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METRIC SPACES, GENERALIZED LOGIC, AND CLOSED
CATEGORIES

F. WILLIAM LAWVERE

Author Commentary:
Enriched Categories in the Logic of Geometry and Analysis

Because parts of the following 1973 article have been suggestive to workers in several
areas, the editors of TAC have kindly proposed to make it available in the present form.
The idea on which it is based can be developed considerably further, as initiated in the
1986 article [1]. In the second part of this brief introduction I will summarize, for those
familiar with the theory of enriched categories, some of the more promising of these further
developments and possibilities, including suggestions coming from the modern theory of
metric spaces which have not yet been elaborated categorically. (The 1973 and 1986
articles had also a didactic purpose, and so include a detailed introduction to the theory
of enriched categories itself.)

While listening to a 1967 lecture of Richard Swan, which included a discussion of the
relative codimension of pairs of subvarieties, I noticed the analogy between the triangle
inequality and a categorical composition law. Later I saw that Hausdorff had mentioned
the analogy between metric spaces and posets. The poset analogy is by itself perhaps not
sufficient to suggest a whole system of constructions and theorems appropriate for metric
spaces, but the categorical connection is! This connection is more fruitful than a mere
analogy, because it provides a sequence of mathematical theorems, so that enriched cate-
gory theory can suggest new directions of research in metric space theory and conversely,
unusual for two subjects so old (1966 and 1906 respectively).

The closed interval [0,∞] of real numbers as objects, ≥ as maps, + as “tensor” and
truncated subtraction as adjoint “hom”, constitute a bona fide example of a complete,
symmetric, monoidal closed category V . For any such V there is the rich system of con-
structions and theorems (worked out by Eilenberg and Kelly, Day, and others) involving

- V -valued categories;

- V -strong functors;
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- V -natural transformations as an object of V and hence

- V -functor categories, λ-transformation and double dualization;

- the Cayley-Hausdorff-Yoneda lemma;

- free V -categories (generated by V -graphs) whose adjointness expresses Dedekind-
Peano recursion via an objective geometric series;

- V -valued “relations” or bimodules and their convolution;

- Kan quantifiers which give extensions in particular well-defined situations.

All of these turn out to specialize, for the stated example V , to important results and
constructions for metric spaces:

- V -functors are Lip1 maps;

- the V -natural hom of two such turns out to be their sup-distance;

- some embedding and extension theorems of the Polish school and of MacShane
follow from the general Yoneda-Kan lore;

- profunctor composition is Bellman-Fenchel convolution.

It is important that, in general, metric spaces satisfy only the two axioms for a V -
category; the evidence is compelling that the usually-given more restrictive definition
was too hastily fixed. Note that our V itself is quite non-symmetric (from now on we
use “symmetry” of A to mean that Aop = A in an object-preserving way, rather than
to mean that the tensor is commutative). A metric space can always be symmetrized
(by one of two methods, + and max), but it is often better to delay that until the last
stage of a calculation, because the natural asymmetry carries considerable information
and also because the main rules for passing from one stage of a calculation to the next are
adjointness relations. Even though examples from pure geometry are symmetric, many
constructions arising in dynamics as well as many constructions in analysis lead naturally
to non-symmetric metric spaces; for example, the Hausdorff metric on subsets of a metric
space, or the usual distance between subsets of a probability space (usually discussed only
in their symmetrized form) yield in particular an “approximate inclusion” partial order
upon applying the standard monoidal functor (represented by the unit 0) from V to the
cartesian-closed poset V0 of truth-values.

Likewise, metric spaces need not have all distances finite, but one can (when appropri-
ate) restrict consideration to those points which have finite distance to a given part. The
coproducts in V -cat naturally have infinite distance between points in different summands;
infinite distance corresponds to a vacuous hom-set in the case of ordinary categories.

The relation between truth-values V0 and distances V may be understood, informally,
in terms of the cost or work required to transform or move one point to another, and
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formally in terms of three adjoint monoidal functors. The inclusion of V0 into V interprets
“true” as zero distance or “already achieved”, but interprets “false” as infinite distance
or “unattainably expensive”. This inclusion has a right adjoint which transforms any V -
category into the underlying V0-category (or poset) as mentioned above; but it also has a
left-adjoint π0 which is also monoidal and hence transforms a V -category into a different
V0-category ordered this time by finiteness of cost.

The symbol π0 for the “finiteness” monoidal truth functor was chosen by strict analogy
with the relation between simplicial sets and abstract sets, where the connected compo-
nents concept is indeed the left adjoint of a left adjoint and moreover monoidal (with
respect to cartesian product). Following the Hurewicz tradition we can define for any
V -category A a corresponding homotopy category π0A and in particular for V -functors
f1 and f2 from A to B a corresponding homotopy value π0(B

A)(f1, f2).

