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Abstract. These notes introduce the fundamental group and the fundamental groupoid of a topological
space and use them to classify covering spaces.
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1. Homotopy theory of paths and loops

Definition 1.1. A path in a topological space X from x0 ∈ X to x1 ∈ X is a map u : I → X of the unit
interval into X with u(0) = x0 and u(1) = x1.

Two paths, u0 and u1, from x0 to x1 are path homotopic, and we write simply u0 ' u1, if u0 ' u1 rel ∂I,
ie if u0 and u1 are are homotopic relative to the end-points {0, 1} of the unit interval I.

• The constant path at x0 is the path x0(s) = x0 for all s ∈ I
• The inverse path to u is the path from x1 to x0 given by u(s) = u(1− s)

If v is a path from v(0) = u(1) then the product path path u · v given by

(u · v)(s) =

{
u(2s) 0 ≤ s ≤ 1

2

v(2s− 1) 1
2 ≤ s ≤ 1

where we first run along u with double speed and then along v with double speed is a path from u(0) to v(1).
In greater detail, u0 ' u1 if there exists a homotopy h : I × I → X such that h(s, 0) = u0(s), h(s, 1) = u1(s)

and h(0, t) = x0, h(1, t) = x1 for all s, t ∈ I. All paths in a homotopy class have the same start point and
the same end point. Note the following rules for products of paths

• x0 · u ' u ' u · x1

• u · u ' x0, u · u ' x1
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//
u0(s)

//u1(s)

OOx0 OO x1h(s, t)

Figure 1. A path homototopy between two paths

• (u · v) · w ' u · (v · w)
• u0 ' u1, v0 ' v1 =⇒ u0 · v0 ' u1 · v1

These drawings are meant to suggest the first three statements:

//
u(2s)

//
x1

//u(s)

OOx0 OO x1

//
u(2s)

//
u(1− 2s)

//
x0

OOx0 OO x0

u v w

u v w

OOx0 OO x3x1 x2

In the first case, we first run along u with double speed and then stand still at the end point x1 for half
the time. The homotopy consists in slowing down on the path u and spending less time just standing still at
x1.

In the second case, we first run along u all the way to x1 with double speed and then back again along u
also with double speed. The homotopy consists in running out along u, standing still for an increasing length
of time (namely for 1

2 (1− t) ≤ s ≤ 1
2 (1 + t)), and running back along u.

In the third case we first run along u with speed 4, then along v with speed 4, then along w with speed 2,
and we must show that can deformed into the case where we run along u with speed 2, along v with speed
4, along w with speed 4. This can be achieved by slowing down on u, keeping the same speed along v, and
speeding up on w.

The fourth of the above rules is proved by this picture,

//
u0(2s)

//
v0(2s− 1)

//u1(2s) //v1(2s− 1)

OOx0 OOx1 OOx2

We write π(X)(x0, x1) for the set of al homotopy classes of paths in X from x0 to x1 and we write
[u] ∈ π(X)(x0, x1) for the homotopy class containing the path u. The fourth rule implies that the product
operation on paths induces a product operation on homotopy classes of paths

(1.2) π(X)(x0, x1)× π(X)(x1, x2) ·−→ π(X)(x0, x2) : ([u], [v])→ [u] · [v] = [u · v]

and the other three rules translate to similar rules
• [x0] · [u] = [u] = [u] · [x1] (neutral elements)
• [u] · [u] = [x0], [u] · [u] = [x1] (inverse elements)
• ([u] · [v]) · [w] = [u] · ([v] · [w]) (associativity)

for this product operation.
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We next look at the functorial properties of this construction. Suppose that f : X → Y is a map of spaces.
If u is a path in X from x0 to x1, then the image fu is a path in Y from f(x0) to f(x1). Since homotopic
paths have homotopic images there is an induced map

π(X)(x0, x1)
π(f)−−−→ π(Y )(f(x0), f(x1)) : [u]→ [fu]

on the set of homotopy classes of paths. Observe that this map
• π(f) does not change if we change f by a homotopy relative to {x0, x1},
• π(f) respects the path product operation in the sense that π(f)([u] · [v]) = π(f)([u]) · π(f)([v]) when
u(1) = v(0),
• π(idX) = idπ(X)(x1,x2), π(g ◦ f) = π(g) ◦ π(f) for maps g : Y → Z

We now summarize our findings.

Proposition 1.3. For any space X, π(X) is a groupoid, and for any map f : X → Y between spaces the
induced map π(f) : π(X)→ π(Y ) is a groupoid homomorphism. In fact, π is a functor from the category of
topological spaces to the category of groupoids.

Definition 1.4. π(X) is called the fundamental groupid of X. The fundamental group based at x0 ∈ X is
the group π1(X,x0) = π(X)(x0, x0) of homotopy classes of loops in X based at x0.

The path product (1.2) specializes to a product operation

π1(X,x0)× π1(X,x0)→ π1(X,x0)

and to transitive free group actions

(1.5) π1(X,x0)× π(X)(x0, x1)→ π(X)(x0, x1)← π(X)(x0, x1)× π1(X,x1)

so that π1(X,x0) is indeed a group and π(X)(x0, x1) is an affine group from the left and from the right.
For fundamental groups, in particular, any based map f : (X,x0)→ (Y, y0) induces a group homomorphism

π(f) = f∗ : π1(X,x0)→ π1(Y, y0), given by π1(f) = f∗([u]) = [fu], that only depends on the based homotopy
class of the based map f .

Proposition 1.6. The fundamental group is a functor π1 : hoTop∗ → Grp from the homotopy category of
based topological spaces into the category of groups.

This means that π1(id(X,x0)) = idπ1(X,x0) and π1(g ◦ f) = π1(g) ◦ π1(f). It follows immediately that if
f : X → Y is a homotopy equivalence of based spaces then the induced map π1(f) = f∗ : π1(X,x0)→ π1(Y, y0)
is an isomorphism of groups. (See Section 5 for more information about categories and functors.)

Corollary 1.7. Let X be a space, A a subspace, and i∗ : π1(A, a0)→ π1(X, a0) the group homomorphism
induced by the inclusion map i : A→ X.

(1) If A is a retract of X then i∗ has a left inverse (so it is a monomorphism).
(2) If A is a deformation retract of X then i∗ has an inverse (so it is an isomorphism).

Proof. (1) Let r : X → A be a map such that ri = 1A. Then r∗i∗ is the identity isomorphism of π1(A, a0).
(2) Let r : X → A be a map such that ri = 1A and ir ' 1Xrel A. Then r∗i∗ is the identity isomorphism of
π1(A, a0) and i∗r∗ is the identity isomorphism of π1(X, a0) so i∗ and r∗ are each others’ inverses. �

Corollary 1.8. Let X and Y be spaces. There is an isomorphism

(pX)∗ × (pY )∗ : π1(X × Y, x0 × y0)→ π1(X,x0)× π1(Y, y0)

induced by the projection maps pX : X × Y → X and pY : X × Y → Y .

Proof. The loops in X × Y have the form u× v where u and v are loops in X and Y , respectively (General
Topology, 2.63). The above homomorphism has the form [u× v]→ [u]× [v]. The inverse homomorphism is
[u]× [v]→ [u× v]. Note that this is well-defined. �

We can now compute our first fundamental group.

Example 1.9. π1(Rn, 0) is the trivial group with just one element because Rn contains the subspace {0}
consisting of one point as a deformation retract. Any space that deformation retract onto on of its points
has trivial fundamental group. Is it true that any contractible space has trivial fundamental group?

Our tools to compute π1 in more interesting cases are covering space theory and van Kampen’s theorem.

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
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1.10. Change of base point and unbased homotopies. What happens if we change the base point?
In case, the new base point lies in another path-component of X, there is no relation at all between the
fundamental groups. But if the two base points lie in the same path-component, the fundamental groups are
isomorphic.

Lemma 1.11. If u is a path from x0 to x1 then conjugation with [u]

π1(X,x1)→ π1(X,x0) : [v]→ [u] · [v] · [u]

is a group isomorphism.

Proof. This is immediate from the rules for products of paths and a special case of (1.5). �

We already noted that if two maps are homotopic relative to the base point then they induce the same
group homomorphism between the fundamental groups. We shall now investigate how the fundamental group
behaves with respect to free maps and free homotopies, ie maps and homotopies that do not preserve the
base point.

Lemma 1.12. Suppose that f0 ' f1 : X → Y are homotopic maps and h : X × I → Y a homotopy. For
any point x ∈ X, let h(x) ∈ π(Y )(f0(x), f1(x)) be the path homotopy class of t → h(x, t). For any u ∈
π(X)(x0, x1) there is a commutative diagram

f0(x0)

f0(u)

��

h(x0) // f1(x0)

f1(u)

��
f0(x1)

h(x1)
// f1(x1)

in π(Y ).

Proof. Let u be any path from x0 to x1 in X. If we push the left and upper edge of the homotopy I × I →
Y : (s, t)→ h(u(s), t) into the lower and right edge

//
f0(u)

//f1(u)

OOh(x0) OO h(x1)

��
��
��
��
��
��
��

we obtain a path homotopy h(x0) · f1(u) ' f0(u) · h(x1). �

Corollary 1.13. In the situation of Lemma 1.12, the diagram

π1(Y, f1(x0))

∼= [h(x0)]−[h(x0)]

��

π1(X,x0)

(f1)∗
55lllllllll

(f0)∗ ))RRRRRRRRR

π1(Y, f0(x0))

commutes.

Proof. For any loop u based at x0, f0(u)h(x0) = h(x0)f1(u) or f0(u) = h(x0)f1(u)h(x0). �

Corollary 1.14. (1) If f : X → Y is a homotopy equivalence (possibly unbased) then the induced homo-
morphism f∗ : π1(X,x0)→ π1(Y, f(x0)) is a group isomorphism.

(2) If f : X → Y is nullhomotopic (possibly unbased) then f∗ : π1(X,x0)→ π1(Y, f(x0)) is the trivial
homomorphism.
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Proof. (1) Let g be a homotopy inverse to f so that gf ' 1X and fg ' 1Y . By Lemma 1.12 there is a
commutative diagram

π1(Y, f(x0))

π1(X,x0)

WWWWWWWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWWWWWWWWWW
f∗ // π1(Y, f(x0))

fffffffffffffffffffffffff

fffffffffffffffffffffffff
g∗
// π1(X, gf(x0))

∼=
��

f∗ // π1(Y, fgf(x0))

∼=

OO

π1(X,x0)

which shows that g∗ is both injective and surjective, ie g∗ is bijective. Then also f∗ is bijective.
(2) If f homotopic to a constant map c then f∗ followed by an isomorphism equals c∗ which is trivial. Thuse
also f∗ is trivial. �

We can now answer a question from Example 1.9 and say that any contractible space has trivial funda-
mental group.

Definition 1.15. A space is simply connected if there is a unique path homotopy class between any two of
its points.

The space X is simply connected if π(X)(x1, x2) = ∗ for all x1, x2 ∈ X, or, equivalently, X is path
connected and π1(X,x) = ∗ at all points or at one point of X.

2. Covering spaces

A covering map over X is a map that locally looks like the projection map X × F → X for some discrete
space F .

Definition 2.1. A covering map is a continuous surjective map p : Y → X with the property that for any
point x ∈ X there is a neighborhood U (an evenly covered neighborhood), a discrete set F , and a homeo-
morphism U × F → p−1(U) such that the diagram

U × F

pr1
""EEEEEEEEE
' // p−1(U)

p|p−1(U){{xxxxxxxxx

U

commutes.

Some covering spaces, but not all (7.21), arise from left group actions. Consider a left action G× Y → Y
of a group G on a space Y . Let pG : Y → G\Y be the quotient map of Y onto the orbit space G\Y . The
quotient map pG is open because open subsets U ⊂ Y have open saturations GU =

⋃
g∈G gU = p−1

G pG(U)
(General Topology 2.82). The open sets in G\Y correspond bijectively to saturated open sets in Y .

We now single out the left actions G × Y → Y for which the quotient map pG : Y → G\Y of Y onto its
orbit space is a covering map.

Definition 2.2. [5, (*) p. 72] A covering space action is a group action G× Y → Y where any point y ∈ Y
has a neighborhood U such that the translated neighborhoods gU , g ∈ G, are disjoint. (In other words, the
action map G× U → GU is a homeomorphism.)

Example 2.3. The actions
• Z×R→ R : (n, t) 7→ n+ t
• Z/2× Sn → Sn : (±1, x) 7→ ±x
• Z/m× S2n+1 → S2n+1 : (ζ, x) 7→ ζx, where ζ ∈ C is an mth root of unity, ζm = 1,
• {±1,±i,±j,±k} × S3 → S3, quaternion multiplication [5, Example 1.43],

are covering space actions and the orbit spaces are Z\R = S1 (the circle), Z/2\Sn = RPn (real projective
space), and Z/m\S2n+1 = L2n+1(m) (lense space). The action Z × S1 → S1 : (n, z) 7→ eπi

√
2nz is not a

covering space action for the orbits are dense.

