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Abstract

Algebraic quantum field theory provides a general, mathematically precise
description of the structure of quantum field theories, and then draws out conse-
quences of this structure by means of various mathematical tools — the theory
of operator algebras, category theory, etc.. Given the rigor and generality of
AQFT, it is a particularly apt tool for studying the foundations of QFT. This
paper is a survey of AQFT, with an orientation towards foundational topics. In
addition to covering the basics of the theory, we discuss issues related to nonlo-
cality, the particle concept, the field concept, and inequivalent representations.
We also provide a detailed account of the analysis of superselection rules by
S. Doplicher, R. Haag, and J. E. Roberts (DHR); and we give an alternative
proof of Doplicher and Roberts’ reconstruction of fields and gauge group from
the category of physical representations of the observable algebra. The latter
is based on unpublished ideas due to Roberts and the abstract duality theorem
for symmetric tensor ∗-categories, a self-contained proof of which is given in
the appendix.
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Introduction

From the title of this Chapter, one might suspect that the subject is some idiosyn-
cratic approach to quantum field theory (QFT). The approach is indeed idiosyn-
cratic in the sense of demographics: only a small proportion of those who work on
QFT work on algebraic QFT (AQFT). However, there are particular reasons why
philosophers, and others interested in foundational issues, will want to study the
“algebraic” approach.

In philosophy of science in the analytic tradition, studying the foundations of a
theory T has been thought to presuppose some minimal level of clarity about the
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referent of T . (Moreover, to distinguish philosophy from sociology and history, T is
not taken to refer to the activities of some group of people.) In the early twentieth
century, it was thought that the referent of T must be a set of axioms of some formal,
preferably first-order, language. It was quickly realized that not many interesting
physical theories can be formalized in this way. But in any case, we are no longer
in the grip of axiomania, as Feyerabend called it. So, the standards were loosened
somewhat — but only to the extent that the standards were simultaneously loosened
within the community of professional mathematicians. There remains an implicit
working assumption among many philosophers that studying the foundations of a
theory requires that the theory has a mathematical description. (The philosopher’s
working assumption is certainly satisfied in the case of statistical mechanics, special
and general relativity, and nonrelativistic quantum mechanics.) In any case, whether
or not having a mathematical description is mandatory, having such a description
greatly facilitates our ability to draw inferences securely and efficiently.

So, philosophers of physics have taken their object of study to be theories, where
theories correspond to mathematical objects (perhaps sets of models). But it is not
so clear where “quantum field theory” can be located in the mathematical universe.
In the absence of some sort of mathematically intelligible description of QFT, the
philosopher of physics has two options: either find a new way to understand the
task of interpretation, or remain silent about the interpretation of quantum field
theory.1

It is for this reason that AQFT is of particular interest for the foundations of
quantum field theory. In short, AQFT is our best story about where QFT lives
in the mathematical universe, and so is a natural starting point for foundational
inquiries.

1 Algebraic Prolegomena

This first section provides a minimal overview of the mathematical prerequisites of
the remainder of the Chapter.

1.1 von Neumann algebras

The standard definition of a von Neumann algebra involves reference to a topology,
and it is then shown (by von Neumann’s double commutant theorem) that this
topological condition coincides with an algebraic condition (condition 2 in the Def-
inition 1.2). But for present purposes, it will suffice to take the algebraic condition
as basic.

1.1 Definition. Let H be a Hilbert space. Let B(H) be the set of bounded linear
operators on H in the sense that for each A ∈ B(H) there is a smallest nonnegative

1For the first option, see [Wallace, forthcoming].
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number ‖A‖ such that 〈Ax,Ax〉1/2 ≤ ‖A‖ for all unit vectors x ∈ H. [Subsequently
we use ‖ · ‖ ambiguously for the norm on H and the norm on B(H).] We use
juxtaposition AB to denote the composition of two elements A,B of B(H). For
each A ∈ B(H) we let A∗ denote the unique element of B(H) such that 〈A∗x, y〉 =
〈x,Ay〉, for all x, y ∈ R.

1.2 Definition. Let R be a ∗-subalgebra of B(H), the bounded operators on the
Hilbert space H. Then R is a von Neumann algebra if

1. I ∈ R,

2. (R′)′ = R,

where R′ = {B ∈ B(H) : [B,A] = 0,∀A ∈ R}.

1.3 Definition. We will need four standard topologies on the set B(H) of bounded
linear operators on H. Each of these topologies is defined in terms of a family of
seminorms — see [Kadison and Ringrose, 1997, Chaps. 1,5] for more details.

• The uniform topology on B(H) is defined in terms of a single norm:

‖A‖ = sup{‖Av‖ : v ∈ H, ‖v‖ ≤ 1},

where the norm on the right is the given vector norm on H. Hence, an operator
A is a limit point of the sequence (Ai)i∈N iff (‖Ai −A‖)i∈N converges to 0.

• The weak topology on B(H) is defined in terms of the family {pu,v : u, v ∈ H}
of seminorms where

pu,v(A) = 〈u,Av〉.
The resulting topology is not generally first countable, and so the closure of a
subset S of B(H) is generally larger than the set of all limit points of sequences
in S. Rather, the closure of S is the set of limit points of generalized sequences
(nets) in S — see [Kadison and Ringrose, 1997, Chap. 1] for more details. A
net (Ai)i∈I in B(H) converges weakly to A just in case (pu,v(Ai))i∈I converges
to pu,v(A) for all u, v ∈ H.

• The strong topology on B(H) is defined in terms of the family {pv : v ∈ H}
of seminorms where

pv(A) = ‖Av‖.
Thus, a net (Ai)i∈I converges strongly to A iff (pv(Ai))i∈I converges to pv(A),
for all v ∈ H.

• The ultraweak topology on B(H) is defined in terms of the family {pρ : ρ ∈
T (H)} where T (H) is the set of positive, trace 1 operators (“density opera-
tors”) on H and

pρ(A) = Tr(ρA).
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Thus a net (Ai)i∈I converges ultraweakly to A just in case (Tr(ρAi))i∈I con-
verges to Tr(ρA), for all ρ ∈ T (H).

1.4 Fact. The topologies are ordered as follows:

norm

⊆ ⊇
ultraweak strong

⊇ ⊆
weak

Since closed sets are just the complements of open sets, this means that a weakly
closed set is ultraweakly closed, and an ultraweakly closed subset is norm closed.
Furthermore, the four topologies on B(H) coincide iff H is finite dimensional.

1.5 Fact. If S is a bounded, convex subset of B(H), then the weak, ultraweak, and
norm closures of S are the same.

1.6 Fact. For a ∗-algebra R on H that contains I, the following are equivalent:
(i) R is weakly closed; (ii) R′′ = R. This is von Neumann’s double commutant
theorem.

1.7 Definition. Let R be a subset of B(H). A vector x ∈ H is said to be cyclic for
R just in case [Rx] = H, where Rx = {Ax : A ∈ R}, and [Rx] is the closed linear
span of Rx. A vector x ∈ H is said to be separating for R just in case Ax = 0 and
A ∈ R entails A = 0.

1.8 Fact. Let R be a von Neumann algebra on H, and let x ∈ H. Then x is cyclic
for R iff x is separating for R′.

1.9 Definition. A normal state of a von Neumann algebra R is an ultraweakly
continuous state. We let R∗ denote the normal state space of R.

1.2 C∗-algebras and their representations

1.10 Definition. A C∗-algebra is a pair consisting of a ∗-algebra A and a norm
‖ · ‖ : A → C such that

‖AB‖ ≤ ‖A‖ · ‖B‖, ‖A∗A‖ = ‖A‖2,

for all A,B ∈ A. We usually use A to denote the algebra and its norm.

In this Chapter, we will only use C∗-algebras that contain a multiplicative iden-
tity I.

1.11 Definition. A state ω on A is a linear functional such that ω(A∗A) ≥ 0 for
all A ∈ A, and ω(I) = 1.
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1.12 Definition. A state ω of A is said to be mixed if ω = 1
2(ω1+ω2) with ω1 6= ω2.

Otherwise ω is said to be pure.

1.13 Definition. Let A be a C∗-algebra. A representation of A is a pair (H, π),
where H is a Hilbert space and π is a ∗-homomorphism of A into B(H). A rep-
resentation (H, π) is said to be irreducible if π(A) is weakly dense in B(H). A
representation (H, π) is said to be faithful if π is an isomorphism.

1.14 Definition. Let (H, π) and (K, φ) be representations of a C∗-algebra A. Then
(H, π) and (K, φ) are said to be:

1. unitarily equivalent if there is a unitary U : H → K such that Uπ(A) = φ(A)U
for all A ∈ A.

2. quasiequivalent if the von Neumann algebras π(A)′′ and φ(A)′′ are ∗-isomorphic.

3. disjoint if they are not quasiequivalent.

1.15 Definition. A representation (K, φ) is said to be a subrepresentation of (H, π)
just in case there is an isometry V : K → H such that π(A)V = V φ(A) for all A ∈ A.

1.16 Fact. Two representations are quasiequivalent iff they have unitarily equiva-
lent subrepresentations.

The famous Gelfand-Naimark-Segal (GNS) theorem shows that every C∗-algebraic
state can be represented by a vector in a Hilbert space.

1.17 Theorem (GNS). Let ω be a state of A. Then there is a representation
(H, π) of A, and a unit vector Ω ∈ H such that:

1. ω(A) = 〈Ω, π(A)Ω〉, for all A ∈ A;

2. π(A)Ω is dense in H.

Furthermore, the representation (H, π) is the unique one (up to unitarily equiva-
lence) satisfying the two conditions.

Since we will later need to invoke the details of the GNS construction, we sketch
the outlines of its proof here.

Sketch of proof. We construct the Hilbert space H from equivalence classes of ele-
ments in A, and the representation π is given by the action of left multiplication.
In particular, define a bounded sesquilinear form on A by setting

〈A,B〉ω = ω(A∗B), A,B ∈ A.
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Let H0 be the quotient of A induced by the norm ‖A‖ω = 〈A,A〉1/2ω . Let H be the
unique completion of the pre-Hilbert space H0. Thus there is an inclusion mapping
j : A → H with j(A) dense in H. Define the operator π(A) on H by setting

π(A)j(B) = j(AB), B ∈ A.

One must verify that π(A) is well-defined, and extends uniquely to a bounded linear
operator on H. One must also then verify that π is a ∗-homomorphism. Finally, if
we let Ω = j(I), then Ω is obviously cyclic for π(A).

1.18 Proposition. Let ω be a state of A. The GNS representation (H, π) of A

induced by ω is irreducible iff ω is pure.

Notes: Standard references onC∗-algebras include [Kadison and Ringrose, 1997] and [Takesaki, 2002].

1.3 Type classification of von Neumann algebras

1.19 Definition. Two projections E,F in a von Neumann algebra R are said to
be equivalent, written E ∼ F just in case there is a V ∈ R such that V ∗V = E and
V V ∗ = F .

1.20 Remark. If we were being really careful, we would replace “equivalent” in
the previous definition with “equivalence modulo R”, and similarly “∼” with “∼R.”
But we will not run into trouble by omitting the reference to R. The operator V
in the previous definition is called a partial isometry with initial projection E and
final projection F .

1.21 Definition. For von Neumann algebras R1 and R2, we let R1∧R2 = R1∩R2.
We let R1 ∨R2 denote the von Neumann algebra generated by R1 and R2, i.e. the
intersection of all von Neumann algebras containing R1 and R2.

1.22 Definition. Z(R) = R∧R′ is called the center of the von Neumann algebra R.
A von Neumann algebra R is called a factor just in case Z(R) = CI, equivalently,
R ∨ R′ = B(H). A projection E ∈ Z(R) is called a central projection in R.

1.23 Definition. Let E ∈ R be a projection, and let ERE = {EAE : A ∈ R}.
Then clearly, ERE is a linear subspace of R. Furthermore, since for A,B ∈ R,
AEB ∈ R and A∗ ∈ R, it follows that ERE is closed under products, as well as
under ∗. It is also not difficult to see that ERE is weakly closed, and hence is a
von Neumann algebra on EH.

1.24 Definition. Let R be a von Neumann algebra. A projection E ∈ R is said
to be:

1. minimal just in case R contains no proper subprojection of E.
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2. abelian just in case the algebra ERE is abelian.

3. infinite just in case there is a projection E0 ∈ R such that E0 < E and
E ∼ E0.

4. finite just in case it is not infinite.

5. properly infinite just in case E is infinite and for each central projection P of
R, either PE = 0 or PE is infinite.

1.25 Fact. We have the following relations for projections:

minimal =⇒ abelian =⇒ finite
properly infinite =⇒ infinite ⇐⇒ ¬ finite

For factors, the first arrows on both lines can be reversed.

We now give the Murray-von Neumann type classification of factors (for more
on this, see [Kadison and Ringrose, 1997, Chap. 7] or [Sunder, 1987, Chap. 1]).

1.26 Definition. A von Neumann factor R is said to be:

1. type I if it contains an abelian projection;

2. type II if it contains a finite projection, but no abelian projection;

3. type III if it is neither type I nor type II.

The type I factors were already completely classified by Murray and von Neu-
mann: for each cardinal number κ there is a unique (up to isomorphism) type Iκ
factor, namely B(H) where H is a Hilbert space of dimension κ. The type II factors
can be further subdivided according to whether or not the identity projection I is
finite (type II1) or infinite (type II∞). The type III factors can be subdivided into
types IIIλ with λ ∈ [0, 1], although the basis for this subclassification depends on
Tomita-Takesaki modular theory (see Section 1.4).

For general von Neumann algebras, the type classification must be just a bit
more sophisticated: a type I algebra is defined as an algebra that has an abelian
projection E such that no nontrivial projection in Z(R) majorizes E. Similarly, a
type II algebra is defined as an algebra having a finite projection E such that no
nontrivial projection in Z(R) majorizes E. Thus we have:

1.27 Proposition. Let R be a von Neumann algebra. Then R = RI ⊕RII ⊕RIII,
where RX is type X for X=I,II,III.

Proof. See [Kadison and Ringrose, 1997, Thm. 6.5.2].
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We will soon see that the local algebras in QFT are “typically” type III, and
this has many interesting implications. The fact that type III algebras do not have
abelian projections is connected to questions of locality in Section 3.3. The fact that
the state space of type III1 factors is homogeneous is also connected to questions of
locality in Section 3.3. The fact that type III algebras do not contain representatives
of their states (i.e. density operators) is connected to the modal interpretation of
QFT in Section 5.

The following classification of von Neumann algebras is also natural, but it cuts
across the Murray-von Neumann classification.

1.28 Definition. A von Neumann algebra R is said to be:

• of infinite type if I is infinite in R;

• properly infinite if I is properly infinite in R.

• semi-finite if the central projection EIII in R (defined in Prop. 1.27) is zero.

The finite factors include the type In and type II1 factors. The infinite factors
include the type I∞ factors as well as the type II∞ and III factors. The distinction
between finite and infinite factors coincides with the existence of a tracial state.

1.29 Definition. A faithful normalized trace on a von Neumann algebra R is a
state ρ on R such that:

1. ρ is tracial; i.e. ρ(AB) = ρ(BA), for all A,B ∈ R,

2. ρ is faithful; i.e. ρ(A∗A) = 0 only if A = 0.

1.30 Fact. A von Neumann factor R is finite iff there is a faithful normal tracial
state ρ on R. A von Neumann factor R is semifinite iff there is a “faithful normal
semifinite trace” on R; but we do not pause here to define this notion.

1.4 Modular theory

We state here without proof some of the basic facts about Tomita-Takesaki modular
theory. These facts are necessary in order to understand the classification of type III
von Neumann algebras, which in turn is essential to understanding the mathematical
structure of AQFT.

1.31 Definition. Let R be a von Neumann algebra acting on a Hilbert space H,
and suppose that Ω ∈ H is cyclic and separating for R. In such a case, we say that
(R,Ω) is in standard form. Define an operator S0 on H by setting

S0AΩ = A∗Ω, A ∈ R.

Then S0 extends to a closed anti-linear operator S on H. Let S = J∆1/2 be the
polar decomposition of S, so that ∆ is positive (but generally unbounded), and J is
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anti-unitary. (Recall that a positive operator has spectrum in R+.) We call ∆ the
modular operator and J the modular conjugation associated with the pair (R,Ω).

1.32 Theorem. Let R be a von Neumann algebra with cyclic and separating vector
Ω. Then JΩ = Ω = ∆Ω and

∆itR∆−it = R, ∀t ∈ R,

JRJ = R′.

Proof. See [Kadison and Ringrose, 1997, Thm. 9.2.9], or [Sunder, 1987, Thm. 2.3.3].

1.33 Definition. Let (R,Ω) be in standard form, and let ω be the state of R

induced by Ω. For each t ∈ R, define the modular automorphism σωt of R by

σωt (A) = ∆itA∆−it, A ∈ R,

for all A ∈ R. Define a ∗ anti-isomorphism γ : R → R′ by setting γ(A) = JA∗J ,
for all A ∈ R.

1.34 Definition. If A is a C∗-algebra, we let InnA denote the group of inner
automorphisms of A; i.e. α ∈ InnA just in case there is a unitary U ∈ A such that
α(A) = UAU∗ for all A ∈ A.

The spectrum of the modular operator ∆ gives a rough measure of the periodicity
of the modular automorphism group (σωt )t∈R; i.e. the smaller the spectrum of ∆,
the closer the automorphism σωt is to the identity ι : R → R. In the extreme case,
if sp∆ = {1}, then σωt = ι for all t ∈ R. Conversely, as ∆ goes up to R+, the group
(σωt )t∈R tends toward being ergodic (i.e. having no fixed points).

1.35 Definition. Define the modular spectrum S(R) of R by

S(R) =
⋂

ω

sp(∆ω),

where ω runs over the family of faithful normal states of R, and ∆ω are the corre-
sponding modular operators.

1.36 Proposition. Let R be a von Neumann factor with cyclic and separating
vector Ω. Then the following are equivalent:

1. R is semifinite.

2. For all t ∈ R, the modular automorphism σωt is inner; i.e. there is a unitary
U ∈ R such that σωt (A) = UAU∗ for all A ∈ R.

3. S(R) = {1}.
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Proof. See [Takesaki, 2003, p. 122] and [Sunder, 1987, p. 111].

We now proceed to Connes’ subclassification of the type III factors. This sub-
classification uses the notion of the “period of the flow of weights” (where a weight
is a generalization of the notion of a state). However, in order to bypass some
background material, we use the following (provably equivalent) definition.

1.37 Definition. A factor R of type III is said to be:

1. Type III0 if S(R) = {0, 1}.

2. Type IIIλ, λ ∈ (0, 1), if S(R) = {λn : n ∈ Z} ∪ {0}.

3. Type III1 if S(R) = R+.

The conditions in Defn. 1.37 do not bear their physical interpretation on their
sleeve. That is, it is not immediately clear how the physics of type IIIλ algebras
differs (if at all) from that of type IIIµ algebras, for λ 6= µ. However, a result of
Connes and Størmer [1978] cashes out some of the significance of the distinctions
between different types of factors.

1.38 Definition. Let R be a von Neumann algebra, and let R∗ be its normal state
space. We define the diameter of the state orbit space d(R) by

d(R) = sup
{

inf
{
‖(ω1 ◦ α) − ω2‖ : α ∈ InnR

}
: ω1, ω2 ∈ R∗

}
.

Alternatively, let [ω] denote the norm closure of {ω ◦ α : α ∈ InnR} (the orbit of
the state under inner automorphisms), and let K denote the quotient of the normal
state space R∗. Then d(R) is the diameter of K relative to the induced metric

d([ω1], [ω2]) = inf{‖ω′1 − ω′2‖ : ω′i ∈ [ωi]}.

Clearly d(R) ∈ [0, 2], with d(R) = 0 iff the orbit of every state is dense in
the normal state space. If R is not a factor, then there are states ω1, ω2 such that
‖ω1◦α−ω2‖ = 2 for all α ∈ InnR, and so d(R) = 2. For type In factors, the distance
between normal states is the same as the trace norm distance of the corresponding
density operators. In this case, we have

d(R) = 2
(
1 − 1

n

)
= ‖τ − ω‖,

where τ is the trace and ω is any pure state. We also have d(R) = 2 for factors of
type I∞ and of type II [Takesaki, 2003, p. 430].

If d(R) gives some sort of measure of “how noncommutative” the algebra R is,
then type III1 factors are the most noncommutative.
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1.39 Definition. A von Neumann algebra R is said to be countably decomposable
just in case any family of mutually orthogonal projection operators in R is countable.

1.40 Proposition. If R is a countably decomposable factor of type IIIλ, then

d(R) = 2
1 − λ1/2

1 + λ1/2
.

Proof. See [Connes and Størmer, 1978] and [Takesaki, 2003, p. 427].

The function f(λ) = 2(1−λ1/2)/(1+λ1/2) is monotonically decreasing on [0, 1].
In particular, f(1) = 0 so that, for type III1 factors, the orbit of any normal state
ω is norm dense in the state space. According to Connes [1994, p. 473] this means
that “one cannot distinguish between two states of a factor of type III1 by means of
a property that is closed and invariant under inner automorphisms.” In particular,
since two unitarily equivalent states must be considered to be “equally mixed,”
there are no distinctions to be drawn in terms of the mixedness of states of a type
III1 factor.

Notes: For an overview of modular theory, see [Summers, ND] or [Connes, 1994]. For a full

treatment, see [Takesaki, 2003]. For a detailed exposition of applications of modular theory

in QFT, see [Borchers, 2000].

2 Structure of the Net of Observable Algebras

2.1 Nets of algebras, basic properties

AQFT proceeds by isolating some structural assumptions that hold in most known
QFT models. It formalizes these structural assumptions, and then uses “abstract
but efficient nonsense” to derive consequences of these assumptions.

The basic formalism of AQFT is a “net of local observable algebras” over space-
time. Although this formalism can be applied to a very wide class of spacetimes,
we restrict attention in this Chapter mostly to Minkowski spacetime.

An open double cone in Minkowski spacetime is the intersection of the causal
future of a point x with the causal past of a point y to the future of x. Let K
be the set of open double cones in Minkowski spacetime, and let O 7→ A(O) be a
mapping from K to C∗-algebras. We assume that all our C∗-algebras are unital,
i.e. have a multiplicative identity. We assume that the set {A(O) : O ∈ K} of
C∗-algebras (called a net of observable algebras over Minkowski spacetime) is an
inductive system in the sense that:

IfO1 ⊆ O2, then there is an embedding (i.e. an isometric ∗-homomorphism)
α12 : A(O1) → A(O2).

Assumption 1 (Isotony). The mapping O 7→ A(O) is an inductive system.
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The isotony assumption is sometimes motivated by the idea that an observable
measurable in a region O1 is a fortiori measurable in any region O2 containing O1.
But the isotony axiom is also justified by its utility: for, if {A(O) : O ∈ K} is an
inductive system, then there is an inductive limit C∗-algebra A generated by all
the local algebras. We call A the quasilocal algebra, because it contains observables
that can be uniformly approximated by local observables.

2.1 Remark. In some spacetimes, the set of double cones is not directed. In many
such cases, it is still possible to define the quasilocal algebra by means of more
sophisticated techniques [Fredenhagen, 1993].

Now we turn to the main relativistic assumption of AQFT.

Assumption 2 (Microcausality). A net A of C∗-algebras is said to satisfy
microcausality just in case if O1, O2 are spacelike separated double cones, then
[A(O1),A(O2)] = {0}.

This assumption is thought to reflect the constraints on spacetime structure
imposed by the theory of relativity.

2.2 Remark. It is not a tenet of AQFT that quantities that are associated to
spacelike separated regions must be represented by commuting operators. In fact,
Fermi field operators assigned to spacelike separated regions will anticommute. So,
AQFT has need of a distinction between observable (represented by elements of
A(O)) and unobservable quantities (represented by “field operators”). For more on
this distinction, see Sections 7.2 and following on DHR superselection theory.

In this Chapter, we will not attempt to justify or to dispute the microcausality
assumption. However, we will briefly discuss its connection to issues of locality in
Section 3.

2.2 Existence/uniqueness of vacuum states/representations

2.2.1 The existence of translation-invariant states

In this section, we inquire concerning the existence and uniqueness of vacuum states
and representation. For this, recall that an affine space (e.g. Minkowski spacetime)
is a triple consisting of a set S, a vector space V , and a map + : S × V → S
satisfying certain properties. In this case, V is called the translation group.

Assumption 3 (Translation Covariance). If A is a net of operator algebras on
an affine space, then we assume that there is a faithful, continuous representation
x 7→ αx of the translation group in the group AutA of automorphisms of A, and

αx(A(O)) = A(O + x),

for any double cone O, and translation x.
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2.3 Remark. For the case of Minkowski spacetime, the translation group is a
subgroup of the Poincaré group. In many cases of physical interest, x→ αx extends
to a representation of the full Poincaré group in the group AutA of automorphisms
of A. But we will only need that fact for one result (Prop. 6.10).

Translation invariance has traditionally been thought to be a necessary condition
on a vacuum state.

2.4 Fact. If there is an action α of the translation group on A, then translation-
invariant states of A exist. Indeed, since the translation group is abelian, it has
an invariant mean µ — i.e. a translation invariant, positive linear functional on
the algebra L∞(G) of essentially bounded measurable (with respect to the Haar
measure) functions on the group G. Given a state ω of A, we can then define an
averaged state ρ by

ρ(A) :=

∫
ω(αxA)dµ(x).

The state ρ is translation invariant. (See Emch, this volume, Section 3.5.)

2.5 Remark. The preceding argument cannot be used to show the existence of
Lorentz invariant states. The Lorentz group is not amenable, and so does not
admit an invariant mean. Hence, we cannot use these general methods to prove the
existence of Lorentz invariant states. Of course, in concrete models (e.g. free Bose
and Fermi fields) there are other way to establish the existence of such states.

Let G be a group acting by automorphisms on A. A generalization of the GNS
theorem shows that a G-invariant state ω of A gives rise to a GNS Hilbert space
H that carries a unitary representation U of G, and the GNS vector Ω is invariant
under the G-action on H.

2.6 Fact. Let α be a strongly continuous action of the groupG by automorphisms of
A. If ω is a G-invariant state of A, then the GNS representation (H, π) of A induced
by ω is G-covariant in the sense that there is a strongly continuous representation
U of G in the unitary group of B(H) such that

1. U(g)π(A)U(g)∗ = π(αg(A)), for all A ∈ A,

2. U(g)Ω = Ω for all g ∈ G.

2.2.2 Only one vacuum per Hilbert space

2.7 Remark. When considering the group AutA of automorphisms of a C∗-algebra,
we take as our standard topology the strong topology on the set L(A) of bounded
linear mappings on A (considered as a Banach space). That is, αi converges to α
just in case for each A ∈ A, αi(A) converges to α(A) in the norm on A.
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2.8 Definition. We use the GNS representation theorem (Thm. 1.17) to transfer
terminology about representations (Defn. 1.14) to terminology about states. So,
e.g., we say that two states are disjoint if their GNS representations are disjoint.

A vacuum state should be at least translation invariant. Furthermore, the mi-
crocausality assumption on the net A entails that any two observables commute
“in the limit” where one is translated out to spacelike infinity. That is, for any
A,B ∈ A, and for any spacelike vector x,

lim
t→∞

‖[αtx(A), B]‖ = 0.

This in turn entails that G acts on A as a large group of automorphisms in the
following sense:

If ω is a G-invariant state and (H, π) is the GNS representation of A

induced by ω, then for any A ∈ A,

conv
{
π(αg(A)) : g ∈ G

}
,

has nonempty intersection with π(A)′.

Here we use convS to denote the weakly closed convex hull of S. (See [Størmer, 1970]

for the relevant proofs.) Note however that we would also expect the same to be
true in a non-relativistic setting, because we would expect observables associated
with disjoint regions of space to commute. (We have not invoked the fact that any
vector in Minkowski spacetime is the sum of two spacelike vectors.)

Thanks to extensive research on “C∗-dynamical systems,” much is known about
G-invariant states when G acts as a large group of automorphisms of A. In par-
ticular, the set of G-invariant states is convex and closed (in the weak* topology),
hence the set has extreme points, called extremal invariant states. (Obviously if a
pure state of A is G-invariant, then it is extremal invariant.) Furthermore, we also
have the following result concerning the disjointness of G-invariant states.

2.9 Proposition. Let ω be a G-invariant state of A, let H be its GNS Hilbert
space, and let Ω be the GNS vector. Then the following are equivalent:

1. ω is clustering in the sense that

lim
t→∞

ω(αtx(A)B) = ω(A)ω(B).

2. ω is extremal invariant.

3. If a G-invariant state ρ is quasiequivalent to ω, then ρ = ω. In other words,
no other G-invariant state is quasiequivalent to ω.

4. The ray spanned by Ω is the unique (up to scalar multiples) G-invariant
subspace of H.
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Proof. See [Størmer, 1970]. For related details, see also [Emch, 1972, pp. 183, 287]

and Emch, this volume, Section 3.

So, if a (vacuum) state is clustering, then no other translation invariant state is
in its folium (i.e. the set of states that are quasiequivalent to that state). Similarly, if
a state is extremal invariant (a fortiori if it is pure) then it is the unique translation
invariant state in its folium.

2.10 Remark. The existence of disjoint vacua is related to spontaneous symmetry
breaking. See Section 10.7.

2.11 Remark. Prop. 2.9 plays a central role in the proof of “Haag’s theorem”
given in [Emch, 1972, p. 248]. In particular, the uniqueness of extremal G-invariant
states is equated with the nonexistence of “vacuum polarization.”

2.3 The Reeh-Schlieder Theorem

We have assumed that a vacuum state is translation invariant. But we expect a
vacuum state to obey a stronger constraint that reflects the relativistic nature of
the theory. In particular, the unitary representation defined in Fact 2.6 is generated
infinitesimally by the four momentum operator P. (The idea of a four momentum
operator can be made precise in the “SNAG [Stone-Naimark-Ambrose-Gelfand] The-
orem,” which generalizes Stone’s theorem on the existence of self-adjoint operators
generating one-parameter unitary groups.) We require that the energy is positive in
every Lorentz frame, equivalently, that the spectrum of P lies in the forward light
cone.

We now generalize this requirement by abstracting away from the details of the
forward lightcone. The forward lightcone G+ has the following property: G+ ∩
(−G+) = {0} where −G+ = {−g : g ∈ G+}. So, the spectrum condition only
requires that the unitary representation of the translation group has spectrum in a
set that is asymmetric under taking additive inverses.

Assumption 4 (Spectrum Condition). Let G be the translation group, and let
ω be a G-invariant state of A. We say that the pair (A, ω) satisfies the spectrum
condition just in case: there is a subset G+ of G such that G+ ∩ (−G+) = {0}, and
in the GNS representation (H, π) of A induced by ω, the spectrum sp(U) of the
induced unitary representation of G, is contained in G+.