The content of the resulting “homotopy theory” is largely about rotations: Defining
translations to mean automorphisms at finite distance from the identity, one sees that
these form a normal sub-group with a recognizable quotient group in the case of Euclidian
space, where the “search light effect” shows that these are indeed only the translations.

Closed subsets of a metric space have been identified with certain Lip1 functions on the
whole space in both constructive analysis and variational calculus. More precisely, every
V presheaf is a V colimit of representables, but among those are the mere V0 colimits
(infima) and indeed between those the sup metric is the same as the (non-symmetric)
Hausdorff metric. Every presheaf has in particular its zero set (and more generally sub-
level sets).

The interpretation of presheaves as refined subsets suggests the following further con-
struction: By definition, representables A are V -adequate in presheaves V Aop

, but how
co-adequate are they? That is measured by the monad which is the composite of the
Isbell conjugacies to and from (V A)op, i.e. double dualization into the identity bi-module.
The action of this monad on subsets is the formation of the closed convex hull (at least
in case A itself is a closed convex subset of a suitably reflexive Banach space).

Although habitually the diameter is used as a measure of the size of a subset, for many
purposes a more appropriate (because more functorial) quantity is the radius, defined as
follows: The direct limit functor from V A to V exists and in fact is just inf; given any
presheaf F on A

rad(F ) = infop(F ∗)

where ( )∗ is Isbell conjugation.

V -cat is itself a monoidal closed category and moreover the monoidal endo-functors
of V act on it, giving rise to a fibered category whose maps include Lipλ functions for
various λ. But these monoidal functors are considerably more general than multiplication
by a constant so that Lipschitz continuity, as well as Hausdorff dimension, admit much
more refined measurements. Note that the square root, but not squaring, is monoidal.
This suggests a whole family of monoidal structures on V -cat interpolating between the
standard one given by V and the cartesian product at the other extreme (probably it
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already occurred to analysts that an equation like
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+

1
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r

indicates that the parameterization chosen may not have been the most natural.) Thus,
contrary to the apology in the introduction of the 1973 paper, it appears that the unique
role of the Pythagorean tensor does indeed have expression strictly in terms of the enriched
category structure.

The geodesic re-metrization G is the co-monad on V -cat, resulting from a general
categorical idea: Namely, it measures the adequacy of a particular family of objects, in
this case a family of intervals parameterized by V itself.

Recent work of Gromov and others suggests that V -cat itself has a useful structure as
a V -category. Presumably the Gromov distance between two metric spaces A and B is
the symmetrization of a more refined invariant obtained as their Hausdorff distance in an
extremal metric on A + B; but the latter metrics are determined by bimodules, which is
a standard V notion!
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2 Gromov, M., Metric Structures for Riemannian and non-Riemannian Spaces, Progress in Mathematics,
152, Birkhäuser, 1999.

Department of Mathematics, SUNY at Buffalo, Buffalo, NY
Email: wlawvere@buffalo.edu

This article may be accessed from http://www.tac.mta.ca/tac/reprints or by anony-
mous ftp at
ftp://ftp.tac.mta.ca/pub/tac/html/reprints/articles/1/tr1.pdf



































































REPRINTS IN THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles from the
body of important literature in Category Theory and closely related subjects which has never been
published in journal form, or which has been published in journals whose narrow circulation makes access
very difficult. Publication in Reprints in Theory and Applications of Categories will permit free and full
dissemination of such documents over the Internet.

Articles appearing have been critically reviewed by the Editorial Board of Theory and Applications
of Categories. Only articles of lasting significance are considered for publication.

Distribution is via the Internet tools WWW/ftp.

Subscription information. Individual subscribers receive notification by email of publication
of reprints. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. For insti-
tutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh, rrosebrugh@mta.ca.

Information for authors. After obtaining written permission from any copyright holder, an
author, or other member of the community, may propose an article to an Editor of Theory and Ap-
plications of Categories for the Reprints series. Editors are listed below. When an article is accepted,
the author, or other proposer, will be required to provide either a usable TeX source for the article
or a PDF document acceptable to the Managing Editor that reproduces a typeset version of the arti-
cle. Up to five pages of corrections, commentary and forward pointers may be appended by the au-
thor. Please obtain detailed information on format and style files from the journal’s WWW server at
http://www.tac.mta.ca/tac/.

Editorial board.
John Baez, University of California, Riverside: baez@math.ucr.edu
Michael Barr, McGill University: barr@barrs.org, Associate Managing Editor
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca, Managing Editor
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
James Stasheff, University of North Carolina: jds@math.unc.edu
Ross Street, Macquarie University: street@math.mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
Myles Tierney, Rutgers University: tierney@math.rutgers.edu
Robert F. C. Walters, University of Insubria: robert.walters@uninsubria.it
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca