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
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Example 2.4. The maps pn : S1 → S1, n ∈ Z, and p∞ : R→ S1 given by pn(z) = zn, and p∞(s) = e2πs =
(cos(2πs), sin(2πs)) are covering maps of the circle with fibre p−1

n (1) = Z/nZ and p−1
∞ (1) = Z. There are

many covering maps of S1 ∨ S1. The map Sn → C2\Sn = RPn, n ≥ 1, is a covering map of real projective
n-space. The map S2n+1 → Cm\S2n+1 = L2n+1(m) is a covering map of the lens space. Mg → Ng+1 a
double covering map of the unorientable surface of genus g+ 1 with F = Z/2Z. Can you find a covering map
of Mg? Can you find a covering map of R?

Theorem 2.5 (Unique HLP for covering maps). [5, 1.30] Let p : Y → X be a covering map, B be any space,
and h : B × I → X a homotopy into the base space. If one end of the homotopy lifts to a map B × {0} → Y
then the whole homotopy admits a unique lift B × I → Y such that the diagram

B × {0}� _

��

eh0 // Y

p

��
B × I

h
//

eh ;;w
w

w
w

w
X

commutes.

Proof. We consider first the case where B is a point. The statement is then that in the situation

{0}
y0 //

� _

��

Y

p

��
I u

//

eu >>|
|

|
|

X

there is a unique map ũ : I → Y such that pũ = u and ũ(0) = y0. For uniqueness of lifts from I see
Theorem 2.12.(1). We need to prove existence. The Lebesgue lemma (General Topology, 2.158) applied to
the compact space I says that there is a subdivision 0 = t0 < t1 < · · · < tn = 1 of I such that u maps each
of the closed subintervals [ti−1, ti] into an evenly covered neighborhood in X. Suppose that we have lifted u
to ũ defined on [0, ti−1]. Let U be an evenly covered neighborhood of u(ti−1). Suppose that the lift ũ(ti−1)
belongs to U × {`} for some ` ∈ F . Continue the given ũ with (p|(U × {`}))−1 ◦ u|[ti−1, ti]. After finitely
many steps we have the unique lift on I.

We now turn to the general situation. Uniqueness is clear for we have just seen that lifts are uniquely
determined on the vertical slices {b} × I ⊂ B × I for any point b of B. Existence is also clear except that
continuity of the lift is not clear.

We now prove that the lift is continuous. Let b be any point of X. By compactness, there is a neighborhood
Nb of b and a subdivision 0 = t0 < t1 < · · · < tn = 1 of I such that h maps each of the sets Nb × [ti−1, ti]
into an evenly covered neighborhood of X. Suppose that h(Nb × [0, t1]) is contained in the evenly covered
neighborhood U ⊂ X and let Ũ ⊂ p−1(U) ⊂ Y be a neighborhood such that p|Ũ : Ũ → U is a homeomorphism
and h̃0(b, 0) ∈ Ũ . We can not be sure that h̃0(Nb × {0}) ⊂ Ũ ; only if Nb is connected. Replace Nb by
Nb ∩ h̃−1

0 (Ũ). Then h̃0(Nb × {0}) ⊂ Ũ . Then (p|Ũ)−1 ◦ h|Nb × [0, t1] is a lift of h|Nb × [0, t1] extending h̃0.
After finitely many steps we have a lift defined on Nb×I (where Nb is possibly smaller than the Nb we started
with). Do this for every point b of B. These maps must agree on their overlap by uniqueness. So they define
a lift B × I → Y . This lift is continuous since it is continuous on each of the open tubes Nb × I. �

We emphasize the special case where B is a point. Let y0 ∈ Y be a point in Y and x0 = p(y0) ∈ X its
image in X.

Corollary 2.6 (Unique path lifting). Let x0 and x1 be two points in X and let y0 be a point in the fibre
p−1(x0) ⊂ Y over x0. For any path u : I → X from x0 to x1, the exists a unique path ũ : I → Y in Y starting
at ũ(0) = y0. Moreover, homotopic paths have homotopic lifts: If v : I → X is a path in X that is path
homotopic to u then the lifts ũ and ṽ are also path homotopic.

Proof. First, in Theorem 2.5, take B to be point. Next, take B to be I and use the HLP to see that homotopic
paths have homotopic lifts. �

Corollary 2.7. Let p : Y → X be a covering map and let y0, y1, y2 ∈ Y , x0 = py0, x1 = py1, x2 = py2.

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
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(1) By recording end points of lifts we obtain maps

p−1(x1)× π(X)(x1, x2) ·−→ p−1(x2), p−1(x0)× π1(X,x0) ·−→ p−1(x0)

given by y · [u] = ũy(1) where ũy is the lift of u starting at y. Multiplication by a path u from x1 to
x2 slides the fibre over x1 bijectively into the fibre over x2.

(2) The covering map p : X → Y induces injective maps

π(Y )(y1, y2)
p∗−→ π(X)(x1, x2), π1(Y, y0)

p∗−→ π1(X,x0)

The subset p∗π(Y )(y1, y2) ⊂ π(X)(x1, x2) consists of all paths from x1 to x2 that lift to paths from
y1 to y2. The subbgroup p∗π1(Y, y0) ≤ π1(X,x0) consists of all loops at x0 that lloft to loops at y0.

Definition 2.8. The monodromy functor of the covering map p : X → Y is a functor

F (p) : π(X)→ Set

of the fundamental groupoid of the base space into the category Set of sets. This functor takes a point in
x ∈ X to the fibre F (p)(x) = p−1(x) over that point and it takes a path homotopy class u ∈ π(X)(x0, x1)
to F (p)(x0) = p−1(x0) → p−1(x1) = F (p)(x1) : y → y · u. (The notation here is such that F (p)(uv) =
F (p)(v) ◦ F (p)(u) for paths u ∈ π(X)(x0, x1), v ∈ π(X)(x1, x2).)

In particular, the fibre F (p)(x) = p−1(x) over any point x ∈ X is a right π1(X,x)-set.

Corollary 2.9 (The fundamental groupoid of a covering space). The fundamental groupoid of Y ,

π(Y ) = π(X) o F (p)

is the Grothendieck construction of the fiber functor (2.8). In other words, the map π(p) : π(Y )(y0, y1) →
π(X)(x0, x1) is injective and the image is the set of path homotopy classes from x0 to x1 that take y0 to y1.
In particular, the homomorphism p∗ : π1(Y, y0)→ π1(X,x0) is injective and its image is the set of loops at
x0 that lift to loops at y0.

Proof. We consider the functor F (p) as taking values in discrete categories. The objects of π(X) o F (p)
are pairs (x, y) where x ∈ X and y ∈ F (p)(x) ⊂ Y . A morphism (x1, y1) → (x2, y2) is a pair (u, v) where
u is a morphism in π(X) from x1 to x2 and v is a morphism in F (p)(x2) from F (p)(u)(x1) = x1 · u to
y2. As F (p)(x2) have no morphisms but identities, the set of morphisms (x1, y1) → (x2, y2) is the set of
u ∈ π(X)(x1, x2) such that y1 · u = y2. This is precisely π(Y )(y1, y2). �

Definition 2.10. For a space X, let π0(X) be the set of path components of X.

Lemma 2.11. Let p : X → Y be a covering map.

(1) Suppose that X is path connected. The inclusion p−1(x0) ⊂ Y induces a bijection p−1(x0)/π1(X,x0)→
π0(Y ). In particular,

Y is path connected ⇐⇒ π1(X,x0) acts transitively on the fibre p−1(x0)

(2) Suppose that X and Y are path connected. The maps

π1(Y, y1)\π(X)(x1, x2)↔ p−1(x2) π1(Y, y0)\π1(X,x0)↔ p−1(x0)

π1(Y, y1)u→ y1 · u π1(Y, y0)u→ y0 · u
[puy]← y [puy]← y

are bijections. Here, uy is any path in Y from y1 or y0 to y. In particular, |π1(X,x0) : π1(Y, y0)| =
|p−1(x0)|.

Proof. The map p−1(x0)→ π0(Y ), induced by the inclusion of the fibre into the total space, is onto because
X is path connected so that any point in the total space is connected by a path to a point in the fibre. Two
points in the fibre are in the same path component of Y if and only if are in the same π1(X,x0)-orbit.

If Y is path connected, then π1(X,x0) acts transitively on the fibre p−1(x0) with isotropy subgroup
π1(Y, y0) at y0. �
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Theorem 2.12 (Lifting Theorem). Let p : Y → X be a covering map and f : B → X a map into the base
space. Choose base points such that f(b0) = x0 = p(y0) and consider the lifting problem

(Y, y0)

p

��
(B, b0)

f
//

f̃
::

(X,x0)

(1) If B is connected, then there exists at most one lift f̃ : (B, b0)→ (Y, y0) of f over p.
(2) If B is path connected and locally path connected then

There is a map f̃ : (B, b0)→ (Y, y0) such that f = pf̃ ⇐⇒ f∗π1(B, b0) ⊂ p∗π1(Y, y0)

Proof. (1) Suppose that f̃1 and f̃2 are lifts of the same map f : B → X. We claim that the sets {b ∈ B |
f̃1(b) = f̃2(b)} and {b ∈ B | f̃1(b) 6= f̃2(b)} are open.

Let b be any point of B where the two lifts agree. Let U ⊂ X be an evenly neighborhood of f(b). Choose
Ũ ⊂ p−1(U) = U × F so that the restriction of p to Ũ is a homoemorphism and f̃1(b) = f̃2(b) belongs to Ũ .
Then f̃1 and f̃2 agree on the neighborhood f̃−1

1 (Ũ) ∩ f̃−1
2 (Ũ) of b.

Let b be any point of B where the two lifts do not agree. Let U ⊂ X be an evenly neighborhood of
f(b). Choose disjoint open sets Ũ1, Ũ2 ⊂ p−1(U) = U × F so that the restrictions of p to Ũ1 and Ũ2 are
homoemorphisms and f̃1(b) belongs to Ũ1 and f̃2(b) to Ũ2. Then f̃1 and f̃2 do not agree on the neighborhood
f̃−1

1 (Ũ1) ∩ f̃−1
2 (Ũ2) of b.

(2) It is clear that if the lift exists, then the condition is satisfied. Conversely, suppose that the condition
holds. For any point b in B, define a lift f̃ by

f̃(b) = y0 · [fub]

where ub is any path from b0 to b. (Here we use that B is path connected.) If vb is any other path from b0
to b then y0 · [fub] = y0 · [fvb] because y0 · [fub · fvb] = y0 as the loop [fub · fvb] ∈ π1(Y, y0) fixes the point
y0 by Lemma 2.11.

We need to see that f̃ is continuous. Note that any point b ∈ B has a path connected neighborhood that
is mapped into an evenly covered neighborhood of f(b) in X. It is evident what f̃ does on this neighborhood
of b. �

A map f : B → S1 ⊂ C− {0} into the circle has an nth root if and only if the induced homomorphism
f∗ : π1(B)→ Z is divisible by n.

3. The fundamental group of the circle, spheres, and lense spaces

For each n ∈ Z, let ωn be the loop ωn(s) = (cos(2πns), sin(2πns), s ∈ I, on the circle.

Theorem 3.1. The map Φ: Z→ π1(S1, 1) : n→ [ωn] is a group isomorphism.

Proof. Let p : R→ S1 be the covering map p(t) = (cos(2πt), sin(2πt)), t ∈ R. Remember that the total
space R is simply connected as we saw in Example 1.9. The fibre over 1 is p−1(1) = Z. Let un(t) = nt be
the obvious path from 0 to n ∈ Z. By Lemma 2.11 the map

Z→ π1(S1, 1) : n→ [pun] = [ωn]

is bijective.
We need to verify that Φ is a group homomorphism. Let m and n be integers. Then um · (m + un) is a

path from 0 to m+ n so it can be used instead of um+n when computing Φ(m+ n). We find that

Φ(m+ n) = [p(um · (m+ un))] = [p(um) · p(m+ un)] = [p(um)][p(m+ un)] = [p(um)][p(un)] = Φ(m)Φ(n)

because p(m+ un) = pun as p has period 1. �

Theorem 3.2. The n-sphere Sn is simply connected when n > 1.
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Proof. Let N be the North and S the South Pole (or any other two distinct points on Sn). The problem is
that there are paths that go through every point. We claim that π1(Sn−{S}, N)→ π1(Sn, N) is surjective,
ie that any loop based at N is homotopic to a path that avoids S. (Problem and Solution.) The result follows
as Sn − {S} is homeomorphic to the simply connected space Rn. �

Corollary 3.3. The fundamental group of real projective n-space RPn is π1(RPn) = C2 for n > 1. The
fundamental group of the lense space L2n+1(m) is π1(L2n+1(m)) = Cm for n > 0.

Proof. We proceed as in Theorem 3.1. Consider the case of the the covering map p : S2n+1 → L2n+1(m) over
the lense space L2n+1(m). Let N = (1, 0, . . . , 0) ∈ S2n+1 ⊂ Cn+1. The cyclic group Cm = 〈ζ〉 of mth roots
of unity is generated by ζ = e2πi/m. The map ζj → ζjN , j ∈ Z, is a bijection Cm → p−1pN between the set
Cm and the fibre over pN . As S2n+1 is simply connected there is a bijection

Φ: p−1pN = Cm → π1(L2n+1(m), pN) : ζj → [pωj ]

where ωj is the path in S2n+1 from N to ζjN given by ωj(s) = (e2πisj/m, 0, . . . , 0). Since ωi+j ' ωi · (ζiωj),
it follows just as in Theorem 3.1 that Φ is a group homomorphism.

For the projective spaces, use the paths ωj(s) = (cos(2πjs), sin(2πjs), 0, . . . , 0) from N to (−1)jN , to see
that

Φ: p−1pN = C2 → π1(RPn, pN) : (±1)j → [pωj ]
is a bijection. �

3.4. Applications of π1(S1). Here are some standard applications of Theorem 3.1.

Corollary 3.5. The nth power homomorphism pn : (S1, 1) → (S1, 1) : z → zn induces the nth power homo-
morphism π1(S1, 1)→ π1(S1, 1) : [ω]→ [ω]n.

Proof. (pn)∗Φ(1) = (pn)∗[ω1] = [pnω1] = [ωn1 ] = [ωn] = Φ(n) = Φ(1)n. �

Theorem 3.6 (Brouwer’s fixed point theorem). (1) The circle S1 is not a retract of the disc D2.
(2) Any map self-map of the disc D2 has a fixed point.

Proof. (1) Let i : S1 → D2 be the inclusion map. The induced map i∗ : Z = π1(S1)→ π1(D2) = 0 is not
injective so S1 can not be a retract by 1.7.
(2) With the help of a fixed-point free self map of D2 one can construct a retraction of D2 onto S1. But they
don’t exist. �

Theorem 3.7 (The fundamental theorem of algebra). Let p(z) = zn+an−1z
n−1 + · · ·+a1z+a0 be a normed

complex polynomial of degree n. If n > 0, then p has a root.

Proof. Any normed polynomial p(z) = zn + an−1z
n−1 + · · · + a1z + a0 is nonzero when |z| is large: When

|z| > 1 + |an−1|+ · · ·+ |a0|, then p(z) 6= 0 because

|an−1z
n−1 + · · ·+ a0| ≤ |an−1||z|n−1 + · · ·+ |a0| < |an−1||z|n−1 + · · ·+ |a0||z|n−1

= (|an−1|+ · · ·+ |a0|)|z|n−1 < |z|n

Therefore any normed polynomial p(z) defines a map S1(R)→ C−{0} where S1(R) is the circle of radius R
and R > 1+ |an−1|+ · · ·+ |a0|. In fact, all the normed polynomials pt(z) = zn+ t(an−1z

n−1 + · · ·+a1z+a0),
t ∈ I, take S1(R) into C− {0} so that we have a homotopy

S1(R)× I → C− {0} : (z, t)→ zn + t(an−1z
n−1 + · · ·+ a1z + a0)

between p1(z) = p(z)|S1(R) and p0(z) = zn.
If p(z) has no roots at all, the map p|S1(R) factors through the complex plane C and is therefore nullho-

motopic (as C is contractible) and so is the homotopic map S1(R) → C − {0} : z → zn and the composite
map

S1 z→Rz−−−−→ S1(R) z→zn−−−−→ C− {0} z→z/|z|−−−−−→ S1

But this is simply the map S1 → S1 : z → zn which we know induces multiplication by n (3.5). However, a
nullhomotopic map induces multiplication by 0 (1.14). So n = 0. �

A map f : S1 → S1 is odd if f(−x) = −f(x) for all x ∈ S1. Any rotation (or reflection) of the circle is
odd (because it is linear).

http://www.math.ku.dk/~moller/e02/3gt/opg/aug05.pdf
http://www.math.ku.dk/~moller/e02/3gt/opg/ans.aug05.pdf
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Lemma 3.8. Let f : S1 → S1 be an odd map. Compose f with a rotation R so that Rf(1) = 1. The induced
map (Rf)∗ : π1(S1, 1)→ π1(S1, 1) is multiplication by an odd integer. In particular, f is not nullhomotopic.

Proof. We must compute (Rf)∗[ω1]. The HLP gives a lift

{0}� _

��

0 // R

��
I ω1

//

eω
66nnnnnnnnnnnnnnnn

S1
Rf
// S1

and we have (Rf)∗[ω1] = [pω̃]. When 0 ≤ s ≤ 1/2, ω1(s+1/2) = −ω1(s) and also Rfω1(s+1/2) = −Rfω1(s)
as Rf is odd. The lift, ω̃ of Rfω1, then satisfies the equation

ω̃(s+ 1/2) = ω̃(s) + q/2

for some odd integer q. By continuity and connectedness of the interval [0, 1/2], q does not depend on s.
Now ω̃(1) = ω̃(1/2) + q/2 = ω̃(0) + q/2 + q/2 = q and therefore (Rf)∗[ω1] = [pω̃] = [ωq] = [ω1]q. We
conclude that (Rf)∗ is multiplication by the odd integer q. Since a nullhomopotic map induces the trivial
group homomorphism (1.14), f is not nullhomotopic. �

Theorem 3.9 (Borsuk–Ulam theorem for n = 2). Let f : S2 → R2 be any continuous map. Then there
exists a point x ∈ S2 such that f(x) = f(−x).

Proof. Suppose that f : S2 → R2 is a map such that f(x) 6= f(−x) for all x ∈ S2. The composite map

S1 � � incl //S2
x→ f(x)−f(−x)

|f(x)−f(−x)| //S1

is odd so it is not nullhomotopic. But the first map S1 ↪→ S2 is nullhomotopic because it factors through the
contractible space D2

+ = {(x1, x2, x3) ∈ S2 | x3 ≥ 0}. This is a contradiction. �

This implies that ther are no injective maps of S2 → R2; in particular S2 does not embed in R2.

Proposition 3.10 (Borsuk–Ulam theorem for n = 1). Let f : S1 → R be any continuous map. Then there
exists a point x ∈ S1 such that f(x) = f(−x).

Proof. Look at the map g(x) = f(x)− f(−x). If g is identically 0, f(x) = f(−x) for all x ∈ S1. Otherwise, g
is an odd function, g(−x) = −g(x), and g has both positive and negative values. By connectedness, g must
assume the value 0 at some point. �

This implies that there are no injective maps S1 → R; in particular S1 does not embed in R.

4. The van Kampen theorem

Let Gj , j ∈ J , be a set of groups indexed by the set J . The coproduct (or free product) of these groups is
a group

∐
i∈J Gj with group homomorphisms ϕj : Gj →

∐
j∈J Gj such that

(4.1) Hom(
∐
j∈J

Gj , H) =
∏
j∈J

Hom(Gj , H) : ϕ→ (ϕ ◦ ϕj)j∈J

is a bijection for any group H. The group
∐
j∈J Gj contains each group Gj as a subgroup and these subgroups

do not commute with each other. If the groups have presentations Gj = 〈Lj | Rj〉 then
∐
j∈J 〈Lj | Rj〉 =

〈∪j∈JLj | ∪j∈JRj〉 as this group has the universal property. See [9, 6.2] for the construction of the free
product.

The characteristic property (4.1) applied to H =
∏
j∈J Gj shows that there is a group homomorphism∐

Gj →
∏
Gj from the free product to the direct product whose restriction to each Gj is the inclusion into

the product.

Example 4.2. [9, Example II–III p 171] Z/2 q Z/2 = Z o Z/2 and Z/2 q Z/3 = PSL(2,Z). We can prove
the first assertion:

Z/2q Z/2 = 〈a, b | a2, b2〉 = 〈a, b, c | a2, b2, c = ab〉 = 〈a, b | a2, acac, c〉 = 〈a, b | a2, c, aca = c−1〉
but the second one is more difficult.
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Suppose that the space X =
⋃
j∈J Xj is the union of open and path connected subspaces Xj and

that x0 is a point in
⋂
j∈J Xj . The inclusion of the subspace Xj into X induces a group homomorphism

ιj : π1(Xj , x0)→ π1(X,x0). The coproduct
∐
j∈J π1(Xj , x0) is a group equipped with group homomorphisms

ϕj : π1(Xj , x0)→
∐
j∈J π1(Xj , x0). Let

Φ: qj∈J π1(Xj , x0)→ π1(
⋃
j∈J Xj , x0) = π1(X,x0)

be the group homomorphism determined by Φ ◦ ϕj = ιj .
Is Φ surjective? In general, no. The circle, for instanec, is the union of two contractible open subspaces, so

Φ is not onto in that case. But, if any loop in X is homotopic to a product of loops in one of the subspaces
Xj , then Φ is surjective.

Is Φ injective? It will, in general, not be injective, because the individual groups π1(Xi) in the free product
do not intersect but the subspaces do intersect. Any loop in X that is a loop in Xi ∩ Xj will in the free
product count as a loop both in π1(Xi) and in π1(Xj). We always have commutative diagrams of the form

π1(Xi, x0)
ιi

&&MMMMMMMMMMM

π1(Xi ∩Xj , x0)

ιij
66nnnnnnnnnnnn

ιji ((PPPPPPPPPPPP
π1(X,x0)

π1(Xj , x0)

ιj

88qqqqqqqqqqq

where ιij are inclusion maps. This means that Φ(ιijg) = Φ(ιjig) for any g ∈ π1(Xi ∩Xj , x0) so that

(4.3) ∀i, j ∈ J∀g ∈ π1(Xi ∩Xj) : ιij(g)ιji(g)−1 ∈ ker Φ

Let N ≤
∐
j∈J π1(Xj , x0) be the smallest normal subgroup containing all the elements of (4.3). The kernel

of Φ must contain N but, of course, the kernel could be bigger. The surprising fact is that often it isn’t.

Theorem 4.4 (Van Kampen’s theorem). Suppose that X =
⋃
j∈J Xj is the union of open and path connected

subspaces Xj and that x0 is a point in
⋂
j∈J Xj.

(1) If the intersection of any two of the open subspaces is path connected then Φ is surjective.
(2) If the intersection of any three of the open subspaces is path connected then the kernel of Φ is N .

Corollary 4.5. If the intersection of any three of the open subspaces is path connected then Φ determines
an isomorphism

Φ:
∐
j∈J

π1(Xj , x0)/N ∼= π1(X,x0)

Proof of Theorem 4.4. (1) We need to show that any loop u ∈ π1(X) in X is a product u1 · · ·um of loops
ui ∈ π1(Xji) in one of the subspaces. Let u : I → X be a loop in X.

Thanks to the Lebesgue lemma (General Topology, 2.158) we can find a subdivision 0 = t0 < t1 < · · · tm =
1 of the unit interval so that ui = u|[ti−1, ti] is a path in (say) Xi. As u(ti) ∈ Xi ∩Xi+1, and also the base
point x0 ∈ Xi ∩Xi+1, and Xi ∩Xi+1 is path connected, there is path gi in Xi ∩Xi+1 from the basepoint x0

to u(ti−1). The situation looks like this:

X1 X2

X3

∗

•

•

�

�OO g1
KKu|[0, t1] �� u|[t1, t2]

[[[ --
g2

gg
u|[t2, 1]

Now u ' u|[0, t1] · u|[t1, t2] · · ·u|[tm−1, 1] ' (u|[0, t1] · g1) · (g1 · u|[t1, t2] · g2) · · · (gm · u|[tm−1, 1]) is a product
of loops where each factor is inside one of the subspaces.

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
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(2) Let N / qπ1(Xi) be the smallest normal subgroup containing all the elements (4.3). Let ui ∈ π1(Xji).
For simplicity, let’s call Xji for Xi. Consider the product

u1︸︷︷︸
π1(X1)

u2︸︷︷︸
π1(X2)

· · · um︸︷︷︸
π1(Xm)

∈ qj∈Jπ1(Xj)

and suppose that Φ(u1 · · ·um) is the unit element of π1(X). We want to show that u1 · · ·um lies in the
normal subgroup N or that u1 · · ·um is the identity in the quotient group qπ1(Xj)/N .

Since u1 · · ·um is homotopic to the constant loop in X there is homotopy I × I → X =
⋃
Xj from the

loop u1 · · ·um in X to the constant loop. Divide the unit square I × I into smaller rectangles such that each
rectangle is mapped into one of the subspaces Xj . We may assume that the subdivision of I×{0} is a further
subdivision of the subdivision at i/m coming from the product u1 · · ·um. It could be that one new vertex is
(or more new vertices are) inserted between (i− 1)/m and i/m.

∗ ∗
•

Xk X`

Xi

Connect the image of the new vertex • with a path g inside Xi ∩ Xk ∩ X` to the base point. Now ui is
homotopic in Xi to the product (ui|[(i− 1)/m, •] · g) · (g · ui|[•, i/m]) of two loops in Xi. This means that we
may as well assume that no new subdivision points have been introduced at the bottom line I × {0}. Now
perturb slightly the small rectangles, but not the ones in the bottom and top row, so that also the corner of
each rectangle lies in at most three rectangles. The lower left corner may look like this:

∗

∗∗

4•

X5 X6

X1

u15 u16

X2u12

u1

The loop u1 in X1 is homotopic to the product of paths u15u16u12 by a homotopy as in the proof of 1.12.
Connect the image of the point • to the base point by a path g156 inside X1∩X5∩X6 and connect the image
of the point 4 to the base point by a path g126 inside X1 ∩ X2 ∩ X6. Then u1 is homotopic in X1 to the
product of loops (u15g156) · (g156u16g126) · (g126u12) in X1. The first of these loops is a loop in X1 ∩X5, the
second is a loop in X1∩X6, and the third is a loop in X1∩X2. In qπ1(Xj) and modulo the normal subgroup
N we have that

u1︸︷︷︸
X1

u2︸︷︷︸
X2

· · · = u15g156︸ ︷︷ ︸
X1

· g156u16g126︸ ︷︷ ︸
X1

· g126u12︸ ︷︷ ︸
X1

u2︸︷︷︸
X2

· · · = u15g156︸ ︷︷ ︸
X5

· g156u16g126︸ ︷︷ ︸
X6

· g126u12 · u2︸ ︷︷ ︸
X2

· · ·

After finitely many steps we conclude that modulo N the product u1 · · ·um equals a product of constant
loops, the identity element. �

Corollary 4.6. Let Xj be a set of path connected spaces. Then∐
j∈J

π1(Xj) ∼= π1(
∨
j∈J

Xj)

provided that each base point xj ∈ Xj is the deformation retract of an open neighborhood Uj ⊂ Xj.

Proof. Van Kampen’s theorem does not apply directly to the subspaces Xj of
∨
Xj because they are not

open. Instead, let X ′j = Xj ∪
∨
i∈J Ui. The subspaces X ′j are open and path connected and the intersection

of at least two of them is the contractible space
∨
i∈J Ui. Moreover, Xj is a deformation retract of Xj . �

For instance, punctured compact surfaces have free fundamental groups.
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Corollary 4.7 (van Kampen with two subspaces). Suppose that X = X1∪X2 where X1, X2, and X1∩X2 6= ∅
are open and path connected. Then

π1(X1 ∪X2, x0) ∼= π1(X1, x0)qπ1(X1∩X2,x0) π1(X2, x0) ∼=
for any basepoint x0 ∈ X1 ∩X2.

This means that when X1∩X2 is path connected the fundamental group functor takes a push out of spaces
to a push out, amalgamated product, of groups

X1 ∩X2
i1 //

i2

��

X2

��

π1(X1 ∩X2)
(i1)∗ //

(i2)∗

��

π1(X2)

��

π1 //

X2
// X π1(X2) // π1(X)

As a very special case, we see that a space, that is the union of two open simply connected subspaces with path
connected intersection, is simply connected. This proves, again (Theorem 3.2), that Sn is simply connected
when n > 1.

We can use this simple variant of van Kampen to analyze the effect on the fundamental group of attacing
cells.

Corollary 4.8 (The fundamental group of a cellular extension). Let X be a path connected space. Then

π1(X ∪‘
fα

∐
Dn
α) =

{
π1(X)/ 〈γαfαγα〉 n = 2
π1(X) n > 2

where γα is a path from the base point of X to the image of the base point of S1
α ⊂ D2

α.

Proof. Let Y be X with the n-cells attached. Attach strips, fences connecting the base point of X with the
base points of the attached cells, to Y and call the results Z. This does not change the fundamental group
as Y is a deformation retract of Z (Corollary 1.7). Let A be Z with the top half of each cell removed and let
B = Z −X. Then Z = A ∪ B and A ∩ B are path connected (the fences are there to make A and B path
connected) so that

π1(Z) = π1(A)qπ1(A∩B) π1(B)
by the van Kampen theorem in the simple form of Corollary 4.7. Now B is contractible, hence simply
connected (Corollary 1.14), so π1(Y ) = π1(Z) is the quotient of π1(A) by the smallest normal subgroup
containing the image of π1(A ∩ B) → π1(A). But A ∩ B is homotopy equivalent to a wedge

∨
α S

n−1
α of

(n − 1)-spheres. In particular, A ∩ B is simply connected when n > 2 (Corollary 4.6, Theorem 3.2) so
that π1(Y ) = π1(Z) = π1(A) = π1(X). When n = 2, π1(A ∩ B) is a free group and the image of it in
π1(A) = π1(X) is generated by the path homotopy classes of the loops γαfαγα. �

Corollary 4.9. Let X be a CW-complex with skeleta Xk, k ≥ 0. Then

π0(X1) = π0(X), π1(X2) = π1(X)

Corollary 4.10. The fundamental groups of the compact surfaces of positive genus g are

π1(Mg) = 〈a1, b1, . . . , ag, bg |
∏

[ai, bi]〉, π1(Ng) = 〈a1, . . . , ag |
∏

a2
i 〉,

The compact orientable surfaces Mg, g ≥ 0, are distinct, π1(Mg)ab = Z2g, and the compact nonorientable
surfaces Nh, h ≥ 1, are distinct, π1(Ng)ab = Zg × Z/2.

Corollary 4.11. Let M be a connected manifold of dimension ≥ 3. Then π1(M − {x}) = π1(M) for any
point x ∈M .

Proof. Apply van Kampen to M = M −{x}∪Dn, M −{x}∩Dn ' Sn−1 and remember that Sn−1 is simply
connected when n ≥ 3. �

Which groups can be realized as fundamental groups of spaces? For instance, C∞ = S1 and Cm = S1∪mD2

so that any finitely generated abelian group can be realized as the fundamental group of a product of these
spaces.
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Corollary 4.12. For any group G there is a 2-dimensional CW-complex XG such that π1(XG) ∼= G.

Proof. Choose a presentation G = 〈gα | rβ〉 and let

XG = D0 ∪
∐
{gα}

D1 ∪
∐
{rβ}

D2

be the 2-dimensional CW-complex whose 1-skeleton is a wedge of circles, one for each generator, with 2-discs
attached along the relations. �

Observe that XHqG = XH ∨XG. Also, Xπ1(Mg) = Mg, Xπ1(Ng) = Ng, g ≥ 1.

4.1. Fundamental groups of knot and link complements. The complement of a pair of unlinked circles
in R3 deformation retracts to S1∨S1∨S2∨S2 and a pair of linked circles to (S1×S1)∨S2. The fundamental
groups are Z ∗ Z and Z× Z, respectively. Thus the two complements are not homeomorphic.

Let m and n be relatively prime natural numbers and K = Kmn the (m,n)-torus knot. We want to
compute the knot group π1(R3 −K).

According to (4.11), π1(R3 −K) = π1(S3 −K). Now

S3 = ∂D4 = ∂(D2 ×D2) = ∂D2 ×D2 ∪D2 × ∂D2

is the union of two solid tori intersecting in a torus S1 × S1. Let K be embedded in this middle torus. Then

S3 −K = (∂D2 ×D2 −K) ∪ (D2 × ∂D2 −K), (∂D2 ×D2 −K) ∩ (D2 × ∂D2 −K) = S1 × S1 −K

and van Kampen says (if we ignore1 the condition that the subsets should be open)

π1(S3 −K) =
π1(∂D2 ×D2 −K)q π1(D2 × ∂D2 −K)

π1(S1 × S1 −K)

Here, ∂D2×D2−K deformation retracts onto the core circle ∂D2×{0}, and S1×S1−K (the torus minus
the knot) is an annulus S1 × (0, 1). (Take an open strip [0, 1]× (O, 1) and wrap it around the torus so that
the end 0× (0, 1) meets the end 1× (0, 1)). The image of the generator of this infinite cyclic group is the m
power of a generator, respectively the nth power. Hence

π1(S3 −K) = 〈a, b | am = bn〉 = Gmn

It is now a matter of group theory to tell us that if Gm1n1 and Gm2n2 are isomorphic then {m1, n1} =
{m2, n2}. In order to analyze this group, note that am = bn is in the center. Let C be the central group
generated by this element. The quotient group

Gmn/C = 〈a, b | am, bn〉 = Z/mq Z/n

has no center. (In general the free product GqH of two nontrivial groups has no center because the elements
are words in elements from G alternating with elements from H.) Therefore C is precisely the center of Gmn.
Thus we can recover mn as the order of the abelianization of G/Z(G). Also, any element of finite order
in Z/m q Z/n is conjugate to an element of Z/m or Z/n. Thus we can recover the largest of m,n as the
maximal order of a torsion element in G/Z(G). Thus we can recover the set {m,n}.

Corollary 4.13. There are infinitely many knots. (Here are some of them.)

Another way of saying this is that ∂D2 ×D2 −K deformation retracts onto the mapping cylinder of the
degree m, respectively n, map S1 → S1. Thus the union of these two spaces, S3 −K, deformation retracts
onto the union of the two mapping cylinders, which is the double mapping cylinder Xmn for the two maps.

Thus Xmn embeds in S3 and R3 when (m,n) = 1. On the other hand X22 is the union of two Möbius
bands. A Möbius band is RP 2 minus an open 2-disc, so X22 = RP 2#RP 2, the Klein bottle, which does not
embed in R3.

1To fix this, thicken the knot and enlarge the two solid tori a little so that they overlap.

http://www.pims.math.ca/knotplot/zoo/
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5. Categories

A category C consists of [7]
• Objects a, b, . . .
• For each pair of objects a and b a set of morphisms C(a, b) with domain a and codomain b
• A composition function C(b, c) × C(a, b) → C(a, c) that to each pair of morphisms g and f with

dom(g) = cod(f) associates a morphism g ◦ f with dom(g ◦ f) = dom(f) and cod(g ◦ f) = cod(g)
We require

Identity: For each object a the morphism set C(a, a) contains a morphism ida such that g ◦ ida = g
and ida ◦ f = f whenever these compositions are defined

Associativity : h ◦ (g ◦ f) = (h ◦ g) ◦ f whenever these compositions are defined
A morphism f ∈ C(a, b) with domain a and codomain b is sometimes written f : a→ b. A morphism

f : a→ b is an isomorphism if there exists a morphism g : b→ a such that the two possible compositions are
the respective identities.

Definition 5.1. A group is a category with one object where all morphisms are isomorphisms. A groupoid
is a category where all morphisms are isomorphisms.

Example 5.2. In the category Top of topological spaces, the objects are topological spaces, the morphisms
are continuous maps, and composition is the usual composition of maps. In the category hoTop, the objects
are topological spaces, the morphisms are homotopy classes of continuous maps, and composition is induced
by the usual composition of maps. In the category Grp of groups, the objects are groups, the morphisms are
groups homomorphisms, and composition is the usual composition of group homomorphisms. In the category
MatR the objects are the natural numbers Z+, the set of morphisms m→ n consists of all n by m matrices
with entries in the commutative ring R, and composition is matrix multiplication. The fundamental groupoid
π(X) of a topological space X is a groupoid where the objects are the points of X and the morphisms x→ y
are the homotopy classes π(X)(x, y) of paths from x to y, and composition is composition of path homotopy
classes.

A functor F : C → D associates to each object a of C an object F (a) of D and to each morphism f : a→ b
in C a morphism F (f) : F (a)→ F (b) in D such that F (ida) = idF (a) and F (g ◦ f) = F (g) ◦ F (f).

A natural transformation τ : F =⇒ G : C → D between two functors F,G : C → D is a D-morphism
τ(a) ∈ D(Fa,Ga) for each object a of C such that the diagrams

a

f

��

Fa

Ff

��

τ(a) // Ga

Gf

��
b Fb

τ(b) // Gb

commute for all morphisms f ∈ C(a, b) in C. A natural transformation τ is a natural isomorphism if all the
components τ(a), a ∈ Ob(C), are D-isomorphisms.

Example 5.3. The fundamental group is a functor from the category of based topological spaces and based
homotopy classes of maps to the category of groups.

The fundamental groupoid is a functor from the category of topological spaces to the category of groupoids.
Any homotopy h : f0 ' f1 induces a natural isomorphism h : π(f0) =⇒ π(f1) : π(X)→ π(Y ) between functors
between fundamental groupoids (Lemma 1.12).

Definition 5.4. Let C and D be categories. The functor category Func(C,D) is the category whose objects
are the functors from C to D and whose morphisms are the natural transformations.

Definition 5.5. Two categories, C and D, are isomorphic (equivalent) when there are functors C
F //D
G
oo

such that the composite functors are (naturally isomorphic to) the respective identity functors.

Lemma 5.6. A functor F : C → D is an equivalence of categories if and only if
• any object of D is isomorphic to an object of the form F (a) for some object a of C
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• F is bijective on morphism sets: The maps C(a, b) f→F (f)−−−−−→ D(F (a), F (b)) are bijections for all objects
a and b of C

Proof. Suppose that F : C → D is an equivalence of categories. Then there is a functor G in the other direction
and natural isomorphisms σ : GF =⇒ 1C and τ : FG =⇒ 1D. Let d be any object of D. The isomorphism
τd : FG(d)

∼=−→ d shows that d is isomorphic to Fa for a = Gd. Let a, b be objects of C. We note first that
C(a, b)→ D(Fa, Fb)→ C(GFa,GFb) is injective for the commutative diagram

a

f

��

GFa

GFf

��

σa
∼=
// a

f

��
b GFb

σb
∼=
// b

shows that f = σb ◦ GFf ◦ σ−1
a can be recovered from GFf . Thus C(a, b) → D(Fa, Fb) is injective.