The Reeh-Schlieder Theorem shows that the spectrum condition entails that the
vacuum vector Ω is cyclic for every local algebra. For this theorem, we suppose that
a translation invariant vacuum state ω on A has been chosen, and that (H, π) is the
GNS representation of A induced by ω. We then define a corresponding net R of
von Neumann algebras on H by

O 7→ R(O) ≡ π(A(O))′′.
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If the net A satisfies microcausality, then so will R. Since Ω is cyclic for π(A), the
set {R(O)Ω : O ∈ K} is dense in H.

To prove the theorem, we need one additional assumption.

Assumption 5. The net O 7→ R(O) is said to satisfy additivity just in case for
any double cone O, the set {R(O+ x) : x ∈ G} generates R as a C∗-algebra. (Here
again, G denotes the translation group.)

The additivity assumption is sometimes justified on the grounds that there
should be no smallest length scale in the theory — i.e. any observable is gener-
ated by taking products, sums, etc. of observables from arbitrarily small regions.

2.12 Theorem (Reeh-Schlieder). Suppose that the net O 7→ R(O) satisfies the
spectrum condition and additivity. Then for all double cones O, Ω is cyclic for
R(O). If the net R also satisfies microcausality, then Ω is separating for every local
algebra.

The Reeh-Schlieder (RS) Theorem has been one of the more intensely studied
issues in the foundations of relativistic QFT. In a pair of articles [Redhead, 1995a;
Redhead, 1995b], Redhead shows that the RS Theorem entails that the vacuum
state displays nonlocal correlations. (See also [Halvorson and Clifton, 2000]). Red-
head also points out since the vacuum is separating for each local algebra, every
local event has a nonzero probability of occurring in the vacuum state; in particular,
there can be no local number operators (since they would have the vacuum state
as an eigenvector). Finally, [Fleming, 2000] argues that RS Theorem entails a per-
nicious sort of nonlocality, worse than the nonlocality in non-relativistic QM, and
so indicates a need to revise the standard formulation of AQFT. (For one possible
reply, see [Halvorson, 2001b].)

Due to the use of the spectrum condition, it would seem that RS Theorem
is a “purely relativistic result,” without analogue in non-relativistic QM or QFT
(see [Saunders, 1992]). Furthermore, we might expect that many other results of
relativistic QFT that are derived from RS Theorem would fail for non-relativistic
theories. Indeed, non-relativistic QFT does admit local number operators. However,
a version of the spectrum condition, and consequently a version of RS Theorem has
been shown to hold for non-relativistic theories [Requardt, 1986].

Notes: The original Reeh-Schlieder Theorem was formulated in the axiomatic approach to

QFT, and can be found in [Reeh and Schlieder, 1961]. More up-to-date presentations of the

theorem can be found in [Horuzhy, 1990; D’Antoni, 1990; Baumgärtel and Wollenberg, 1992],

and [Araki, 1999].

2.4 The funnel property

2.13 Definition. Let R1,R2 be von Neumann algebras on H such that R1 ⊆ R2.
If there is a vector Ω ∈ H that is cyclic and separating for R1,R2, and R′1 ∩ R2,
then the pair (R1,R2) is said to be a standard inclusion of von Neumann algebras.
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2.14 Remark. Let O 7→ R(O) be a net of von Neumann algebras on Minkowski
spacetime. Suppose that the Reeh-Schlieder property holds for Ω, i.e. for each
double cone O, Ω is cyclic and separating for R(O). Then if O1, O2 are double cones
such that the closure O1 of O1 is contained in O2, then the pair (R(O1),R(O2)) is
a standard inclusion of von Neumann algebras.

2.15 Definition. Let R1,R2 be von Neumann algebras on H such that R1 ⊆ R2.
The pair (R1,R2) is said to be a split inclusion if there is a type I factor N such
that R1 ⊆ N ⊆ R2.

Assumption 6 (Funnel Property). The netO 7→ R(O) of von Neumann algebras
is said to satisfy the funnel property if for any double cones O1, O2 with O1 contained
in O2, the pair (R(O1),R(O2)) is a split inclusion.

2.16 Remark. A type I factor N is countably decomposable iff N is isomor-
phic to B(H) with H separable iff N is separable in the ultraweak topology (see
[Kadison and Ringrose, 1997, Exercise 5.7.7]).

In our discussion of superselection theory (Sections 7.2–11), at one crucial junc-
ture (Prop. 9.15, p. 88) we will have to invoke the assumption that the vacuum
Hilbert space is separable. This will be the only place in the Chapter where we
need to assume that a Hilbert space is separable. In particular, the separabil-
ity assumption is needed to establish the correspondence between two notions of
superselection sectors, one of which is physically motivated, and one of which is
mathematically useful. The following result is the only attempt we will make to
connect the separability assumption to something with (perhaps) more clear phys-
ical significance. (In general, we are highly suspicious of the physical warrant for
the separability assumption; compare with Section 6, and with [Halvorson, 2004].)

2.17 Proposition. Let R be a net of von Neumann algebras on H, and suppose
that Ω ∈ H be cyclic and separating for all local algebras. If the net satisfies the
funnel property, then H is separable.

Proof. (Compare with Prop. 1.6 of [Doplicher and Longo, 1984].) Let O1, O2 be
double cones with O1 ⊆ O2. Let N be a type I factor such that R(O1) ⊆ N ⊆ R(O2),
and let ω be the state of N induced by Ω. Recall that N is isomorphic to B(K)
for some Hilbert space K. Since N ⊆ R(O2) and Ω is separating for R(O2), ω is
faithful and normal. Hence K is separable, and there is a countable set N0 that is
ultraweakly dense in N. Since R(O1) ⊆ N, and Ω is cyclic for R(O1) it follows that
[N0Ω] = [NΩ] = H. Hence H is separable.

If one wanted to justify an assumption that the vacuum Hilbert space is separa-
ble, Prop. 2.17 shows that it is enough to justify the funnel property. There are con-
crete models where the funnel property demonstrably does not hold [Horuzhy, 1990,
p. 23]. But the physical significance of these models is not clear, and there are a
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couple of other considerations that might favor the funnel property: (i): In Section
3.3, we show that connection of the funnel property with issues about nonlocality.
(ii): Buchholz and Wichmann [1986] argue that the funnel property is a sufficient
condition for a particle interpretation of QFT. Of course, the interpreter of QFT
will want to critically examine Buchholz and Wichmann’s notion of a “particle inter-
pretation.” (Compare with Section 4.5, where particle interpretations are discussed
further. Compare also with Section 6.2.2, which hints at connections between non-
separable Hilbert space and field interpretations of QFT.)

2.18 Remark. The funnel property for free fields is shown in [Buchholz, 1974].

2.5 Type of local algebras

We now collect the currently known information on the type of local algebras in
physically relevant representations of the net of local observable algebras.

2.19 Definition. Let R1 and R2 be nets of von Neumann algebras on a Hilbert
space H. We say that R1 and R2 are locally quasiequivalent just in case for each
double cone O there is an isomorphism ϕO : R1(O) → R2(O).

2.20 Remark. Although it is not an “axiom” of AQFT, there are good reasons
to believe that representations of physical interest (in particular for elementary
particle physics) are locally quasiequivalent to some vacuum representation, where
a vacuum representation is the GNS representation of some privileged (e.g. perhaps
translation invariant) state. For example local quasi-equivalence holds between
any two physical representations according to the selection criterion of Doplicher-
Haag-Roberts (see Section 7.2 and following), and according to the more liberal
selection criterion of [Buchholz and Fredenhagen, 1982]. Thus, any conclusion we
draw concerning the structure of local algebras in a vacuum representation can be
inferred to hold as well for these other representations.

2.5.1 Local algebras are properly infinite

Some relatively simple results narrow down the possible options for the type of
local algebras. For this, we define the important “property B,” because it is a
consequence of plausible assumptions (viz. additivity and the spectrum condition),
because it also makes sense in situations where there is no translation group (unlike
the spectrum condition), and because it is all we need to infer various results, in
particular that local algebras are properly infinite.

2.21 Definition. Let O → R(O) be a net of von Neumann algebras on some
Hilbert space H. We say that the net R satisfies property B just in case for any two
double cones O1 and O2 such that O1 ⊆ O2, if E ∈ R(O1) is a nonzero projection,
then E is equivalent in R(O2) to the identity projection I; i.e. there is an isometry
V ∈ R(O2) such that V V ∗ = E.
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2.22 Remark. If for each O, the algebra R(O) is type III, then the net R satisfies
property B.

We expect property B to hold for a net of observable algebras because it fol-
lows from the physically motivated postulates of weak additivity and the spectrum
condition.

2.23 Proposition. Let O 7→ R(O) be a net of von Neumann algebras satisfying
microcausality, the spectrum condition, and weak additivity. Then the net O 7→
R(O) satisfies property B.

Proof. For the original proof, see [Borchers, 1967]. For a recent exposition, see
[D’Antoni, 1990].

Assumption 7 (Nontriviality). A net O 7→ A(O) of C∗-algebras is said to satisfy
non-triviality just in case for each double cone O, A(O) 6= CI.

2.24 Proposition. Let O → R(O) be a net of von Neumann algebras that satisfies
microcausality, property B, and non-triviality. Then for every double cone O, the
von Neumann algebras R(O) and R(O′)′ are properly infinite.

Proof. We first show that R(O) is properly infinite; that is, that every central
projection in R(O) is infinite. Let C be a central projection in R(O). Choose a
nontrivial double cone O1 whose closure is contained in O. Then by property B,
for each nonzero projection E ∈ R(O1), E is equivalent to I modulo R(O). Since
R(O1) 6= CI, there is a projection E ∈ R(O1) such that E ∼ (I − E) ∼ I modulo
R(O). It then follows that EC ∼ (I − E)C ∼ C modulo R(O). It is clear that
EC = CEC ≤ C. If EC = C then (I − E)C = 0, a contradiction. Therefore
EC < C and EC ∼ C modulo R(O). That is, C is an infinite projection in
R(O), and R(O) is properly infinite. By microcausality, R(O1) ⊆ R(O′)′; thus the
preceding argument also shows that R(O′)′ is properly infinite.

In particular, the preceding proposition rules out the cases of type In and type
II1 von Neumann algebras. Already this result has implications for questions about
nonlocality; see Prop. 3.21 in Section 3.3. However, the previous proposition leaves
open the possibility that local algebras might be type I∞ factors, and it also leaves
open the case that local algebras might be direct sums of heterogeneous types of
von Neumann algebras.

2.5.2 Local algebras are hyperfinite

We will shortly see that the best results we have point toward the fact that local
algebras are type III, which were originally thought to be unruly anomalies with no
relevance for physics. However, we first show that under some physically plausible
conditions, local algebras are approximated by finite-dimensional algebras (i.e. they
are “hyperfinite”), which shows that after all they are not so unruly.
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2.25 Definition. Let R be a von Neumann algebra. Then R is said to be hyperfinite
just in case there is a family (Ra)a∈A of finite dimensional von Neumann algebras
in R such that R = (∪a∈ARa)

′′.

Hyperfiniteness turns out to be an extremely useful condition for mathematical
purposes. Indeed, hyperfiniteness is intimately linked to the existence of normal
conditional expectations (see [Kadison and Ringrose, 1997, Chap. 8]), and there
is a unique type II1 hyperfinite factor, and a unique type III1 hyperfinite factor.
From a physical/foundational point of view, one might also think that a failure
of hyperfiniteness for R might make it difficult to find a correspondence between
elements of the algebra R and real-life laboratory procedures which can only involve
a finite number of tasks.

2.26 Fact. Every type I von Neumann algebra is hyperfinite. See [Kadison and Ringrose, 1997,
Exercise 8.7.26].

Assumption 8 (Inner/Outer Continuity). A net O 7→ R(O) of von Neumann
algebras is said to be inner continuous if for any monotonically increasing net
(Oa)a∈A with least upper bound O, we have

∨

a∈A

R(Oa) = R(O),

where R1 ∨ R2 denotes the von Neumann algebra generated by R1 and R2. Outer
continuity is defined by taking a decreasing net of regions, and the intersection of
the corresponding von Neumann algebras.

2.27 Remark. The condition that the net R be continuous from the inside is
satisfied whenever R is the “minimal” net constructed in the standard way from
underlying Wightman fields. See [Buchholz et al., 1987]. Similarly, the maximal
net satisfies outer continuity.

2.28 Proposition. Suppose that the net O 7→ R(O) satisfies the funnel prop-
erty and either inner or outer continuity. Then for each double cone O, R(O) is
hyperfinite.

Sketch of proof. (Compare [Buchholz et al., 1987, p. 134].) We just look at the
case where the net is inner continuous. By the funnel property there is a type I
factor Ni interpolating between R(Oi) and R(O). It then follows that the union of
the ascending sequence Ni of hyperfinite factors is dense in R(O), hence R(O) is
hyperfinite.

2.5.3 Local algebras are type III1 factors

A series of results, accumulated over a period of more than thirty years, indicates
that the local algebras of relativistic QFT are type III von Neumann algebras, and
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more specifically, hyperfinite type III1 factors. We gather some of these results in
this section. The first result, due to Longo [1979], improved on some earlier results
by Driessler.

2.29 Proposition. Let R be a von Neumann algebra acting on H, Ω ∈ H a
separating unit vector for R, G a locally compact abelian group with dual Γ, and
U a continuous unitary representation of G on H such that UΩ = Ω and the ray
C Ω is the unique U(G) invariant subspace of H. Suppose that there exist subsets
G+ ⊆ G and Γ+ ⊆ Γ such that

1. G+ ∪ (−G+) = G and U(g)RU(g)∗ ⊆ R, for all g ∈ G+.

2. Γ+ ∩ (−Γ+) = {0} and sp(U) ⊆ Γ+.

Then either R = CI or R is a type III1 factor.

Sketch of proof. (See [Longo, 1979, p. 203] for details.) Let ω be the state of R given
by ω(A) = 〈Ω, AΩ〉. The proof of this result proceeds by showing that Rω = CI,
where Rω is the centralizer of the state ω. In particular, let E be a projection in
Rω, and define the function f : G→ C by

f(g) = 〈Ω, EU(g)EΩ〉 = 〈Ω, EU(g)EU(−g)Ω〉.

Using the constraint on sp(U), it can be shown that f is constant, and hence
U(g)EΩ = EΩ for all g ∈ G. Since C Ω is the unique invariant subspace under
U(G), it follows that EΩ = Ω, and since Ω is separating for R, E = 0 or E = I.

The preceding proposition applies to algebras of the form π(A(W ))′′, where W
is a wedge region, and π is a vacuum representation of the quasilocal algebra A.
Indeed, we can take G+ to be a one-parameter semi-group of lightlike translations
with origin at the apex of W , in which case R = G+∪(−G+). Let ω be a translation
invariant state on A such that (A, ω) satisfies that spectrum condition (Assumption
4). We then have that the dual group Γ of G in R4 is also a lightlike line, and
hence the spectrum condition entails that there is a subset Γ+ of Γ, namely those
vectors that point toward the future, such that Γ+ ∩ (−Γ+) = {0}. Finally, we saw
in Section 2.2.2 that when ω is extremal invariant, the ray C Ω is the unique U(G)
invariant subspace of H.

For results relevant to local algebras, we must impose one further condition on
the net R. The first result ([Buchholz et al., 1987]) requires reference to axiomatic
QFT with unbounded operators smeared by test-functions (see [Streater and Wightman, 1964]).
That is, we must assume that the net R arises from an underlying Wightman field
theory that satisfies a certain condition — asymptotic scale invariance.

Recall that in the axiomatic approach, fields are essentially self-adjoint operators
of the form Φ(f), where f is a test-function on spacetime. The presence of these
test-functions allows the definition of a notion of asymptotic scale invariance.

23



2.30 Definition. Let N : R+ → R+ be a monotone function. Then a scaling trans-
formation of the test-functions is given by f 7→ fλ, where fλ(x) = N(λ)f(λ−1x).
Let Φα be a set of Wightman fields generating the net O 7→ R(O). We say that
the fields satisfy asymptotic scale invariance just in case there is some field Φ with
vanishing vacuum expectation values:

〈
Ω,Φ(f)Ω〉 = 0,

and for a suitable choice of N(λ), the scaled field operators Φ(fλ) have the following
properties:

1. The expectation values 〈Ω,Φ(fλ)
∗Φ(fλ)Ω〉 converge for all test-functions in

the limit λ→ 0, and are nonzero for some f ;

2. The norms ‖Φ(fλ)
∗Φ(fλ)Ω‖ and ‖Φ(fλ)Φ(fλ)

∗Ω‖ stay bounded in this limit.

When a net of von Neumann algebras arises from a Wightman theory with
asymptotic scale invariance, it follows that local algebras are hyperfinite type III1
factors.

2.31 Proposition ([Buchholz et al., 1987]). Let R be a net of von Neumann al-
gebras that satisfies microcausality, the spectrum condition, and the funnel property.
Suppose also that R can be constructed from an underlying Wightman theory that
satisfies asymptotic scale invariance. Then for each double cone O, R(O) = M⊗Z,
where M is the unique type III1 hyperfinite factor and Z is the center of R(O).

2.32 Remark. In [Buchholz et al., 1987], the funnel property is derived from a
more basic postulate called “nuclearity,” which imposes bounds on the number of
local degrees of freedom.

Of course, one wishes for a result that is more intrinsic to AQFT. Such a result is
provided in [Buchholz and Verch, 1995], using the method of scaling algebras that
allows the computation of the short distance (scaling) limit of a net A of local
observables. (For a short exposition of scaling algebras, we refer the reader to
[Buchholz, 1998].) In summary, besides the basic assumptions on the net, the only
additional assumption needed to derive the type III1 property is that the net has a
nontrivial scaling limit.

2.33 Remark. In some concrete models, it can be shown directly that local al-
gebras are the unique type III1 hyperfinite factor. For example, for the free Bose
field of mass m = 0 (in the Minkowski vacuum representation), local algebras are
isomorphic to algebras for wedge regions. Thus Prop. 2.29 shows that local alge-
bras are type III1 factors. Furthermore, the free Bose field of mass m > 0 is locally
quasiequivalent to the case of m = 0, and so its local algebras are also type III1
hyperfinite factors. See [Horuzhy, 1990, p. 254].
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The derivation of the type III1 property is one of the most surprising and inter-
esting results of contemporary mathematical physics. But what is the foundational
significance of the result? How would the world be different if local algebras were,
say, type III1/2, or even more radically different, if they were type II∞? For one,
there is a crucial difference between the structure of states on familiar type I alge-
bras, and the structure of states on type III algebras: since type III algebras have
no atomic projections, and the support projection of a pure normal state is atomic,
it follows that type III algebras have no pure normal states. (But of course the same
is true for type II algebras.) As pointed out in [Clifton and Halvorson, 2001b] and
[Ruetsche, 2004], this absence of pure states is a further obstacle to an ignorance
interpretation of quantum probabilities. (See also Section 3.4.)

Yngvason [2005] makes several interesting claims about the conceptual impor-
tance of type III algebras, especially in relation to questions of nonlocality. First,
according to Yngvason, “type I intuitions” can lead to paradoxes, such as that en-
countered in Fermi’s famous two-atom system. However, claims Yngvason, these
paradoxes disappear if we model these situation appropriately with type III alge-
bras. Second, Yngvason claims that the homogeneity of the state space of a type
III1 factor R can be interpreted as saying that for any two states ω1, ω2 on R, ω2

can be prepared from ω1 (within arbitrarily good accuracy) via a unitary operation.
Such an operation is, of course, nonselective, and so does not change the statistics
of measurements of observables in R′. So, in one sense, an observer with a type III
algebra has more control over his state space than an observer with a type I algebra.

3 Nonlocality and Open Systems in AQFT

3.1 Remark. For this section, we use the following notational conventions: upper-
case roman letters for algebras, lowercase roman letters for operators, and 1 for the
multiplicative identity in an algebra.

It is a basic assumption of AQFT that the observable algebras A(O1) and A(O2)
are mutually commuting when O1 and O2 are spacelike separated. This requirement
— which we have called “microcausality” — is sometimes also called “Einstein
causality,” because of a suggested connection between the commutativity of the
algebras A(O1), A(O2) and the relativistic prohibition on “superluminal signaling.”
Implicit in this connection is a claim that if [a, b] 6= 0 for a ∈ A(O1) and b ∈ A(O2),
then a measurement of a could change the statistics of a measurement of b.

Despite the fact that nonrelativistic QM makes no reference to spacetime, it has
a footprint of the relativistic prohibition of superluminal signalling. In particular,
the state space of two distinct objects is a tensor product H1 ⊗H2, and their joint
algebra of observables is B(H1) ⊗ B(H2). In this tensor product construction we
represent observables for system A as simple tensors a⊗1 and observables of system
B as 1 ⊗ b. Thus, we have a version of microcausality. But we also have stronger
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independence properties. For example, for every state ϕ1 of system A and state ϕ2

of system B, there is a state ϕ of A⊗B such that ϕ|A = ϕ1 and ϕ|B = ϕ2.
In this section, we investigate the extent to which two local algebras A(O1), A(O2)

can be thought to represent distinct, independent parts of reality. In Sections 3.1
and 3.2, we discuss the relations between microcausality and other independence
assumptions for the algebras A(O1), A(O2). In Section 3.3, we summarize some re-
sults concerning violation of Bell’s inequality in AQFT. Finally, in Section 3.4 we ask
whether a local algebra A(O) can be isolated from the influences of its environment.

3.1 Independence of C∗ and von Neumann algebras

We first consider notions of independence between a general pair of von Neumann
or C∗-algebras.

3.2 Definition. If e, f are projection operators on a Hilbert space H, then we let
e ∧ f denote the projection onto the closed subspace e(H) ∩ f(H).

3.3 Fact. Let R be a von Neumann algebra acting on H. If e, f ∈ R then e∧f ∈ R.

3.4 Definition (Schlieder Property). Let R1, R2 be von Neumann algebras act-
ing on the Hilbert space H. We say that the pair (R1, R2) satisfies the Schlieder
property just in case if e ∈ R1 and f ∈ R2 are nonzero projections, then e ∧ f 6= 0.

The Schlieder property entails that for e ∈ R1, f ∈ R2, if e, f 6= 0 and e, f 6= 1 then:

e ∧ f 6= 0, ¬e ∧ ¬f 6= 0, e ∧ ¬f 6= 0, ¬e ∧ f 6= 0,

where ¬x = 1−x is the projection onto the orthogonal complement of x(H). Hence
if “∧” is the analogue of conjunction in classical logic, then the Schlieder property
is the analogue of logical independence.

3.5 Definition. If A,B are C∗-subalgebras of some C∗-algebra C, we let A ∨ B
denote the C∗-algebra generated by A ∪B.

3.6 Definition (C∗-Independence). Let A,B be C∗-algebras. We say that the
pair (A,B) is C∗-independent just in case for any state ω1 of A and any state ω2 of
B, there is a state ω of A ∨ B such that ω|A = ω1 and ω|B = ω2. In other words,
each state of A is compatible with each state of B.

The C∗-independence assumption has an obvious operationalist motivation: if
Alice is an observer at O1 and Bob is an observer at O2, then C∗-independence
amounts to the claim that Alice’s choice to prepare a state cannot in any way
obstruct Bob’s ability to prepare a state. Indeed, [Summers and Buchholz, 2005]

claim that a failure of C∗-independence could be detected by local observers. On
the other hand, C∗-independence could also be regarded as an explication of the
notion of the independence of objects:
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Two objects A,B are truly independent just in case any state of A is
compatible with any state of B; i.e. there are no logical relations between
predications of states to A and B.

Unfortunately, C∗-independence does not imply microcausality.

3.7 Example. We show that C∗-independence does not entail microcausality.
(Compare with [Napiórkowski, 1972].) Consider the finite dimensional ∗-algebra
C(Z4) ⊕M2, where C(Z4) is the abelian ∗-algebra of dimension 4, and M2 is the
2 × 2 matrices over C. The projection lattice of C(Z4) is the Boolean algebra with
two atoms; hence it contains logically independent elements e1, e2. Now choose two
projections f1, f2 ∈M2 such that [f1, f2] 6= 0, and let Ri be the abelian ∗-subalgebra
of C(Z4) ⊕M2 generated by the projection ei ⊕ fi.

To see that (R1, R2) is C∗-independent, let ωi be states on the Ri, and let
λi = ωi(ei ⊕ fi). By the logical independence of e1, e2, there is a state ρ of C(Z4)
such that ρ(ei) = λi. Then the state ρ⊕ 0 on C(Z4) ⊕M2 is a common extension
of the ωi since

(ρ⊕ 0)(ei + fi) = ρ(ei) = λi,

and a state’s value on ei⊕ fi determines its value on Ri. Therefore, (R1, R2) is C∗-
independent. On the other hand, [e1 + f1, e2 + f2] = [f1, f2] 6= 0, whence (R1, R2)
does not satisfy microcausality.

In the previous example, the algebras R1 and R2 share a common superselec-
tion sector: each commutes with the projection p = 1 ⊕ 0. However, the reduced
algebras pRip are not C∗-independent. In fact, the diagnosis of this example can
be generalized into the following result.

3.8 Proposition. Let R1 and R2 be von Neumann algebras acting on a Hilbert
space H. If for every projection e ∈ Z(R1 ∨ R2), the pair (eR1e, eR2e) is C∗-
independent, then [R1, R2] = {0}.

Proof. See [Summers and Buchholz, 2005].

3.9 Definition (Split Property). Let R1 and R2 be von Neumann algebras on
H such that R1 ⊆ R′2. Then the pair (R1, R2) is said to satisfy the split property
just in case there is a type I factor M such that R1 ⊆M ⊆ R′2.

3.10 Remark. (i): It is clear that the previous definition is equivalent to saying
that (R1, R

′
2) is a ‘split inclusion’ as per Definition 2.15.

(ii): If (R1, R2) satisfies the split property, then under some fairly standard
conditions (e.g. R1 or R2 is type III), there is a natural ∗-isomorphism α between
R1 ∨R2 and the von Neumann algebra tensor product R1⊗R2; by saying that α
is ‘natural’, we mean that it extends the map AB 7→ A ⊗ B. Furthermore, the
∗-isomorphism α is spatial, i.e. there is a unitary operator u such that α(x) = uxu∗.
See [Summers, 1990, p. 212].
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(iii): On the other hand, suppose that R is a factor, so that R ∪ R′ generates
B(H) as a von Neumann algebra, i.e. R ∨R′ = B(H). ThenR′ is of the same type (I,
II, or III) as R [Kadison and Ringrose, 1997, Thm. 9.1.3], and so the von Neumann
algebra tensor product R⊗R′ is of the same type as R [Kadison and Ringrose, 1997,
p. 830]. So if R is type II or III, then R ∨R′ is strictly larger than, and not
isomorphic to R⊗R′.

3.11 Definition (W ∗-Independence). Let R1 and R2 be von Neumann algebras
acting on H. The pair (R1, R2) is said to be W ∗-independent just in case for every
normal state ϕ1 of R1 and for every normal state ϕ2 of R2, there is a normal state
ϕ of R1 ∨R2 such that ϕ|Ri

= ϕi.

With the assumption of the mutual commutativity of R1 and R2 (i.e. micro-
causality), we have the following implications (see [Summers, 1990, p. 222]):

Split property
⇓

W ∗-independence
⇓

C∗-independence ⇐⇒ Schlieder property

3.2 Independence of local algebras

We now consider which independence properties hold between pairs of algebras
associated with spacelike separated regions. In general, not much can be said about
the independence of such algebras. In order to get such results off the ground, we
need a stronger notion of spacelike separation.

3.12 Definition. Two double cones O1, O2 are said to be strictly spacelike separated
just in case there is a neighborhood N of zero such that O1+x is spacelike separated
from O2 for all x ∈ N .

3.13 Proposition. Suppose that the net O 7→ R(O) satisfies microcausality, weak
additivity, and the spectrum condition. IfO1 andO2 are strictly spacelike separated,
then (R(O1), R(O2)) satisfies the Schlieder property.

Proof. See [Schlieder, 1969].

In terms of logical strength, the following concept lies between spacelike sep-
aration and strict spacelike separation; furthermore, this concept makes sense for
spacetimes without a translation group.
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3.14 Definition. Two double cones O1 and O2 are said to be strongly spacelike
separated just in case there are double cones Õi such that Oi ⊆ Õi, and Õ1, Õ2 are
spacelike.

3.15 Fact. If O1 and O2 are strictly spacelike separated, then they are strongly
spacelike separated.

Of course, the assumptions of Proposition 3.13 (microcausality, additivity, spec-
trum) are precisely what is used to derive property B for the net (Proposition 2.23).
So, it is perhaps illustrative to give a simple derivation of the Schlieder property
from property B. (Such a result also applies in contexts — e.g. QFT on curved
spacetime — where the spectrum condition does not make sense.)

3.16 Proposition. Suppose that the net O 7→ R(O) of von Neumann algebras sat-
isfies microcausality and property B. If O1 and O2 are strongly spacelike separated,
then (R(O1), R(O2)) satisfies the Schlieder property.

Proof. Let O1 and O2 be strictly spacelike separated, and let ei ∈ R(Oi) be pro-
jections. Then there are regions Õi such that Oi ⊆ Õi, and Õ1 is spacelike to
Õ2. By property B, there are isometries vi ∈ R(Õi) such that viv

∗
i = ei. Further-

more, [v1, v2] = 0 and hence e1e2 = v1v2(v1v2)
∗. But v1v2 is an isometry, and so

v1v2(v1v2)
∗ 6= 0.

The split property clearly does not hold for (R(W ), R(W ′)) where W is a
wedge region and W ′ is its causal complement. Indeed, since R(W ) and R(W ′)
are type III1 factors, there can be no ∗-isomorphism between R(W )⊗R(W ′) and
R(W ) ∨R(W )′ = B(H). However, if the funnel property holds for the net O 7→
R(O), then (R(O1), R(O2)) satisfies the split property when O1 and O2 are strictly
spacelike separated double cones.

3.3 Bell correlation between von Neumann algebras

We first define a generalized notion of Bell type measurements for a pair of von
Neumann algebras.

3.17 Definition. Let A and B be mutually commuting C∗-subalgebras of some
C∗-algebra C. Then we set

B(A,B) ≡
{
(1/2)[a1(b1 + b2) + a2(b1 − b2)] : ai = a∗i ∈ A, bi = b∗i ∈ B,

−1 ≤ ai, bi ≤ 1}.
Elements of B(A,B) are called Bell operators for (A,B).
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Let r be a Bell operator for (A,B). It can be shown that |ϕ(r)| ≤
√

2 for each
state ϕ on C [Summers and Werner, 1987]. It is also straightforward to check that if
ϕ is a separable state (i.e. a mixture of product states) then |ϕ(r)| ≤ 1. Indeed, the
Bell measurement correlations in the state ϕ can be reproduced by a local hidden
variable model iff |ϕ(r)| ≤ 1 [Summers and Werner, 1987; Baez, 1987].

3.18 Definition. Define the Bell correlation coefficient of a state ϕ of A ∨B by

β(ϕ,A,B) = sup{ |ϕ(r)| : r ∈ B(A,B) }.

If |β(ϕ,A,B)| > 1, then ϕ is said to violate a Bell inequality, or to be Bell correlated.

It is a straightforward exercise to show that if R1 is an abelian von Neumann
algebra and R1 ⊆ R′2, then for any state ϕ, β(ϕ,R1, R2) ≤ 1. For a sort of converse,
Landau [1987] shows that if R1 and R2 are nonabelian von Neumann algebras such
that R1 ⊆ R′2, and if (R1, R2) satisfies the Schlieder property, then there is some
state ϕ that violates Bell’s inequality maximally relative to (R1, R2). Similarly,
Bacciagaluppi [1994] shows that if A and B are C∗-algebras, then some state violates
a Bell inequality for A⊗B iff both A and B are nonabelian.

When A and B have further properties, we can derive even stronger results. For
present purposes, we will simply apply a couple of the known results to the case of
AQFT. (See [Summers, 1990] for many more details.)

3.19 Proposition. Let R be a type III1 factor acting on a separable Hilbert space
H. Then every normal state ϕ of B(H) is maximally Bell correlated across (R,R′),
that is β(ϕ,R,R′) =

√
2.

Proof. See [Summers and Werner, 1988; Summers and Werner, 1995].

3.20 Remark. Prop. 2.29 tells us that under quite generic conditions, the wedge
algebra R(W ) is a type III1 factor. In this case, Prop. 3.19 tells us that the vacuum
is maximally Bell correlated across (R(W ), R(W )′).

3.21 Proposition. Suppose that R1 and R2 are von Neumann algebras on H
such that R1 ⊆ R′2, and (R1, R2) satisfies the Schlieder property. If R1 and R2 are
properly infinite, then there is a dense set of vectors in H that induce Bell correlated
states across (R1, R2).

Proof. See [Halvorson and Clifton, 2000].

3.22 Remark. If a net O 7→ R(O) of von Neumann algebras on H satisfies property
B and nontriviality, then the hypotheses of Prop. 3.21 apply to algebras R(O1) and
R(O2) when O1 and O2 are strongly spacelike separated.

Notes: For a comprehensive review of pre-1990 results on independence of local alge-

bras in AQFT, see [Summers, 1990]. For some more recent results, see [Summers, 1997;

Florig and Summers, 1997; Rédei, 1998; Halvorson and Clifton, 2000; Summers and Buchholz, 2005].

30



3.4 Intrinsically entangled states

According to Clifton and Halvorson [2001b], the type III property of local algebras
in AQFT shows that it is impossible to disentangle local systems from their environ-
ment. To see the argument, recall that it is a standard (perhaps somewhat justified)
assumption that the general form of a dynamical evolution T of observables, repre-
sented by self-adjoint elements of a C∗-algebra A is given by a completely positive
(CP) linear mapping T of A such that T (1) = 1. (Such an assumption is certainly
commonplace in, say, quantum information theory.) Here we recall the pertinent
definition.

3.23 Definition. Let A be a C∗-algebra. A linear map T of A is said to be positive
if T (a∗a) ≥ 0 for each a ∈ A. T is said to be completely positive if for each n ∈ N,
the map T ⊗ idn : A⊗Mn → A⊗Mn defined on elementary tensors by

(T ⊗ idn)(a⊗ b) = T (a) ⊗ b,

is positive. Here Mn is the C∗-algebra of n× n matrices over C.

3.24 Remark. If T : A → A is positive and T (I) = I, then for each state ω of A,
we define T ∗(ω) by T ∗(ω)(A) = ω(T (A)). It follows that T ∗ is an affine mapping of
the state space into itself.

For type I factors, Kraus’ theorem [Kraus, 1983] shows that CP maps are “in-
ner.”

3.25 Theorem (Kraus Representation). If R is a type In factor then the fol-
lowing are equivalent for a linear map T : R→ R.

1. T is completely positive and T (1) = 1.

2. T is the restriction of an automorphism x 7→ uxu∗ on an algebra of the form
R⊗B(H).

3. There are positive operators a1, . . . , an ∈ R such that
∑n

i=1 ai = 1 and

T (x) =
∑

i=1

a
1/2
i xa

1/2
i . (1)

One special case of Eqn. (1) is the Lüders rule with projection operators e and 1−e:
Te(x) = exe+ (1− e)x(1− e).

Furthermore, if the algebra R is type I, we can choose e ∈ R to be an abelian
projection. We have the following result:
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If the local algebra R is a type I factor, then there is a universal dis-
entangling operation Te. That is, no matter what the initial state, the
outcome of applying Te is that the final state is separable.

However, suppose that R has no abelian projections (e.g. R is type III). Then for
each nonzero projection e ∈ R, the algebras eRe and eR′e are nonabelian, and hence
there is some entangled state ϕ for the pair (eRe, eR′e). This entangled state is the
image under the operation (Te)

∗ of some state on R ∨R′. Hence, the operation Te
does not disentangle all states.

This heuristic argument can be tightened up into a “proof” that no operation
on R can disentangle the states of R ∨R′. See [Clifton and Halvorson, 2001b] for
details.

3.26 Remark. (i): The Kraus representation theorem is not valid as it stands for
type III algebras. Indeed, the Kraus representation theorem is a special case of the
Stinespring decomposition theorem [Stinespring, 1955].

(ii): A CP operation on a von Neumann algebra is typically also assumed to be
ultraweakly continuous. The continuity of T might be justified on the grounds that
it is necessary if T ∗ is to map normal states to normal states. For objections to the
continuity requirement, see [Srinivas, 1980].

4 Prospects for Particles

The main application of relativistic QFT is to fundamental particle physics. But it
is not completely clear that fundamental particle physics is really about particles.
Indeed, despite initial signs that QFT permits a particle interpretation (via Fock
space), there are many negative signs concerning the possibility of particle ontology
of relativistic QFT. This section is devoted to assessing the status of particles from
the point of view of AQFT.

4.1 Particles from Fock space

We begin our investigation of particles with the “story from mother’s knee” about
how to give QFT a particle interpretation. (See [Teller, 1995] for one philosopher’s
interpretation of this story.) The story begins with a special Hilbert space, called
Fock space. Now Fock space is just another separable infinite dimensional Hilbert
space (and so isomorphic to all its separable infinite dimensional brothers). But
the key is writing it down in a fashion that suggests a particle interpretation. In
particular, suppose that H is the one-particle Hilbert space, i.e. the state space for
a single particle. Now depending on whether our particle is a Boson or a Fermion,
the state space of a pair of these particles is either Es(H ⊗ H) or Ea(H ⊗ H),
where Es is the projection onto the vectors invariant under the permutation ΣH,H

on H⊗H, and Ea is the projection onto vectors that change signs under ΣH,H . For
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present purposes, we ignore these differences, and simply use H ⊗H to denote one
possibility or the other. Now, proceeding down the line, for n particles, we have the
Hilbert space Hn ≡ H ⊗ · · · ⊗H, etc..

A state in Hn is definitely a state of n particles. To get disjunctive states, we
make use of the direct sum operation “⊕” on Hilbert spaces. So we define the Fock
space F(H) over H as the infinite direct sum:

F(H) = C ⊕H ⊕ (H ⊗H) ⊕ (H ⊗H ⊗H) ⊕ · · · .

So, the state vectors in Fock space include a state where the are no particles (the
vector lies in the first summand), a state where there is one particle, a state where
there are two particles, etc.. Furthermore, there are states that are superpositions
of different numbers of particles.

One can spend time worrying about what it means to say that particle numbers
can be superposed. But that is the “half empty cup” point of view. From the
“half full cup” point of view, it makes sense to count particles. Indeed, the positive
(unbounded) operator

N = 0 ⊕ 1 ⊕ 2 ⊕ 3 ⊕ 4 ⊕ · · · ,
is the formal element of our model that permits us to talk about the number of
particles.

4.1 Remark. In the category of Hilbert spaces, all separable Hilbert spaces are
isomorphic — there is no difference between Fock space and the single particle space.
If we are not careful, we could become confused about the bearer of the name “Fock
space.”

The confusion goes away when we move to the appropriate category. According
to Wigner’s analysis [Wigner, 1939], a particle corresponds to an irreducible unitary
representation of the identity component P of the Poincaré group. Then the single
particle space and Fock space are distinct objects in the category of representations
of P. The underlying Hilbert spaces of the two representations are both separable
(and hence isomorphic as Hilbert spaces); but the two representations are most
certainly not equivalent (one is irreducible, the other reducible).

4.2 Fock space from the algebra of observables

The Fock space story is not completely abandoned within the algebraic approach
to QFT. In fact, when conditions are good, Fock space emerges as the GNS Hilbert
space for some privileged vacuum state of the algebra of observables. We briefly
describe how this emergence occurs before proceeding to raise some problems for
the naive Fock space story. (We look here only at the symmetric — Bosonic —
case. A similar treatment applies to the antisymmetric — Fermionic — case.)

The algebraic reconstruction of Fock space arises from the algebraic version of
canonical quantization. Suppose that S is a real vector space (equipped with some
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suitable topology), and that σ is a symplectic form on S. So, S represents a classical
phase space (see Butterfield, this volume). The Weyl algebra A[S, σ] is a specific
C∗-algebra generated by elements of the form W (f), with f ∈ S and satisfying the
canonical commutation relations in the Weyl-Segal form:

W (f)W (g) = e−iσ(f,g)/2W (f + g).

Suppose that there is also some notion of spacetime localization for elements of S,
i.e. a mapping O 7→ S(O) from double cones in Minkowski spacetime to subspaces
of S. Then, if certain constraints are satisfied, the pair of mappings

O 7→ S(O) 7→ A(O) ≡ C∗{W (f) : f ∈ S(O)},
can be composed to give a net of C∗-algebras over Minkowski spacetime. (Here
C∗X is the C∗-algebra generated by the set X.)

Now if we are given some dynamics on S, then we can — again, if certain
criteria are satisfied — define a corresponding dynamical automorphism group αt
on A[S, σ]. There is then a unique dynamically stable pure state ω0 of A[S, σ],
and we consider the GNS representation (H, π) of A[S, σ] induced by ω0. To our
delight, we find that the infinitesimal generators Φ(f) of the one-parameter groups
{π(W (f))}t∈R behave just like the field operators in the old-fashioned Fock space
approach. Furthermore (now speaking non-rigorously), if we define operators

a(f) = 2−1/2 (Φ(f) + iΦ(Jf)) ,

a∗(f) = 2−1/2 (Φ(f) − iΦ(Jf)) ,

we find that they behave like creation and annihilation operators of particles. (Here
J is the unique “complex structure” on S that is compatible with the dynamics.) In
particular, by applying them to the vacuum state Ω, we get the entire GNS Hilbert
space H. Finally, if we take an orthonormal basis {fi} of S, then the sum

∞∑

i=1

a∗(fi)a(fi),

is the number operator N . Thus, the traditional Fock space formalism emerges as
one special case of the GNS representation of a state of the Weyl algebra.

4.2 Remark. The Minkowski vacuum representation (H0, π0) of A is Poincaré
covariant, i.e. the action α(a,Λ) of the Poincaré group by automorphisms on A is
implemented by unitary operators U(a,Λ) on H. When we say that H is isomorphic
to Fock space F(H), we do not mean the trivial fact that H and F(H) have the
same dimension. Rather, we mean that the unitary representation (H, U) of the
Poincaré group is a Fock representation.

Notes: See [Bratteli and Robinson, 1997, Section 5.2] for a detailed account of the recon-

struction of Fock space from the Weyl algebra. See also [Clifton and Halvorson, 2001a] and

[Halvorson, 2001b] for shorter expositions.
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4.3 Nonuniqueness of particle interpretations

If we have a representation (H, π) of the quasilocal algebra A such that H is isomor-
phic to Fock space, then we can make sense of talk about particles. Furthermore,
such representations exist, e.g., the GNS representation of the Minkowski vacuum
state ω0 of the free Bose field. So, in the most simple cases (e.g. free fields on flat
spacetime), there is no problem concerning the existence of particle interpretations
of the theory.

But there is a problem about uniqueness: there are unitarily inequivalent rep-
resentations of A, each of which is isomorphic to Fock space. Furthermore, a result
from [Chaiken, 1967; Chaiken, 1968] shows that two inequivalent Fock representa-
tions correspond to two number operators that cannot be thought of as notational
variants of the same description of reality. Indeed, there are no states of A that
assign sharp values to both number operators. Hence, the particle interpretations
provided by the two Fock representations are mutually exclusive.

The issue of inequivalent Fock representations is treated in depth in [Clifton and Halvorson, 2001a].
For present purposes, we simply note that this worry about nonuniqueness is tied
in to a more general worry about inequivalent representations of the quasilocal C∗-
algebra A. But this more general issue cannot be resolved without reference to
recent developments in the theory of superselection sectors (see Sections 7.2 and
following). We return to this question in Section 7.

4.4 Problems for localized particles

Suppose that we have settled the uniqueness problem that is raised in the previous
subsection — e.g. we have found a good reason for preferring a particular Fock
representation (H, π) of A, and so we have a preferred global number operator N
on H. The next question is whether relativistic QFT is consistent with an ontology
of localized particles — that is, whether it makes sense to talk about the number of
particles in a bounded region O of space.

As pointed out in Section 2.3, the Reeh-Schlieder (RS) Theorem entails that
the local algebras of AQFT do not contain operators that annihilate the vacuum.
Hence if a number operator has the vacuum as an eigenstate, then there are no
local number operators. That is perhaps enough to convince most readers that lo-
calized particles are not possible in relativistic QFT. Nonetheless, there have been
attempts to bypass the RS Theorem, most notably the proposal of Newton and
Wigner (recently resurrected in [Fleming, 2000]). It has been argued that such
attempts are not promising [Halvorson, 2001b]. Furthermore, it can be shown in-
dependently of the full framework of AQFT, and without the RS Theorem, that
a positive energy condition combined with microcausality rules out local number
operators [Halvorson and Clifton, 2002].

Despite the various No Go results for localized particles in relativistic QFT, the
interpretation of experiments in high energy physics seems to require a notion of
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something causing clicks in detectors, and that a “detector” is fairly well localized in
some bounded region of spacetime. A detector corresponds to a positive operator C
in A, and is “completely reliable” only if it registers 0 identically in the vacuum state,
i.e. CΩ = 0. Hence the Reeh-Schlieder Theorem entails that C is not contained in
any local algebra. Nonetheless, a notion of approximate localization of C can be
salvaged: choose some A ∈ A(O) with 0 ≤ A ≤ I, and set

C =

∫
f(x)αx(A)dx,

where f is a smooth function whose Fourier transform has support in the com-
plement of the forward light cone. (The function f automatically has unbounded
support.) Then CΩ = 0, and the function f can also be chosen so that C is “close”
in the norm topology to an operator in A(O).

The notion of approximately localized detectors is employed extensively in Haag-
Ruelle scattering theory and recent developments thereof, to which we now turn.

4.5 Particle interpretations generalized: Scattering theory and be-
yond

It is not true that a representation (K, π) of A must be a Fock representation in
order for states in the Hilbert space K to have an interpretation as particle states.
Indeed, one of the central tasks of “scattering theory,” is to provide criteria — in
the absence of full Fock space structure — for defining particle states. These criteria
are needed in order to describe scattering experiments which cannot be described
in a Fock representation, but which need particle states to describe the input and
output states.

Haag and Swieca [1965] propose to pick out the n-particle states by means of
localized detectors; we call this the detector criterion:

A state with at least n-particles is a state that would trigger n detectors
that are far separated in space.

Philosophers might worry that the detector criterion is too operationalist. Indeed,
some might claim that detectors themselves are made out of particles, and so defin-
ing a particle in terms of a detector would be viciously circular.

If we were trying to give an analysis of the concept of a particle, then we would
need to address such worries. However, scattering theory does not end with the
detector criterion. Indeed, the goal is to tie the detector criterion back to some
other more intrinsic definition of particle states. The traditional intrinsic definition
of particle states is in terms of Wigner’s symmetry criterion:

A state of n particles (of spins si and masses mi) is a state in the tensor
product of the corresponding representations of the Poincaré group.
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Thus, scattering theory — as originally conceived — needs to show that the states
satisfying the detector criterion correspond to an appropriate representation of the
Poincaré group. In particular, the goal is to show that there are isometries Ωin,Ωout

that embed Fock space F(H) into K, and that intertwine the given representations
of the Poincaré group on F(H) and K.

Based on these ideas, detailed models have been worked out for the case where
there is a mass gap. Unfortunately, as of yet, there is no model in which Hin = Hout,
which is a necessary condition for the theory to have an S-matrix, and to define
transition probabilities between incoming and outgoing states. (Here Hin is the
image of Fock space in K under the isometry Ωin, and similarly for Hout.)

Recently, Buchholz and collaborators have claimed that Wigner’s symmetry
criterion is too stringent — i.e. there is a more general definition of particle states.
They claim that it is only by means of this more general criterion that we can solve
the “infraparticles” problem, where massive particles carry a cloud of photons (see
[Buchholz et al., 1991]).

Note: For a review of progress in scattering theory in AQFT, see [Haag, 1996, Chapter 6]

and [Buchholz and Summers, ND].

5 The Problem of Value-Definiteness in AQFT

The “measurement problem” of nonrelativistic QM shows that the standard ap-
proach to the theory is impaled on the horns of a dilemma: either (i) one must
make ad hoc adjustments to the dynamics (“collapse”) when needed to explain the
results of measurements, or (ii) measurements do not, contrary to appearances, have
outcomes (see Dickson, this volume, Section 5).

There are two main responses to the dilemma: On the one hand, some suggest
that we abandon the unitary dynamics of QM in favor of stochastic dynamics that
accurately predicts our experience of measurement outcomes. On the other hand,
some suggest that we maintain the unitary dynamics of the quantum state, but that
certain quantities (e.g. position of particles) have values even though these values
are not specified by the quantum state. (See Dickson, this volume, Section 5.5 for
a more nuanced discussion of the possible responses.)

Both approaches — the approach that alters the dynamics, and the approach
with additional values — are completely successful as responses to the measure-
ment problem in nonrelativistic QM. But both approaches run into obstacles when
it comes to synthesizing quantum mechanics with relativity. In particular, the ad-
ditional values approach (e.g. the de Broglie–Bohm pilot-wave theory) appears to
require a preferred frame of reference to define the dynamics of the additional values
(see [Cushing, 1994, pp. 188–191, 196–198], [Holland, 1995], and [Bohm and Hiley, 1995,
Chaps. 11 & 12]), and in this case it would fail the test of Lorentz invariance.

The “modal” interpretation of quantum mechanics is similar in spirit to the de
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Broglie–Bohm theory, but begins from a more abstract perspective on the ques-
tion of assigning definite values to some observables. (Following [Bell, 1987], we
might call these the “beables” of the theory.) Rather than making an intuitively
physically motivated choice of the determinate values (e.g. particle positions), the
modal interpretation makes the mathematically motivated choice of the spectral
decomposition of the quantum state (i.e. the density operator) as determinate. (See
[Dieks and Vermaas, 1998; Vermaas, 1999] for reviews of the modal interpretation;
see [Clifton, 1995] for motivation.)

Unlike the de Broglie–Bohm theory, it is not obvious that the modal inter-
pretation must violate the spirit or letter of relativistic constraints, e.g. Lorentz
invariance [Dickson and Clifton, 1998, p. 9]. So, it seems that there should be some
hope of developing a modal interpretation within the framework of AQFT. This is
the starting point for Dieks’ [2000] proposal for a modal interpretation of AQFT.
Rather than expound Dieks’ original proposal, we move directly to the criticism in
[Clifton, 2000], to which we also refer the reader for further elaboration.

5.1 Clifton-Kitajima classification of modal algebras

Clifton’s critique of the modal interpretation of AQFT is based on a remarkable
theorem which classifies all possible “modal subalgebras” of a local von Neumann
algebra R(O) relative to a state ρ. According to Clifton — and the modal inter-
preters seem to agree on this point — the algebra D, D ⊆ R(O) of definite local
observables should satisfy the following constraints relative to a given state ρ of
R(O):

5.1 Definition. Let R be a von Neumann algebra, and let ρ be a state of R. Then
a von Neumann subalgebra D of R is said to be a modal algebra for (R, ρ) just in
case:

1. (Value definiteness) The restricted state ρ|D is a mixture of dispersion-free
states. (Definition: A state is dispersion free iff it assigns each projection
operator either 0 or 1.)

2. (Definability) D is left invariant under all symmetries of R that leave the state
ρ invariant.

3. (Maximality) D is maximal, subject to the first two conditions.

The last requirement is imposed simply to rule out trivial counterexamples to
uniqueness — e.g. one could always pick the algebra CI of scalar multiples of the
identity. The second requirement is supposed to explicate the idea that D is “picked
out by” (i.e. is definable in terms of) the state ρ. We have left the notion of a
“symmetry” vague (and we will return to this question in the next subsection), but
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Clifton takes the symmetries to coincide with the ∗-automorphisms of R, and this
is needed for the main result (Theorem 5.5).

To state this result, we need to define the notion of the centralizer of a state.
The following proposition establishes the equivalence of two possible definitions of
the centralizer.

5.2 Proposition. Let R be a von Neumann algebra, let ω be a faithful normal state
of R, and let σωt be the modular automorphism group of R. Then the following two
sets are coextensive:

1. {A ∈ R : σωt (A) = A,∀t ∈ R}

2. {A ∈ R : ω(AB) = ω(BA),∀B ∈ R}

The proof of Prop. 5.2 depends on the full apparatus of modular theory. We
refer the reader to [Takesaki, 2003, Chap. 8] for details.

5.3 Definition. It is clear that the set defined in the previous proposition is in fact
a von Neumann subalgebra of R. We call this subalgebra the centralizer of ω in R,
and we denote it by Rω.

5.4 Example. Let R = B(H), and let ω be a faithful normal state of R. Then ω
has the form

ω(A) = Tr(DA), A ∈ R,

for some density operator D ∈ R. Then Rω = {D}′, and Z(Rω) is the abelian von
Neumann algebra {D}′′. In particular, if ω is the maximally mixed state of a type
In factor, then Rω = B(H), and Z(Rω) = CI.

The Clifton-Kitajima Theorem shows that there is a unique modal algebra for
(R, ω), and in the case that the state ω is faithful, it is Z(Rω), the center of the
centralizer of ω.

5.5 Theorem (Clifton-Kitajima). Let R be a von Neumann algebra acting on
a Hilbert space H, and let ω be a normal state of R.

1. If ω is faithful then Z(Rω) is the unique modal algebra for (R, ω).

2. Generally, the unique modal algebra for (R, ω) is N ⊕ Z(Rω)E, where E is
the smallest projection in R such that ω(E) = 1, and N is the algebra of all
bounded operators on (I − E)(H).

The result is proven for the case where ω is faithful in [Clifton, 2000], and for the
general case in [Kitajima, 2004].

As pointed out by Clifton [2000], Thm. 5.5 spells trouble for a modal interpre-
tation of AQFT, because there are many cases where the algebra Z(Rω) is trivial.
(See [Ruetsche and Earman, 2005] for further development of this point.)
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1. Let W be a wedge region in Minkowski spacetime, and let Ω be the vacuum
state. Then there are no fixed points in R(W ) of the modular automorphism
group σωt (see the proof of Proposition 2.29, and also [Driessler, 1975]). Hence,
Rω = CI, and Z(Rω) = CI.

2. In relativistic QFT, local algebras are the type III1 hyperfinite factor R (see
Section 2.5). But R has a dense set of ergodic states — states with trivial
centralizer. For all these states, Z(Rω) = CI.

Thus, it makes an enormous difference — at least for the feasibility of the modal
interpretation — that local algebras are type III1. For if local algebras were either
type I∞ or III0, then there would be good news for the modal interpretation.

5.6 Proposition. Let R be a type I∞ factor. Then for every normal state ω of R,
the unique modal algebra Dω is nontrivial.

Proof. We have ∆ω = Z(Rω) = {D}′′, where D is the density operator, i.e. the pos-
itive operator in R that implements the state ω via the trace formula. Furthermore,
when R is type I∞, D cannot be a multiple of the identity.

5.7 Proposition. Let R be a type III0 factor. Then for every faithful normal state
ω of R, the unique modal algebra Dω is nontrivial.

Proof. Prop. 3.15 in [Takesaki, 2003, p. 402] entails that Dω has no atomic projec-
tions, and hence is infinite dimensional.

5.2 What is a symmetry in AQFT?

We note here just one problem with application of the Clifton-Kitajima theorem to
AQFT: the notion of symmetry invoked might be too liberal for the setting where
we have a net of algebras over spacetime, as opposed to a single von Neumann
algebra. Clifton’s application of the theorem assumes that any automorphism of R

is a symmetry. However, if R = R(O) is just one algebra of an entire net O 7→ R(O),
then it is not clear that every automorphism of R is a symmetry of the relevant
system. What we need is a notion of a symmetry of the net O 7→ R(O).

5.8 Remark. A partially ordered set K can be regarded as a category where for
x, y ∈ K, Hom(x, y) = {(x, y)} if x ≤ y, and otherwise Hom(x, y) = ∅. Let C∗

be the category with C∗-algebras as objects and ∗-homomorphisms as arrows. On
this conception, a net of C∗-algebras on Minkowski spacetime is a functor A : K →
C∗ where K is the category of double cones in Minkowski spacetime, ordered by
inclusion, and such that A(Hom(O1, O2)) is an isometry when Hom(O1, O2) is not
empty. (For definitions of functors and natural transformations, see p. 145.)
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5.9 Definition. Let K be a partially ordered set (e.g. regions in some manifold
ordered by inclusion). Let O 7→ A(O) and O 7→ B(O) be nets of C∗-algebras over
K. A net morphism α : A → B is a natural transformation between the functors.
That is, α consists of a collection of morphisms

{
αO : A(O) → B(O) : O ∈ K

}
,

that is natural in O. In other words, for each f ∈ Hom(O1, O2), αO2 ◦ A(f) =
B(f) ◦ αO1, which just means that the following diagram commutes

A(O1)
αO1- B(O1)

A(O2)

A(f)

?

αO2

- B(O2)

B(f)

?

5.10 Fact. Net automorphisms correspond to automorphisms of the quasilocal
algebra that leave each local subalgebra globally invariant. To state this precisely,
let A denote the functor from K into C∗, and let B denote the inductive limit of A.
We identify A(O) with its image in B. Then α is a net automorphism of A iff there
is an automorphism β of B such that

β|A(O) = αO.

Now, given a net A with inductive limit B, what should we consider as a sym-
metry of B?

Proposal 1. A symmetry of the net A corresponds to a net automorphism α;
i.e. a natural transformation of A. That is, a symmetry of A corresponds to an
automorphism of the quasilocal algebra that leaves each local subalgebra globally
invariant.

This first proposal is surely too strict, because it excludes the case of symme-
tries induced by underlying symmetries of the spacetime. But if K consists of an
appropriate set of regions of spacetime M (i.e. a set that is closed under symmetries
of the spacetime), then a symmetry of M will induce an order-preserving bijection
F on K. Note that since F is a functor, A ◦ F is also a functor. Thus, we consider
the following liberalized definition.

Proposal 2. A symmetry of the net A consists of a pair (F,α) where F is an
order-preserving bijection of K, and α is a net morphism (natural transformation)
from A to A ◦ F .

41



If we accept this proposal, then we must replace Clifton’s definability condition
with the following modified condition:

Definability-2: Given O ∈ K, let K0 be the full subcategory of K with
objects {O0 : O0 ≤ O}, and let RO denote the restriction of the von
Neumann algebra valued functor R to K0. Then the algebra D must
be left invariant by all symmetries of RO that preserve the state ρ on
R(O).

Since not all automorphisms of R(O) are symmetries of the net RO, the new defin-
ability condition is weaker than the old one: there will typically be more candidates
for the role of D.

The Clifton-Kitajima Theorem does not apply under the revised definition of
symmetries of R(O). On the other hand, we are not aware of a positive result
showing the existence and uniqueness of subalgebras of R(O) that are definite in
the state ω and invariant under all net automorphisms that preserve ω. There are
suggestive hints such as the result in [Doplicher and Longo, 1984]:

5.11 Proposition. Let (R1 ⊆ R2, ω) be a standard split inclusion of von Neumann
algebras. Then there is a unique type I factor N such that: (i) R1 ⊆ N ⊆ R2, and
(ii) N is invariant under all automorphisms of R2 that preserve both R1 and the
state ω.

Of course, the algebra N itself does not have dispersion-free states, and so cannot
be the algebra of definite observables. However, the state ω|N is normal, and since
N is a type I factor, there is a density operator D ∈ N that induces the state in the
sense that ω(A) = Tr(DA), for all A ∈ N. Then assuming that R1 must for some
reason be left invariant under symmetries of R2, the algebra D = {D}′′ looks like
a good candidate for the modal interpreter’s set of definite-value observables in R2

in the state ω.
To apply Prop. 5.11 to AQFT with Ri = R(Oi), and O1 ⊆ O2, we would have

to assume that the split property holds. Although the split property does not hold
in every model, failure of the split property implies a sort of pathology, and it might
not be too surprising if there were certain physically pathological cases where the
modal interpretation yields a trivial set of definite quantities.

Notes: For recent discussions of adapting the modal interpretation to a relativistic setting,

see [Myrvold, 2002; Ruetsche and Earman, 2005].

6 Quantum Fields and Spacetime Points

In standard/heuristic presentations of QFT, the fundamental physical quantities
(observables, or more generally quantum fields) are operators indexed by spacetime
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points: Φ(x) (see t’Hooft, this volume). Based on this fact, at least one philosopher
([Teller, 1995]) describes the ontology of QFT in terms of the idea a field of oper-
ators and their expectation values. On the other hand, the mathematical approach
to QFT (e.g. the Wightman approach) eschews the use of operators at points in
favor of operators smeared over space(time) by test-functions: Φ(f). According
to Arnteznius [2003], this fact supports the view that spacetime has no pointlike
events, and a fortiori that there are no field values at spacetime points.

As QFT became more mathematically rigorous, an intuition developed that it
is not only difficult to define the value of a field at a point, but that it is impossible
to do so — such quantities simply do not exist. (Compare von Neumann’s critique
of Dirac’s delta functions and the notion of pointlike localized particles.) This
intuition has sometimes been buttressed by heuristic and operationalist arguments
— e.g. Bohr and Petersen’s [1950] argument that it is impossible to measure field
strengths at a point. For example, Haag [1996, p. 58] claims that, “a quantum field
Φ(x) at a point cannot be a proper observable.” Even philosophers can be found
claiming that, “field operators need to be ‘smeared’ in space” [Huggett, 2000, p.
631, fn. 8].

But the arguments against field operators at a point often confuse questions of
measurability with questions of existence, and rarely rise to a level of rigor that is
acceptable for drawing metaphysical conclusions. In this section, we review some
of the rigorous arguments that exist for and against field quantities at points. We
will see that these results do not decisively rule out field quantities at points, but
they clarify the interpretive tradeoffs that must be made.

6.1 No Go theorems

In the following three subsections, we review No Go theorems for field operators at
spacetime points.

6.1.1 Translation covariance rules out operators at a point

The first no go theorem shows that if there is a continuous unitary representation
of the translation group, then for any fixed time t, the field configuration operators
φ(x, t) commute with the field momentum operators π(x′, t), even when these oper-
ators are associated with the same point. This result is a serious problem, because
φ(x, t) and π(x, t) are supposed to be canonically conjugate (see [Ryder, 1996, p.
131], [Huggett, 1999]):

[φ(x, t), π(x′, t)] = iδ(x − x′). (2)

Moreover, this bad outcome cannot be blamed on any sort of “conflict” between
quantum mechanics and relativity, because the bad outcome also holds for non-
relativistic theories.
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6.1 Theorem. Let φ(x, t) and π(y, t) be fields of operators, either bounded or
unbounded and self-adjoint, such that

[φ(x, t), π(y, t)] = 0,

when x 6= y. (In the unbounded case, we mean that φ(x, t) and π(y, t) are defined on
a common dense set D, and they commute on this set.) If y 7→ U(y) is a continuous
representation of the translation group such that U(y)π(x, t)U(y)∗ = π(x+y, t), for
all x, y ∈ R3, then

[φ(x, t), π(x, t)] = 0,

for all x ∈ R3.

Proof. Since this proof only uses field operators on the same time slice, we will
suppress reference to t. Suppose first that φ(x) and π(y) are bounded operators. In
this case, the mapping:

f(y) := [φ(x), π(x + y)] = [φ(x), U(y)π(x)U(y)∗], (3)

is a weak-operator continuous function from R3 into the bounded operators on
H. Choose a sequence (yn)n∈N of nonzero vectors that converges to 0. Since f is
continuous, and f(yn) = 0 for all n ∈ N,

[φ(x), π(x)] = f(0) = lim
n→∞

f(yn) = 0. (4)

Now suppose that φ(x) and π(y) are unbounded but self-adjoint. Then replace
π(x) with one of its spectral projections ES(x), where S is a Borel subset of R, and
replace π(x) with one of its spectral projections FS′(y), where S′ is a Borel subset
of R. By the preceding argument, ES(x) and FS′(y) commute. Since this is true for
all such pairs of spectral projections, it follows that the spectral projections of φ(x)
commute pairwise with the spectral projections of π(x). Hence φ(x) and π(x) are
defined on a common dense set D in H, and they commute on this dense set.

6.1.2 Poincaré covariance rules out operators at a point

For our next two no go theorems, we will need to gather a couple of classic results.

6.2 Definition. A function f : Rn → C is said to be of positive type just in case
for each c1, . . . , cn ∈ C, and each x1, . . . , xn ∈ Rn, we have

n∑

i=1

n∑

j=1

cjcif(xi − xj) ≥ 0.

6.3 Theorem (Bochner). Let f : Rn → C be a continuous function of positive
type. Then the Fourier transform of f is a bounded measure on Rn.
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Proof. For a proof of Bochner’s theorem, see [Rudin, 1991, p. 303] and [Folland, 1995,
p. 95].

6.4 Remark. Only the group structure of Rn is really needed for Bochner’s theo-
rem. So, we are not making any mistake by thinking of Minkowski spacetime as R4

in this context.

We will need the following key lemma in all of our subsequent results.

6.5 Lemma. Let f be a continuous positive definite function on Rn. Then f is the
constant 1 function iff the Fourier transform of f is the probability measure with
support {0}.

The proof of the above lemma is trivial: the Fourier transform of the measure
µ with support {0} is the function f defined by

f(x) =

∫

Rn

ei(x·p)dµ(p) = ei(x·0) = 1.

But the Fourier transformation is a bijection between complex Radon measures on
Rn and bounded continuous functions on Rn.

6.6 Definition. We say that a measure µ on Minkowski spacetime is Lorentz invari-
ant just in case µ(Λ(S)) = µ(S) for each Borel subset S ofM , and each homogeneous
Lorentz transformation Λ, where Λ(S) = {Λ(x) : x ∈ S}.

Clearly, the only Lorentz invariant probability measure on Minkowski spacetime
is the measure supported on {0} (the unique fixed point of the homogeneous Lorentz
group). The following result is the “Fourier transformed” version of that fact.

6.7 Lemma. Let M be Minkowski spacetime. If f : M → C is a continuous
function of positive type such that f(Λx) = f(x) for each Lorentz transformation
Λ, then f is constant.

Sketch of proof. By Bochner’s theorem, if f : M → C is a continuous function
of positive type, then f is the Fourier transform of a bounded measure µ on M .
It is straightforward to verify that if f is Lorentz invariant then so is µ. But
a bounded, Lorentz invariant measure is supported on {0}. By Lemma 6.5, the
Fourier transform of µ is a constant function. Therefore, f = 1 is constant.

6.8 Fact. Let U be a unitary representation of the translation group on a Hilbert
space H. Then the following are equivalent:

1. The spectrum of the representation U is ∆;

2. For every u, v ∈ H, the function f : Rn → C given by

f(x) = 〈u,U(x)v〉, x ∈ Rn,

has Fourier transform with support in ∆.
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Finally, the following is our core lemma for the next two results.

6.9 Lemma. Let A : M → B(H) be an operator valued function, and let U be a
unitary representation of the translation group on H such that U(x)A(0)U(x)∗ =
A(−x) for all x ∈M . Define a function f : M → C by

f(x) = 〈Ω, A(x)A(0)Ω〉 = 〈Ω, U(x)∗A(0)U(x)A(0)Ω〉.

If f is constant, then there is a c ∈ C such that A(x)Ω = cΩ for each x ∈M .

Proof. Let ψ = A(0)Ω. Then f(x) = f(0) is expressed as

〈ψ,U(x)ψ〉 = 〈ψ,ψ〉 = ‖ψ‖2.

But we also have ‖ψ‖ = ‖U(x)ψ‖ since U(x) is unitary. Hence

〈ψ,U(x)ψ〉 = ‖ψ‖ · ‖U(x)ψ‖,

and the Cauchy-Schwartz inequality entails that U(x)ψ = ψ for all x. That is,
U(x)A(0)Ω = A(0)Ω. Note in addition that U(x)A(y)Ω = U(x+y)A(0)Ω = A(0)Ω.
Hence all vectors A(x)Ω are invariant under the translation group.

Now, the second no go theorem (due to [Wizimirski, 1966]) shows that there is
no nontrivial Poincaré covariant field of bounded operators on Minkowski spacetime.

6.10 Theorem. Suppose that A : M → B(H) is an operator-valued function, and
U is a continuous unitary representation of the Poincaré group on H such that:

1. U(y,Λ)A(x)U(y,Λ)∗ = A((Λx) − y), for all (y,Λ) ∈ P and x ∈M ;

2. There is a unique (up to scalar multiples) translation-invariant vector Ω ∈ H.

Then there is a c ∈ C such that A(x)Ω = cΩ for all x ∈M .

6.11 Remark. (i): The assumption of the uniqueness of Ω might seem unwar-
ranted. But under some fairly standard conditions, this assumption can be derived.
See Section 2.2. (ii): This theorem makes no assumption about commutation rela-
tions between operators A(x) and A(y).

Proof of Theorem 6.10. Define a function f : M → C by

f(x) =
〈
Ω, A(x)∗A(0)Ω

〉
, x ∈M.

By condition 2 we have U(x)Ω = Ω. Hence by condition 1 we have A(x)∗ =
U(x)A(0)∗U(x)∗, and hence

f(x) =
〈
A(0)Ω, U(x)∗A(0)Ω

〉
,
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which is obviously positive definite. Furthermore, since x 7→ U(x)∗ is weakly con-
tinuous, f is continuous.

Now we establish that f(Λ(x)) = f(x) for all x ∈ M and all Lorentz transfor-
mations Λ. We have

f(Λx) =
〈
Ω, A(Λx)∗A(0)Ω

〉

=
〈
Ω, U(0,Λ)A∗(x)U(0,Λ)−1A(0)Ω

〉

=
〈
U(0,Λ)−1Ω, A(x)∗U(0,Λ)−1A(0)U(0,Λ)Ω

〉

=
〈
Ω, A(x)∗A(Λ(0))Ω

〉

=
〈
Ω, A(x)∗A(0)Ω

〉

= f(x).

Thus, Lemma 6.7 entails that f is constant, and Lemma 6.9 entails that there is a
c ∈ C such that A(x)Ω = cΩ for all x ∈M .

6.1.3 Microcausality and Spectrum Condition rule out operators at a
point

The final no go theorem, originally by Wightman [1964] invokes both microcausality
and the spectrum condition. (See [Horuzhy, 1990, p. 46] and [Baumgärtel and Wollenberg, 1992,
p. 115] for alternative proofs.)

6.12 Theorem. Suppose that A : M → B(H) is an operator valued function, and
U is a continuous unitary representation of the translation group on H such that:

1. [A(x), A(y)] = 0 when x and y are spacelike separated;

2. U(x)A(y)U(x)∗ = A(y − x), for all x, y ∈M ;

3. U satisfies the spectrum condition.

4. There is a unique translation invariant vector Ω ∈ H.

Then there is a c ∈ C such that A(x)Ω = cΩ for all x ∈M .

Proof. As above, define f : M → C by

f(x) =
〈
Ω, A(x)A(0)Ω

〉
, x ∈M.

Fix a nonzero spacelike vector x. Then by condition 1,

U(x)∗A(0)U(x)A(0) = A(x)A(0) = A(0)A(x) = A(0)U(x)∗A(0)U(x).

Therefore,

f(x) = 〈Ω, U(x)∗A(0)U(x)A(0)Ω〉 = 〈ΩA(0)U(x)∗A(0)Ω〉
= 〈ΩA(0)U(−x)A(0)Ω〉 = f(−x).
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Now consider the function F : R → C given by F (t) = f(tx), so that F (t) = F (−t).
By condition 3, the Fourier transform of f is supported in the forward light cone.
Hence, the Fourier transform of F is supported in [0,+∞). But since F (t) = F (−t),
the Fourier transform of F is also supported in (−∞, 0]. Therefore, the Fourier
transform of F is the point mass at {0}. By Lemma 6.7, F is constant. Finally,
since any two points in M can be connected by two spacelike vectors, we can apply
the previous procedure twice to show that f is constant. Therefore, by Lemma 6.9,
there is a c ∈ C such that A(x)Ω = cΩ for all x ∈M .

6.13 Corollary. Let O 7→ R(O) be a net of von Neumann algebras acting irre-
ducibly on a Hilbert space H, and let U be a strongly continuous unitary represen-
tation that implements the action of the translation group on the net R. Suppose
that the net satisfies microcausality (assumption 2). Suppose that U satisfies the
spectrum condition, and that there is a translation invariant vector Ω ∈ H. Then
for each point x ∈M , ⋂

{O∈K :x∈O}

R(O) = CI.

Proof. Fix x ∈ M , and fix a double cone x ∈ O. Choose an arbitrary operator,
denoted by A(x), in ⋂

{O∈K :x∈O}

R(O).

Now for general y ∈M , define

A(y) = U(x− y)A(x)U(x− y)∗,

so that the mapping A : M → B(H) automatically satisfies condition 2 of Theorem
6.12. Furthermore, since the net R satisfies microcausality, and the unitary group U
implements the translations on R, the mapping A satisfies condition 1 of Theorem
6.12. It then follows that there is a c ∈ C such that A(x) = cI. Since x was an
arbitrary element of M , the result is proven.

6.2 Go theorems

Why should we care if Φ(x) cannot be taken to denote any non-trivial operator on
Hilbert space? Does this have any implications for the interpretation of QFT? After
all, for any neighborhoodO of x, we can find a test-function f that is supported in O,
and we can replace the non-denoting term “Φ(x)” with the denoting term “Φ(f)”.
In fact, couldn’t we think of “Φ(x)” as a name for the sequence {Φ(fn)}∞n=1, where
{fn}∞n=1 is a sequence of test-functions that converges to the delta-function at x?
More precisely, it seems that we could even attempt to define an expectation value
for the pseudo-operator Φ(x) as follows: If ρ is a state of the quantum field, define:

ρ(Φ(x)) := lim
n→∞

ρ(Φ(fn)). (5)
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In this section, we make this idea precise in two Go Theorems for field quan-
tities at points. The first result we report from the work of Rehberg and Wollenberg
[Rehberg and Wollenberg, 1986; Wollenberg, 1986] (see also [Fredenhagen and Hertel, 1981],
[Bostelmann, 2000; Bostelmann, 2004]). This result shows that within the Wight-
man framework, a quantum field at a point can be represented by a sesquilinear
form. The second result shows that if we drop the requirement of continuity on
our representation of the translation group, then quantum fields at points can be
represented by self-adjoint operators.

6.2.1 Quantum fields as sesquilinear forms

6.14 Definition. Let H be a Hilbert space. A sesquilinear form on H is a linear
subspace D(t) of H and a mapping t : D(t) × D(t) → C that is antilinear in the
first argument, and linear in the second argument. The form t is said to be densely
defined just in case D(t) is dense in H. The form t said to be symmetric just in
case t(ϕ,ψ) = t(ψ,ϕ) for all ϕ,ψ ∈ D(t). The form t is said to be positive just in
case t(ψ,ψ) ≥ 0 for all ψ ∈ D(t).

6.15 Definition. If t is a sesquilinear form on H then we define the associated
quadratic form by t(ψ) = t(ψ,ψ) for all ψ ∈ D(t). A positive quadratic form t is
said to be closed just in case for any sequences (ψn)n∈N in D(t) if ψn → ψ and
t(ψn − ψm) → 0, then ψ ∈ D(t) and t(ψn − ψ) → 0.

6.16 Remark. A densely defined, symmetric sesquilinear form is a prima facie
candidate to represent a physical quantity or an observable. Since t is symmetric, the
corresponding quadratic form is real-valued. Hence, for each unit vector ψ ∈ D(t),
we might say that the “expectation value” of t in state ψ is t(ψ). Indeed, at
first glance, the expectation value mapping t 7→ t(ψ) seems to have all the same
properties as the corresponding expectation mapping for operators.

6.17 Theorem. Let Φ(·) be a Wightman field on the Hilbert space H. That is, Φ
maps elements of a test-function space S(R4) to unbounded operators on H with
some common dense domain D. Let (δn)n∈N be a sequence of test-functions whose
support shrinks to the point x. Then for each u, v ∈ D, the sequence

〈u,Φ(δ1)v〉, 〈u,Φ(δ2)v〉, 〈u,Φ(δ3)v〉, . . . ,

converges to a finite real number, which we denote by 〈u,Φ(x)v〉. The map u, v 7→
〈u,Φ(x)v〉 is a sesquilinear form with domain D, which we denote by Φ(x).

Proof. See [Baumgärtel and Wollenberg, 1992, p. 332] and [Rehberg and Wollenberg, 1986;
Wollenberg, 1986].

6.18 Remark. One naturally wishes to have a version of this theorem in a more
purely algebraic setting. Such a result might be available in the context of the
scaling algebras of [Buchholz and Verch, 1995; Buchholz, 1998].
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The result is surprising for a couple of reasons. We might have thought that the
reason Φ(x) is not an operator is because the expectation values 〈u,Φ(δn)u〉 grow
without bound as the test-functions δn shrink to a point — i.e. there is some sort of
divergence. But Theorem 6.17 shows that conjecture to be false. The obstruction
to Φ(x)’s becoming an operator must lie somewhere else.

So, we have several No Go Theorems against quantum fields as operators (even
unbounded operators), and one Go Theorem for quantum fields as sesquilinear
forms. What should we conclude from these apparently conflicting results? Should
we say that there is a field quantity at the point x, or not?

To answer this question we need to think harder about the relation between
operators on a Hilbert space and physical quantities. Why was it that we thought
that physical quantities correspond to operators? If we suppose that an unbounded
operator can represent a quantity, then must that operator be self-adjoint (i.e.
must A coincide with A∗ on a common dense domain), or does it suffice to satisfy
some weaker condition? Does any symmetric sesquilinear form have all the features
necessary to represent a physical quantity? In order to get clear on these questions,
it might help to get clear on the mathematical details of the relationship between
sesquilinear forms and operators. Fortunately, there are quite a few results in this
direction.

Clearly, every linear (possibly unbounded) operator T on H defines a sesquilinear
form with domain D(T ) via the equation

t(ψ,ϕ) = 〈ψ, Tϕ〉. (6)

On the other hand, it is less clear when an arbitrary form t corresponds an operator
via Eqn. (6).

6.19 Definition. A sesquilinear form t on H is said to be bounded just in case
there is a n ∈ N such that |t(ϕ,ψ)| ≤ n whenever ϕ,ψ ∈ D(t) with ‖ϕ‖, ‖ψ‖ ≤ 1.

6.20 Proposition. There is a one-to-one correspondence between densely defined,
bounded sesquilinear forms on H and elements of B(H). In particular, if t is
bounded sesquilinear form on H then there is a unique operator T ∈ B(H) such that
t(ϕ,ψ) = 〈ϕ, Tψ〉 for all ϕ,ψ ∈ H. Furthermore, t is symmetric iff T is self-adjoint.

Proof. See [Kadison and Ringrose, 1997, Theorem 2.4.1].

6.21 Proposition. If t is a densely defined, positive, closed, quadratic form, then
there exists a unique positive operator T on H such that the domain of T 1/2 is D(t)
and

t(ϕ,ψ) = 〈T 1/2ϕ, T 1/2ψ〉,
for all ϕ,ψ ∈ D(t). In particular, t(ϕ,ψ) = 〈ϕ, Tψ〉 for all ϕ,ψ ∈ D(t).
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6.22 Remark. The previous Proposition is useful in showing when a number op-
erator N can be defined in a representation of the Weyl algebra A[S, σ]. For details,
see [Clifton and Halvorson, 2001a] and [Bratteli and Robinson, 1997, p. 27].

The previous two propositions do not apply to the sesquilinear form Φ(x) because
it is neither bounded nor positive. Furthermore, there is no known (to the author)
characterization of when a symmetric sesquilinear form admits a representation
as an operator — although there are some partial results in this direction (see
[McIntosh, 1970]). It is clear that Φ(x) is not an operator; it is unclear what features
operators have that Φ(x) lacks, and whether these features are necessary for a
mathematical object to represent a quantity. Accordingly, it is unclear whether or
not Φ(x) represents an element of reality.

6.2.2 Quantum fields as operators on non-separable Hilbert space

Our second Go result for quantum field operators at a point is really just a sketch
of an example. We take a nonseparable Hilbert space H that can represent states
of particles with point positions (compare with [Halvorson, 2004]). We then apply
the standard second quantization procedure — which does not depend on the one-
particle space being separable — to obtain a Fock space F(H), and self-adjoint field
operators φ(x), π(x) indexed by points in R.

Let H = l2(R) be the Hilbert space of square-summable sequences over R; i.e.
an element f of l2(R) is a mapping from R into C such that f vanishes at all but
countably many points, and

∑
x∈R

|f(x)|2 <∞. The inner product on l2(R) is given
by

〈f, g〉 =
∑

x∈R

f(x)g(x). (7)

Let F(H) be the Fock space over H. For each x ∈ R, we let δx ∈ l2(R) denote
the characteristic function of {x}; the set {δx : x ∈ R} is an (uncountably infinite)
orthonormal basis for l2(R). For any x ∈ R, we define the creation operator a(x)
by:

a(x)(f1 ⊗ · · · ⊗ fn) := δx ⊗ f1 ⊗ · · · ⊗ fn. (8)

As in the standard case, we verify that a−(x) + ia+(x) and a+(x) − ia−(x) are
preclosed, i.e. that the closure of the graphs of these operators are graphs of linear
operators (see [Kadison and Ringrose, 1997, p. 155]), which we denote by

φ(x) = a−(x) + ia+(x), (9)

π(x) = a+(x) − ia−(x). (10)

It then follows that φ(x) and π(x) are self-adjoint, and on a dense domain D in
F(H), we have

[π(x), φ(x′)] = i 〈δx, δ′x〉 = i δ0(x− x′), (11)
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where now δ0 is a completely legitimate mathematical object — viz. the probability
measure supported on {0}.

Consider the (discontinuous) representation x 7→ V (x) of the translation group
on l2(R) defined on the basis elements {δy : y ∈ R} by

V (x)δy = δy−x. (12)

Let Γ be the ‘Fock functor’; i.e. Γ maps a unitary operator V on the single particle
space H to the corresponding operator

I ⊕ V ⊕ (V ⊗ V ) ⊕ · · · ,

on F(H). Then x 7→ U(x) := Γ(V (x)) is a discontinuous representation of the
translation group on F(H), and

U(x)∗φ(y)U(x) = Φ(y − x). (13)

Thus, (φ(·), π(·),F(H), U) is a field system over l2(R), where x 7→ U(x) is a dis-
continuous unitary representation. We could then use the field system to define a
net O 7→ R(O) of von Neumann algebras on F(H). But this net of course fails
the spectrum condition, because the representation of the translation group is not
continuous.

The model just described is probably too unwieldy to be of much use in describ-
ing real physical situations. Furthermore, there is no good reason to think that the
procedure we followed generalizes to the case of interacting theories, where pointlike
localized operators are needed to make sense of products of field operators. How-
ever, we hoped to show that it is conceivable that we can get by without some of the
technical assumptions of the No Go Theorems. So, we should think very carefully
before we try to use these theorems to draw conclusions about how QFT must be
interpreted.

6.3 Field interpretations of QFT

In Section 4, we saw that there are severe obstacles to a particle interpretation of
QFT. One might argue then, by a process of elimination, that we should adopt
a “field interpretation” of QFT (see e.g. [Teller, 1995; Huggett, 2000]). But if we
examine the field interpretation on its own merits, its not clear that it is better off
than the particle interpretation.

In constructing canonical free theories (e.g. the free Bose and Fermi fields),
one begins with a Hilbert space H which can be interpreted either as a “single
particle space” (i.e. space of wavefunctions of a single quantum mechanical particle)
or as a space of configurations of a classical field. Corresponding to these two
interpretations, there are two ways to construct the Hilbert space of the quantum
field theory:
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1. Second quantization: the Hilbert space of the quantum field is the Fock space
F(H) over H. (See Section 4.1).

2. Field quantization: the Hilbert space of the quantum field is is space L2(H, d)
of ‘square integrable’ functions from H into C relative to the isonormal dis-
tribution d on H.

(In a rigorous treatment, elements of L2(H, d) are not really functions. See [Baez et al., 1992,
Section 1.3] for details.) The free field theories constructed by these two methods
are known to be unitarily equivalent. However, the field quantization approach
lends itself more naturally to a field interpretation. Indeed, in a recent survey of
the foundations of QFT ([Huggett, 2000]), one finds the suggestive notation:

Ψ(φ), φ ∈ L2(R
3n),

for a function on the space H := L2(R
3n) of wavefunctions. Thus, it seems that a

quantum field state can be interpreted as a superposition of classical field configu-
rations in the same sense that a wavefunction of n particles can be interpreted as a
superpositions of classical configurations of n particles.

However, there are difficulties with this approach. First, the field operators Φ(x)
on L2(H, d) are the precise analogues of the position operators Qi for a system of
particles. That is, there is a natural interpretation of a function Ψ ∈ L2(H, d) as
a probability distribution over the family {Φ(x) : x ∈ M} of mutually commut-
ing operators. But the No Go theorems for the operators Φ(x) militate against
interpreting Ψ as a probability distribution over classical field configurations. More
directly, since d assigns zero measure to points in H (i.e. to individual field configu-
rations), characteristic functions of singleton subsets of H — i.e. determinate field
configurations — are identified with the zero vector in L2(H, d). That is, there is
no state of the quantum field in which it is in a definition configuration.

It follows from the preceeding considerations that the No Go theorems for fields
operators at a point undermine the field interpretation of QFT in the same way
that No Go theorems for number operators undermine the particle interpretation.
Thus, we should be wary of arguments for field interpretations based on problems
with particle interpretations.

6.4 Points of time?

The preceding results were aimed at answering the question of whether there can
be field operators at a spacetime point. Suppose that we concede that there cannot
be, and we proceed with the standard mathematically rigorous approach to, say,
the free Bose field, where field operators are smeared over space by test functions
(see e.g. [Araki, 1963]). In this case, quantities are not tied to spacetime points, but
they are tied to pointlike times. However, some claim that in general, the quantities
will also have to be fuzzy in time. For example, according to Haag,

53



Renormalization theory suggests that it is essential to smear out Φ both
in space and time, in contrast to the case of free fields, where an av-
eraging over 3-dimensional space at a fixed time is sufficient. Due to
the stronger singularities, one cannot assume well-defined commutation
relations of fields at equal time. [Haag, 1996, p. 59]

But such claims are speculative — we know of no theorems that prove that in-
teracting fields must be smeared out in time. So, at the present time we have no
particularly good reason to conclude that time is pointless.

7 The Problem of Inequivalent Representations

The philosophy of local quantum physics (in Haag’s terminology) is that the the-
oretical parts of QFT (e.g. unobservable fields, gauge group) should not count as
part of the given data. Instead, the abstract net A of observable algebras should
be taken as the primitive. Following the terminology in [Ruetsche, 2002], we define
‘Algebraic Imperialism’ as the position that:

The physical content of a quantum field theory is encoded in the net O 7→
A(O), the subgroup of Aut(A) corresponding to physical symmetries
(including dynamics), and the states on the quasilocal algebra A. A
representation (H, π) of A may be an aid to calculation, but has no
ontological significance.

Such an attitude might seem incomprehensible to those steeped in the traditional
Hilbert space formalism of QM. Indeed, where is the Hamiltonian, where are the
transition probabilities, and how do we describe measurements? The very abstract-
ness and generality of the algebraic formalism seems to empty it of a great deal of
the content we expect in a physical theory.

However, some of these worries about lack of content of the abstract algebraic
formalism are ill founded. Indeed, the GNS theorem (Thm. 1.17) shows that all
the Hilbert spaces we will ever need are hidden inside the algebra itself. Further-
more, much of the vocabulary one learns to speak in elementary QM can be defined
within this purely abstract setting. For example, for a definition of transition prob-
abilities between states, see [Roberts and Roepstorff, 1968]; and for a definition of
measurement probabilities, see [Wald, 1994].

But it is not true — at least on the face of it — that all pieces the traditional
vocabulary of QFT can be reproduced in the algebraic setting. For example, the
quasilocal algebra does not contain a number operator, and probability distributions
over the spectrum of the number operator cannot be defined in terms of expectation
values on A (see [Clifton and Halvorson, 2001a]). What is perhaps even worse is that
by beginning with a net O 7→ A(O) of observable algebras, we have effectively closed
our eyes to the existence of unobservable fields, which do not generally commute
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with each other at spacelike separation. Thus, we seem to have no way to account
for deep theoretical facts of QFT such as the connection between spin (commutation
relations of field operators) and statistics.

Worries such as these might push us towards the second main position on the
issue of representations, which Ruetsche [2002] calls Hilbert Space Conservatism:

The theory is not the net O 7→ A(O), but the net plus one specific
representation (H, π).

In fact, Hilbert Space Conservatism might be thought of as the default view of
most workers in mainstream (Lagrangian) QFT, since the abstract algebra (and its
representations) do not play a central role there.

But as with many realist views, the Conservative view faces epistemological
difficulties: How do we decide which is the correct representation? In this case, the
difficulty is particularly severe, because it can be proven mathematically that the
predictions of states within any one representation can be reproduced to arbitrarily
high accuracy by the states in any other representation.2 (This is due to the fact
that since A is simple, Fell’s theorem implies that the states in any folium are weak*
dense in the state space.)

Nonetheless, it is tempting to think that the algebraic formalism is creating an
interpretive problem. That is, it is tempting to think that if we stick to the old-
fashioned way of doing QFT, the issue of inequivalent representations does not arise,
and so neither does this interpretive dilemma. So, are inequivalent representations
telling us something of foundational importance, or are they just mathematical
playthings?

The motivating arguments for the algebraic approach have included the exis-
tence of inequivalent representations of the canonical commutation relations, as
well as physical effects associated with Rindler-Fulling quanta. Nonetheless, these
arguments have been resisted for various reasons, e.g. there is a suspicion that
the Rindler vacuum representation is inferior, as a description of reality, to the
Minkowski vacuum representation. So, in the following sections, we discuss another
motivating argument for the algebraic approach — viz. superselection rules. It is in
the analysis of superselection rules that the algebraic approach most clearly displays
its beauty, utility, and foundational importance.

7.1 Superselection rules

In a now famous paper, Wick, Wightman, and Wigner [1952] argue that there is
a physical system with state space H, and state vectors ψ1, ψ2 ∈ H such that the

2This way of stating the problem is biased, and depends on taking “predictions of a representa-
tion” to mean expectation values of observables in the abstract algebra. If we also include expecta-
tion values of observables in the weak closure π(A)−, and expectation values of unbounded operators
on H, then the story becomes more complicated. Compare with [Clifton and Halvorson, 2001b].
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linear combinations

2−1/2(ψ1 + eiθψ2), θ ∈ [0, 2π), (14)

give rise to ‘empirically indistinguishable’ states. When this occurs, Wick et al.
say that there is a ‘superselection rule’ between ψ1 and ψ2; alternatively, ψ1 and
ψ2 lie in different ‘superselection sectors.’ We put ‘empirically indistinguishable’ in
scare quotes, because the literature has been anything but clear about the nature
of the relation between the states in Eqn. (14). Are the states in Eqn. (14) merely
empirically indistinguishable, or is there a stronger sense in which these two states
are equivalent? If the indistinguishability is empirical, how strong is the modal
force? Do these states predict the same empirical phenomena in all physically
possible worlds, or is their indistinguishability due to some special features (e.g.
initial conditions) in our world? In this paper, we will not attempt to resolve
these important questions about the nature of superselection rules.3 Rather, we
will content ourselves with explaining the proposal of Doplicher, Haag, and Roberts
(DHR) for making Wick et al.’s notion precise within the context of AQFT.

The first approaches to superselection rules involved an ad hoc butchery of the
state space and of the algebra of observables, with a resulting confusion about
what should count as the states and observables (or quantities) of the resulting
theory. One begins with a Hilbert space H with unit vectors giving pure states, and
with self-adjoint elements of B(H) as observables (or quantities). One then gives a
heuristic argument for the claim that a superselection rule holds between the state
vectors in some subspace H1 and the state vectors in the complementary subspace
H2 := (H1)

⊥. On the basis of this argument, the state space H is reduced to the
union of H1 and H2; that is, a linear combination of a vector in H1 and H2 is no
longer thought to be a possible (pure state) of the theory; the pure state vectors
lie in either H1 or H2. Equivalently, the algebra of observables B(H) is reduced to
B(H1) ⊕B(H2). The operators in B(H1 ⊕H2) that could distinguish between the
states in Eqn. (14) are demoted to the status of “unobservable.” Thus, the algebra
of observables is actually B(H1) ⊕B(H2), and not B(H1 ⊕H2).

Now, the algebraic approach provides two inversely related approaches to super-
selection rules.

1. First, we can follow the original “state space butchery” approach in a slightly
more principled fashion: suppose that we are given some fields acting as oper-
ators on some big Hilbert space H. Let F denote the algebra of field operators.
[Here F is the analogue of the algebra B(H1 ⊕H2), and H is the analogue of

3Superselection rules are also of foundational interest because they have been thought
to help with the measurement problem — see e.g. [Beltrametti and Cassinelli, 1981, p. 74],
[Landsman, 1995], [van Fraassen, 1991, pp. 264–272] — and more generally because of their con-
nection with the emergence of a classical realm [Giulini, 2003]. However, we do not take up those
specific issues in this Chapter.
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H1⊕H2. In this case, however, we are not given an a priori decomposition of
H into a direct sum.] Suppose that we are also given a gauge group G that acts
on the fields. We then define the observables as the gauge invariant fields. Let
A denote the algebra of observables. We also define the physical pure states as
those vectors in H that transform irreducibly under the gauge group. A series
of mathematical results (partially described in Section 9) shows then that H
decomposes into a direct sum

⊕Hξ of subspaces that transform irreducibly
under the gauge group; and each subspace Hξ corresponds to an irreducible
representation of the algebra of observables A. We sketch this “top down”
approach to superselection rules in Section 9.

2. Instead of beginning with the field algebra F and deriving the superselection
structure (i.e. the set of physically interesting representations of the algebra
A of observables), we can begin with A and consider its set of physical rep-
resentations. What is a ‘physical’ representation of A? According to the
criterion proposed by Doplicher, Haag, and Roberts (the DHR selection cri-
terion), the physical representations are those that differ observably from the
vacuum representation only in local regions. In this case, we still have the
notion of superselection sectors, but we do not yet have a notion of fields or
of a gauge group. It is not immediately clear that we have enough structure
to explain the phenomena.

However, it is at this point that the deep mathematical analysis begins. First,
one proves that the category of DHR representations corresponds precisely
to the set ∆ of localized transportable endomorphisms of the observable al-
gebra A (see Section 8.2). Second, one proves that the set ∆ naturally has
the structure of a symmetric tensor ∗-category (see Section 8). Finally, the
Doplicher-Roberts Reconstruction Theorem shows that the unobservable fields
F and gauge group G can be uniquely reconstructed from the category ∆.

The following sections outline some of the most important insights that have
been gained in the study of superselection rules, and how this analysis bears on the
foundational questions about the role of inequivalent representations. In short, our
conclusion is that inequivalent representations are not irrelevant, and nor are they a
problem. Rather, it is the structure of the category of representations that provides
the really interesting theoretical content of QFT.

7.2 Minimal assumptions about the algebra of observables

For our discussion of superselection theory we need only a considerably pared down
set of assumptions about the net of observable algebras. So, we now effectively
cancel all assumptions we made about the net in Section 2. We begin with a tabula
rasa, and add only those assumptions that we will need in the following sections.
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By calling A a “net,” we are assuming that if O1 ⊆ O2 then A(O1) ⊆ A(O2).
But we do not promote this to the status of an Assumption.

Assumption 1 (Microcauality). If O1 and O2 are spacelike separated
then [A(O1),A(O2)] = {0}.

Assumption 2 (Property B). The net O → R0(O) ≡ π0(A(O))′′ of
von Neumann algebras satisfies property B, where (H0, π0) is the GNS
representation of A induced by ω0.

Assumption 3 (Duality). The pair (A, ω0) satisfies Haag duality, i.e.

π0(A(O′))′ = π0(A(O))′′,

for each double cone O, where (H0, π0) is the GNS representation of A

induced by ω0.

Assumption 4 (Separability). The vacuum Hilbert space H0 is separa-
ble.

Assumption 5 (Nontriviality). For each double cone O, π0(A(O)) con-
tains an operator that is not a multiple of the identity; i.e. π0(A(O)) 6= CI.

A few remarks on these assumptions: (i) The first assumption is about the
net A, but the remaining assumptions apply to a pair (A, ω0), where A is the
quasilocal algebra and ω0 is some fixed state. (ii) The duality assumption states that
not only are the observables in R0(O

′) compatible with the observables in R0(O),
but that R0(O

′) contains all observables that are compatible with the collection
of observables in R0(O). We will assume in the following two sections (on DHR
superselection theory) that the net A satisfies duality relative to some privileged
vacuum state ω0. But, it does not follow from this that the net satisfies duality
relative to every physical representation. In fact, a representation satisfies duality
iff that sector has normal (Bose/Fermi) statistics; and every representation satisfies
duality iff the gauge group is abelian. (iii) Duality in the vacuum sector is equivalent
to the non-existence of spontaneously broken gauge symmetries. For the case of
broken symmetries, we would impose a weaker requirement: essential duality. cf.
Section 10.7. (iv) The separability assumption will only be invoked once — to
show all superselection sectors induced by local fields are strongly locally equivalent
(Prop. 9.15).

To be clear, note that we are now making no assumptions about the following:
(i) No assumptions about the action of spacetime symmetries (e.g. translation sym-
metries, Lorentz symmetries) on the algebra A; (ii) No assumptions to the effect
that the vacuum state ω0 is translation invariant; (iii) No assumptions about the
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action of spacetime symmetries on the vacuum Hilbert space; (iv) No assumptions
about the spectrum condition.

8 The Category ∆ of Localized Transportable Endo-

morphisms

In this Section we study the category ∆(A) of localized transportable endomor-
phisms of the observable algebra A. Since the physical motivation for this study
might not be initially clear, we pause to note the relation between endomorphisms
and representations.

Suppose that π0 is a fixed representation of A of some physical significance —
e.g. the vacuum representation. Then for any endomorphism ρ of A, the composition
π0 ◦ρ is also a representation of A. Thus, endomorphisms of A correspond naturally
to representations of A, and we can hope to gain insight into the structure of the
representations of A by studying the endomorphisms of A. However, the set EndA

of endomorphisms of A has more intrinsic structure than the set RepA of represen-
tations of A — e.g., there is a product (viz. composition) operation on EndA, and
some endomorphisms have inverses. Thus, besides the traditional notions of equiv-
alence and disjointness of representations, there are additional relations of physical
importance on the set of representations of the form π0 ◦ ρ with ρ ∈ EndA.

If the problem of Lagrangian QFT is that there is only one Hilbert space, the
problem of AQFT is that there are too many Hilbert spaces! Surely, not all of
the representations of A are physical. In Section 9, we look at the problem from
a more traditional point of view. In particular, we begin with a field algebra F of
operators acting on a Hilbert space H, and a gauge group G of unitary operators on
H. (We may suppose that G is the image of some representation of a fundamental
symmetry group, e.g. SU(2).) We also suppose that H contains a vacuum state Ω.
We then define the observable algebra A as the gauge invariant fields. But then we
are again in the domain of AQFT: we have a reducible representation π of A on H,
and the irreducible subrepresentations of π are the superselection sectors that can
be reached from the vacuum sector by the action of local (unobservable) fields. Not
all representations of A appear in the decomposition of π — those that do not are
surplus structure. However, all representations that appear in the decomposition
of π are of the form π0 ◦ ρ, with ρ an endomorphism from the category ∆(A)!
So, the motivation for studying these endomorphisms is that they correspond to
representations that arise in this traditional, physically motivated way by acting on
the vacuum representation with (unobservable) fields.4

4The DHR representations do not include those that can be reached from the vacuum by nonlocal

fields, and so the domain of DHR superselection theory does not include theories with long range
forces. But the case of local fields is already complicated enough, and is good training for the more
general case.
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There is yet another motivation for studying the DHR category: we want to
understand the nature of gauge symmetries, and the DR Reconstruction Theorem
provides crucial insight. In particular, the Theorem shows that DHR categories are
in duality (in a mathematically precise sense) with compact groups. So, wherever
there is a compact group, there is a DHR category, and vice versa. The study of
DHR categories and the study of compact gauge groups are one and the same; or,
to take a more controversial stance, the structure of the category of physical repre-
sentations of A explains why there is a compact gauge group (see [Roberts, 1975]).

We now define the category ∆ = ∆(A) and uncover some of its natural struc-
tures. As stated above, the objects of our category ∆ will be a subset of the set
EndA of ∗-endomorphisms of A.

8.1 Definition. Let ρ be a ∗-endomorphism of A, i.e. ρ : A → A is a ∗-homomorphism
(not necessarily surjective). Let O be a double cone in (Minkowski) spacetime. Then
ρ is said to be localized in O just in case ρ(A) = A, for all A ∈ A(O′), where O′

is the spacelike complement of O. We say that ρ is localized just in case there is a
double cone O in which it is localized.

8.2 Remark. By definition, a localized endomorphism satisfies ρ(I) = I, where I
is the identity in A.

8.3 Definition. If ρ is localized in O then ρ is said to be transportable just in case
for any other double cone O1, there is a morphism ρ1 localized in O1 and a unitary
operator U ∈ A such that Uρ(A) = ρ1(A)U for all A ∈ A.

8.4 Definition. For each double cone O ∈ K, we let ∆(O) denote the set of
transportable morphisms that are localized in O, and we let ∆ =

⋃
O∈K∆(O).

Elements of ∆ are the objects of the DHR category.

We must now define arrows between the objects.

8.5 Definition. Let ρ, ρ′ ∈ ∆. We define the set Hom(ρ, ρ′) of arrows between ρ
and ρ′ as follows:

Hom(ρ, ρ′) := {T ∈ A : Tρ(A) = ρ′(A)T, ∀A ∈ A}.

If T ∈ Hom(ρ, ρ′) and S ∈ Hom(ρ′, σ) then we define S ◦T = ST , which is obviously
in Hom(ρ, σ).

Obviously, the identity I ∈ A functions as the identity arrow for all objects; i.e.
I = idρ ∈ End(ρ) for all ρ ∈ Obj(∆). Occasionally, we will write Iρ to indicate that
we are considering I as the identity of End(ρ).

8.6 Lemma. Suppose that ρi ∈ ∆(Oi) for i = 1, 2, and that T ∈ Hom(ρ1, ρ2).
Then for any double cone O containing O1 ∪O2, we have T ∈ A(O).
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Proof. Let B ∈ A(O′). Then

TB = Tρ1(B) = ρ2(B)T = BT.

Hence T ∈ A(O′)′. By duality in the vacuum sector, T ∈ A(O).

8.7 Proposition. With the definition of hom-sets given above, ∆ is a category.

Proof. Completely straightforward.

So, we have shown that ∆ is a category. In the remainder of this Section, we
uncover more structure on ∆. We first show that ∆ is a C∗-category; this involves
showing that ∆ has direct sums (an ⊕ operation), subobjects, and the hom-sets of
∆ are vector spaces with a ∗-operation and norm ‖ · ‖ that obey the appropriate
analogue of the C∗-algebra norm property. We then drop reference to the norms on
the hom-sets, and show that there is a product operation ⊗ on ∆ such that (∆,⊗, ι)
is a tensor ∗-category.

8.8 Definition. A category C is said to be a linear category over the complex field
C, or a C-linear category, just in case for all X,Y ∈ Obj(C), Hom(X,Y ) is a complex
vector space, and the composition ◦ of morphisms is bilinear. When speaking of
C-linear categories, we stipulate that all functors should be C-linear.

8.9 Definition. A ∗-operation on a C-linear category C is a map which assigns
to an arrow s ∈ Hom(X,Y ) another arrow s∗ ∈ Hom(Y,X). This map has to be
antilinear, involutive (s∗∗ = s), and contravariant ((s ◦ t)∗ = t∗ ◦ s∗). A ∗-operation
is positive iff s∗ ◦ s = 0 implies s = 0. A ∗-category is a C-linear category with a
positive ∗-operation.

8.10 Remark. If C is a ∗-category, then for each X ∈ Obj(C), End(X) is a ∗-
algebra.

8.11 Definition. A ∗-category is called a C∗-category if for all X,Y ∈ Obj(C),
there is a norm ‖ · ‖X,Y on Hom(X,Y ) such that 〈Hom(X,Y ), ‖ · ‖X,Y 〉 is a Banach
space and

‖s ◦ t‖X,Z ≤ ‖s‖Y,Z · ‖t‖X,Y , ∀s ∈ Hom(Y,Z),∀t ∈ Hom(X,Y )
‖s∗ ◦ s‖X,X = ‖s‖2

X,Y , ∀s ∈ Hom(X,Y ).

We borrow some definitions from the theory of ∗-algebras.

8.12 Definition. Let C be a ∗-category. An arrow f ∈ Hom(X,Y ) is said to be an
isometry just in case f∗ ◦ f = idX . An arrow f ∈ Hom(X,Y ) is said to be unitary
just in case f and f∗ are isometries. An arrow p ∈ End(Y ) = Hom(Y, Y ) is said to
be a projection if p = p∗ and p ◦ p = p.
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8.13 Remark. If s ∈ Hom(Y,X) is an isometry then the arrow p ≡ s◦s∗ ∈ End(X)
is a projection.

8.14 Definition. Let C be a ∗-category. If X,Y ∈ Obj(C), then X is said to be a
subobject of Y just in case there is an isometry f ∈ Hom(X,Y ). (Roughly speaking,
there is an isometric embedding of X into Y .) The ∗-category C is said to have
subobjects just in case for each Y ∈ Obj(C) and projection g ∈ End(Y ), there is
an X ∈ Obj(C) and an isometry f ∈ Hom(X,Y ) such that f ◦ f∗ = g. The ∗-
category C is said to have direct sums just in case for any two objects X,Y in C,
there is an object Z in C and isometries f ∈ Hom(X,Z), g ∈ Hom(Y,Z) such that
f ◦ f∗ + g ◦ g∗ = idZ .

We begin by verifying that the DHR category ∆ is a ∗-category, i.e. the hom
sets are vector spaces over C, and there is a positive ∗-operation.

8.15 Lemma. The DHR category ∆ is a ∗-category. That is, if ρ, σ ∈ Obj(∆), then
Hom(ρ, σ) is a vector space over C with the operations inherited from A (which is
a vector space over C), and the composition of arrows is bilinear. Furthermore, the
∗-operation inherited from A is antilinear, involutive, contravariant, and positive.

Proof. Completely straightforward.

8.16 Proposition. The DHR category ∆ has direct sums.

Proof. Let ρ1 ∈ ∆(O1), and let ρ2 ∈ ∆(O2). Choose a double cone O such that
(O1 ∪ O2)

− ⊆ O. Let E be a projection in A(O1). By property B, there are
isometries V1, V2 ∈ A(O) such that V1V

∗
1 + V2V

∗
2 = I. Define ρ : A → A by

ρ(A) = V1ρ1(A)V ∗1 + V2ρ2(A)V ∗2 , ∀A ∈ A.

Since ViVj = δijI, and
∑

i ViV
∗
i = I, it follows that ρ is a morphism. Since ρ1, ρ2

are localized in O, and V1, V2 ∈ A(O), it follows that ρ is localized in O.
To see that ρ is transportable, let Õ be another double cone. Since the ρi

are transportable, there are endomorphisms ρ′i localized in Õ, and unitary op-

erators Ui ∈ Hom(ρi, ρ
′
i). As before, choose isometries V ′1 , V

′
2 in A(Õ), and set

ρ′ = V ′1ρ
′
1V
′
1
∗ + V ′2ρ

′
2V
′
2
∗. Then ρ′ is localized in Õ and

V ′1U1V
∗
1 ∈ Hom(ρ, ρ′), V ′2U2V

∗
2 ∈ Hom(ρ, ρ′).

If we set W = V ′1U1V
∗
1 + V ′2U2V

∗
2 , then W ∈ Hom(ρ, ρ′) since it is a vector space.

Furthermore,

W ∗W = [V ′1U1V
∗
1 + V ′2U2V

∗
2 ]∗[V ′1U1V

∗
1 + V ′2U2V

∗
2 ]

= [V1U
∗
1V
′
1
∗
+ V2U

∗
2V
′
2
∗
][V ′1U1V

∗
1 + V ′2U2V

∗
2 ]

= V1V
∗
1 + V2V

∗
2 = I,

and similarly for WW ∗. Therefore W is a unitary operator in Hom(ρ, ρ′), showing
that ρ is transportable.
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8.17 Definition. If ρ1, ρ2 ∈ ∆, we denote their direct sum by ρ1 ⊕ ρ2.

8.18 Proposition. The DHR category ∆ has subobjects.

Proof. Let ρ ∈ ∆(O), and let E be a projection in End(ρ); i.e. Eρ(A) = ρ(A)E, for
all A ∈ A. Then for all A ∈ A(O′),

EA = Eρ(A) = ρ(A)E = AE.

Therefore, by duality in the vacuum sector E ∈ A(O). Choose O1 such that O− ⊆
O1. By property B, there is an isometry V ∈ A(O1) such that V V ∗ = E. Now
define ρ′ : A → A by

ρ′(A) = V ∗ρ(A)V, ∀A ∈ A.

The isometry V embeds ρ′ into ρ. Indeed,

ρ′(A)V ∗ = V ∗ρ(A)V V ∗ = V ∗ρ(A)E = V ∗ρ(A).

and V is an isometry in Hom(ρ′, ρ) such that V V ∗ = E ∈ End(ρ).
To see that ρ′ is transportable, suppose that O2 is an arbitrary double cone.

Choose a double cone O3 such that O−3 ⊆ O2. Since ρ is transportable, there is
a morphism σ localized in O3 and a unitary U ∈ Hom(ρ, σ). It then follows that
UEnd(ρ)U∗ = End(σ), thus E′ = UEU∗ is a projection in End(σ). Using property
B, there is an isometry V ′ ∈ A(O1) such that V ′V ′∗ = E′. Let σ′ = V ′∗σV ′. Clearly
σ′ is localized in O1, and W = V ′∗UV ∈ Hom(ρ′, σ′). Finally, W is unitary:

W ∗W = V ∗U∗V ′V ′
∗
UV = V ∗U∗E′UV

= V ∗EV = V ∗V V ∗V = I,

and similarly for WW ∗. Thus σ′ is equivalent to ρ′. Since O2 was an arbitrary
double cone, ρ′ ∈ ∆.

8.19 Definition. Suppose that C is a C-linear category. An object X in C is said
to be irreducible if it is nonzero and End(X) = CidX .

8.20 Remark. Let ι be the identity endomorphism of A. Then ι ∈ Obj(∆), and
since the vacuum representation of A is irreducible, ι is an irreducible object.

We now define a bifunctor ⊗ = (⊗,×) on the DHR category ∆, and verify that
(∆,⊗, ι) is a tensor ∗-category. But first we recall the pertinent definitions.

8.21 Definition. A bifunctor on a category C consists of two mappings F : Obj(C)×
Obj(C) → Obj(C) and F : Hom(C) × Hom(C) → Hom(C), such that for s ∈
Hom(X,Y ) and t ∈ Hom(X ′, Y ′), F (s, t) ∈ Hom(F (X,X ′), F (Y, Y ′)), and

F (s1 ◦ s2, t) = F (s1, t) ◦ F (s2, t),

F (s, t1 ◦ t2) = F (s, t1) ◦ F (s, t2),

F (idX , idX′) = idF (X,X′).
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If C is a ∗-category, then a bifunctor F is also required to be bilinear and to commute
with the ∗-operation. That is, for si ∈ Hom(X,X ′), t ∈ Hom(Y, Y ′) and c ∈ C, we
have

F (s1 + s2, t) = F (s1, t) + F (s2, t),

F (s, t1 + t2) = F (s, t1) + F (s, t2),

F (cs, t) = cF (s, t) = F (s, ct),

and

F (s, t)∗ = F (s∗, t∗).

8.22 Definition. Let ⊗ = (⊗,×) be a bifunctor on the category C, and let 1 ∈
Obj(C). Then (C,⊗,1) is said to be a tensor category just in case ⊗ is associative up
to a natural isomorphisms, and 1 is a two sided identity up to natural isomorphisms.
The object 1 is called the monoidal unit. To be precise, to say that ⊗ is ‘associative
up to a natural isomorphisms’ means that for each X,Y,Z ∈ Obj(C), there is an
isomorphism αX,Y,Z : X ⊗ (Y ⊗ Z) → (X ⊗ Y )⊗ Z that is ‘natural’ for all X,Y,Z;
i.e. if s : X → X ′ then

((s⊗ idY ) ⊗ idZ) ◦ αX,Y,Z = αX′,Y,Z ◦ (s⊗ (idY ⊗ idZ)), (15)

and similarly for Y and Z. Furthermore, α is required to make the pentagonal
diagram commute:

(X ⊗ Y ) ⊗ (Z ⊗ Z ′)

X ⊗ (Y ⊗ (Z ⊗ Z ′))

α

-

((X ⊗ Y ) ⊗ Z) ⊗ Z ′

α

-

X ⊗ ((Y ⊗ Z) ⊗ Z ′)
α-

id
X
⊗
α

-

(X ⊗ (Y ⊗ Z)) ⊗ Z ′

α
⊗

id
Z
′

-

To say that 1 ∈ C is a two sided identity up to natural isomorphisms means
that for each object X ∈ Obj(C), there are isomorphisms λX ∈ Hom(1⊗X,X) and
ρX ∈ Hom(X ⊗ 1,X) such that:
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1. λX and ρX are natural in X; i.e. for any s : X → Y ,

s ◦ λX = λY ◦ (id1 ⊗ s), (16)

s ◦ ρX = ρY ◦ (s⊗ id1). (17)

In other words, the following two diagrams commute:

1 ⊗X
λX - X

1 ⊗ Y

id1 ⊗ s

?

λY
- Y

s

?

X ⊗ 1
ρX - X

Y ⊗ 1

s⊗ id1

?

ρY
- Y

s

?

2. λX and ρX make the triangular diagram commute:

X ⊗ (1⊗ Y )
α - (X ⊗ 1) ⊗ Y

X ⊗ Y

ρX ⊗ idY

?

id
X ⊗ λ

Y -

If C is also a ∗-category, there are two further requirements: (a.) the bifunctor ⊗
must be compatible with the operations of + and ∗ (as required in the definition of
bifunctor), and (b.) the monoidal unit 1 must be irreducible, i.e. End(1) = Cid1.
For a C∗-category C we require in addition that ‖s×t‖X⊗Y,X′⊗Y ′ ≤ ‖s‖X,X′ ·‖t‖Y,Y ′ .

Mac Lane’s coherence theorem shows that we can without danger ignore the
natural isomorphisms α, λ, and ρ. That is, we can treat X⊗(Y ⊗Z) and (X⊗Y )⊗Z
as the same object, and we can treat X, 1⊗X, and X ⊗ 1 as the same object. To
be more precise, we define:

8.23 Definition. A tensor category C is said to be strict if αX,Y,Z , λX , ρX are
identity morphisms for all X,Y,Z ∈ Obj(C).

For example, the tensor category (Vect,⊗,C) of vector spaces is not strict,
since e.g. V ⊗ C is not literally the same vector space as V . On the other hand,
a commutative monoid M can be thought of as a strict tensor category with one
object and with arrows corresponding to elements of M . The coherence theorem
can then be formulated as follows.

8.24 Theorem (Coherence Theorem). Every tensor category is equivalent to a
strict tensor category.
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Proof. See [Mac Lane, 1998].

8.25 Definition. If C is a tensor category, then we let Cst denote its strictification.

With these definitions in hand, we proceed now to define a bifunctor on ∆, and
to verify that it satisfies all of the relevant properties. Our product ⊗ of objects in
∆ will be just the composition of endomorphisms.

8.26 Proposition. If ρ, σ ∈ Obj(∆) then ρσ ∈ Obj(∆).

Proof. It is clear that if ρ is localized in O1 and σ is localized in O2, then ρσ is
localized in any double cone that contains O1 ∪O2.

To see that ρσ is transportable, let O3 be an arbitrary double done. Since ρ
and σ are transportable, there are ρ′, σ′ ∈ ∆(O3) and unitaries U ∈ Hom(ρ, ρ′)
and V ∈ Hom(σ, σ′). Then ρ′σ′ is localized in O3 and Uρ(V ) is a unitary in
Hom(ρσ, ρ′σ′). Therefore, ρσ is transportable.

8.27 Definition. Define ⊗ : Obj(∆) × Obj(∆) → Obj(∆) by ρ⊗ σ = ρσ.

The product × of arrows is slightly more complicated.

8.28 Proposition. If S ∈ Hom(ρ, ρ′) and T ∈ Hom(σ, σ′) then Sρ(T ) ∈ Hom(ρ⊗
σ, ρ′ ⊗ σ′).

Proof. Since Sρ(T ) = ρ′(T )S, it follows that for any A ∈ A,

(Sρ(T ))ρσ(A) = Sρ(Tσ(A)) = ρ′(Tσ(A))S = ρ′(σ′(A)T )S

= ρ′σ′(A)(ρ′(T )S) = ρ′σ′(A)(Sρ(T )).

Therefore Sρ(T ) ∈ Hom(ρσ, ρ′σ′).

8.29 Definition. Define × : Hom(∆)×Hom(∆) → Hom(∆) by: for S ∈ Hom(ρ, ρ′)
and T ∈ Hom(σ, σ′), we set S × T = Sρ(T ) ∈ Hom(ρ⊗ σ, ρ′ ⊗ σ′).

In the remainder of this section, we verify that (∆,⊗, ι) is a tensor ∗-category.

⊗ is a bifunctor on ∆

8.30 Proposition. For S1, S2, T1, T2 ∈ Obj(∆), if the source of Ti is the target of
Si (so that Ti ◦ Si is defined) then

(T1 × T2) ◦ (S1 × S2) = (T1 ◦ S1) × (T2 ◦ S2).

Proof. Straightforward calculation.

We must now check that × is compatible with ∗
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8.31 Proposition. For all S, T ∈ Hom(∆),

(S × T )∗ = S∗ × T ∗.

Proof. Straightforward calculation.

ι is a monoidal unit

For each ρ ∈ Obj(∆), ι⊗ ρ must be naturally isomorphic to ρ⊗ ι and to ρ (as
expressed in the monoidal unit diagrams). But in the present case, ι⊗ρ = ρ⊗ι = ρ,
so this natural isomorphism holds trivially.

Natural associativity of ⊗
Next, the product operation ⊗ = (⊗,×) must be associative up to natural

isomorphisms, as expressed by the pentagonal diagram. But this is trivial in the
present case, because associativity holds strictly; that is:

8.32 Proposition. For all ρ1, ρ2, ρ3 ∈ Obj(∆),

ρ1 ⊗ (ρ2 ⊗ ρ3) = (ρ1 ⊗ ρ2) ⊗ ρ3,

and for all T1, T2, T3 ∈ Hom(∆),

T1 × (T2 × T3) = (T1 × T2) × T3.

Proof. The first claim follows trivially from the fact that composition of endomor-
phisms is associative. The second claim can be verified by a straightforward calcu-
lation.

8.33 Lemma. (∆,⊗, ι) is a C∗-tensor category with the norms inherited from A.

Proof. We must verify that Hom(ρ, σ) is closed in the norm on A. But this follows
immediately from the fact that

Hom(ρ, σ) = {T ∈ A : Tρ(A) = σ(A)T, ∀A ∈ A}.

It’s clear that ‖s ◦ t‖ ≤ ‖s‖‖t‖. Furthermore,

‖S × T‖ = ‖Sρ(T )‖ ≤ ‖S‖ · ‖ρ(T )‖ ≤ ‖S‖ · ‖T‖.

To this point we have shown that (i): ∆ is a C∗-category, and (ii): ∆ is a ten-
sor ∗-category. The following five Subsections are not linearly ordered. Subection
8.1 shows how to define the canonical braiding ερ1,ρ2 on (∆,⊗, ι) such that it is
a ‘braided’ tensor ∗-category. Then in Subsection 8.2 we make good our claims
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about the motivation for studying the category ∆: we prove that there is a func-
toral correspondence between ∆ and the category of representations that satisfy the
DHR selection criterion. We then pick up some technical information about tensor
∗-categories that is essential for the physical interpretation of the corresponding
representations. In Subsection 8.3 we see how to define a notion of the ‘dimension’
of an object in a tensor ∗-category, and we define the notion of ‘conjugate’ objects.
In Subsection 8.4 we take a detour to talk about the relation of spacetime symme-
tries to the DHR representations. Finally, in Subsection 8.5 we give the intrinsic
statistical classification of objects of ∆f that corresponds to the intuitive distinction
between Bosons and Fermions, or Bose fields and Fermi fields.

8.1 ∆ is a braided tensor ∗-category

In this Subsection we define the canonical braiding on ∆; this gives us a grasp on
what happens if we change the order in products, say ρ ⊗ σ versus σ ⊗ ρ. We will
also see that there is a remarkable connection between spacetime dimension and
the properties of this braiding: if the spacetime has three or more dimensions, the
braiding is a symmetry. We first recall the pertinent definitions.

8.34 Definition. If (C,⊗,1) is a tensor category then a braiding on C is a family
of isomorphisms

{
cX,Y ∈ Hom(X ⊗ Y, Y ⊗X) : X,Y ∈ Obj(C)

}
,

satisfying the following two conditions:

1. cX,Y is natural in X and Y ; i.e. for any f ∈ Hom(X,X ′) and g ∈ Hom(Y, Y ′),

(g × f) ◦ cX,Y = cX′,Y ′ ◦ (f × g). (18)

2. cX,Y makes the following two hexagonal diagrams commute:

(X ⊗ Y ) ⊗ Z
cX⊗Y,Z- Z ⊗ (X ⊗ Y )

X ⊗ (Y ⊗ Z)

α−1

?
(Z ⊗X) ⊗ Y

α

?

X ⊗ (Z ⊗ Y )

idX ⊗ cY,Z

?

α
- (X ⊗ Z) ⊗ Y

cZ,X ⊗ idY

?
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X ⊗ (Y ⊗ Z)
cX,Y⊗Z- (Y ⊗ Z) ⊗X

(X ⊗ Y ) ⊗ Z

α

?
Y ⊗ (Z ⊗X)

α−1

?

(Y ⊗X) ⊗ Z

cX,Y ⊗ idZ

?

α−1
- Y ⊗ (X ⊗ Z)

idY ⊗ cZ,X

?

That is, suppressing the associativity isomorphisms, cX⊗Y,Z is expressed in
terms of cX,Y and cX,Z as:

cX⊗Y,Z = (idY ⊗ cZ,X)−1 ◦ (idX ⊗ cY,Z),

and cX,Y⊗Z is expressed in terms of cX,Y and cZ,X as:

cX,Y⊗Z = (idY ⊗ cZ,X)−1 ◦ (cX,Y ⊗ idZ).

8.35 Definition. A braiding cX,Y is called a symmetry if (cX,Y )−1 = cY,X for all
X,Y ∈ Obj(C).

8.36 Definition. A tensor category with a privileged braiding (symmetry) is called
a braided (symmetric) tensor category.

In order to find our braiding on ∆, we will need the following technical lemma.

8.37 Lemma. If ρ ∈ ∆(O1) and σ ∈ ∆(O2) where O1 and O2 are spacelike sepa-
rated, then ρσ = σρ.

Proof. Since the union of {A(O) : O1 ∪ O2 ⊆ O} is dense in A, it suffices to show
that ρσ(A) = σρ(A) whenever A ∈ A(O) with O1 ∪ O2 ⊆ O. Choose O3, O4 that
are spacelike to O and such that O1 ∪O3 is spacelike to O2 ∪O4. (This may always
be done, even in two dimensional spacetime.) Since ρ, σ are transportable, there
are ρ′, σ′ localized in O3 and O4 respectively and unitary operators U1 ∈ Hom(ρ, ρ′)
and U2 ∈ Hom(σ, σ′). Then

σ(A) = U2σ
′(A)U∗2 = U∗2AU2.

Furthermore, U2 ∈ A(O′1) by duality in the vacuum sector. Hence ρ(U2) = U2, and

ρσ(A) = U2U1AU
∗
1U
∗
2 .

Since U2U1 = U1U2, it follows that ρσ(A) = σρ(A).
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We will not be able to define the braiding ερ1,ρ2 in one shot. Rather, we first
define arrows

ερ1,ρ2(U1, U2) ∈ Hom(ρ1 ⊗ ρ2, ρ2 ⊗ ρ1),

that depend on the choice of “spectator morphisms” ρ̃1, ρ̃2, and unitary intertwiners
Ui ∈ Hom(ρi, ρ̃i). We will then show that this definition is independent of the
spectator morphisms and unitary intertwiners. (But, interestingly, when spacetime
is two dimensional, the definition depends on the choice of a spatial orientation.)

8.38 Definition. Suppose that ρ1 ∈ ∆(O1) and ρ2 ∈ ∆(O2). Let Õ1 and Õ2 be
spacelike separated double cones. Since ρ1 and ρ2 are transportable, there are ρ̃i ∈
∆(Õi) and unitary operators Ui ∈ Hom(ρi, ρ̃i). Thus U1×U2 ∈ Hom(ρ1⊗ρ2, ρ̃1⊗ρ̃2),
and U∗2 ×U∗1 ∈ Hom(ρ̃2⊗ρ̃1, ρ2⊗ρ1). Since Õ1 is spacelike to Õ2, Lemma 8.37 entails
that ρ̃1 ⊗ ρ̃2 = ρ̃2 ⊗ ρ̃1. Thus, we may define ερ1,ρ2(U1, U2) ∈ Hom(ρ1 ⊗ ρ2, ρ2 ⊗ ρ1)
by

ερ1,ρ2(U1, U2) := (U2 × U1)
∗ ◦ (U1 × U2) = ρ2(U

∗
1 )U∗2U1ρ1(U2). (19)

8.39 Remark. Since endomorphisms preserve unitarity, ερ1,ρ2(U1, U2) is unitary.

To show that ερ1,ρ2(U1, U2) is independent of U1 and U2, we need the following
Lemma, which shows that ερ1,ρ2(U1, U2) does not change under certain “perturba-
tions” of U1 and U2.

8.40 Lemma. For i = 1, 2, let ρi ∈ ∆(Oi), let Õ1 and Õ2 be spacelike separated,
let ρ̃i ∈ ∆(Õi), and let Ui ∈ Hom(ρi, ρ̃i). Then ερ1,ρ2(U1, U2) depends only on
neighborhoods of U1, U2 in the following sense: if W1,W2 are unitaries such that
W1 ∈ A(Õ′2), W2 ∈ A(Õ′1), and W1W2 = W2W1, then

ερ1,ρ2(W1U1,W2U2) = ερ1,ρ2(U1, U2).

Proof. We must show that

(W2U2 ×W1U1)
∗ ◦ (W1U1 ×W2U2) = (U∗2 × U∗1 ) ◦ (U1 × U2). (20)

For any two unitary operators, W1,W2 ∈ A, we have

WiUi ×WjUj = WiUiρi(Wj)ρi(Uj) = Wiρ
′
i(Wj)(Ui × Uj).

Since W1 ∈ A(Õ′2) and ρ̃2 is localized in Õ2, ρ̃2(W1) = W1; and similarly, ρ̃1(W2) =
W2. Hence, the left hand side of Eqn. 20 becomes

[(U2 × U1)
∗ρ̃2(W

∗
1 )W ∗2 ] [W1ρ̃1(W2)(U1 × U2)] = (U2 × U1)

∗W ∗1W
∗
2W1W2(U1 × U2)

= (U2 × U1)
∗(U1 × U2),

where we used W1W2 = W2W1 for the second equality.
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8.41 Lemma. Let ρi ∈ ∆(Oi), i = 1, 2, and let T ∈ Hom(ρ1, ρ2). Then T ∈ A(O)
for any double cone containing O1 ∪O2.

Proof. Let O be a double cone containing O1 ∪ O2, and let A ∈ A(O′). Then
ρ1(A) = ρ2(A) = A, and so

TA = Tρ1(A) = ρ2(A)T = AT.

Hence T ∈ A(O′)′, and by duality in the vacuum sector, T ∈ A(O).

Now we can show that ερ1,ρ2(U1, U2) depends only on the localization regions of
the spectator morphisms.

8.42 Proposition. ερ1,ρ2(U1, U2) is definable in terms of ρ1, ρ2, and the regions

Õ1, Õ2; and does not change if the latter are replaced by double cones ˜̃O1,
˜̃O2 such

that Õ1 ⊆ ˜̃O1 and Õ2 ⊆ ˜̃O2.

Proof. (1.) We show first that for a given pair (Õ1, Õ2) of spacelike separated
double cones, the definition ερ1,ρ2(U1, U2) is independent of spectator morphisms
(ρ̃1, ρ̃2), and unitary intertwiners (U1, U2). So, suppose that ˜̃ρi ∈ ∆(Õi), and U ′i ∈
Hom(ρi, ˜̃ρi). Let Wi = U ′iU

∗
i ∈ Hom(ρ̃i, ˜̃ρi), so that U ′i = WiUi. Since Wi has left

and right support in Õi, Wi ∈ A(Õi) ⊆ A(Õj)
′. Thus, W1W2 = W2W1, and the

hypotheses of Lemma 8.40 are satisfied. Therefore ερ1,ρ2(U1, U2) = ερ1,ρ2(U
′
1, U

′
2).

(2.) Now let ˜̃O1 and ˜̃O2 be double cones such that ˜̃O1 ⊥ ˜̃O2, and Õi ⊆ ˜̃Oi, for

i = 1, 2. Choose ˜̃ρi ∈ ∆( ˜̃Oi), and unitaries U ′i ∈ Hom(ρi, ˜̃ρi). But we also have

ρ̃i ∈ ∆(Õi) ⊆ ∆( ˜̃Oi). And the first part of the proof shows that for fixed support

regions ( ˜̃O1,
˜̃O2), the definition of ερ1,ρ2 is independent of the choice of spectator

morphisms and unitary intertwiners. Therefore ερ1,ρ2(U1, U2) = ερ1,ρ2(U
′
1, U

′
2).

8.43 Remark. We can always choose the spectator morphisms to be localized in
strictly spacelike separated regions. Indeed, given Õ1 and Õ2 that are spacelike

separated, choose ˜̃O1 such that ( ˜̃O1)
− ⊆ Õ1. But then the Lemma implies (by

switching ˜̃O1 with Õ1, and setting ˜̃O2 = Õ2) that we get the same definition from

using ˜̃O1 or Õ1. More generally, since ρ1 is transportable, the regions Õi can be
chosen arbitrarily small.

8.44 Remark. The previous note shows that a definition of ερ1,ρ2(U1, U2) is always
equivalent to a definition using spectator morphisms localized in strictly spacelike
separated regions. That is, there is a neighborhood N of zero such that Õ1 +x ⊆ Õ′2
for all x ∈ N . Again, since Õ1 and Õ1 + x are contained in a double cone ˜̃O1 ⊆ Õ′2,
the previous Lemma (applied twice) entails that the pairs (Õ1, Õ2) and (Õ1 +x, Õ2)
yield the same definition of ερ1,ρ2 .
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By also shrinking Õ2 if necessary, and repeating the above construction, we
see that for any vector x, the pairs (Õ1 + x, Õ2 + x) and (Õ1, Õ2) yield the same
definition of ερ1,ρ2 .

8.45 Remark. In what follows, by “one dimensional spacetime”, we mean one
dimensional space with zero dimensional time. In this case, a double cone is just
an open interval, and “spacelike separated” means disjoint.

8.46 Proposition. For spacetime of dimension two or less, ερ1,ρ2(U1, U2) is defin-
able in terms of ρ1, ρ2 and the spatial orientation of Õ1 with respect to Õ2. That
is, ερ1,ρ2(U1, U2) is independent of the choice of (Õ1, Õ2), subject to the constraint
of having the same spatial orientation.

Proof. Let Õi,
˜̃Oi be given such that Õ1 ⊥ Õ2,

˜̃O1 ⊥ ˜̃O2, and Õ1 is oriented with

respect to Õ2 as ˜̃O1 is with respect to ˜̃O2. Recall that translations of (Õ1, Õ2) do
not change ερ1,ρ2(U1, U2); nor does replacement of Õi with a double cone either
containing it or contained in it, and spacelike to Õj . But (Õ1, Õ2) can be replaced

by ( ˜̃O1,
˜̃O2) in a series of such moves.

8.47 Definition. For spacetime of two dimensions or less, fix a spatial orientation,
and use O1 < O2 to indicate that O1 is to the left of O2.

8.48 Lemma. For spacetimes of dimension two or less, if the spatial orientation of

Õ1 with respect to Õ2 is the opposite of the spatial orientation of ˜̃O1 with respect

to ˜̃O2, then
ερ1,ρ2(U1, U2) = [ερ2,ρ1(U

′
2, U

′
1)]
∗.

Proof. For defining ερ1,ρ2(U1, U2), we can choose Õ1 = O1, Õ2 < O1, ρ̃1 = ρ1, and
U1 = Iρ1 = I ∈ Hom(ρ1, ρ1). In this case, the definition simplifies to

ερ1,ρ2(I, U2) = U∗2ρ1(U2), (Õ2 < Õ1).

Using the same spectator morphisms, we have

ερ2,ρ1(U2, I) = ρ1(U
∗
2 )U2, (Õ2 < Õ1).

This latter expression uses the opposite spatial orientation. By the definability of
ερ1,ρ2(U1, U2) in terms of spatial orientation (Prop. 8.46), we see that ερ1,ρ2(U1, U2) =
[ερ2,ρ1(U

′
2, U

′
1)]
∗ when the opposite spatial orientations are used for the two defini-

tions.

8.49 Definition (The Canonical Braiding on ∆). For spacetimes
of dimension two or less, we implement the convention that ερ1,ρ2 =
ερ1,ρ2(U1, U2) with Õ2 < Õ1. The previous Lemma shows that if we define
ερ1,ρ2 with the opposite convention, then ερ1,ρ2 = (ερ2,ρ1)

∗. For spacetimes
of dimension three or more, we define ερ1,ρ2 = ερ1,ρ2(U1, U2) with Õ1 and
Õ2 spacelike separated.
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We now verify that ερ1,ρ2 is a braiding on (∆,⊗, ι).
8.50 Proposition. ερ,σ is a braiding on the DHR category (∆,⊗, ι).
Proof. (1) We first show that ερ,σ is natural in ρ and σ. For this it suffices to show
that if T ∈ Hom(ρ, ρ′) then

(Iσ × T ) ◦ ερ,σ = ερ′,σ ◦ (T × Iσ), (21)

εσ,ρ ◦ (Iσ × T ∗) = (T ∗ × Iσ) ◦ εσ,ρ′ . (22)

Let O1, O2, O3 be double cones such that ρ ∈ ∆(O1), σ ∈ ∆(O2), and ρ′ ∈ ∆(O3).
Choose a double cone O4 the is spacelike to Oi, i = 1, 2, 3; and if the spacetime
dimension is less than three, choose O4 to the left of all three. Choose σ′ ∈ ∆(O4),
and U ∈ Hom(σ, σ′). Then ε(ρ, σ) = U∗ρ(U) and ε(ρ′, σ) = U∗ρ′(U). Since T ∈
Hom(ρ, ρ′) ⊆ A(O′4), it follows that σ′(T ) = T . Thus,

σ(T )U∗ρ(U) = U∗σ′(T )ρ(U) = U∗Tρ(U) = U∗ρ′(U)T.

This establishes Eqn. 21. The second equation can be established by a similar
calculation.

(2) Now we show that ερ,σ makes the hexagonal diagrams commute. Since ∆ is
strict monoidal, we can omit the associativity isomorphisms. That is, it suffices to
show that

ερ⊗σ,τ =
(
ερ,τ × Iσ

)
◦
(
Iρ × εσ,τ

)
, (23)

ερ,σ⊗τ =
(
Iσ × ερ,τ

)
◦
(
ερ,σ × Iτ

)
. (24)

Choose τ ′ ∈ ∆ such τ ′ is supported in a region that is spacelike to the support
regions of ρ, σ, τ ; for spacetimes of one or two dimensions, choose the support region
of τ ′ to the left. Let U ∈ Hom(τ, τ ′). Then ερ,τ = U∗ρ(U), εσ,τ = U∗σ(U), and
ερ⊗σ,τ = U∗ρσ(U). Furthermore,

U∗ρ(U)ρ[U∗σ(U)] = U∗ρ[UU∗σ(U)] = U∗ρσ(U),

establishing Eqn. 23. The second equation is proven analogously.

8.51 Proposition. For spacetimes of dimension two or less, ερ1,ρ2 is the unique
braiding on (∆,⊗, ι) such that ερ1,ρ2 = I when ρi ∈ ∆(Oi) with O2 < O1. For
spacetimes of dimension three or more, ερ1,ρ2 is the unique braiding on (∆,⊗, ι)
such that ερ1,ρ2 = I when ρi ∈ ∆(Oi) with O1 and O2 spacelike separated.

Proof. Choosing Õ2 to the left of O1 we can set ερ1,ρ2 = ερ1,ρ2(I, U2) = U∗2ρ1(U2)
where U2 ∈ Hom(ρ2, ρ

′
2). Now let cσ1,σ2 be another braiding on (∆,⊗, ι) such that

cσ1,σ2 = I whenever σ1 is localized in a region to the right of the localization region
of σ2. Then since cρ1,ρ2 is natural in ρ1 and ρ2 and cρ1,ρ′2 = I,

cρ1,ρ2 = (U∗2 × Iρ1) ◦ cρ1,ρ′2 ◦ (Iρ1 × U2) = U∗2 ρ1(U2) = ερ1,ρ2.

The proof for the higher dimensional case is structurally identical.
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8.52 Proposition. For spacetime of dimension three or more, ερ1,ρ2 = (ερ2,ρ1)
−1,

hence ερ1,ρ2 is a symmetry on (∆,⊗, ι).

Proof. We first show that ερ1,ρ2(U1, U2) is independent of the choice (Õ1, Õ2) of
supports for the spectator morphisms. (Compare the proof of Prop. 8.46.) Since
the spacetime has at least three dimensions, there is a sequence of double cones Oi,
i = 1, . . . , n, such that: O1 = Õ2, for each i, Oi ∪ Oi+1 is contained in a double
cone spacelike to Õ1, and On has the opposite spatial orientation to Õ1 as did Õ2.
Applying Prop. 8.42 repeatedly, we conclude that ερ1,ρ2(U1, U2) = ερ1,ρ2(U1, U

′
2),

where ˜̃ρ2 ∈ ∆(On) and U ′2 ∈ Hom(ρ2, ˜̃ρ2). Thus, ερ1,ρ2 does not depend on the
relative spatial orientation of Õ1 and Õ2. Prop. 8.46 shows that ερ1,ρ2(U1, U2)
can depend on (Õ1, Õ2) only through their relative spatial orientation. Therefore,
ερ1,ρ2(U1, U2) is independent of (Õ1, Õ2).

We can choose Õ1 = O1, Õ2 ⊥ O1, ρ̃1 = ρ1, and U1 = Iρ1 = I ∈ Hom(ρ1, ρ1) so
that

ερ1,ρ2 = U∗ρ1(U2).

But given the independence of ερ1,ρ2 from the orientation of (Õ1, Õ2), we also have

ερ2,ρ1 = ρ1(U2)
∗U2 = (ερ1,ρ2)

∗.

Since ερ1,ρ2 is unitary, ερ1,ρ2 = (ερ2,ρ1)
−1.

8.53 Remark. The preceding Proposition is the first place where we invoked the
dimension of the underlying spacetime. We will be clear when subsequent results
depend on assumptions about dimension.

8.54 Definition. Let ερ := ε(ρ, ρ) ∈ End(ρ⊗ ρ).

8.2 Relation between localized endomorphisms and representations

While the categories ∆ and ∆f defined in this section have very remarkable proper-
ties, their physical and philosophical relevance is certainly not obvious. We therefore
relate the category ∆ to a certain category of representations of the net A:

8.55 Definition. Let O 7→ A(O) be a net of observables and π0 : A → B(H0)
a vacuum representation. Then a DHR-representation (w.r.t. the vacuum repre-
sentation π0) is a ∗-representation π : A → B(H) such that π|A(O′) ∼= π0|A(O′)
for any double cone O. I.e., upon restriction to A(O′), the representations π and
π0 are unitarily equivalent. The category whose objects are DHR-representations
of A with bounded intertwining operators is denoted by DHR(A). It clearly is a
C∗-category.

8.56 Definition. Let A be a net that is Poincaré covariant w.r.t. the positive
energy representation U0 : P → U(H0). A representation (H,π) of A is called
covariant (with positive energy) if it is equipped with a strongly continuous unitary
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representation Uπ : P̂ → U(H) (with specPµ ⊂ V+) of the universal covering of the
Poincaré group such that AdUπ(h) ◦ π = π ◦ αh for all h ∈ P̂ , where, omitting the
covering map P̂ → P from the notation, αh = AdU0(h).

Note that the definition implies that the representation space H of a DHR
representation must have the same dimension as the vacuum Hilbert space H0.

8.57 Proposition. There is a functor F : ∆ → DHR(A) of C∗-categories such that
F (ρ) = π0 ◦ ρ for the objects and F (s) = π0(s) for s ∈ Hom∆(ρ, σ) for morphisms.
This functor is an equivalence.

Proof. We first note that these definitions make sense: ρ ∈ Obj(∆) maps A into
itself and can therefore be composed with the representation π0, defining a new
representation. Furthermore, if S is an arrow in ∆, then Lemma 8.6 gives S ∈ A,
thus F (S) = π0(S) makes sense. With S ∈ Hom∆(ρ, ρ′) we have

F (S)F (ρ)(A) = π0(S)π0(ρ(A)) = π0(Sρ(A)) = π0(ρ
′(A)S) = F (ρ′)(A)F (S) ∀A ∈ A,

thus F (s) ∈ Hom(F (ρ), F (ρ′)). Since idρ is the unit of A we have F (idρ) = IH0 =
idF (ρ). The property F (s ◦ t) = F (s) ◦ F (t) is obvious. Since π0 is faithful, F is
faithful. We must show that the representation F (ρ) = π0 ◦ ρ satisfies the DHR
criterion. Since ρ ∈ ∆ is transportable, for every double cone O there exist ρO ∈
∆ localized in O and a unitary UO : ρ → ρO. Since ρO is localized in O, the
representation F (ρO) = π0 ◦ ρO coincides with π0 on A(O′). Since F (UO) : F (ρ) →
F (ρO) is unitary, we have

F (ρ)|A(O′) ∼= F (ρ′)|A(O′) = π0|A(O′),

implying F (ρ) = π0◦ρ ∈ DHR(A). Now let ρ, ρ′ ∈ Obj(∆) and S̃ ∈ Hom(F (ρ), F (ρ′)).
If O is a double cone containing the localization regions of ρ, ρ′,

S̃π0(A) = S̃π0(ρ(A)) = S̃F (ρ)(A) = F (ρ′)(A)S = π0(ρ
′(A))S̃ = π0(A)S̃

for all A ∈ A(O′). Therefore, by Haag duality for π0, S̃ ∈ π0(A(O′))′ = π0(A(O)).
Thus there exists s ∈ Hom∆(ρ, ρ′) such that S̃ = F (S). This proves that the functor
F is full. Finally, let π ∈ DHR(A) be a DHR representation on a Hilbert space
H. Choose any double cone O. Then the DHR criterion implies the existence of a
unitary U : H → H0 such that Uπ(A) = π0(A)U for all A ∈ A(O′). Define a new
representation π′ of A on the vacuum Hilbert space H0 by π′(·) = Uπ(·)U∗. By the
very definition, we have π′(A) = π0(A) for all A ∈ A(O′). If now Ô is any double
cone containing O, and A ∈ A(Ô′) and B ∈ A(Ô) then

π′(B)π0(A) = π′(BA) = π′(AB) = π′(A)π′(B) = π0(A)π′(B),

implying π′(A(Ô)) ⊂ π0(A(Ô′))′ = π0(A(O)) by Haag duality for π0. Thus π′

maps the quasilocal algebra A into π0(A). Since π0 is injective, we can define an
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endomorphism ρ of A by ρ = π−1
0 ◦ π′. By construction, ρ is localized in O, and we

have π′ = π0 ◦ ρ = F (ρ). Repeating the argument with a different double cone Õ,
we see that ρ is transportable, thus ρ ∈ ∆. Since π ∼= π′ = F (ρ), we have proven
that every DHR representation is unitarily equivalent to one of the form F (ρ) where
ρ ∈ ∆. Thus the functor F is essentially surjective, and therefore, cf. Appendix A
an equivalence of categories.

8.58 Remark. The significance of Proposition 8.57 is twofold. On the one hand, it
provides an interpretation of the category ∆ in terms of a class of representations of
A. If one accepts for a moment that the category DHR(A) is worth studying, the
above equivalence is a powerful tool. Namely, it permits us to pull the symmetric
monoidal structure on ∆ over to DHR(A) – which as defined initially is just a cate-
gory – such as to make the functor F : ∆ → DHR(A) an equivalence of symmetric
tensor C∗-categories. But once this is understood, it is much more convenient to
work just with the category ∆ rather than with DHR(A), since the tensor structure
on DHR(A) will not be strict.

As to the physical motivation of the DHR condition, we give three arguments:

1. By an increasing sequence of double cones we mean a sequence O1 ⊂ O2 ⊂ · · ·
of double cones such that ∪iOi = Rd (typically d = 4). In the appendix of
[Doplicher et al., 1971], the following result (the converse of which is trivial)
is proven:

8.59 Theorem. Let ω be a state on A such that

lim
n→∞

‖(ω − ω0)|A(O′n)‖ = 0

and the GNS-representation πω associated with ω satisfies property B. Then
there is a double cone O such that πω|A(O′) ∼= π0|A(O′).

2. In Section 9 we will show that the DHR criterion is satisfied by superselec-
tion sectors that are connected to the vacuum sector by a field net satisfying
Bose-Fermi commutation relations. (See Section 9 for precise definitions and
statements.) Conversely, in Section 10 we will prove that every DHR repre-
sentation with finite dimension arises in this way. Together these results imply
that DHR superselection sectors are precisely those induced by (graded) local
fields. We refer to Sections 9-10 for further discussion.

3. Let (H,π) be a Poincaré covariant representation (in the sense of Definition
8.56) of A such that H is separable and the spectrum spPµ ⊂ Rd of the mo-
mentum operator Pµ has an isolated mass shell {p | p2 = m2} at its bottom,
where m > 0. (Such a representation is called a massive one-particle repre-
sentation.) Then, as proven in [Buchholz and Fredenhagen, 1982], for every
‘spacelike cone’ C one has a unitary equivalence π|A(C′) ∼= π0|A(C′). (For
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the definition of spacelike cones cf. [Buchholz and Fredenhagen, 1982].) De-
spite the fact that this localization property is weaker than the one imposed
by the DHR criterion, the category of representations that are localized in
spacelike cones still can be equipped with a braided monoidal structure, cf.
[Buchholz and Fredenhagen, 1982]. (The purely representation theoretic part
of this theory was considerably simplified in [Doplicher and Roberts, 1990,
Section 4].) In this theory, the dimension of spacetime must be ≥ 3 + 1 in
order for the braiding to be a symmetry! On the technical side the math-
ematical treatment is more complicated for the following reason: If π is
a representation such that π|A(C′) = π0|A(C′), then Haag duality implies
π(A(C)) ⊂ π(A(C))′′, but due to the weak closure the right hand side is not
contained in the algebra A. The construction of a field net that we discuss
in Section 10 can nevertheless be generalized to charges localized in space-
like cones, cf. [Doplicher and Roberts, 1990, Section 5]. On the grounds of
the cited results it seems evident that the cone-localized superselection sec-
tors are physically better motivated than the more restrictive DHR sectors.
The D(H)R theory expounded in Sections 7-10 remains useful as a technically
easier ‘mathematical laboratory’.

8.3 Dimension theory in tensor ∗-categories

For any tensor ∗-category, we can define a notion of “conjugates.” The following is
a simplified version of this definition for the case of a strict tensor ∗-category.

8.60 Definition. Let C be a strict tensor ∗-category and X ∈ Obj(C). A solution
of the conjugate equations is a triple (X, r, r), where X ∈ Obj(C) and r : 1 →
X ⊗X, r : 1 → X ⊗X satisfy

(r∗ ⊗ idX) ◦ (idX ⊗ r) = idX ,

(r∗ ⊗ idX) ◦ (idX ⊗ r) = idX .

A strict tensor ∗-category C has conjugates if there is a solution of the conjugate
equations for every X ∈ C.

8.61 Example. The definition of conjugates is exemplified in the (strictification
of the) category RepfG of finite dimensional representations of a compact group.
In particular, it is well known that for each representation (H,π) of G, there is a
conjugate representation (H,π) of G. (There are several different constructions of
this conjugate representation; see e.g. [Simon, 1996, p. 30].) In terms of universal
properties, (H,π) is the unique irreducible representation of G such that (H⊗H,π⊗
π) contains a copy of the trivial representation of G.

8.62 Remark. Suppose that (X, r, r) is a conjugate for X, and that the tensor unit
1 is irreducible. Then r∗ ◦r ∈ End(1) = Cid1. Thus up to a scalar, r is an isometry,
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and therefore 1 is a direct summand of X ⊗ X. Furthermore, as can be shown
using the conjugate equations, the map End(X) → Hom(1,X ⊗ X), defined by
s 7→ (idX ⊗ s) ◦ r, is an isomorphism of vector spaces. Therefore, if X is irreducible,
the direct summand 1 appears with multiplicity 1 in X ⊗X.

8.63 Definition. Let C be a tensor ∗-category and X ∈ Obj(C). A solution (X, r, r)
of the conjugate equations relative to X is called normalized if

r∗ ◦ r = r∗ ◦ r,

and standard if

r∗ ◦ (idX ⊗ a) ◦ r = r∗ ◦ (a⊗ idX) ◦ r,

for all a ∈ End(X).

8.64 Remark. If X,Y have (standard) conjugates, then X ⊗ Y and X ⊕ Y also
have (standard) conjugates. If an object has a conjugate, then it has a standard
conjugate. For more details, see the appendix.

8.65 Definition. If an object X ∈ Obj(C) has a standard conjugate (X, r, r), we
define its dimension d(X) by

d(X)id1 = r∗ ◦ r.

If an object X does not have a conjugate, we formally say d(X) = +∞.

8.66 Remark. For all X ∈ Obj(C), d(X) ≥ 0. Furthermore, if X,Y ∈ Obj(C) have
conjugates then

d(X) = d(X), d(X ⊗ Y ) = d(X) · d(Y ), d(X ⊕ Y ) = d(X) + d(Y ),

and d(1) = 1. (See the appendix for the discussion of these facts.)

8.67 Definition. Let ∆ be the DHR category. We define the full subcategory ∆f

of objects with finite dimension:

Obj(∆f ) = {ρ ∈ Obj(∆) : d(ρ) < +∞}.

8.68 Remark. By definition, ∆f is a category with conjugates. It is closed under
tensor products, direct sums and subobjects. In any C∗-tensor category with con-
jugates, the dimension of any object takes values in [1,∞), and in the interval [1, 2]
only values of the form 2 cos(π/n), n ≥ 3 can appear, cf. [Longo and Roberts, 1997].
In a symmetric C∗-tensor category, all dimensions are integers, as is proven in the
Appendix.
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8.69 Proposition. For each X,Y ∈ Obj(∆f ), Hom(X,Y ) is a finite dimensional
vector space. Every object X ∈ Obj(∆f ) is a finite direct sum of irreducible objects;
i.e. the category ∆f is semisimple.

Proof. See the appendix.

8.70 Remark. There is an important connection, discovered by Longo [Longo, 1989]

and explored further in [Longo and Roberts, 1997], between the dimension of a DHR
sector ρ ∈ ∆ and subfactor theory. Among many other things, the latter associates
to any inclusion N ⊂M of factors an index [M : N ] ∈ [1,∞]. In order to apply this
theory to AQFT we need to assume (or prove) that the local von Neumann alge-
bras A(O) are factors. (This is automatic, e.g., in conformally covariant theories.)
If ρ ∈ ∆ is localized in O, it restricts to a normal ∗-homomorphism of A(O) into
itself, giving rise to an inclusion ρ(A(O)) ⊂ A(O). The index of this subfactor is
related to the categorically defined dimension d(ρ) by

[A(O) : ρ(A(O))] = d(ρ)2. (25)

Longo’s result allows to give a very direct formula for the dimension of (the
localized endomorphisms associated to) a DHR representation. Namely, all en-
domorphisms ρ ∈ ∆ for which π ∼= π0 ◦ ρ have the same categorical dimension,
justifying to write d(π), and for any double cone O we have

d(π) = [π(A(O′))′ : π(A(O))]1/2.

This is seen as follows: π is unitarily equivalent to a representation π′ = π0 ◦ ρ,
where ρ ∈ ∆ is localized in O. Then the inclusion π(A(O)) ⊂ π(A(O′))′ is unitarily
equivalent to π′(A(O)) ⊂ π(A(O′))′, which equals π0(ρ(A(O))) ⊂ π0(A(O)). Now
the claim follows by Eqn. (25) and the fact that the index is invariant under unitary
transformations: [UMU∗ : UNU∗] = [M : N ].

Another comment seems in order: The categorical definition of dimension of an
object requires the existence of a conjugate object. On the other hand, assuming
factoriality of the local algebras, the expressions [A(O) : ρ(A(O))] (for an endomor-
phism localized in O) and [π(A(O′))′ : π(A(O))] (whose independence of O follows
from mild additional axioms) do not presuppose the existence of a conjugate. In
fact, one can show that finiteness of these subfactor indices implies the existence of
a conjugate DHR representation, cf. [Guido and Longo, 1992].

8.4 Covariant representations

Since we decided to work with the category ∆ of localized transportable endomor-
phisms rather than directly with DHR representations, we need the following
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8.71 Definition. Let A be a Poincaré covariant net with covariant vacuum repre-
sentation (H0, π0). An endomorphism ρ ∈ ∆(A) is called covariant if there exists a
strongly continuous positive energy representation πρ : P̂ → U(H0) such that

AdUρ(h) ◦ π0 ◦ ρ = π0 ◦ ρ ◦ βh ∀h ∈ P̂ . (26)

The full subcategory of ∆(A) consisting of the covariant morphisms is denoted by
∆c(A).

