoted by tr,, are a natural gene-

ralization of many examples of classical constructions such as trace
of endomorphisms or Lefschitz numbers (when o =1,) as has been
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verified by A. Kock. In case A is'a metric space and o =f, where
f is a distance decreasing endomap,

Tr(a) = inf A (a,fa)

showing that the vanishing of the trace is related to the existence
of fixed points. It seems likely that there may be theorems holding
for more general <, relating the trace of an endobimodule to an
infinite iteration of it, which would extend the Banach fixed-point
theorem.

SUMMARY. — The analogy between dist(a, d) 4 dist(b, ¢) > dist(a,¢) and
hom(A4, B) ® hom(B, C) > hom(A, C) is rigorously developed to display many
general results about metric spaces as consequences of a « generalized pure
logic » whose <« truth-values » are taken in an arbitrary closed category.
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