COMPACT AND LOCALLY COMPACT GROUPS AND GROUPOIDS
I. C. BAIANU

ABSTRACT. An overview of compact and locally compact quantum groups and groupoids, as well
as Hopf, quasi-Hopf and weak Hopf algebras is presented with a view to applications in Quantum
Field theory and especially scattering theory. New concepts that may be considered as a natural
extension of Drinfeld’s notion of quantum double construction are also proposed.

1. INTRODUCTION.

A salient, and well-fathomed concept from the mathematical perspective concerns that of a C*-
algebra of a (discrete) group (see e.g. Connes, 1994). The underlying vector space is that of complex
valued functions with finite support, and the multiplication of the algebra is the fundamental
convolution product which it is convenient for our purposes to write slightly differently from the
common formula as

(1.1) (fx9)(2)= > flx)g(y).

TY=2

and *-operation

(1.2) fr(z) = fla™t).

(The more usual expression of these formulas has a sum over the elements of the group.) For topo-
logical groups, where the underlying vector space consists of continuous complex valued functions,
this product requires the availability of some structure of measure and of measurable functions,
with the sum replaced by an integral. (Note that this algebra has an identity, the function ¢y,
which has value 1 on the identity 1 of the group, and has zero value elsewhere.)

On the other hand, post 1955, quantum theories adopted a new lease of life when von Neumann
beautifully formulated QM in the mathematically rigorous context of Hilbert spaces. The basic
definition of a von Neumann algebra is outlined in the Appendix. After recalling the concept of
a quantum group in relationship to a (quantum) Hopf algebra (see e.g. Majid, 1995), we shall
proceed to relate these mainly algebraic concepts to symmetry and also consider their natural
extensions in the context of local quantum physics and symmetry breaking. In recent years the
techniques of Hopf symmetry and those of weak Hopf C*-algebras, or quantum groupoids as they
alternatively are known (cf Bohm et al.,1999), provide important mechanisms for studying the
broader relationships of the Wigner fusion rules algebra, 6j-symmetry (Rehren, 1997) and the
study of the noncommutative symmetries of subfactors within the Jones tower constructed from
finite index depth 2 inclusion of factors, also from the viewpoint of related Galois correspondences
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(Nikshych and Vainerman, 2000). Quantum groupoids also figure prominently in the theory of
dynamical deformations of quantum groups and the quantum Yang-Baxter equations (Etingof et
al., 1999, 2001). Motivated by these examples, we introduce through several steps of increasing
generality, a framework for quantum symmetry breaking in terms of a weak Hopf C*-algebroid with
convolution set in the context of rigged Hilbert spaces(Bohm and Gadella, 1989).
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2. THE WEAK Hoprr C*-ALGEBRA

Definition 2.1. A compact quantum group, Qc¢ is defined as a particular case of a locally compact
quantum group Qg when the object space of the latter Q. is a compact topological space (instead
of being a locally compact one).

2.1. Hopf Algebras. In this section we proceed through several stages of generality by relaxing
the axioms for a Hopf algebra. The motivation starts by recalling the notion of a quantum group
in relation to a Hopf algebra where the former is often realized as an automorphism group for a
quantum space, that is, an object in a suitable category of generally noncommutative algebras.
The most common guise of a quantum group is the dual of a noncommutative, nonassociative
Hopf algebra. So we commence here establishing the concept of Hopf algebras as the fundamental
building blocks following e.g. Chaician and Demichev (1996), Majid (1996). Firstly, a unital
associative algebra consists of a linear space A together with two linear maps

m:A® A—A | (multiplication)
21) n:C—A, (unity)
satisfying the conditions
mim®1)=m(1l®m)
(22) m(len)=mhel)=id.
This first condition can be seen in terms of a commuting diagram :

A9 A A "9 Ag 4

(2.3) id®ml lm

AA = A
Next suppose we consider ‘reversing the arrows’, and take an algebra A equipped with a linear
homorphisms A : A— A ® A, satisfying, for a,b € A :

A(ab) = A(a)A(b)
24) (A®id)A = (id® A)A .

We call A a comultiplication, which is said to be coaasociative in so far that the diagram

A9AA L9 494

(2.5) id®AT TA

A9A & 4

commutes. There is also a counterpart to n, the counity map ¢ : A—C satisfying
(2.6) (d®e)oA=(e®id)o A =id .
A bialgebra (A, m,A,n,¢e) is a linear space A with maps m, A, 7, ¢ satisfying the above properties.

Now to recover anything resembling a group structure, we must append such a bialgebra with
an antihomomorphism S : A— A, satisfying S(ab) = S(b)S(a), for a,b € A . This map is defined
implicitly via the property :

(2.7) m(S®id)o A=m(id® S)oA=noe.
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We call S the antipode map. A Hopf algebra is a bialgebra (A, m,n, A, €) equipped with an antipode
map S .

Commutative and noncommutative Hopf algebras form the backbone of quantum groups and
are essential to the generalizations of symmetry. Indeed, in most respects a quantum group is
identifiable with a Hopf algebra. When such algebras are associated to matrix groups there is
considerable scope for representations on both finite and infinite dimensional Hilbert spaces.

2.2. The Weak Hopf Algebra. In order to define a weak Hopf algebra, we can relax certain
axioms for a Hopf algebras as follows :

(1) The comultiplication is not necessarily unit—preserving.
(2) The counit € is not necessarily a homomorphism of algebras.

(3) The axioms for the antipode map S : A— A with respect to the counit are as follows. For
all h € H,

m(id® S)A(R) = (e ®id)(A(1)(h ® 1))
(2.8) m(S @id)A(R) = (id @ &) (1@ h)A(1)
S(h) = S(hay)he)S(hes)) -

As frequently seen in the literature, a weak Hopf algebra is synonymous with a quantum groupoid.
In our setting, a Weak C*-Hopf algebra is a weak *~Hopf algebra which admits a faithful *-
representation on a Hilbert space. It is quite likely that other authors use the term ‘quantum
groupoid’ in the sense of a weak C*~Hopf algebra. Eventually, the notion of a weak C*-algebroid
will be main framework for the type of symmetry breaking we consider here. There are significant
motivating examples concerning weak C*~Hopf algebras which deserve mentioning.

2.3. Examples.

(1) We refer here to Bais et al. (2002). Let G' be a nonabelian group and H C G a discrete
subgroup. Let F'(H) denote the space of functions on H and CH the group algebra (which

ts of the linear span of group elements with the group struct re). The quantum double

LS eal spall 1 W1LIl LI u 84 ure ). 10e quarn iyt douUDie

D(H) (Drinfeld, 1987) is defined by
(2.9) D(H)=F(H) ® CH ,

Q

onsis

where, for € H, the ‘twisted tensor product’ is specified by

(2.10) @ (f1®@h1)(f2® ha)(z) = fi(x)fa(hizhy") @ hihg .

The physical interpretation is often to take H as the ‘electric gauge group’ and F(H) as
the ‘magnetic symmetry’ generated by {f ® e} . In terms of the counit e, the double D(H)
has a trivial representation given by e(f ® h) = f(e) . We next look at certain features of
this construction.

For the purpose of braiding relations there is an R matrix, R € D(H) ® D(H), leading
to the operator

(2.11) R=o (I} @IE)(R),
in terms of the Clebsch—Gordan series HA ® HB ~ N;fg HC, and where o denotes a flip

operator. The operator R? is sometimes called the monodromy or Aharanov-Bohm phase
factor. In the case of a condensate in a state |v) in the carrier space of some representation
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Hé . One considers the maximal Hopf subalgebra T' of a Hopf algebra A for which |v) is
T—invariant; specifically :

(2.12) 2 (P) [v) = e(P)jv) , VP e T .

(2) For the second example, consider A = F(H) . The algebra of functions on H can be broken
to the algebra of functions on H/K, that is, to F/(H/K), where K is normal in H, that
is, HKH ' = K . Next, consider A = D(H) . On breaking a purely electric condensate
|v), the magnetic symmetry remains unbroken, but the electric symmetry CH is broken to
CN,, with N,, C H, the stabilizer of [v) . From this we obtain 7' = F(H)®CN,, .

(3) In Nikshych and Vainerman (2000) quantum groupoids (as weak C*~Hopf algebras, see
below) were studied in relationship to the noncommutative symmetries of depth 2 von
Neumann subfactors. If

(2.13) ACBCBiCByC...

is the Jones extension induced by a finite index depth 2 inclusion A C B of I factors,
then Q = A’ N By admits a quantum groupoid structure and acts on Bj, so that B = BlQ
and By = Bj x @ . Similarly, in Rehren (1997) ‘paragroups’ (derived from weak C*-
Hopf algebras) comprise (quantum) groupoids of equivalence classes such as associated
with 6j—symmetry groups (relative to a fusion rules algebra). They correspond to type IT
von Neumann algebras in quantum mechanics, and arise as symmetries where the local
subfactors (in the sense of containment of observables within fields) have depth 2 in the
Jones extension. Related is how a von Neumann algebra N, such as of finite index depth 2,
sits inside a weak Hopf algebra formed as the crossed product N x A (Bohm et al. 1999).

(4) In Mack and Schomerus (1992) using a more general notion of the Drinfeld construction,
develop the notion of a quasi triangular quasi-Hopf algebra (QTQHA) is developed with the
aim of studying a range of essential symmetries with special properties, such the quantum
group algebra Uy (slp) with |¢| = 1. If ¢” = 1, then it is shown that a QTQHA is canonically
associated with U, (sla). Such QTQHAs are claimed as the true symmetries of minimal
conformal field theories.

3. QUANTUM COMPACT GROUPOIDS.

Let G be a (topological) groupoid. We denote by C.(G) the space of smooth complex—valued
functions with compact support on G . In particular, for all f, g € C.(G), the function defined via
convolution

(3.1) (f * 9)(7) = / Fon)g(r2)

Y1072=7
is again an element of C(G), where the convolution product defines the composition law on C.(G) .
We can turn C.(G) into a *—algebra once we have defined the involution *, and this is done by
specifying f*(y) = f(y~!) . We recall following Landsman (1998) that a representation of a
groupoid G, consists of a family (or field) of Hilbert spaces {H,},cx indexed by X = Ob G, along

with a collection of maps {U(7)},cc, satisfying:
L. U(y) : He(y)—>Hr(y), is unitary.

2. U(v172) = U(71)U(72), whenever (71,72) € G .
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3.U(y Y =U(y), forally€G.

Suppose now G is a Lie groupoid. Then the isotropy group G, is a Lie group, and for a (left or
right) Haar measure p, on G, we can consider the Hilbert spaces H, = L?(G,, ;) as exemplifying
the above sense of a representation. Putting aside some technical details which can be found in
Connes (1994), Landsman (2006), the overall idea is to define an operator of Hilbert spaces

(3'2) Wx(f) : L2(Gcc»,uw)—>L2<Gwa,U4x) s
given by
(3.3) (D) = [ Fen)6) dus

for all v € G, and £ € H, . For each x € X = Ob G, 7, defines an involutive representation
7y : Ce(G)—H, . We can define a norm on C.(G) given by

(3.4) [l = sup [ma (£l ,
reX

whereby the completion of C.(G) in this norm, defines the reduced C*-algebra C}(G) of G. It
is perhaps the most commonly used C*-algebra for Lie groupoids (groups) in noncommutative
geometry.

Compact quantum groupoids were introduced in Landsman (1998) as a simultaneous gener-
alization of a compact groupoid and a quantum group. Since the construction is relevant to
that which we propose, it deserves some exposition before we step to the next level of general-
ity. Firstly, let 2 and B denote C*-algebras equipped with a *~homomorphism 7, : B—%l, and
a *—antihomomorphism 7; : B—2 whose images in 20 commute. A noncommutative Haar mea-
sure is defined as a completely positive map P : A—% which satisfies P(Ans(B)) = P(A)B .
Alternatively, the composition £ = ns o P : —ns(B) C 2 is a faithful conditional expectation.

The next step requires a little familiarity with the theory of Hilbert modules (see e.g. Lance,
1995). We define a left B-action A and a right B-action p on 2A by A\(B)A = An(B) and p(B)A =
Ans(B) . For the sake of localization of the intended Hilbert module, we implant a B-valued inner
product on A given by (4,C)s = P(A*C) . Since P is faithful, we fit a new norm on 2 given by
|A||? = ||P(A*A)|l% . The completion of 2 in this new norm is denoted by 21~ leading then to a
Hilbert module over ‘B .

The tensor product 24~ ®x 24~ can be shown to be a Hilbert bimodule over B, which for i = 1,2,
leads to *~homorphisms ¢ : A— Ly (A~ @A) . Next is to define the (unital) C*-algebra A @g A
as the C*-algebra contained in Lg(A~ ® A7) that is generated by () and @*(A) . The last
stage of the recipe for defining a compact quantum groupoid entails considering a certain coproduct
operation A : A—2A ®gu A, together with a coinverse @ : A—%2( that it is both an algebra and
bimodule antihomomorphism. Finally, the following axiomatic relationships are observed :

(id®%A)OA= (A@gid)oA
(3.5) (d®g P)oA=P
To(A®pQ)oA=AoQ

where 7 is a flip map : 7(a®b) = (b®a) .
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4. APPENDIX

4.1. von Neumann Algebras. Let H denote a complex (separable) Hilbert space. A von Neu-
mann algebra A acting on H is a subset of the algebra of all bounded operators £(H) such that:

(1) A is closed under the adjoint operation (with the adjoint of an element T denoted by T%).

(2) A equals its bicommutant, namely:

A={Ae L) :VBe LH)NC e A, (BC=CB)= (AB = BA)} .

If one calls a commutant of a set A the special set of bounded operators on £(#) which commute
with all elements in A, then this second condition implies that the commutant of the commutant
of A is again the set A.

On the other hand, a von Neumann algebra A inherits a unital subalgebra from £(H), and
according to the first condition in its definition A does indeed inherit a *-subalgebra structure, as
further explained in the next section on C*-algebras. Furthermore, we have notable Bicommutant
Theorem which states that A is a von Neumann algebra if and only if A is a *-subalgebra of L(H),
closed for the smallest topology defined by continuous maps (§,n) — (A&, n) for all < A&,n) >
where < .,. > denotes the inner product defined on H . For further instruction on this subject, see
e.g. Aflsen and Schultz (2003), Connes (1994).

4.2. Groupoids. Recall that a groupoid G is, loosely speaking, a small category with inverses over
its set of objects X = Ob(G) . One often writes G4 for the set of morphisms in G from z to y . A
topological groupoid consists of a space G, a distinguished subspace GO = Ob(G) C G, called the
space of objects of G, together with maps

—_—
(4.1) r,s G—= GO
called the range and source maps respectively, together with a law of composition
(4.2) 0 : G i=GxgoG={(1,72) €GXG : s(n1)=r(1) } — G,

such that the following hold :

(1) s(r10792) =7(72) , r(viov2) =r(n) , for all (y1,72) € GP .

(2) s(z)=r(zx) ==, for all z € GO .
(3) yos(v)=v,r(y)ey=7,forallyeG.

(4) (more)oyz =m0 (r2073) .

1 1

=r(7), v v =30
It is usual to call GO0 = Ob(G) the set of objects of G . For u € Ob(G), the set of arrows u—su

forms a group G, called the isotropy group of G at u. For a further study of groupoids we refer to
Brown (2006), Connes (1994) .