8.72 Remark. For ρ ∈ ∆, h ∈ P we define ρh = βh ◦ ρ ◦ β−1
h . If ρ is localized

in the double cone O then ρh is localized in hO. If ρ ∈ ∆c then Eqn. (26) can be
restated as

Ad(U(h)Uρ(h)
∗) ◦ π0 ◦ ρ = π0 ◦ βh ◦ ρ ◦ β−1

h = π0 ◦ ρh ∀h ∈ P̂ .

Since ρ and ρh are both localized, it follows that Xρ(h) ≡ U(h)Uρ(h)
∗ ∈ Hom(ρ, ρh),

thus Xρ(h) ∈ A. This A-valued cocycle is very convenient since expressions like
ρ(U(h)) don’t make sense, whereas ρ(Xσ(h)) does. It satisfies the following cocycle
equation:

Xρ(gh) = U(gh)Uρ(gh)
∗ = U(g)U(h)Uρ(h)

∗Uρ(g)
∗

= βg(U(h)Uρ(h)
∗)U(g)Uρ(g)

∗ = βg(Xρ(h))Xρ(g).

The same computation implies that, if ρ ∈ ∆ and h 7→ Xρ(h) ∈ A satisfies Xρ(gh) =
βg(Xρ(h))Xρ(g) for all g, h ∈ P, then Uρ(h) := Xρ(h)

∗U(h) is a representation of
P and Eqn. 26 holds, i.e. ρ ∈ ∆c.

8.73 Proposition. ∆c is closed under tensor products, direct sums and subobjects.

Proof. Let ρ, ρ′ ∈ ∆c with associated cocycles Xρ,Xρ′ . Then

Xρρ′(h) = Xρ(h) ⊗Xρ′(h) = Xρ(h)ρ(Xρ′(h)) ∈ Hom(ρ⊗ ρ′, ρh ⊗ ρ′h) (27)

clearly satisfies the cocycle equation, thus ρρ′ is covariant. The proof for direct
sums and subobjects is omitted, cf. [Roberts, 1990].

If T ∈ Hom(ρ, ρ′) then

βh(T )ρh(A) = βh(Tρβ
−1
h (A)) = βh(ρ

′β−1
h (A)T ) = ρ′h(A)βh(T ),

thus βh(T ) ∈ Hom(ρh, ρ
′
h).

Now we explore some consequences of finite dimensionality:

8.74 Proposition. Let ρ, ρ′ ∈ ∆fc := ∆f ∩ ∆c. Then

(i) If T ∈ Hom(ρ, ρ′) then TUρ(h) = Uρ′(h)T for all h ∈ P̂.
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(ii) Every ρ ∈ ∆fc is covariant w.r.t. a unique representation Uρ.

(iii) If ρ, ρ′ ∈ ∆fc and T ∈ Hom(ρ, ρ′) then

βh(T )Xρ(h) = Xρ′(h)T ∀h ∈ P̂ . (28)

(iv) ∆fc is closed under conjugates.

Proof. (i) For h ∈ P̂ define Th = Uρ′(h)TUρ(h)
∗. For any A ∈ A we have

Thρ(A) = Uρ′(h)TUρ(h)
∗ρ(A) = Uρ′(h)Tρ(β

−1
h (A))Uρ(h)

∗

= Uρ′(h)ρ
′(β−1

h (A))TUρ(h)
∗ = ρ′(A)Uρ′(h)TUρ(h)

∗ = Thρ
′(A),

thus Th ∈ Hom(ρ, ρ′). By assumption, ρ, ρ′ have conjugates and thus Hom(ρ, ρ′) is
finite dimensional by Proposition 8.69. Thus (h, T ) 7→ Th is a finite dimensional
representation of the Poincaré group P. The claim TUρ(h) = Uρ′(h)T is equivalent
to triviality of this representation. This triviality follows from the non-existence of
finite dimensional unitary representations of P̂ as soon as one produces a positive
definite P̂-invariant inner product on Hom(ρ, ρ′). For this last step we refer, e.g.,
to [Roberts, 1990].

(ii) Apply (i) to ρ′ = ρ, Uρ′(h) = Ũρ(h), T = idρ = 1H0 to conclude Uρ = Ũρ.
(iii) Using (i) we compute

βh(T )Xρ(h) = (U(h)TU(h)∗)(U(h)Uρ(h)
∗) = U(h)TUρ(h

−1)

= U(h)Uρ′(h
−1)T = Xρ′(h)T,

(iv) See [Roberts, 1990].

8.75 Remark. Under weak additional assumptions on the net A, it is shown in
[Guido and Longo, 1992, Theorem 5.2] that every localized endomorphism of finite
dimension is automatically covariant with positive energy! Equivalently, ∆f ⊂ ∆c,
and therefore ∆fc = ∆f .

8.5 Statistics in braided tensor ∗-categories

8.76 Definition. Let (C,⊗,1) be a tensor ∗-category with unitary braiding cX,Y ,
and suppose that each X ∈ Obj(C) has a conjugate. For each X ∈ Obj(C), we
define the twist of X, ΘX ∈ End(X), by

ΘX = (r∗ ⊗ idX) ◦ (idX ⊗ cX,X) ◦ (r ⊗ idX),

where (X, r, r) is a standard conjugate for X.
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8.77 Remark. For each X ∈ Obj(C), ΘX is unitary. When X is irreducible,
End(X) = CidX , and so ΘX = ωX idX , where ωX is a complex number of unit
modulus (called the statistics phase). In the case that cX,Y is a symmetry, then
(cX,X)∗ = cX,X , and so (ΘX)∗ = ΘX . Together with unitarity, this implies that
(ΘX)2 = idX .

8.78 Definition. Let (C,⊗,1) be a tensor ∗-category with unitary symmetry cX,Y .
If X ∈ Obj(C) is irreducible, we say that X is a Bosonic object if ωX = 1, and we
say that X is a Fermionic object if ωX = −1.

8.79 Remark. We give a number of justifications for our focus on the category ∆f

of DHR representations with finite dimension.
(i): In the heuristic interpretation of the (unitary equivalence classes) of irre-

ducible DHR representations as corresponding to the types of particles in a QFT,
the conjugate ρ of a DHR representation ρ corresponds to the antiparticle. It may
happen that a particle is its own antiparticle, i.e. ρ ∼= ρ; but the existence of an-
tiparticles seems to be an integral part of relativistic quantum field theories.

(ii): The DHR sectors admitting a conjugate in the above sense are (rough) ana-
logues in the operator algebraic approach to AQFT of Wightman fields with finitely
many components. In the Wightman framework [Streater and Wightman, 1964] it
is well known that infinite components behave ‘pathologically’ in that the PCT
and spin-statistics theorems do not apply to them, and can in fact be violated. In
algebraic QFT, these results are reflected in the fact that we cannot even define
Bosonic and Fermionic objects that have dimension ∞, in the sense that they have
no conjugates.

(iii): In [Fredenhagen, 1981] it was shown that every massive one-particle repre-
sentation (cf. Note 8.58(iii)), which by the mentioned result of [Buchholz and Fredenhagen, 1982]

is localizable in space-like cones, has a conjugate in the C∗-tensor category of cone-
localizable representations. It therefore seems natural to require existence of conju-
gates also in the more restrictive setting of double cone localizable representations.

(iv): As pointed out in Note 8.75, DHR endomorphisms of finite dimension are
automatically covariant, provided one accepts the additional conditions on the net
A needed for this result. Even if one doesn’t wish to appeal to this result, finite
dimensionality of the objects is needed (via finite dimensionality of the hom-sets)
for the proof of Proposition 8.74. The latter will be crucial for lifting the Poincaré
action from A to the field theory F in Section 10.

9 From Fields to Representations

In the current section we take the ‘top down’ approach to superselection rules. That
is, we are given a field algebra F and a gauge group G acting concretely on a Hilbert
space H. We then define the observables as the gauge invariant elements of F. The
representation of F on H then gives us a preferred set of representations of A; viz.

82



those that can be ‘created from the vacuum representation by the action of local
fields.’ Our main mathematical objective in the current section is to show that these
representations satisfy the DHR selection criterion. Thus, all superselection sectors
that arise in the traditional way — viz. by acting on the vacuum with fields — fall
within the purview of DHR superselection theory. (But note: We are restricting
attention to local fields.)

9.1 Definition. Let ω0 be a state on A, and let (H0, π0) be the correspond-
ing GNS representation. A field system with gauge symmetry for (A, ω0) is a
quadruple (π,H,F, (G, k)), where (H, π) is a representation of A, O 7→ F(O)
is a net of von Neumann algebras acting irreducibly on H, G is a strongly
compact group of unitary operators on H, k is a central element of G such
that k2 = e, and such that:

α) (H0, π0) is a subrepresentation of (H, π), i.e. there is an isometry
V : H0 → H such that V π0 = πV ;

β) V maps H0 into the subspace of G-invariant vectors of H;

γ) the U ∈ G induce automorphisms that leave each F(O) globally
fixed, and π(A(O))′′ ⊆ F(O) is the set of fixed points under the
action of G on F(O);

δ) for each O ∈ K, V (H0) is cyclic for F(O);

ε) the fields are local relative to the observables, i.e. F(O1) and
π(A(O2)) commute elementwise whenever O1 and O2 are space-
like separated.

A few remarks on the definition of a field system: the fact that F is generated
by local algebras {F(O) : O ∈ K} means that elements of F represent local fields
— i.e., fields whose excitations can be localized within a bounded spacetime region.
Furthermore:

δ) is the Reeh-Schlieder Condition: it states that each local region O carries a full
set of fields in the sense that these local fields can reach each sector from the
vacuum sector. [But note that Condition (γ) only guarantees that sectors in
H can be reached from the vacuum sector. A stronger notion of completeness
would rely on some intrinsic criterion for physical sectors of A, and would
require that all these sectors be contained in H; see Definition 10.1.]

γ) can be interpreted as saying that the group G is an internal symmetry group of
the field: it does not change the spacetime localization region of field operators.
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ε) is the Relative Locality Condition. Since fields need not be observable, the
field algebra is not required to satisfy microcausality. However, in the typi-
cal situation (i.e. normal commutation relations), field operators localized in
one spacetime region either commute or anticommute with field operators lo-
calized in a spacelike separated region. Condition (ε) is a weakening of the
requirement of normal (Bose/Fermi) commutation relations.

Since G is a compact group of unitary operators acting on H, we can apply all
of the apparatus of the theory of unitary representations of compact groups (see
e.g. [Folland, 1995]). In particular, H decomposes into a direct sum of orthogonal
subspaces Hξ which reduce the action of G. Thus the reduced unitary representation
Uξ of G on Hξ is factorial, i.e. the von Neumann algebra generated by the operators
{g|Hξ

: g ∈ G} is a factor. The representation Uξ decomposes into a direct sum of
unitarily equivalent irreducible representations of G. So, there is a privileged direct
sum decomposition of H:

H =
⊕

ξ

Hξ,

where the subspace Hξ is generated by the vectors in H that transform according
to the character ξ (unitary equivalence class of irreducible representations) of G.

In the present section our primary objectives are:

1. Show that the subspaces Hξ reduce the action of the observable algebra A.
So, the representation of A on H decomposes into a direct sum

⊕
ξ πξ of

representations on the subspaces Hξ.

2. Show that each representation (Hξ, πξ) of A is factorial, so that the irreducible
subrepresentations of (Hξ, πξ) are mutually equivalent. (Hence each character
ξ of G labels an equivalence class of irreducible representations of A.)

3. Show that V (H0) is precisely the subspace of G-invariant vectors in H. (Hence
the character 1 of G labels the equivalence class of the vacuum representation
of A.)

4. Show that each subrepresentation of (H, π) is a DHR representation. In slogan
form, the sectors that can be reached from the vacuum by application of
local fields correspond to DHR representations (i.e. representations that are
equivalent, modulo any local region, to the vacuum representation).

Regarding objectives (1) and (2), it will suffice to show that π(A)′′ = G′, because
then the von Neumann algebras π(A)′′ and G′′ share the same central projections.

9.2 Proposition. If (π,H,F, (G, k)) is a field system with gauge symmetry for
(A, ω0) then π(A)′ = G′′.

84



Our notation will henceforth be simplified if we use g and U(g) ambiguously to
denote elements of the unitary group G on H. That is, we think of g → U(g) as the
identity representation of G on H.

Proof. Define M : B(H) → G′ by

M(A) =

∫

G
U(g)AU(g)∗ dµ(g),

where µ is the Haar measure on G. Then M is a faithful, normal projection of norm
one from B(H) onto G′. Since M is weakly continuous on the unit ball of B(H),
we have

G′ = M(B(H)) = M(F) = M(F) = π(A). (29)

Thus, G′′ = π(A)′.

It follows then that the factorial subrepresentations of the representation (H, π)
of A are in one to one correspondence with the factorial subrepresentations of the
action of G on H.

9.3 Remark. Since G is compact each irreducible representation of G is finite
dimensional. Let Ĝ be the set of characters (equivalence class of irreducible repre-
sentations) of G, and for ξ ∈ Ĝ, let d(ξ) be the dimension of the underlying Hilbert
space. Then the previous result gives a nice intuitive picture of the representation
(H, π) of A. For each ξ ∈ Ĝ, select an irreducible subrepresentation (Hρ, πρ) of the
factorial representation (Hξ, πξ). Then we have

π(A) =
⊕

ξ∈Ĝ

d(ξ)πρ(A) =
⊕

ξ∈Ĝ

(πρ(A) ⊗ Iρ),

where d(ξ)πρ(A) = πρ(A) ⊕ · · · ⊕ πρ(A), d(ξ) times, and Iρ is the identity on an
d(ξ)-dimensional Hilbert space.

9.4 Lemma. Let (π,H,F, (G, k)) be a field system with gauge symmetry for (A, ω0).
Then H0 is separating for F.

Proof. Let F ∈ F. If FH0 = {0} then E(F ∗F )H0 = {0}. Since E(F ∗F ) ∈ π(A) and
π0 is faithful, E(F ∗F ) = 0. Since E is faithful, F = 0. Therefore, H0 is separating
for F.

To obtain further information about the field system (π,H,F, (G, k)), we identify
“tensors under the action of G” in the field algebra F. To make sense of this
idea, forget momentarily that F has a product operation, and consider it merely
as a Banach space. The map U 7→ AdU is a (strongly) continuous representation
of the compact group G in AutF, which is of course a subset of the invertible
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linear operators on F. As in the case of a representation of a compact group on
a Hilbert space H, the representation of G on F decomposes into a direct sum
of disjoint representations. An operator F ∈ F is said to transform according to a
representation ρ of G just in case it is contained in a linear subspaceHρ of F carrying
the corresponding representation of G. In fact, we will show that the irreducible
subspaces in F have a special algebraic property: they have support I.

9.5 Lemma. Let (π,H,F, (G, k)) be a field system with gauge symmetry for (A, ω0),
and suppose that A satisfies property B relative to ω0. Then the net O 7→ π(A(O))′′

satisfies property B.

Proof. We first establish that π0|A(O′) is quasiequivalent to π|A(O′) for each double
cone O.

By the Relative Locality Condition (ε), F(O) ⊆ π(A(O′))′. By the Reeh-
Schlieder Condition (δ), H0 is a cyclic subspace for F(O). Thus,

H = [F(O)H0] ⊆ [π(A(O′))′H0].

Let E0 be the orthogonal projection onto H0. The central support of E0 in π(A(O′))′

is the projection onto [π(A(O′))′E0(H)] [Kadison and Ringrose, 1997, Prop. 5.5.2].
ThusE0 has central support I in π(A(O′))′, and therefore (π0|A(O′),H0) and (π|A(O′),H)
are quasiequivalent [Kadison and Ringrose, 1997, Thm. 10.3.3].

Let O1 be a double cone whose closure is contained in O, and let E be a nonzero
projection in π(A(O1))

′′. Choose a double cone O2 that is spacelike separated from
O. The preceding argument shows that there is a ∗-isomorphism ϕ from π0(A(O′2))

′′

to π(A(O′2))
′′ such that ϕ(π0(A)) = π(A) for all A ∈ A. This isomorphism ϕ pre-

serves the net structure: ϕ[π0(A(O3))] = π(A(O3)) for any double cone O3 contained
in O′2. Further, since ϕ is ultraweakly continuous [Kadison and Ringrose, 1997,
Cor. 7.1.16], ϕ[π0(A(O3))

′′] = π(A(O3))
′′. In particular, ϕ(E) is a projection in

π0(A(O1))
′′. By property B for π0, there is an isometry V ∈ π0(A(O))′′ such that

V V ∗ = ϕ(E). Thus, W := ϕ−1(V ) ∈ π(A(O))′′ is an isometry such that WW ∗ = E.
Therefore the net O 7→ π(A(O))′′ satisfies property B.

9.6 Definition. Consider the ordered n-tuple (F1, . . . , Fn) of elements in F. We
say that this n-tuple transforms under the action of G according to character ξ just
in case:

1. F ∗i Fj = 0 if i 6= j; and

2. αg(Fi) =
∑n

j=1 u
ξ
ij(g)Fj , where uξij is a set of matrix elements for ξ. That

is, for some representation (H, ρ) of G of class ξ, and orthonormal basis
{e1, . . . , en} for H, uij(g) := 〈ei, ρ(g)ej〉H .

9.7 Remark. If (F1, . . . , Fn) is a tensor in F transforming according to ξ, then
we can always replace the Fi’s with partial isometries Vi with orthogonal ranges.
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Indeed, let Vi|Fi| be the polar decomposition of Fi. When i 6= j, F ∗i Fj = 0, and so
F ∗i and F ∗j have orthogonal ranges. Recall that if F = V |F |, then V annihilates the

orthogonal complement of r(F ∗) = r(|F |) (see [Kadison and Ringrose, 1997, Thm.
6.1.2]). Thus Vj|Fi| = δijFj , and

(∑

j

uξij(g)Vj

)
|Fi| =

∑

j

uξij(g)Vj |Fj | =
∑

j

uξij(g)Fj = Fi.

By the uniqueness of the polar decomposition,
∑

j u
ξ
ij(g)Vj = Vi. Hence (V1, . . . , Vn)

is a tensor transforming according to ξ.

9.8 Definition. Given ϕ,ψ ∈ Hξ, define a map M ξ
ϕ,ψ : F → F by

M ξ
ϕ,ψ(F ) =

∫

G
〈ϕ,U(g)ψ〉αg(F ) dµ(g),

where µ is the Haar measure on G.

9.9 Fact. Due to the invariance of µ we have αg ◦M ξ
ϕ,ψ(F ) = M ξ

U(g)ϕ,ψ(F ).

9.10 Lemma. Let (F1, . . . , Fn) be a tensor in F(O) transforming as a unitary
representation of class ξ. Then Fi(H0) ⊆ Hξ, where Hξ is the subspace of vectors
of H that transform according to ξ.

Sketch of proof. Let ϕ ∈ H0, and let g ∈ G. Then

U(g)[M ξ
ϕ,ψ(F )ϕ] = U(g)M ξ

ϕ,ψ(F )U(g)∗ϕ = M ξ
U(g)ϕ,ψ(F )ϕ.

Then a straightforward calculation using matrix elements for ξ establishes the result.

9.11 Lemma. Let ξ be a character of G that occurs nontrivially in the decom-
position of the action of G on H. Then for each double cone O, there is a tensor
(F1, . . . , Fn) in F(O) that transforms as a unitary representation of class ξ.

Sketch of proof. Let (ψ1, . . . , ψn) be an orthonormal basis from a G-irreducible sub-
space of Hξ. Let ϕ be a unit vector in this same subspace. Since H0 is cyclic for
F(O), and F(O) is a von Neumann algebra, there is an F ∈ F(O) and a vector

ϕ0 ∈ H0 such that Fϕ0 = ϕ. Let Fi = M ξ
ψi,ϕ

(F ). One verifies then that (F1, . . . , Fn)
is the required tensor.

9.12 Lemma. Let F1, . . . , Fn ∈ F(O) such that (F1, . . . , Fn) transforms according
to the character ξ. Then if O ⊆ O1, there are X1, . . . ,Xn ∈ A(O1) such that
(X1, . . . ,Xn) transforms according to ξ and

n∑

i=1

X∗i Xi = I.
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Proof. First replace F1, . . . , Fn with partial isometries V1, . . . , Vn, then let V =∑n
i=1 Vi. Since the Vi have orthogonal ranges, V is a partial isometry, and V ∗V =∑n
i=1 V

∗
i Vi. A straightforward calculation shows that αg(V

∗V ) = V ∗V for all g ∈
G. Thus, E = V ∗V is a projection in F(O) ∩ G′ = π(A(O))′′. By Lemma 9.5,
O 7→ π(A(O))′′ satisfies property B. Thus, there is an isometry W ∈ π(A(O1))

′′

with WW ∗ = E. For i = 1, . . . , n, let Xi = ViW . Then the tensor (X1, . . . ,Xn)
transforms according to ξ, and

n∑

i=1

X∗i Xi = W ∗
( n∑

i=1

V ∗i Vi

)
W = I.

9.13 Lemma. Let Hξ ⊆ H be the range of a central projection in π(A)′′. Then for
each double cone O, Hξ is cyclic for F(O).

Proof. Let O1 be a double cone such that O1 ⊆ O. By the Reeh-Schlieder Condition,
H0 is cyclic for F(O1). By Lemma 9.11, there is a tensor (F1, . . . Fn) in F(O1) that
transforms according to the representation (H, ρ) of G. By Lemma 9.12, there
is a tensor (X1, . . . ,Xn) in F(O) that transforms that same way, and such that∑n

i=1X
∗
i Xi = I. Then

F(O)H0 = F(O)

n∑

i=1

X∗i XiH0 ⊆ F(O)Hξ ,

where the final inclusion follows by Lemma 9.10. Therefore Hξ is cyclic for F(O).

9.14 Definition. Let RepFA be the category of subrepresentations of the represen-
tation (H, π) of A. We mean to take RepFA as a full subcategory of the category
of all representations of A, i.e. the hom-sets between representations in RepFA are
the same as the hom-sets in the larger category.

9.15 Proposition. Let (π,H,F, (G, k)) be a field system with gauge symmetry for
(A, ω0). Then there is a faithful functor F : RepFA → DHR(A).

Proof. Suppose that (H′, π′) is an object of RepFA. That is, there is an isometry
V : H′ → H such that V π′ = πV . We subsequently identify H′ with its image in
H, and treat π′ as mapping into B(H). We must show that (H′, π′) is in DHR(A);
that is, for any double cone O, (H′, π′|A(O′)) is unitarily equivalent to (H0, π0|A(O′)).

Let π = π|A(O′). Since Eι, Eξ ∈ π(A)′ ⊆ π(A(O′))′, Eι and Eξ reduce π. We first
establish that Eι and Eξ have the same central support in π(A(O′))−, from which it
follows that Eιπ and Eξπ are quasiequivalent [Kadison and Ringrose, 1997, Thm.
10.3.3].
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By the Relative Locality Condition (δ), F(O) ⊆ π(A(O′))′. By the Reeh-
Schlieder Condition (γ), EιH is a cyclic subspace for F(O). Thus,

H = [F(O)Eι(H)] ⊆ [π(A(O′))′Eι(H)].

Similarly, Lemma 9.13 entails that EξH is a cyclic subspace for F(O), and so
[π(A(O′))′Eξ(H)] = H. However, the central support of Eι in π(A(O′))′ is the pro-
jection onto [π(A(O′))′E0(H)], and similarly for Eξ [Kadison and Ringrose, 1997,
Prop. 5.5.2]. Thus, Eι and Eξ have central support I in π(A(O′))′. Therefore,
(π0|A(O′),H0) and (πξ|A(O′),Hξ) are quasiequivalent, i.e. there is a ∗-isomorphism
ϕ : π0(A(O′)) → πξ(A(O′)) such that ϕ(π0(A)) = πξ(A) for all A ∈ A(O′).

The previous reasoning also shows (by replacing O with a spacelike separated
double cone) that for each double coneO, (π0|A(O),H0) is quasiequivalent to (πξ|A(O),Hξ).
Thus, in particular, since the net O → π0(A(O))′′ of von Neumann algebras satisfies
property B (by assumption), so does the net O → πξ(A(O))′′.

To establish that (π0|A(O′),H0) and (πξ|A(O′),Hξ) are unitarily equivalent, we
will use the following result ([Kadison and Ringrose, 1997, Theorem 7.2.9]):

Let Rj , j = 1, 2, be von Neumann algebras acting on Hilbert spaces Hj

respectively. Suppose that for j = 1, 2, there is a vector xj ∈ Hj that is
cyclic and separating for Rj . If α : R1 → R2 is a ∗ isomorphism then
there is a unitary operator U from H1 to H2 that implements α.

in conjunction with the fact ([Kadison and Ringrose, 1997, Exercise 9.6.32]):

If R is a von Neumann algebra acting on a separable Hilbert space H,
and if R′ is properly infinite, then there is vector x ∈ H that is cyclic
and separating for R.

By Proposition 2.24, π0(A(O′))′ and πξ(A(O′))′ are properly infinite. By assump-
tion, H0 is separable. Thus, it will suffice to show that Hξ is separable. Since πξ is
irreducible, each non-zero vector x ∈ Hξ is cyclic for πξ(A). Thus, Hξ is the closure
of the union of πξ(A(On))x for an increasing sequence On of double cones. Hence it
suffices to show that πξ(A(O))x is separable for each O ∈ K. Since H0 is separable,
the unit ball of B(H0) is compact metrizable [Kadison and Ringrose, 1997, Thm.
5.1.3; Exercise 5.7.7]. Since the unit ball of π0(A(O))′′ is a closed subset of the unit
ball of B(H0), it is also compact metrizable. But πξ(A(O))′′ is ∗ isomorphic, hence
ultraweakly homeomorphic, to π0(A(O))′′. Therefore, the unit ball of πξ(A(O))′′ is
compact metrizable, hence separable, in the weak operator topology. It follows that
πξ(A(O))′′x is separable.

In Proposition 8.57 it was shown that there is a faithful, essentially surjective
functor F ′ from the category DHR(A) of DHR representations to the category ∆ of
localized transportable morphisms of A. So, the previous Proposition entails that
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F ′ ◦ F is a faithful functor from RepFA into ∆. We subsequently replace F ′ ◦ F
with just F .

Recall that ∆f is the full subcategory of ∆ of objects with conjugates. The final
thing we need to show in this Section is that the image of each object in RepFA

under F is isomorphic to an object in ∆f . That is, we need to show that the image
object has a conjugate.

Sketch of proof. One shows that the subrepresentations of G on H are closed under
taking conjugates. This can be proven by noting a correspondence between the
action of G on H and the action of G on F. Then use the fact that F is a ∗-
algebra. Thus, for each irreducible subrepresentation πρ of π, there is an irreducible
subrepresentation πρ of π. Verify that (F ′◦F )(πρ) is a conjugate for (F ′◦F )(πρ).

Therefore, F ′ ◦ F is a faithful functor from RepFA into ∆f . So we have shown:

Each representation of A that arises from its being taken as the gauge
invariant part of a field algebra is a representation of the form π0 ◦ ρ
with ρ ∈ Obj(∆f ).

Thus, the study of ∆f encompasses the study of representations that arise from the
approach that begins with a field algebra.

We said above that in the “normal” situation, field operators in F(O1) with
either commute or anticommute with field operators in F(O2) when O1 and O2 are
spacelike separated. To be more precise, we would expect for a Bose field operator to
commute both with other Bose field operators, as well as with Fermi field operators;
and we would expect for a pair of Fermi field operators to anticommute. But what
are Bose and Fermi field operators? The distinction between the two is defined in
terms of the privileged element k of the gauge group G.

9.16 Definition. If αk(F ) = F then F is said to be a Bose field operator ; and if
αk(F ) = −F then F is said to be a Fermi field operator.

We define a Bosonic sector in H to be a subspace Hξ such that U(k)|Hξ
= I,

and a Fermionic sector in H to be a subspace Hξ such that U(k)|Hξ
= −I. It then

follows that Bosonic field operators create Bosonic sectors from the vacuum, and
Fermionic field operators create Fermionic sectors from the vacuum.

We can now make sense of the notion of normal commutation relations: Bose
field operators should commute with each other and commute with Fermionic field
operators. Fermionic field operators should anticommute with each other.
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9.17 Definition. A local operator algebra system of fields (π, (G, k),F)
is said to satisfy normal commutation relations just in case the local field
algebras satisfy graded local commutativity: If O1 and O2 are spacelike, and
Fσ ∈ F(O1), F

′
σ ∈ F(O2) are such that αk(Fσ) = σFσ and αk(F

′
σ) = σFσ,

(σ = ±), then

F+F
′
+ = F ′+F+, F+F

′
− = F ′−F+, F−F

′
− = −F ′−F−.

10 From Representations to Fields

The preceding section derives properties of representations of A, given that these
representations are created from the vacuum representation by the action of local
fields on the vacuum. But such an approach will seem at best heuristic to the
Algebraic Imperialist. From the Imperialist’s point of view, the entire content of
the theory is contained in the abstract net A of observable algebras.

On the one hand, the Imperialist might be an eliminativist about fields and gauge
group. On the other hand, the Imperialist might claim that the fields and gauge
group are physically significant, but only because they can be ‘reconstructed’ from
the net of observable algebras. In order to justify this latter stance, the Imperialist
would need to accomplish the following:

Task: Try to reconstruct, in a mathematically rigorous fashion, the
entire apparatus of QFT — fields, gauge groups, etc. — from the net of
observable algebras.

A quixotic task indeed! For one, philosophers seemed to have settled that theory
is always underdetermined by data; and so we should not expect to be able to find
the full theoretical apparatus hidden within the net of observable algebras. But
there is a surprise in store: the Task was undertaken, and was achieved. The DR
Reconstruction Theorem shows in a fully rigorous and precise way that the DHR
category encodes all the information needed to reconstruct, uniquely, the fields and
the gauge group. This section provides the details of the reconstruction.

10.1 Definition. A field system with gauge symmetry (π,H,F, (G, k)) for
(A, ω0) is said to be complete if the representation π of A contains copies
of all representations in the DHR category DHR(A) of A.
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10.2 Definition. Two field systems with gauge symmetry (π1,H1,F1, G1)
and (π2,H2,F2, G2) for (A, ω0) are said to be equivalent if there exists a
unitary operator W : H1 → H2 such that:

Wπ1(A) = π2(A)W, ∀A ∈ A,

WU(G1) = U(G2)W,

WF1(O) = F2(O)W, for each double cone O.

Doplicher-Roberts Reconstruction Theorem. Let (A, ω0) be a net of
observable algebras satisfying duality and property B relative to a privileged
‘vacuum’ state ω0. Then there exists a field system with gauge symmetry
(π,H,F, (G, k)) for (A, ω0) that is complete, and that has normal commu-
tation relations. Any complete, normal field system for (A, ω0) is equivalent
to (π,H,F, (G, k)).

The proof of the reconstruction theorem is contained in [Doplicher and Roberts, 1989]

and [Doplicher and Roberts, 1990]. In this article, we give an alternative proof,
based on Deligne’s embedding theorem [Deligne, 1990], and results obtained by
Roberts [Roberts, ND] prior to obtaining the full proof of the reconstruction theo-
rem.