Symmetrically, also the functor G is injective on morphism sets. To show that F is surjective on morphism
sets let g be any D-morphism Fa→ Fb. Put f = σb ◦Gg ◦ σ−1

b . The commutative diagram

Fa

g

��

GFa

Gg

��

σa
∼=
// a

f

��

GFa
σa
∼=

oo

GFf

��

a

f

��
Fb GFb

σb
∼=
// b GFb

σb
∼=

oo b

shows that GFf = Gg and so Ff = g since G is injective on morphism sets.
Conversely, suppose that F : C → D is a functor satisfying the two conditions. We must construct a

functor G in the other direction and natural isomorphisms τ : FG =⇒ 1D and σ : GF =⇒ 1C . By the first
condition, for every object d ∈ D, we can find an object Gd ∈ C and an isomorphism τd : FGd→ d. By the
second condition, C(Gc,Gd) ∼= D(FGc, FGd) for any two objects c and d of D. Here, D(c, d) ∼= D(FGc, FGd)
because FGc ∼= c and FGd ∼= d. Thus we have D(c, d) ∼= D(FGc, FGd) ∼= C(Gc,Gd). This means that for
every D-morphism g : c→ d there is exactly one C-morphism Gg : Gc→ Gd such that

FGc

FGg

��

τc
∼=
// c

g

��
FGd

τd
∼=
// d

commutes. Now G is a functor and τ a natural isomorphism FG =⇒ 1D. What about GF? Well, for any
object a of C, C(GFa, a) ∼= D(FGFa, Fa) 3 τFa so there is a unique isomorphism σa : GFa → a such that
Fσa = τFa. This gives the natural isomorphism σ : GF =⇒ 1C . �

It follows that when C
F //D
G
oo is an equivalence of categories then there are bijections

C(c,Gd) = D(Fc, d) C(Gd, c) = C(d, Fc)

of morphism sets.

Lemma 5.7. If C, C′ and D,D′ are equivalent, then the functor categories Func(C,D) and Func(C′,D′) are
equivalent.

The full subcategory generated by some of the objects of C is the category whose objects are these objects
and whose morphisms are all morphisms in C.

Example 5.8. The category of finite sets is equivalent to the full subcategory generated by all sections
S<n = {x ∈ Z+ | x < n}, n ∈ Z+, of Z+. The category of finite dimensional real vector spaces is equivalent
to the category MatR. If f : X → Y is a homeomorphism (homotopy equivalence) then the induced morphism
π(f) : π(X) → π(Y ) is an isomorphism (equivalence) of categories. The fundamental groupoid of a space is
equivalent to the full subcategory generated by a point in each path component.
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6. Categories of right G-sets

Let G be a topological group and F and Y topological spaces.

Definition 6.1. A right action of G on F is a continuous map F × G → F : (x, g) 7→ x · g, such that
x · e = x and x · (gh) = (x · g) · h for all g, h ∈ G and all x ∈ F . A topological space equipped with a right
G-action is called a right G-space. A continuous map f : F1 → F2 between two right G-spaces is a G-map if
f(xg) = f(x)g for all g ∈ G and x ∈ F1.

Definition 6.2. A left action of G on Y is a continuous map G× Y → Y : (g, y) 7→ g · y, such that e · y = y
and (gh) · y = g · (h · y) for all g, h ∈ G and all y ∈ Y . A topological space equipped with a left G-action is
called a left G-space. A continuous map f : Y1 → Y2 between two left G-spaces is a G-map if f(gy) = gf(y)
for all g ∈ G and x ∈ Y1.

The orbit spaces (with the quotient topologies) are denoted F/G = {xG | x ∈ F} for a right action
F ×G→ F and G\Y = {Gy | y ∈ Y } for a left action G× Y → Y .

The orbit through the point x ∈ F for the right action F ×G→ F is the sub-right G-space xG = {xg | g ∈
G} obtained by hitting x with all elements of G; the stabilizer at x is the subgroup xG = {g ∈ G | xg = x}
of G. The universal property of quotient spaces gives a commutative diagram

G
g→xg //

g→xGg ""EEEEEEEE xG

xG\G
xGg→xg

;;xxxxxxxx

of right G-spaces and G-maps (General Topology, 2.81). Note that G-map xG\G → xG : xGg → xg is
bijective. (In particular, the index of the stabilizer subgroup at x equals the cardinality of the orbit through
x.) In many cases it is even a homeomorphism so that the orbit xG through x and the coset space xG\G of
the isotropy subgroup at x are homeomorphic.

Proposition 6.3 (G-orbits as coset spaces). Suppose that F is a right G-space and x a point of F . Then

xG\G→ xG is a homeomorphism ⇐⇒ G
g→xg−−−−→ xG is a quotient map

Proof. Use that the a bijective quotient map is a homeomorphism, the composition of two quotient maps is
quotient, and if the composition of two maps is quotient than the last map is quotient (General Topology,
2.77). By definition, G→ xG\G is quotient. �

By a right (or left) G-set we just mean a right (or left) G-space with the discrete topology. In the following
we deal with G-sets rather than G-spaces.

Definition 6.4. GSet is the category of right G-sets and G-maps. The objects are right G-sets F and the
morphisms ϕ : F1 → F2 are G-maps (meaning that ϕ(xg) = ϕ(x)g for all x ∈ F1 and g ∈ G).

6.5. Transitive right actions. The right G-set F is transitive if F consists of a single orbit. If F is transitive
then F = xG for some (hence any) point x ∈ F so that F and H\G are isomorphic G-sets where H is the
stabilizer subgroup at the point x (Proposition 6.3). Thus any transitive right G-set is isomorphic to the
G-set H\G of right H-cosets for some subgroup H of G.

Definition 6.6. The orbit category of G is the full subcategory OG of GSet generated by all transitive right
G-sets.

The orbit category OG of G is equivalent to the full subcategory of GSet generated by all G-sets of the
form H\G for subgroups H of G. What are the morphisms in the orbit category OG?

Definition 6.7. Let H1 and H2 be subgroups of G. The transporter is the set

NG(H1, H2) = {n ∈ G | nH1n
−1 ⊂ H2}

of group elements conjugating H1 into H2.

The transporter set NG(H1, H2) is a left H2-set. Let Let H2\NG(H1, H2) be the set of H2-orbits.

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf


18 J.M. MØLLER

Proposition 6.8. There is a bijection

τ : H2\NG(H1, H2)→ OG(H1\G,H2\G), τ(H2n)(H1g) = H2ng

This map takes H2n to left multiplication H1\G
H1g→H2ng−−−−−−−→ H2\G by H2n. In case H1 = H = H2, the map

τ : H\NG(H)→ OG(H\G,H\G), τ(Hn)(Hg) = Hng

is a group isomorphism.

Proof. The inverse to τ is the map that takes a G-map H1\G
ϕ−→ H2\G to its value ϕ(H1) = H2n at

H1 ∈ H1\G. Since H2n = ϕ(H1) = ϕ(H1H1) = H2nH1, the group element n conjugates H1 into H2. In case
H1 = H = H2 and n1, n2 ∈ NG(H), we have

τ(Hn1)τ(Hn2)(H) = τ(Hn1)(Hn2) = Hn1n2 = τ(Hn1n2)(H)

so τ is group homomorphism in this case. �

In particular we see that
• all morphisms in OG are epimorphisms
• all endomorphisms in OG are automorphisms
• every object H\G of OG is equipped with left and right actions

(6.9) H\NG(H)×H\G×G = OG(H\G,H\G)×H\G×G→ H\G : Hn ·Hg ·m = Hngm

where the left action are the G-automorphisms of H\G in OG.
• the maximal G-orbit is G = {e}\G and OG({e}\G,H\G) = H\G, the minimal G-orbit is ∗ = G\G

and OG(H\G,G\G) = ∗ (G\G = ∗ is the final object of OG)

Remark 6.10 (Isomorphism classes of objects of OG). The set of objects of OG corresponds to the set
of subgroups of G. The set of isomorphism classes of objects of OG corresponds to the set of conjugacy
classes of subgroups of G: Two objects H1\G and H2\G of the orbit category OG are isomorphic if and
only if H1 and H2 are conjugate: If there exist an inner automorphism that takes H1 into H2 and an inner
automorphism that takes H2 into H1 such that the composite maps are the respective identity maps of
H1\G and H2\G, then these inner automorphisms must in fact give bijections between H1 and H2 as the

factorizations H1
Inn(n1)−−−−−→ H2

Inn(n2)−−−−−→ H1
Inn(n1)−−−−−→ H2 of the respective identity maps imply that the inner

automorphism Inn(n1) is a bijection.

7. The classification theorem

In this section we shall see that covering maps are determined by their monodromy functor.

Definition 7.1. Cov(X) is the category of covering spaces over the space X. The objects are covering maps
Y → X and the morphisms Cov(X)(p1 : Y1 → X, p2 : Y2 → X) are continuous maps f : Y1 → Y2 over X
(meaning that f preserves fibres or p1 = p2f).

How can we describe the category Cov(X)? We are going to assume from now on that X is path connected
and locally path connected .

Let Func(π(X),Set) be the category of functors from the fundamental groupoid π(X) to the category Set
of sets. There is a functor

Cov(X)→ Func(π(X),Set)
which takes a covering map p : Y → X to its monodromy functor F (p) : π(X)→ Set (2.8) and a covering
map morphism to the induced natural transformation of functors. Conversely, does any such functor come
from a covering space of X?

Suppose that F : π(X)→ Set is any functor. Let Y (F ) =
⋃
x∈X F (x) be the union of the fibres and let

p(F ) : Y (F )→ X be the obvious map taking F (x) to x for any point x ∈ X.

Definition 7.2. A space X is semi-locally simply connected at the point x ∈ X if any neighborhood of x
contains a neighborhood U of x such that any loop at x in U is contractible in X. The space X is semi-locally
simply connected if it is semi-locally simply connected at all its points.

All locally simply connected spaces are semi-locally simply connected.
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Lemma 7.3. Suppose that X is locally path connected and semi-locally simply connected. Then there is a
topology on Y (F ) such that p(F ) : Y (F )→ X is a covering map. The monodromy functor of p(F ) : Y (F )→ X
is F .

Proof. Suppose that x is a point in X and U ⊂ X an open path connected neighborhood of x such that any
loop in U based at x is nullhomotopic in X. Observe that this implies that there is a unique path homotopy
class uz from x to any other point z in U so that

U × F (x)→ p−1(U) : (y, z)→ F (uz)(y)

is a bijection.
For each y ∈ F (x), let (U, y) ⊂ Y be the image of U × {y} under the above bijection. By assumption, the

topological space X has a basis of sets U as above. The sets (U, y) then form a basis for a topology on Y .
The covering map Y (F )→ X determines a fibre functor (2.8) from the fundamental groupoid of X to the

category of sets. By construction, this fibre functor is F . �

Definition 7.4. A covering map p : Y → X is universal if Y is simply connected.

According to the Lifting Theorem 2.12, any two universal covering spaces over X are isomorphic in the
category Cov(X) of covering spaces over X. We may therefore speak about the universal covering space of
X. Is there always a universal covering space of X?

By Corollary 2.9 the fundamental groupoid of Y (F ) has the set Y (F ) as object set and the morphisms are

(7.5) π(Y (F ))(y1, y2) = {u ∈ π(X)(x1, x2) | F (u)y1 = y2}
for all points x1, x2 ∈ X and y1 ∈ F (x1), y2 ∈ F (x2). In particular, let x0 be a base point in X. There is a
right action F (x0)× π1(X,x0)→ F (x0) and

Y (F ) is path connected ⇐⇒ The right action of π1(X,x0) on F (x0) is transitive

Y (F ) is simply connected ⇐⇒ The right action of π1(X,x0) on F (x0) is simply transitive

We can always find a functor that satisfies the last condition in that

F = π(X)(x0,−) : π(X)→ Set

is a functor and the action of π1(X,x0) on F (x0) = π1(X,x0) is simply transitive.

Corollary 7.6. X admits a simply connected covering space if and only if X is semi-locally simply connected.

Proof. The covering space Y (F ) of the functor F = π(X)(x0,−) is simply connected.
Conversely, suppose that p : Y → X is a covering map and U ⊂ X and evenly covered open subspace then

U → X factors through Y → X. If π1(Y ) is trivial then π1(U)→ π1(X) is the trivial homomorphism. �

Example 7.7. The Hawaiian Earring
⋃
n∈Z+

C1/n and the infinite product
∏
S1 of circles are connected and

locally path connected but not semi-locally simply connected. Thus they have no simply connected covering
spaces. The infinite join

∨
S1 does have a simply connected covering space since it is a CW-complex. Indeed

any CW-complex or manifold is locally contractible [5, Appendix], in particular locally simply connected.