(5) Each v has a two-sided inverse vy~ with vy~
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4.3. Haar Systems for Locally Compact Topological Groupoids. Let

(4.3) G—=gO0 =X

be a locally compact, locally trivial topological groupoid with its transposition into transitive
(connected) components. Recall that for x € X, the costar of x denoted CO*(x) is defined as the
closed set | J{G(y, ) : y € G}, whereby

G(z0,y0) — CO™(x)—X,

is a principal G(zg, yo)-bundle relative to fixed base points (zg, y0) . Assuming all relevant sets are
locally compact, then following Seda (1976), a (left) Haar system on G denoted (G,7) (for later
purposes), is defined to comprise of i) a measure k on G, ii) a measure g on X and iii) a measure
e on CO*(x) such that for every Baire set E of G, the following hold on setting £, = ENCO*(x) :

(1) x ,uw(EI) is measurable.

f pa(Ez) dpg -
(3) ,uZ(th) = py(Ey), for all t € G(z,2) and z,2 € G .

4.4. Compact quantum group proceedings. Locally Compact Quantum Groups and Groupoids:
Proceedings of the Meeting of Theoretical Physicists and Mathematicians, Strasbourg, February
21-23, 2002

Authors: Leonid Vainerman (Editor)

Comments: 247 pages, year 2003, 8 chapters, intermediate to advanced operator, commutative
and non-commutative, algebra level and beyond Description: Two major papers by Leonid Vainer-
man, one with Stefaan Vaes, and the other his editorial, algebraically detailed, Introduction provide
the background and advances in the field of locally compact quantum groups up to 2002. The pre-
vious work on Kac algebras is also explained and the locally compact quantum groups are defined
in terms of C*- or von Neumann algebras equipped with a co-associative multiplication and also

associated left- and right-Haar measures defined by two semi-finite normal weights. The remaining
five papers deal resnectivelv with: nnqnfnm orounoids (by Michael F‘nnr']z nn. 17 to 48: Peter

P acal ICSpPCLLIVELY Witil uallvulll SOupOIGs () MVulhalt: LA0OCK PP v =20, Cvei

Schoenburg, pp.79 to 104; Galois actions by finite QG’s by Korne’l Szlachanyl, pp 106-126; J. M.
Vallin, isometries and QG’s, pp. 229), plus two chapters on specific cases of quantum groups. The
concluding chapter by Alfons Van Deele is on Multiplier Hopf *-algebras representations of locally
compact quantum groups (pp.230-247).

Editorial Book Description verbatim quote:

”This volume contains seven papers written by participants of the 69th meeting of theoretical
physicists and mathematicians held in Strasbourg (February 21-23, 2002)... The book contains
seven refereed research papers on locally compact quantum groups and groupoids by leading ex-
perts in the respective fields. These contributions are based on talks presented on the occasion of
the meeting between mathematicians and theoretical physicists held in Strasbourg from February
21 to February 23, 2002. Topics covered are: various constructions of locally compact quantum
groups and their multiplicative unitaries; duality theory for locally compact quantum groups; com-
binatorial quantization of flat connections associated with SL(2,c); quantum groupoids, especially
coming from Depth 2 Extensions of von Neumann algebras, C*-algebras and Rings. Many mathe-
matical results are motivated by problems in theoretical physics. Historical remarks set the results
presented in perspective.

Directed at research mathematicians and theoretical physicists as well as graduate students, the
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volume will give an overview of a field of research in which great progress has been achieved in the

last few years, with new ties to many other areas of mathematics and physics.”

Keywords:locally compact quantum groups, quantum groupoids, discrete quantum groups, alge-

braic quantum groups, monoidal category structure, locally compact quantum groupoids, Hopf alge-

bra, von Neumann algebra, duality, unitary corepresentations, weak bialgebras, relative tensor prod-

uct, multiplicative unitary, corresponding matched pair, faithful weight, multiplicative unitaries,

quantum subgroup, involutive homomorphism, face algebra, grouplike elements, partial isometrics,

partial isometry, infinitesimal objects, quantum group theory, phase change, monoidal functor,

canonical trace, preprint math, dense ideal, Rights: Copyright@ 2003 by Walter de Gruyter Gmbh &

Co, 10785 Berlin http://www-irma.u-strasbg.fr /rubrique83.html Links:http://www-irma.u-strasbg.fr /rubriquet
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