Theorem 7.8 (Classification of Covering Maps). Suppose that X is semi-locally simply connected. The
monodoromy functor and the functor F → Y (F )

Cov(X) //Func(π(X),Set)oo

are category isomorphisms.

Proof. Let p1 : Y1 → X and p2 : EY → X be covering maps over X with associated functors F1 and F2. A
covering map

Y1

p1   AAAAAAA
f // Y2

p2~~}}}}}}}

X

induces a natural transformation τf : F1 =⇒ F2 of functors given by τf (x) = f |p−1
1 x : p−1x1 → p−1x2.

Conversely, any natural transformation τ : F1 =⇒ F2 induces a covering map Y (f) : Y (F1) → Y (F2) of the
associated covering spaces. �
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For example, let F : π(X)→ Set be any functor, let x0 ∈ X and y0 ∈ F (x0). There is a natural transfor-
mation π(X)(x0,−) =⇒ F whose x-component is π(X)(x0, x) → F (x) : u → F (u)yy for any point x of X.
This confirms that the universal covering space lies above them all.

Corollary 7.9. The functor

Cov(X)→ π1(X,x0)Set : (p : Y → X)→ p−1(x0)

is an equivalence of categories.

Proof. The inclusion π1(X,x0) → π(X) of the the full subcategory of π(X) generated by x0 into π(X) is
an equivalence of categories. The induced functor Func(π(X),Set) → Func(π1(X,x0),Set) is then also an
equivalence. But Func(π1(X,x0),Set) is simply the category of right π1(X,x0)-sets. �

In particular, the full subcategory Cov0(X) of connected covering spaces over X is equivalent to the
category of transitive right π1(X,x0)-sets which again is equivalent to the orbit category Oπ1(X,x0) (6.6). The
set of covering space morphisms from the connected covering space p1 : Y1 → X to the connected covering
space p2 : Y2 → X is

Cov(X)(p1 : Y1 → X, p2 : Y2 → X) = Func(π(X),Set)(F (p1), F (p2))

= π1(X)Set(p−1
1 (x0), p−1

2 (x0))

= Oπ1(X)(π1(Y1)\π1(X), π1(Y2)\π1(X))

= π1(Y2)\Nπ1(X)(π1(Y1), π2(Y2))

and, in particular,
Cov(X)(p : Y → X, p : Y → X) = π1(Y )\Nπ1(X)(π1(Y ))

for any connected covering space p : Y → X over X. If we map out of the universal covering space X〈1〉 → X
this gives

Cov(X)(X〈1〉 → X,Y → X) = π1(Y )\π1(X) Cov(X)(X〈1〉 → X,X〈1〉 → X) = π1(X)

which means that the universal covering space admits a left covering space π1(X)-action with orbit space
π1(X)\X〈1〉 → X = X.

Corollary 7.10. Let G = π1(X) for short. The functor

OG → Cov0(X) : H → (H\X〈1〉 → G\X〈1〉)

is an equivalence of categories.

Is this

C2\Σ3

##FFFFFFFF

id
��

{e}\Σ3Σ3

%%

;;xxxxxxxx

;;xxxxxxxx

;;xxxxxxxx

##FFFFFFFF

##FFFFFFFF Σ3\Σ3 id
yy

C3\Σ3

;;xxxxxxxx

C2

GG

a picture of the orbit category of symmetric group Σ3 or is it a picture of the path connected covering spaces
over a path connected, locally path connected, and semi-locally simply connected space with fundamental
group Σ3? Both! The space could be XΣ3 from Corollary 4.12); see Example 7.19 for more information.

Here are some examples to illustrate the Classification of Covering Spaces.

Covering spaces of the circle: The category Cov0(S1) = OC∞ of path connected covering spaces of
the circle S1 = Z\R consists of the covering spaces nZ\R → Z\R where n = 0, 1, 2, . . .. There is a
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covering map nZ\R → mZ\R if and only if m|n and in that case there are m such covering maps,
namely the maps

S1

zn   AAAAAAAA
ζzm/n // S1

zm~~}}}}}}}}

S1

where ζ is any mth root of unity.
Covering spaces of projective spaces: The category Cov0(RPn) = OC2 of connected covering spaces

of real projective n-space RPn, n ≥ 2, has 2 objects, namely the trivial covering map RPn → RPn

and the universal covering map Sn → RPn.
Covering spaces of lense spaces: The universal covering space of the lense space L2n+1(m) = Cm\S2n+1,
n ≥ 1, is S2n+1. The other covering spaces are the lense spaces L2n+1(r) = Cr\S2n+1 for eah divisor
r of m. The category of connected covering spaces of L2n+1(m) is equivalent to the orbit category
OCm .

Covering spaces of surfaces: The category Cov0(Mg) = Oπ1(Mg) is harder to describe explicitly.
Any finite sheeted covering space of a compact surface is again a compact surface. The paper [8]
contains information about covering spaces of closed surfaces.

Example 7.11 (Covering spaces of the Möbius band). The cylinder S1 × [−1, 1] = Z\(R × [−1, 1]) where
the action is given by n · (x, t)→ (x+ n, t)

-

-

6 6 6 6 6 6 6 6

• • • • • • • •

The Möbius band MB = Z\(R× [−1, 1]) where the action is given by n · (x, t)→ (x+ n, (−1)nt)
-

-

? ? ? ?6 6 6 6

• • • •

• • • •

Every even-sheeted covering space of the Möbuis band is a cylinder, every odd-sheeted covering space is a
Möbuis band.

&%
'$i

Example 7.12 (Covering spaces of S1 ∪m (S1 × I)). Let Xm = S1 ∪m (S1 × I) be the mapping cylinder
of the degree m map of the circle. We can construct Xm in the following way: Take a (codomain) circle
of circumference 1/m and a square [0, 1] × [0, 1]. Wrap the bottom edge [0, 1] × {0} of the square m times
around the circle in a screw motion so that each time the square travels once around the circle it is also being
rotated an angle of 2π/m. Finally, glue the two ends, {0} × [0, 1] and {1} × [0, 1], of the square together.
There is a picture of Xm in [5, Example 1.29]. The codomain circle is the core circle and the domain circle is
the boundary circle. The fundamental group π1(Xm) is Z since Xm deformation retracts onto the codomain
(core) circle so that the inclusion S1 i1−→ Xm ⊃ S1 is a homotopy equivalence. The inclusion S1 i0−→ Xm ⊃ S1

of the domain (boundary) circle induces multiplication by m on the fundamental groups; this is simply
because of the general mapping cylinder diagram which becomes

S1

m

''PPPPPPPPPPPPPPP
i0 // (S1 × I) ∪m S1 = Xm

DR

��
S1

i1 '

OO

in this special case. It may help to envision the boundary circle in Xm sliding towards the core circle.
The universal covering space of Xm is Xm〈1〉 = CZ/m ×R where CZ/m = (Z/m × I)/(Z/m × {1}) is

the cone on the set Z/m with m points. (CZ/m is a starfish with m arms). We may realize CZ/m ×R in
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Figure 2. The universal covering space of Xm

R3 with CZ/m placed horizontally in the XY -plane and R as the vertical Z-axis. The covering space action
of the unit 1 ∈ Z on CZ/m×R is then the screw motion ([[a]m, t], x)→ ([[a+ 1]m, t], x+ 1/m) with matrixcos(2π/m) − sin(2π/m) 0

sin(2π/m) cos(2π/m) 0
0 0 1/m


that rotates CZ/m counterclockwise 1/mth of a full rotation and moves up along the Z-axis 1/mth of a unit.
(In Figure 7.12 the R-axis isn’t exactly vertical since that would take up too much space. The covering space
action takes the indicated lines, situated at distance 1/m, to each other.) What is the lift of the domain and
the codomain circles of Xm to the universal covering space Xm〈1〉? (One of them will lift to a loop.)

Since m ∈ Z acts trivially on CZ/m there is an m-sheeted covering map

CZ/m× S1 = CZ/m×mZ\R = mZ\(CZ/m×R)→ Z\(CZ/m×R) = Xm

with mZ\Z as deck transformation group. What is the lift of the domain and the codomain circles to this
m-fold covering space?

Let X = X1 ∪ X2 be a CW-complex that is the union of two connected subcomplexes X1 and X2 with
connected intersection X1 ∩X2. According to van Kampen, the fundamental group G = π1(X) = G1 qA G2

is the free product of G1 = π1(X1) and G2 = π1(X2) with A = π1(X1 ∩X2) amalgamated. We will assume
that the homomorphisms G1 ← A→ G2 are injective. Then also the homomorphisms G1 → G← G2 of the
push-out diagram

A

��

// G2

��
G1

// G

are injective according to the Normal Form Theorem for Free Products with Amalgamation [6, Thm 2.6].
Let X〈1〉 be the universal covering space of X = G\X〈1〉 and let p : X〈1〉 → X be the covering projection

map. The spaces p−1(X1) and p−1(X2) are left G-spaces with intersection p−1(X1)∩p−1(X1) = p−1(X1∩X2).
Let y0 ∈ p−1(X1 ∩X2) be a base point. The commutative diagram [3, II.7.5]

π1(p−1X1, y0)� _

��

// π1(p−1X, y0) = {1}� _

��
π1(X1, p(y0)) � � // π1(X, p(y0))

tells us that the component of p−1(X1) containing y0 is simply connected so it is the universal covering space
X1〈1〉 of X1 = G1\X1〈1〉. We see from this that there is a homeomorphism of left G-spaces

G×G1 X1〈1〉
'→ p−1(X1)

induced by the map G × X1〈1〉 → p−1(X1) sending (g, y) to gy. Similar arguments apply to p−1(X2) and
p−1(X1 ∩X2), of course, and hence

X〈1〉 = G×G1 X1〈1〉 ∪G×A(X1∩X2)〈1〉 G×G2 X2〈1〉

is the union of the two G-spaces G×Gi Xi〈1〉, i = 1, 2. This means that the universal covering space of X is
the union of the G-translates of the universal covering spaces of X1 and X2 joined along G-translates of the
universal covering space of X1 ∩X2. The next example demonstrates this principle.
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Example 7.13. [5, 1.24, 1.29, 1.35, 1.44, 3.45] Let Xmn = Xm ∪S1 Xn be the double mapping cylinder for
the degree m map and the degree n map on the circle. Xmn is the union of the two mapping cylinders with
their domain (boundary) circles identified, Xm ∩Xn = S1. By van Kampen, the fundamental group has a
presentation

π1(Xmn) = π1(Xm)qπ1(S1) π1(Xn) = 〈a, b | am = bn〉 = Gmn

with two generators and one relation. We shall now try to build its universal covering space.
We may equip Xmn with the structure of a 2-dimensional CW-complex. The 1-skeleton of Xmn consists

of two circles, a and b, joined by an interval, c, and Xmn = X1
mn ∪amcbncD2 is obtained by attaching a 2-cell�

�
�
�
�
�
�
�a b

c
•

Figure 3. 1-skeleton X1
mn of Xmn

along the loop amcb
n
c. (If we use the corollary to van Kampen [5, 1.26] instead of the van Kampen theorem

itself we get that π1(Xmn) = 〈a, cbc | am(cbc)−n〉.)
The universal covering space Xmn〈1〉 is also a 2-dimensional CW-complex. The inverse image in Xm〈1〉

of the left half of the 1-skeleton is the vertical line R with spiraling ‘rungs’ attached 1/mth of a unit apart.
Rungs with vertical distance 1 point in the same direction so they can be joined up with the inverse image
in Xn〈1〉 of the right half of the 1-skeleton. Now fill in 2-cells in each of the rectangles with sides am, c,

am bn

•

•

•

•

Figure 4. Part of 1-skeleton of Xmn〈1〉

bn and c. Continue this process. There will be similar rectangles shifted up 1/mth unit along the left axis
and rotated 2π/m or up 1/nth unit along the right axis and rotated 2π/n. The 2-dimensional CW-complex
Xmn〈1〉 built in this way is the universal covering space; it is the product Tmn×R of a tree Tmn and the real
line, hence contractible [10, Chp 3, Sec 7, Lemma 1]. The element a ∈ Gmn acts by skew motion around one
of the vertical lines in Xm〈1〉 and b ∈ Gmn acts by skew motion around one of the vertical lines in Xn〈1〉.
Note that am = bn acts by translating one unit up. What is the lift of Xm ∩Xn (the circle parallel to circle
a but passing through the point • of the 1-skeleton) to the universal covering space?

What is the universal abelian covering space G′mn\Xmn〈1〉 of Xmn? Its deck transformation group is

G′mn\Gmn = (Gmn)ab = 〈a, b|am = bn, ab = ba〉 = Z× Z/d

where d = (m,n) is the greatest common divisor. What is the mn fold covering space with funda-
mental group equal to the normal closure N of

〈
am, aba−1b−1

〉
and deck transformation group N\G =

〈a, b | am = bn, am, ab = ba〉 = 〈a, b | am, bn, ab = ba〉 = Z/m × Z/n? What is the lift of Xm ∩ Xn to this
covering space?

7.14. Cayley tables, Cayley graphs, and Cayley complexes. [6, III.4] [3] For any group presentation
G = 〈gα | rβ〉 there exists (Corollary 4.12) a 2-dimensional CW-complex

XG\G = D0 ∪
∐
{gα}

D1 ∪
∐
{rβ}

D2 = (G\G×D0) ∪
∐
{gα}

(G\G×D1) ∪
∐
{rβ}

(G\G×D2)

with fundamental group π1(XG\G) = 〈gα | rβ〉 = G. This is the most simple space with fundamental group
G so it is natural to apply Theorem 7.8 to XG\G. So what are the connected covering spaces of XG? There
is an equivalence of categories

X? : OG → Cov0(XG\G) : H\G→ (XH\G → XG\G)
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and the Cayley complex of H\G is the 2-dimensional CW-complex XH\G while the Cayley graph is its 1-
skeleton. We now define these CW-complexes more explicitly for any object of OG (or for any right G-space
for that matter) relative to the given presentation of G.

The 0-skeleton of XH\G is the right G-set X0
H\G = H\G; this is the fibre of the covering map XH\G →

XH\G as a right G-space. The 1-skeleton of XH\G is the Cayley graph for H\G, the 1-dimensional H\NG(H)-
CW-complex

X1
H\G = (H\G×D0) ∪

∐
{Hg→Hggα}

(H\G×D1)

obtained from the 0-skeleton H\G by attaching to each right coset Hg ∈ H\G an arrow from Hg to Hggα
for each generator gα; note that we have no other choice since the loop gα in the base space lifts to a path
in the total space that goes from Hg in the fibre H\G to Hggα in the fibre. (The Cayley graph is simply
a graphical presentation of the Cayley table for group multiplication H\G × G → H\G. In this way, the
Cayley table for H\G is a |G : H|-fold covering space of the 1-skeleton

∨
{gα} S

1 of XG.) The Cayley graph
is connected since each group element g is a product of the generators which means that there is a sequence
of arrows connecting the 0-cells He and Hg.

Next attach 2-cells at each Hg ∈ H\G along the loop rβ for each relation rβ . Since the relation rβ is a
factorization of the neutral element e in terms of the gα, it defines loops Hg → Hgrβ = Hg based at each
0-cell Hg in the Cayley graph X1

H\G. The resulting left H\NG(H)-CW-complex

XH\G = (H\G×D0) ∪
∐

{Hg→Hggα}

(H\G×D1) ∪
∐

{Hg−→
rβ

Hg}

(H\G×D2)

is the Cayley complex of H\G. The Cayley complex is still connected for attaching 2-cells does not alter the
set of path components (Corollary 4.9). Clearly, every G-map H1\G → H2\G extends to a covering map
XH1\GtoXH2\G.

In particular, taking H = {e} to be the trivial group, the Cayley complex for the right G-set {e}\G = G,

X{e}\G = (G×D0) ∪
∐
{gα}

(G×D1) ∪
∐
{rβ}

(G×D2)

is a 2-dimensional left G-CW-complex, the universal covering space of XG\G. The 0-skeleton is G, at each

g ∈ G there is an arrow from g to ggα for each generator gα and a 2-cell attached by the loop g
rβ−→ grβ = g.

In other words, there is one 0-G-cell G × D0, one G-1-cell G × D1 for each generator gα, attached by the
left G-map that takes {e} × ∂D1 = {e} × {0, 1} to e and gα, and one G-2-cell G ×D2 for each relation rβ
attached by the left G-map that on {e} × ∂D2 is the loop rβ at e. The orbit space under the left action of
H < G on XG({e}\G) is the Cayley complex for the orbit space H\G: H\X{e}\G = XH\G. In particular,

G\X{e}\G = XG\G = D0 ∪
∐
{gα}

D1 ∪
∐
{rβ}

D2 = XG

is a point {Ge} with an arrow Ge
gα−→ Ge for each generator gα and with one 2-cell attached along the loop

Ge
rβ−→ Ge for each relation rβ .

It is very instructive to do a few examples. See [4] for information about graph theory.

Example 7.15 (Cayley graphs for F2-sets). Let G = 〈a, b〉 = Z ∗ Z be a free group F2 on two generators.
Since there are no relations, Cayley complexes for right G-sets are Cayley graphs. In particular, X{e}\G =
(G×D0) ∪ (G×D1

∐
G×D1) is the G-graph

gb

ga−1 g ga

gb

http://en.wikipedia.org/wiki/Cayley_table
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with vertex set G and two edges from g to ga and gb for every vertex g ∈ G, and XG\G = G\X{e}\G is the
graph, S1 ∨S1, with one vertex G\G and two edges. In general, for any subgroup H of G, the Cayley graph,
XH\G, for H\G is the covering space of XG\G = S1 ∨ S1 characterized by any of these three properties:

• XH\G is the Cayley table for H\G×G→ H\G relative to the generators a and b
• the fibre of XH\G → XG\G is the right G-set H\G
• the image of the monomorphism π1(XH\G)→ π1(XG\G) = G is conjugate to H

Here are some examples:
• If H =

〈
a2, ab, b2

〉
then the Cayley table and the Cayley graph of the G-set H\G = {He,Ha} are

a b
He Ha Ha
Ha He He

He
a ##

b ;;Ha

b

��

a

XX

because He a−→ Ha, He b−→ Hb = Habb−2b = Ha, Ha a−→ Haa = He, and Ha
b−→ Hab = He. The

subgroup H is normal since it has index two. Note that H is free of rank 3.
• If H = [G,G] is the commutator subgroup of G then the Cayley graph gives a tiling of the the plane

by squares with edges labeled aba−1b−1.
• If H = G2 is the smallest subgroup containing all squares in G, the right cosets are H\G =
{He,Ha,Hb,Hab} and the Cayley graph is the graph of the Cayley table.

• If H is the smallest normal subgroup containing a3, b3, and (ab)3, then the Cayley graph gives a
tiling of the plane by hexagons, with edges ababab, and triangles with edges aaa or bbb. Observe that
Hxa3y = Hxa−3x−1xa3y = Hxy.

It is, in general, a difficult problem to enumerate the cosets of H in G.

Exercise 7.16. Let G =< a, b > be the free group on two generators and let H =
〈
a2, b2, aba−1, bab−1

〉
.

Draw the Cayley graph for H\G with the help of the information provided by this magma session:
> G<a,b>:=FreeGroup(2);
> H:=sub<G|a^2, b^2, a*b*a^-1, b*a*b^-1>;
> Index(G,H);
3
> T,f:=RightTransversal(G,H);
> T;
{@ Id(G), a, b @} //The vertices of the Cayley graph
> E:={@ <v,(v*a)@f,(v*b)@f> : v in T @};
> E;
{@ <Id(G), a, b>, <a, Id(G), a>, <b, b, Id(G)> @} //The edges
>

Exercise 7.17. Let G be a free group of finite rank and H a subgroup of G. Show that H is free and that
|G : H|(rk(G)− 1) = rk(H)− 1. (This exercise is most easily solved by using the Euler characteristic.)

Example 7.18. When G = Cm = 〈g | gm〉 is the cyclic group of order m > 0, the Cayley complex

XG({e}\G) = (G×D0) ∪ (G×D1) ∪ (G×D2)

is the universal covering space of the mapping cone for the degree m map on the circle. It is the left G-
CW-complex consisting of a circle with m 2-discs attached. (When m = 2, this is the 2-sphere which is the
universal covering space of the mapping cone RP 2 for the degree 2-map of the circle.) What is the covering
space action of G on XG({e}\G)?

Example 7.19. [5, Example 1.48, Exercise 1.3.14] Let G =
〈
a, b | a2, b2

〉
= Z/2qZ/2 4.2= ZoZ/2 be the free

product of Z/2 with itself. Then XG\G = RP 2 ∨RP 2 and Cov0(RP 2 ∨RP 2) = OC2qC2 . The total space
X{e}\G of its universal covering space X{e}\G → XG\G is an infinite string of S2s. Indeed, the 0-skeleton is
G, the 1-skeleton obtained by attaching two 1-discs to each 0-cell, is

· · · ba
a

a

b
b

b

e
a

a

a
b

b

ab · · ·
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Figure 5. H\X{e}\G for H =
〈
(ab)3, a

〉
≤
〈
a, b | a2, b2

〉
= G

and the 2-skeleton is obtained by attaching two 2-discs at each 0-cell along the maps a2 and b2. The left
action of a ∈ G which swaps e↔ a, b↔ ab, etc is the antipodal map on the sphere containing e and a.

The subgroup H =
〈
(ab)3

〉
= 3Z ⊂ Z is normal in G so that the orbit set

H\G = {He,Ha,Hb,Hab,Hba,Haba} = 3Z\Z o 2Z\Z

is actually a group; it is the dihedral group of order 6, isomorphic to Σ3. The quotient space H\X{e}\G =
XH\G is a necklace of six S2s formed from the 1-skeleton

He a

��

b

��

dd

$$H
H

H
H

H

Hb b

HH

a

��

ii

))TTTTTTTTT Ha
a

VV

b

��
Hba

a

]]

b ,,

cc

##H
H

H
H

H Hab

b

]]

a

��
Haba

b
mm

a

HH

by attaching 2-discs at each vertex along the loops a2 and b2. The fundamental group of H\X̃G is H and the
deck transformation group is H\NG(H) = H\G since H is normal. The dashed arrows show the covering
space left action by Ha ∈ H\G; the orbit space for this action is the Cayley complex of the next example.
The element Hab ∈ H\G acts by rotating the graph two places in clockwise direction.

For another example, take H =
〈
(ab)3, a

〉
= 3Z o Z/2; H is not normal for NG(H) = H, H\G =

{He,Hb,Hba} has 3 elements, and

He

b
##

a 66 Hb

b

cc

a
$$
Hba

a

dd bhh

is the Cayley graph for H\G. The Cayley complex, obtained by attaching six 2-discs along the maps a2

and b2 at each vertex, is RP 2, S2, S2, RP 2 on a string as shown above. The deck transformation group
H\NG(H) = H\H is trivial.

Example 7.20. Let G = Z/2 q Z/3 4.2= PSL(2,Z) be the free product of a cyclic group of order two and a
cyclic group of order three. This graph

b
b

b e

a

a

a

b2
b

is the beginning of the Cayley complex for G. Describe the left G-CW-complex XG(G)!
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7.21. Normal covering maps. Let p : Y → X be a covering map between path connected spaces.

Definition 7.22. The covering map p : Y → X is normal if the group Cov(X)(Y, Y ) of deck transformations
acts transitively on the fibre p−1(x) over some point of X.

If the action is transitive at some point, then it is transitive at all points. Why are these covering maps
called normal covering maps?

Corollary 7.23. Let X be a path connected, locally path connected and semi-locally simply connected space
and p : Y → X a covering map with Y path connected. Then

The covering map p : Y → X is normal ⇐⇒ The subgroup π1(Y ) is normal in π1(X)

Proof. The action H\NG(H)×H\G→ H\G of the group of covering maps on the fibre is transitive iff and
only if H is normal in G. �

All double covering maps are normal since all index two subgroups are normal.

7.24. Sections in covering maps. A section of a covering p : E → X is a (continuous) map s : X → E such
that s(x) lies above x, ps(x) = x, for all x ∈ X. In other words, a section is a lift of the identity map of the
base space. Each section traces out a copy of the base space in the total space (and that is why it is called a
section).

Lemma 7.25. Let p : E → X be a covering space over a connected, locally path connected and semi-locally
simply connected base space X. Then the evaluation map s→ s(x)

{sections of p : E → X} //p−1(x)π1(X,x)

is a bijection.

Proof. Since X is connected, sections are determined by their value at a single point (2.12), so the map is
injective. It is also surjective because any π1(X,x)-invariant point corresponds (under the classification of
covering spaces over X) to the trivial covering map X → X which obviously has a section. �

In fact, E contains the trivial covering p−1(x)π1(X,x) ×X as a subcovering.
If either of Y1 → X or Y2 → X is normal, then

Cov(X)(Y1, Y2) =

{
π1(Y2)\π1(X) π1(Y2) ⊂ π1(Y1)
∅ otherwise

for the transporter Nπ1(X)(π1(Y1), π1(Y2)) equals π1(X) if π1(Y1) ⊂ π1(Y2) and ∅ otherwise.

8. Universal covering spaces of topological groups

Suppose that G is a connected, locally path connected, and semi-locally simply connected topological
group (for instance, a connected Lie group) and let G 〈1〉 be the universal covering space (7.4) of G. We can
use the group multiplication in G to define a multiplication in G 〈1〉 simply by letting the product [γ] · [η] of
two homotopy classes of paths [γ], [η] ∈ G 〈1〉 equal the homotopy class [γ · η] ∈ G 〈1〉 of the product path
(γ · η)(t) = γ(t) · η(t) whose value at any time t is the product of the values γ(t) ∈ G and η(t) ∈ G.

Lemma 8.1. G 〈1〉 is a topological group and G 〈1〉 → G is a morphism of topological groups whose kernel
is the subgroup {[ω] | ω(0) = ω(1)} = π1(G, e) of homotopy classes of loops based at the unit e ∈ G.

The set π1(G, e) is here equipped with the group structure it inherits from G 〈1〉 where multiplication of
paths is induced from group multiplication in G. However, we have also defined a group structure on π1(G, e)
using composition of loops. It turns out that these two structures are identical.

Lemma 8.2. Let ω1 and ω2 be two loops in G based at the unit element e. Then the loops ω1 · ω2 (group
multiplication) and ω1ω2 (loop composition) are homotopic loops.
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Proof. There is a homotopy commutative diagram

S1

∆ ''NNNNNNNNNNNN // S1 ∨ S1
� _

��

ω1∨ω2 // G ∨G� _

��

∇

&&MMMMMMMMMMMM

S1 × S1
ω1×ω2

// G×G // G

where ∆ is the diagonal and ∇ the folding map. The loop defined by the top edge from S1 to G is the
composite loop ω1ω2 and the loop defined by the bottom edge is the product loop ω1 · ω2. �

One can also show that in this situation π1(G, e) must be abelian.
Let H = R1⊕Ri⊕Rj ⊕Rk be the quaternion algebra where the rules i2 = j2 = k2 = −1, ij = k = −ji,

jk = i = −kj, ki = j = −ki define the multiplication. Let Sp(1) denote the topological group of quaternions
of norm 1.

Sp(1) acts in a norm preserving way on the real vector space H = R4 by the rule α · v = αvα−1 for
all α ∈ Sp(1) and v ∈ R4 = H. This give a homomorphism π : Sp(1)→ SO(4). Since R1 is invariant
under this action, it takes R⊥ = Ri ⊕ Rj ⊕ Rk = R3 to itself, so there is also a group homomorphism
π : Sp(1)→ SO(3) [2, I.6.18, p 88]. The kernel is R ∩ Sp(1) = {±1}. Convince yourself that π is surjective
(see the computation below and recall that an element of SO(3) is a rotation around a fixed line), so that
π : Sp(1)→ SO(3) = {±1}\Sp(1) is a double covering space.

Let

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
be the matrix for rotation through angle θ.

Lemma 8.3. The map π : Sp(1)→ SO(3) is the universal covering map of SO(3). The fundamental group
π1(SO(3), E) = {±1} is generated by the loop

ω(t) = πα(t) =
(
R(2πt) 0

0 1

)
, 0 ≤ t ≤ 1,

Proof. The topological space Sp(1) = S3 is simply connected, so Sp(1) → SO(3) is the universal covering
space of SO(3). (We have seen this double covering before: It is the double covering S3 → RP 3.)

The fundamental group π1(SO(3), E) = C2 is generated by the image loop ω(t) = πα(t) of a path α(t) in
Sp(1) from +1 to −1. If we take

α(t) = cos(πt) + sin(πt)k, 0 ≤ t ≤ 1,

then the image in SO(3) is the loop

ω(t) = πα(t) =
(
R(2πt) 0

0 1

)
, 0 ≤ t ≤ 1,

This follows from the computation

α(t)iα(t)−1 = (cos(πt) + k sin(πt))i((cos(πt)− k sin(πt))

= cos2(πt)i+ cos(πt) sin(πt)j + cos(πt) sin(πt)j − sin2(πt)i = cos(2πt)i+ sin(2πt)j

and similarly for α(t)jα(t)−1 = − sin(2πt)i+ cos(2πt)j and α(t)kα(t)−1 = k. �

Alternatively use braids.
It is also known that the inclusion SO(3)→ SO(n) induces an isomorphism on π1 for n ≥ 3. We conclude

that the fundamental group π1(SO(n), E) has order two for all n ≥ 3 and that it is generated by the loop
ω(t) in SO(n). Thus the topological groups SO(n), n ≥ 3, have universal double covering spaces that are
topological groups.

Definition 8.4. For n ≥ 3, Spin(n) = SO(n) 〈1〉 is the universal covering space of SO(n) and π : Spin(n)→ SO(n)
is the universal covering map.

The elements of Spin(n) are homotopy classes of paths in SO(n) starting at E and, in particular, Spin(3) =
Sp(1). The kernel of the homomorphism π : Spin(n)→ SO(n) is {e, z} where e is the unit element and z = [ω]
is the homotopy class of the loop ω.

http://de.arxiv.org/pdf/math.HO/0508203.pdf?front
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Proposition 8.5. The center of Spin(n) is

Z(Spin(n)) =


C2 = {e, z} n odd
C2 × C2 = {e, x} × {e, z} n ≡ 0 mod 4
C4 = {e, x, x2, x3} n ≡ 2 mod 4

for n ≥ 3.

Proof. From Lie group theory we know that the center of Spin(n) is the inverse image of the center of SO(n).
Thus the center of Spin(n) has order 2 when n is odd and order 4 when n is even.

Suppose that n = 2m is even. Then Z(Spin(2m)) = {e, z, x, zx} where x = [η] is the homotopy class of
the path

η(t) = diag(R(πt), . . . , R(πt))

from E to −E. Note that x2 is (8.2) represented by the loop

η(t)2 = diag(R(2πt), . . . , R(2πt))

Conjugation with a permutation matrix from SO(2n) takes

ω(t) = diag(R(2πt), E,E, . . . , E) to diag(E,R(2πt), E, . . . , E)

and since inner automorphisms are based homotopic to identity maps, both the above loops represent the
generating loop ω. It follows that

x2 = [η(t)2] = [ω(t)m] = zm =

{
e m even
z m odd

Thus Z(Spin(2m)) = {z} × {x} = C2 × C2 if m is even and Z(Spin(2m)) = {x} = C4 if m is odd. �

What is the fundamental group π1(PSO(2n)) of the topological group PSO(2n) = SO(2n)/ 〈−E〉?
When will two diagonal matrices in SO(n) commute in Spin(n)? Let D = {diag(±1, . . . ,±1} be the

abelian subgroup of diagonal matrices in SO(n). By computing commutators and squares in Spin(n) we
obtain functions

[ , ] : D ×D → {e, z}, q : D → {e, z}
given by q(d) = (d̄)2 and [d1, d2] = [d̄1, d̄2] where π(d̄) = d, π(d̄1) = d1, π(d̄2) = d2. They are related by
formula

q(d1 + d2) = q(d1) + q(d2) + [d1, d2]

which says that [ , ] records the deviation from q being a group homomorphism (using additive notation
here). It suffices to compute q in order to answer the question about commutativity relations.

Proposition 8.6. q(d) = e iff the number of negative entries in the diagonal matrix d ∈ D is divisible by 4.
[d1, d2] = e iff the number of entries that are negative in both d1 and d2 is even.

Proof. Note that two elements of D are conjugate iff they have the same number of negative entries. Use
permutation matrices and, if necessary, the matrix diag(−1, 1, . . . , 1). Consider for instance

d1 = diag(−1,−1, 1, . . . , 1), d2 = diag(−1,−1,−1,−1, 1, . . . , 1)

with two, respectively four, negative entries. The paths

d̄1(t) = diag(R(πt), 1, . . . , 1), d̄2(t) = diag(R(πt), R(πt), 1, . . . , 1)

represent lifts of d1 and d2 to Spin(n). Then (d̄1)2 = z = q(d1) and (d̄2)2 = e = q(d2). Computations like
these prove the formula for q and the formula for [ , ] follows. The number of negative entries in d1 + d2

is the number of negative entries in d1 plus the number of negative entries in d2 minus twice the number of
entries that are negative in both d1 and d2. �

Exercise 8.7. Let Dn ⊂ Spin(n) be the inverse image of D ⊂ SO(n). How many elements of order 4 are
there in Dn? Can you identify the group Dn? Show that there is a homomorphism SU(m) → Spin(2m).
When m is even, what is the image of −E ∈ SU(m)? What is the image of the center of SU(m)? Describe
the covering spaces of U(n).
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The inclusions SO(n) ⊂ SO(n + 1), n > 2, and SO(m) × SO(n) ⊂ SO(m + n), m,n > 2, of special
orthogonal groups lift to inclusions

Spin(n) � � //

��

Spin(n+ 1)

��

Spin(m)×〈(z1,z2)〉 Spin(n) � � //

��

Spin(m+ n)

��
SO(n) � � // SO(n+ 1) SO(m)× SO(n) � � // SO(m+ n)

of double coverings. (Here, Spin(m)×〈(z1,z2)〉 Spin(n) stands for 〈(z1, z2)〉 \(Spin(m)× Spin(n))).
The inclusion U(n) ⊂ SO(2n), that comes from the identification Cn = R2n, lifts to an inclusion of double

covering spaces as shown in the following diagrams.

SU(n)×Ck U(1)

(A,z)→(A,z)

��

// Spin(2n)

��

SU(n)×C′n U(1)

(A,z)→(A,z2)

��

// Spin(2n)

��
SU(n)×Cn U(1) = U(n) � � // SO(2n) SU(n)×Cn U(1) = U(n) � � // SO(2n)

To the left, n = 2k is even, and to the right, n = 2k + 1 is odd; Cn = {(ζE, ζ−1) | ζn = 1} and C ′n =
{(ζE, ζk) | ζn = 1} are cyclic groups of order n and Ck = {(ζE, ζ−1) | ζk = 1} ⊂ C2k = Cn is cyclic of order
k. The isomorphism SU(n) ×Cn U(1) → U(n) takes (A, z) to zA. When n is divisible by 4, z = (−E,−1)
and x = (E,−1) have order two; when n is even and not divisible by 4, x = (E, i) has order four and
x2 = (E,−1) = z. This explains the computation of the center of Spin(2n). (Is the group in the upper left
corner of the right diagram isomorphic to U(n)? See [1] for more information.)

There is a double covering map pin(n)→ O(n) obtained as the pullback of Spin(2n)→ SO(2n) along the
inclusion homomorphism O(n) ⊂ SO(2n).

Example 8.8. The inclusion U(2) ⊂ SO(4) lifts to an inclusion SU(2) × U(1) ⊂ Spin(4). Let G16 ⊂
SU(2)×U(1) ⊂ Spin(4) be the group

G16 =
〈((

−i 0
0 i

)
, i

)
,

((
0 i
i 0

)
,−i
)〉

G16 has order 16, center Z(G16) = {x, z} = C2×C2 = Z(Spin(4)), and derived group [G16, G16] = {xz} = C2.
Its image under the covering maps

Spin(4)/ 〈z〉 = SO(4)

**VVVVVVVVVVVVVVVVV

Spin(4)

66lllllllllllll
//

((RRRRRRRRRRRRR
Spin(4)/ 〈xz〉 // Spin(4)/ 〈x, z〉 = PSO(4)

Spin(4)/ 〈x〉 = SSpin(4)

44hhhhhhhhhhhhhhhhh

is dihedral D8 in SO(4), abelian C4 ×C2 in Spin(4)/ 〈xz〉, quaternion Q8 in the semi-spin group SSpin(4) =
Spin(4)/ 〈x〉, and elementary abelian C2×C2 in PSO(4). (All proper subgroups of G16 are abelian but itself
and some of its quotient groups are nonabelian.)

Example 8.9. There exists a covering space homomorphisms of topological groups

U(1)× SU(n)→ U(n) : (z,A)→ zA

with kernel Cn = {(z, z−1E) | zn = 1} =
〈
(ζ, ζ−1E)

〉
where ζn = e2πi/n. The universal covering space

homomorphism is R × SU(n) → U(n) : (t, A) → ζtnA with kernel C∞ =
〈
(1, ζ−1

n E)
〉
. Any covering space of

U(n) is of the form
〈
(k, ζ−kn )

〉
\(R× SU(n)) for some integer k ≥ 0.

Similarly, let S(U(m) × U(n)) denote the closed topological subgroup (U(m) × U(n)) ∩ SU(m + n) of
U(m+ n). There exists a covering space homomorphisms of topological groups

U(1)×U(m)×U(n)→ S(U(m)×U(n)) : (z,A,B)→ diag(zn1A, z−m1B)
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with kernel Clcm(m,n) = {(z, z−n1E, zm1E) | zlcm(m,n) = 1} =
〈
(ζlcm(m,n), ζ

−1
m , ζn)

〉
wherem1 = m/ gcd(m,n) =

lcm(m,n)/n and n1 = n/ gcd(m,n) = lcm(m,n)/m. The universal covering space homomorphism of
S(U(m) × U(n)) is R × SU(m) × SU(n) → S(U(m) × U(n)) : (t, A,B) → (ζtmA, ζ

t
nB) with kernel C∞ =〈

(1, ζ−1
m , ζn)

〉
. Any covering space of S(U(m)×U(n) is of the form

〈
(k, ζ−km , ζkn)

〉
\(R× SU(m)× SU(n)) for

some integer k ≥ 0.

All finite covering spaces of U(n) are covered by U(1) × SU(n). To see this, let n and k be integers and
put k1 = k/ gcd(n, k). Then there is a commutative diagram

U(1)× SU(n) //

(z,A)→(zk1 ,A)

��

R×〈(k,ζ−k)〉 SU(n)

��
U(1)× SU(n)

(ζtn,A)→(t,A)

// R×〈(1,ζ−1)〉 SU(n) = U(n)

of covering space homomorphisms.
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