In outline, the theorem shows first — as was essentially established in [Doplicher et al., 1971]

— that the DHR superselection sectors naturally have the structure of a braided
tensor ∗-category with conjugates — and when the spacetime dimension is three
or greater, we can replace “braided” with “symmetric.” Now, until the late 1980’s,
this first result was merely suggestive: it is known that the category RepfG of
representations of a compact group G on finite dimensional (super) Hilbert spaces
is a symmetric tensor ∗-category with conjugates. Hence, the category of DHR
superselection sectors seems to have all the structure of RepfG for some compact
G. By the classical Tannaka-Krein duality theorem, it is possible to reconstruct
G from RepfG. Furthermore, Roberts [Roberts, ND] proved the conditional claim
that if the category of superselection sectors was equivalent to the category RepfG
for some compact G, then the field algebra F could be reconstructed.

But there is a crucial difference between the category of superselection sectors
and the category RepfG. The category RepfG is “concrete” — it comes with an
embedding into the category of Hilbert spaces, namely the forgetful functor, and
hence its objects can be regarded as structured sets. It is also precisely the existence
of such an embedding that is needed to construct a field algebra, because one needs
the objects in the category to have “internal structure,” as, for example, an object in
the category H of Hilbert spaces is a structured set. Before we state the embedding
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theorem, whose proof is given in the Appendix, we need some preparatory definitions
concerning ‘supermathematics’.

10.1 Supermathematics and the embedding theorem

10.3 Definition. A super vector space, alternatively a Z2-graded vector space, is a
vector space V with a distinguished decomposition V = V+ ⊕V−. The subspace V+

is called the even subspace, and V− is called the odd subspace. Elements of V+ ∪
V− =: Vh are called homogeneous. Define the parity function ω on the homogeneous
elements by setting ω(v) = ±1 if v ∈ V±. A morphism between two super vector
spaces is a linear mapping T : V →W such that T (V±) ⊆W±. We let SVect denote
the category of super vector spaces. A super Hilbert space is a super vector space
V with a positive definite inner product such that V− ⊥ V+. We use SH to denote
the category of super Hilbert spaces.

We now define operations that make SVect into a symmetric tensor category. It
is straightforward to verify that the set Mor(V,W ) of morphisms between two super
vector spaces is a linear subspace of B(V,W ). Thus, SVect is a linear category.

If V and W are super vector spaces, then their direct sum is the vector space
V ⊕W with even subspace V+ ⊕W+ and odd subspace V− ⊕W−. We define the
monoidal product in SVect as the vector space V ⊗W whose even and odd subspaces
are defined by

(V ⊗W )σ =
⊕

σ′σ′′=σ

Vσ′ ⊗Wσ′′ ,

where σ = ±. Thus,

(V ⊗W )+ = (V+ ⊗W+) ⊕ (V− ⊗W−),

(V ⊗W )− = (V+ ⊗W−) ⊕ (V− ⊗W+).

The monoidal unit is C, with even subspace C.

10.4 Definition. For two super vector spaces V,W , we define the symmetry iso-
morphism

cV,W : V ⊗W →W ⊗ V,

by setting

cV,W (v ⊗ w) = (−1)(1−ω(v))(1−ω(w))/4w ⊗ v, ∀v ∈ Vh,∀w ∈Wh.

on homogeneous simple tensors, and then by extending linearly.

10.5 Proposition. Both (SVect,⊗,C, cV,W ) and (SH,⊗,C, cV,W ) are symmetric
tensor ∗-categories.

10.6 Remark. By the coherence theorem SH is equivalent to a strict symmetric
tensor ∗-category, which we will also denote by SH.
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10.7 Definition. A supergroup is a pair (G, k) where G is a group and k is a central
element in G such that k · k = e. A morphism between two supergroups (G1, k1)
and (G2, k2) is a group homomorphism ϕ : G1 → G2 such that ϕ(k1) = k2.

10.8 Definition. A (unitary) representation π of a supergroup (G, k) is a super
Hilbert space V = V+ ⊕ V− together with a (unitary) representation π of G on
V such that π(k)|V± = ±idV± . The representations Rep(G, k) of (G, k) form a
symmetric tensor ∗-category with tensor product and symmetry inherited from SH,
and monoidal unit the trivial representation of (G, k) on C.

10.9 Remark. Let SHf be the full subcategory of finite dimensional super Hilbert
spaces. For a supergroup (G, k) we denote by Repf (G, k) the full subcategory of
finite dimensional representations of (G, k). The categories SHf and Repf (G, k) are
semisimple and have conjugates (see the Appendix for more on this terminology).
Also, there is a canonical forgetful functor K : Repf (G, k) → SHf .

We now move on to the statement of the Embedding Theorem, which will be
required for the reconstruction of the field algebra and gauge group. For more on su-
permathematics, we refer the reader to [Varadarajan, 2004; Deligne and Morgan, 1999].
(But note that DHR superselection theory is not concerned with supersymmetry in
the sense of a symmetry transforming Bosonic and Fermionic fields into each other.
Also, our definition of a supergroup is idiosyncratic.)

The Embedding Theorem. Let SHf be the category of finite-
dimensional super Hilbert spaces over C. Let (C,⊗,1, cX,Y ) be a tensor
C∗-category with unitary symmetry cX,Y , conjugates, direct sums, subob-
jects, and irreducible monoidal unit 1. (Such a category is called an STC∗

in the Appendix.) Then

1. There is a faithful symmetric tensor ∗-functor E : C → SHf .

2. There is a compact supergroup (G, k), where G is the group of unitary
natural monoidal transformations of E, and an equivalence F : C →
Repf (G, k) of symmetric tensor ∗-categories such that E = F ◦ K,
where K : Repf (G, k) → SHf is the forgetful functor.

10.10 Remark. The embedding theorem is proven in Appendix B. In its proof we
assume the tensor category C to be strict and we will work with the strictification
SH of the category of super Hilbert spaces. In view of the coherence theorem for
symmetric tensor categories the strictness assumptions do not limit the generality
of the result. The tensor functor F : C → SHf that we construct will, however, not
be a strict tensor functor. In the construction of the field net below we do pretend
for notational simplicity that F is strict. We will comment on this issue again at
the end of this section.
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10.2 Construction of the field net, algebraic

We now apply the Embedding Theorem to the case of the DHR category ∆f of
localized transportable morphisms with finite dimension. In particular, we show
that given an embedding E : ∆f → SHf , it is possible to construct a local system
of field algebras (π,H,F, (G, k)). This strategy of reconstruction is based on the
unpublished manuscript [Roberts, ND], which assumes the existence of an embed-
ding (or fiber) functor. The actual existence theorem for the embedding functor —
which is based on the work of Tannaka and Deligne, but incorporates more recent
simplifications — can be found in the Appendix.

10.11 Definition. As a set, the field algebra F0 consists of equivalence classes of
triples (A, ρ, ψ), with A ∈ A, ρ ∈ Obj(∆f ), and ψ ∈ E(ρ), modulo the equivalence
relation

(AT, ρ, ψ) = (A, ρ′, E(T )ψ),

for T ∈ Hom(ρ, ρ′). Since E(λidρ) = λidE(ρ) we have (λA, ρ, ψ) = (A, ρ, λψ).
Subsequently, we do not distinguish notationally between a triple (A, ρ, ψ) and its
equivalence class.

10.12 Proposition. F0 is a complex vector space under the operations:

λ(A, ρ, ψ) := (λA, ρ, ψ), λ ∈ C, (30)

and

(A1, ρ1, ψ1) + (A2, ρ2, ψ2) := (A1W
∗
1 +A2W

∗
2 , ρ, E(W1)ψ1 + E(W2)ψ2), (31)

where ψi ∈ E(ρi) and Wi ∈ Hom(ρi, ρ) are isometries with

W1W
∗
1 +W2W

∗
2 = idρ. (32)

In addition,

(A1, ρ, ψ) + (A2, ρ, ψ) = (A1 +A2, ρ, ψ)

(A, ρ, ψ1) + (A, ρ, ψ2) = (A, ρ, ψ1 + ψ2).

Therefore, identifying A with {(A, ι, 1) : A ∈ A, 1 ∈ C ≡ E(ι)}, A becomes a linear
subspace of F0; and identifying E(ρ) with {(I, ρ, ψ) : ψ ∈ E(ρ)}, E(ρ) becomes a
linear subspace of F0.

Proof. We first verify that the operations are well defined. Scalar multiplication
is well defined since for any T ∈ Hom(ρ, ρ′), (λA, ρ′, E(T )ψ) = ((λA)T, ρ, ψ) =
(λ(AT ), ρ, ψ). To show that addition is well defined, we first establish that Eqn.
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(31) is independent of the choice of W1 and W2. If W ′i ∈ Hom(ρi, ρ
′) is another such

choice then
(
A1W

′∗
1 +A2W

′∗
2 , ρ

′, E(W ′1)ψ1 + E(W ′2)ψ2

)

=
(
A1W

∗
1 +A2W

∗
2 (W1W

′∗
1 +W2W

′∗
2 ), ρ′, E(W ′1)ψ1 + E(W ′2)ψ2

)

=
(
A1W

∗
1 +A2W

∗
2 , ρ, E(W1W

′∗
1 +W2W

′∗
2 )E(W ′1)ψ1 + E(W ′2)ψ2

)

=
(
A1W

∗
1 +A2W

∗
2 , ρ, E(W1)ψ1 + E(W2)ψ2

)
.

To see that addition is independent of equivalence classes, let Ti ∈ Hom(ρi, ρ
′
i), Wi

isometries in Hom(ρi, ρ), and W ′i isometries in Hom(ρ′i, ρ). Then,

(A1T1, ρ1, ψ1) + (A2T2, ρ2, ψ2)

=
(
A1T1W

∗
1 +A2T2W

∗
2 , ρ, E(W1)ψ1 + E(W2)ψ2

)

=
(
(A1W

′
1
∗
+A2W

′
2
∗
)(W ′1T1W

∗
1 +W ′2T2W

∗
2 ), ρ, E(W1)ψ1 +E(W2)ψ2

)

=
(
A1W

′
1
∗
+A2W

′
2
∗
, ρ, E(W ′1)E(T1)ψ1 + E(W ′2)E(T2)ψ2

)

= (A1, ρ
′
1, E(T1)ψ1) + (A2, ρ

′
2, E(T2)ψ2).

To prove additivity in the first argument, choose σ = ρ ⊕ ρ, and Wi ∈ Hom(ρ, σ)
the corresponding isometries. Then

(A1, ρ, ψ) + (A2, ρ, ψ)

= (A1W
∗
1 +A2W

∗
2 , σ, (E(W1) + E(W2))ψ)

= (A1W
∗
1 +A2W

∗
2 , σ,E(W1 +W2)ψ)

= ((A1W
∗
1 +A2W

∗
2 )(W1 +W2), ρ, ψ)

= (A1 +A2, ρ, ψ).

Finally, to prove additivity in the second argument, choose σ = ρ ⊕ ρ, and Wi ∈
Hom(ρ, σ) the corresponding isometries. Then

(A, ρ, ψ1) + (A, ρ, ψ2)

= (AW ∗1 +AW ∗2 , σ,E(W1)ψ1 + E(W2)ψ2)

= (A(W ∗1 +W ∗2 ), σ,E(W1)ψ1 + E(W2)ψ2)

= (A, ρ,E(W ∗1 +W ∗2 )(E(W1)ψ1 + E(W2)ψ2))

= (A, ρ, ψ1 + ψ2).

10.13 Proposition. The complex linear space F0 becomes an algebra if we define

(A1, ρ1, ψ1)(A2, ρ2, ψ2) :=
(
A1ρ1(A2), ρ1 ⊗ ρ2, ψ1 ⊗ ψ2

)
, (33)
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where ψi ∈ E(ρi), i = 1, 2. Furthermore, A is a subalgebra of F0, and the equivalence
class of (I, ι, 1) is a multiplicative identity, where I is the multiplicative identity of
A, and 1 ∈ E(ι) = C.

Proof. We first verify that Eqn. (33) is well-defined on F0. Let Ti ∈ Hom(ρi, ρ
′
i).

Recalling that T1 × T2 = ρ′1(T2)T1, we have

(A1T1, ρ1, ψ1)(A2T2, ρ2, ψ2) = (A1T1ρ1(A2T2), ρ1 ⊗ ρ2, ψ1 ⊗ ψ2)

= (A1ρ
′
1(A2T2)T1, ρ1 ⊗ ρ2, ψ1 ⊗ ψ2)

= (A1ρ
′
1(A2)ρ

′
1(T2)T1, ρ1 ⊗ ρ2, ψ1 ⊗ ψ2)

= (A1ρ
′
1(A2)(T1 × T2), ρ1 ⊗ ρ2, ψ1 ⊗ ψ2)

= (A1ρ
′
1(A2), ρ

′
1 ⊗ ρ′2, E(T1 × T2)(ψ1 ⊗ ψ2))

= (A1ρ
′
1(A2), ρ

′
1 ⊗ ρ′2, E(T1)ψ1 ⊗ E(T2)ψ2)

= (A1, ρ
′
1, E(T1)ψ1)(A2, ρ

′
2, E(T2)ψ2).

A straightforward calculation shows that multiplication is associative. For distribu-
tivity, let Wi ∈ Hom(ρi, ρ). Then,

[
(A1, ρ1, ψ1) + (A2, ρ2, ψ2)

]
(A3, ρ3, ψ3)

=
(
(A1W

∗
1 +A2W

∗
2 )ρ(A3), ρ⊗ ρ3, (E(W1)ψ1 + E(W2)ψ2) ⊗ ψ3

)

=
(
A1ρ1(A3)W

∗
1 +A2ρ2(A3)W

∗
2 , ρ⊗ ρ3, (E(W1)ψ1) ⊗ ψ3 + (E(W2)ψ2) ⊗ ψ3

)

=
(
A1ρ1(A3)(W

∗
1 × 1ρ3) +A2ρ2(A3)(W

∗
2 × 1ρ3), ρ⊗ ρ3, (E(W1)ψ1) ⊗ ψ3 + (E(W2)ψ2) ⊗ ψ3)

)

= (A1, ρ1, ψ1)(A3, ρ3, ψ3) + (A2, ρ2, ψ2)(A3, ρ3, ψ3).

We will need the following basic lemma from linear algebra.

10.14 Definition. If H,H ′ are Hilbert spaces and S ∈ Hom(H ⊗H ′,C), then we
define an antilinear mapping JS : H → H ′ by setting

((J S)x, x′) = S(x⊗ x′), ∀x ∈ H,∀x′ ∈ H ′.

10.15 Lemma.

1. J is antilinear: J (λS) = λ(J S), and J (S1 + S2) = J S1 + J S2.

2. If T ∈ Hom(H ′,H) then

T ◦ (J S) = J (S ◦ (IH ⊗ T ∗)),

(J S) ◦ T = J (S ◦ (T ⊗ IH′)).

3. If S′ ∈ Hom(H ′ ⊗H ′′,C) then (J S′) ◦ (J S) = (S ⊗ 1H′′) ◦ (1H ⊗ S′∗).
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4. Let S1 ∈ End(H1 ⊗H ′1,C) and S2 ∈ End(H2 ⊗H ′2,C). Then

(J S2 ⊗ JS1) ◦ ΣH1,H2 = J [S1 ◦ (1H1 ⊗ S2 ⊗ 1H′1)].

Proof. Straightforward. A nice exercise in basic linear algebra.

10.16 Remark. We will apply the previous Lemma to super Hilbert spaces. But we
will take ΣH,H′ to be the ordinary symmetry on the category Hf of finite dimensional
Hilbert spaces.

10.17 Lemma. Let T ∈ Hom(ρ, ρ′) and pick solutions (ρ,R,R) and (ρ′, R′, R
′
)

of the conjugate equations with respect to ρ and ρ′; that is, R ∈ Hom(ι, ρ ⊗ ρ),
R ∈ Hom(ι, ρ ⊗ ρ) such that (R

∗ × Iρ) ◦ (Iρ × R) = Iρ, (R∗ × Iρ) ◦ (Iρ × R) = Iρ,

and analogously for R′ and R
′
. Set

T := (Iρ ×R
′∗
) ◦ (Iρ × T × 1ρ′) ◦ (R× 1ρ′) = ρ(R

′∗
T )R.

Then T ∈ Hom(ρ′, ρ) and

(Iρ × T ) ◦R = (T × Iρ′) ◦R′, (34)

(Iρ × T
∗
) ◦R = (T ∗ × Iρ′) ◦R

′
. (35)

Proof. For Eqn. (34), we have

(T × Iρ′) ◦R′ = TR′ = ρ(R
′∗
T )RR′ = ρ(R

′∗
Tρ(R′))R

= ρ(R
′∗
ρ′(R′)T )R,

where we used the definition of × for the first equality, the definition of T for the
second equality, R ∈ Hom(ι, ρ⊗ρ) for the third equality, and T ∈ Hom(ρ, ρ′) for the

fourth equality. But by the conjugate equations, R
′∗
ρ′(R′) = (R

′∗×Iρ′)◦(Iρ′×R′) =
Iρ′ = 1, and hence (T × Iρ′) ◦R′ = ρ(T )R = (Iρ × T ) ◦R. For Eqn. (35), we have

(Iρ × T
∗
) ◦R = ρ(T

∗
)R = ρ(R∗)ρρ(T ∗R

′
)R = ρ(R∗)RT ∗R

′
, (36)

where we used the definition of T for the second equality, and R ∈ Hom(ι, ρ⊗ρ) for
the third equality. But by the conjugate equations ρ(R∗)R = (Iρ×R∗)◦(R×Iρ) = Iρ,

and hence (Iρ × T
∗
) ◦R = T ∗R

′
= (T ∗ × Iρ′) ◦R

′
.

10.18 Proposition. The algebra F0 becomes a ∗-algebra if we define

(A, ρ, ψ)∗ := (R∗ρ(A)∗, ρ,JE(R
∗
)ψ), (37)

where ψ ∈ E(ρ), and (ρ,R,R) is a conjugate to ρ.

98



Proof. We first show that the definition of ∗ is independent of the choice of conjugate
to ρ. For this, let (ρ1, R1, R1) be any other choice. Define W ∈ Hom(ρ, ρ1) by

W := (R∗ × Iρ1) ◦ (Iρ ×R1) = R∗ρ(R1) (38)

we have by the conjugate equations

W−1 := (R∗1 × Iρ) ◦ (Iρ1 ×R) = R∗1ρ1(R).

Moreover,

(R∗1ρ1(A)∗, ρ1,JE(R
∗
1)ψ) = (R∗W−1ρ1(A)∗, ρ1,JE(R

∗
(Iρ ×W ∗))ψ)

= (R∗ρ(A)∗, ρ, E(W−1)JE(R
∗
(1ρ ×W ∗))ψ)

= (R∗ρ(A)∗, ρ,JE(R
∗
)ψ),

where we used Lemma 10.15.3 for the final equality.
To see that the definition of ∗ is independent of equivalence classes, suppose

that T ∈ Hom(ρ, ρ′) and ψ ∈ E(ρ). Then

(AT, ρ, ψ)∗ = (R∗ρ(T ∗A∗), ρ,JE(R
∗
)ψ)

= (R′∗T
∗
ρ(A∗), ρ,JE(R

∗
)ψ)

= (R′∗ρ′(A∗)T
∗
, ρ,JE(R

∗
)ψ)

= (R′∗ρ′(A∗), ρ′, E(T
∗
)JE(R

∗
)ψ)

= (R′∗ρ′(A∗), ρ′,JE(R
∗ ◦ (Iρ × T ))ψ)

= (R′∗ρ′(A∗), ρ′,JE(R
′∗ ◦ (T × Iρ′))ψ)

= (R′∗ρ′(A∗), ρ′,JE(R
′∗
)E(T )ψ)

= (A, ρ′, E(T )ψ)∗,

where we used Eqn. (34) for the second equality, the fact that T
∗ ∈ Hom(ρ, ρ′) for

the third equality, Lemma (10.15.2) for the fifth equality, and Eqn. (35) for the
sixth equality.

We verify that ∗ is involutive:

(A, ρ, ψ)∗∗ = (R∗ρ(A)∗, ρ,JE(R
∗
)ψ)∗

= (R
∗
ρ(ρ(A)R), ρ,JE(R∗)JE(R

∗
)ψ)

= (AR
∗
ρ(R), ρ,JE(R∗)JE(R

∗
)ψ)

= (A, ρ,E((R∗ × Iρ)(1ρ ×R))ψ)

= (A, ρ, ψ),

where we used Lemma 10.15.3 for the penultimate equality, and the conjugate equa-
tions for the final equality.
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To verify that ∗ is antilinear, let Wi ∈ Hom(ρi, ρ). Then,

[
(A1, ρ1, ψ1) + (A2, ρ2, ψ2)

]∗
=
(
A1W

∗
1 +A2W

∗
2 , ρ, E(W1)ψ1 +E(W2)ψ2

)∗

= (R∗ρ(W1A
∗
1 +W2A

∗
2), ρ,JE(R

∗
)(E(W1)ψ1 + E(W2)ψ2)). (39)

But we may take R = (W 1 ×W1) ◦ R1 + (W 2 ×W2) ◦R2, R = (W1 ×W 1) ◦R1 +
(W2×W 2)◦R2, where W i ∈ Hom(ρi, ρ) are isometries, W 1W

∗
1+W 2W

∗
2 = Iρ. Then

Eqn. (39) becomes

[(A1, ρ1, ψ1) + (A2, ρ2, ψ2)]
∗

= (R∗1ρ1(A
∗
1)W

∗
1 +R∗2ρ2(A

∗
2)W

∗
2, ρ,JE(R

∗
1(Iρ1 ×W

∗
1))ψ1 + JE(R

∗
2(Iρ2 ×W

∗
2))ψ2)

= (R∗1ρ1(A
∗
1)W

∗
1 +R∗2ρ2(A

∗
2)W

∗
2, ρ, E(W 1)JE(R

∗
1)ψ1 +E(W 2)JE(R

∗
2)ψ2)

= (A1, ρ1, ψ1)
∗ + (A2, ρ2, ψ2)

∗,

using Lemma 10.15 for the second equality.
Finally, we show that [(A1, ρ1, ψ1)(A2, ρ2, ψ2)]

∗ = (A2, ρ2, ψ2)
∗(A1, ρ2, ψ1)

∗. If
ρ = ρ1 ⊗ ρ2 and ρ′ = ρ′1 ⊗ ρ′2 then we may take R = (Iρ2 × R1 × Iρ2) ◦ R2 and
R = (Iρ1 ×R2 × Iρ1) ◦R1. Thus,

[(A1, ρ1, ψ1)(A2, ρ2, ψ2)]
∗ = (A1ρ1(A2), ρ1 ⊗ ρ2, ψ1 ⊗ ψ2)

∗

= (R∗2ρ2(R
∗
1)ρ2ρ1(ρ1(A

∗
2)A

∗
1), ρ2 ⊗ ρ1,JE(R

∗
1 ◦ (Iρ1 ×R

∗
2 × Iρ1))ψ1 ⊗ ψ2)

= (R∗2ρ2(A
∗
2)ρ2(R

∗
1ρ1(A

∗
1)), ρ2 ⊗ ρ1,JE(R

∗
1 ◦ (Iρ1 ×R

∗
2 × Iρ1))ψ1 ⊗ ψ2)

= (R∗2ρ2(A
∗
2)ρ2(R

∗
1ρ1(A

∗
1)), ρ2 ⊗ ρ1,JE(R

∗
2)ψ2 ⊗ JE(R

∗
1)ψ1)

= (R∗2ρ2(A
∗
2), ρ2,JE(R

∗
2)ψ2)(R

∗
1ρ1(A

∗
1), ρ1,JE(R

∗
1)ψ1)

= (A2, ρ2, ψ2)
∗(A1, ρ1, ψ1)

∗,

where the third equality follows from the fact that R∗1 ∈ Hom(ρ1 ⊗ ρ1, ι), and the
fourth equality follows by Lemma 10.15.4.

10.19 Proposition. Let E : ∆f → SHf be the embedding functor from the DHR
category ∆f into the strictified category SHf of finite dimensional super Hilbert
spaces. Then the formula

αg(A, ρ, ψ) = (A, ρ, gρψ), A ∈ A, ψ ∈ E(ρ). (40)

defines a group isomorphism g 7→ αg from the intrinsic group G of E into AutAF0,
the group of ∗-automorphisms of F0 leaving A pointwise fixed.

Proof. Since g is a natural monoidal transformation, gι = idE(ι) = idC. For any
g ∈ G, αg is well defined on F0 since for S ∈ Hom(ρ, ρ′),

αg(AS, ρ, ψ) = (AS, ρ, gρψ) = (A, ρ′, E(S)gρψ)

= (A, ρ′, g(ρ′)E(S)ψ) = αg(A, ρ
′, E(S)ψ).
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Since gι = idC, αg leaves A ⊂ F0 pointwise fixed. Each gρ is linear so αg is linear.

(A1, ρ1, gρ1ψ1)(A2, ρ2, gρ2ψ2) =
(
A1ρ1(A2), ρ1 ⊗ ρ2, (gρ1 ⊗ gρ2)(ψ1 ⊗ ψ2)

)
,

but gρ1⊗ρ2 = gρ1 ⊗ gρ2 so

(A1, ρ1, gρ1ψ1)(A2, ρ2, gρ2ψ2) =
(
A1ρ1(A2), ρ1 ⊗ ρ2, gρ1⊗ρ2(ψ1 ⊗ ψ2)

)
.

Thus,
αg(F1)αg(F2) = αg(F1F2). (41)

To show that αg is a ∗-homomorphism, recall that

(A, ρ, gρψ)∗ = (R∗ρ(A)∗, ρ,JE(R
∗
)gρψ). (42)

If ψ ∈ E(ρ) then E(R
∗
)(gρψ ⊗ gρψ) = E(R

∗
)((gρ ⊗ gρ)(ψ ⊗ ψ)). Furthermore,

E(R
∗
)(gρψ ⊗ gρψ) = gιE(R

∗
)(ψ ⊗ ψ) = E(R

∗
)(ψ ⊗ ψ).

Hence g∗ρJE(R
∗
)gρ = JE(R

∗
) and since gρ is unitary we get from (42),

(A, ρ, gρψ)∗ = (R∗ρ(A)∗, ρ,JE(R
∗
)gρψ) = (R∗ρ(A)∗, ρ, gρJE(R

∗
)ψ),

so
αg(F

∗) = αg(F )∗, F ∈ F. (43)

Equations (41), (43) show that αg is a ∗-homomorphism, its inverse is clearly
αg−1 so αg defined by Eqn. (40) is an element of AutAF. The mapping g 7→ αg is
clearly a homomorphism.

Since G is a compact group, for every g 6= e, there exists a (H,π) ∈ RepfG such
that π(g) 6= idH . Since the functor E is an equivalence, in particular essentially
surjective, there exists a ρ ∈ Obj(∆f ) such that E(ρ) is isomorphic to (H,π). Thus
there exists ψ ∈ E(ρ) such that

π(g)ψ = gρψ 6= ψ.

Defining F = (I, ρ, ψ), we have αg(F ) 6= F . This proves injectivity of g 7→ αg.
It remains to show that G 7→ AutAF0 is onto. Let α ∈ AutAF0, A ∈ A and

ψ ∈ E(ρ) ⊂ F0. Let Ψ = (I, ρ, ψ). Then

(α(Ψ))A = α(ΨA) = α(ρ(A)Ψ) = ρ(A)α(Ψ).

It is easily checked that this implies that α(Ψ) is of the form (I, ρ, ψ′) with ψ′ ∈ E(ρ).
Thus ψ 7→ ψ′ is a linear map of E(ρ) into E(ρ) which we denote by gρ, and it
remains to show that g = (gρ)ρ∈∆f

is monoidal natural transformation of E. For
S ∈ Hom(ρ, ρ′), we have

(S, ρ, gρψ) = α(S, ρ, ψ) = α(I, ρ′, E(S)ψ) = (I, ρ′, gρ′E(S)ψ).
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Hence
E(S)gρψ = gρ′E(S)ψ, ψ ∈ E(ρ).

That is,
E(S)gρ = gρ′E(S),

and g ∈ NatE. To check monoidality, choose arbitrary ψi ∈ E(ρi) and let Ψi =
(I, ρi, ψi). Then,

gρ1⊗ρ2(ψ1 ⊗ ψ2) = α(Ψ1Ψ2) = α(Ψ1)α(Ψ2) = (gρ1 ⊗ gρ2)(ψ1ψ2).

Thus, g ∈ Nat⊗E. It remains to show that g is unitary. For ψ,ψ′ ∈ E(ρ) and
Ψ = (I, ρ, ψ),Ψ′ = (I, ρ, ψ′) we have

〈
gρψ, gρψ

′
〉
E(ρ)

I = α(Ψ)∗α(Ψ′) = α(Ψ∗Ψ′) =
〈
ψ,ψ′

〉
E(ρ)

I,

where the first and last equalities follow from Prop. 10.25. Hence gρ is unitary for
each ρ ∈ Obj(∆f ). Therefore every α ∈ AutAF0 is of the form αg with g ∈ G =
Nat⊗E.

10.20 Definition. Given a double cone O, we define F0(O) to consist of those
elements F in F0 such that there exists A ∈ A(O), ρ ∈ Obj(∆f ) localized in O, and
ψ ∈ E(ρ) with F = (A, ρ, ψ).

10.21 Proposition. F0(O) is a ∗-subalgebra of F0.

Proof. Let F1 = (A1, ρ1, ψ1) and F2 = (A2, ρ2, ψ2) be in F0(O). Thus, the Ai can be
chosen from A(O) and the ρi can be chosen localized in O. Since ρ1(A(O)) ⊆ A(O),
it follows that

F1F2 = (A1ρ1(A2), ρ1 ⊗ ρ2, ψ1 ⊗ ψ2),

is also in F0(O). By transportability, ρ can be chosen localized in O, and in this
case ρ⊗ ρ is localized in O. By Lemma 8.6, R ∈ A(O). Hence,

F ∗ = (R∗ρ(A)∗, ρ,JE(R
∗
)ψ),

is in F0(O). Similarly, F0(O) is closed under the addition defined in Prop. 10.12
since ρ can also be chosen localized in O, and then the isometries W1,W2 are in
A(O) (by Lemma 8.6).

10.22 Proposition. The action of G on F0 leaves F0(O) globally fixed.

Proof. If F ∈ F0(O) then F = (A, ρ, ψ) for some A ∈ A(O) and ρ localized in O.
Then clearly αg(F ) = (A, ρ, gρψ) is in F0(O).

10.23 Remark. Having defined an action of the supergroup (G, k), the element
k ∈ G induces a Z2 grading on F0 and on the local algebras F0(O).
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10.24 Proposition. The field net F0 satisfies normal commutation relations. That
is, if O1 and O2 are spacelike, and Fi ∈ F(Oi) are such that

αk(Fi) = σiFi,

then
F1F2 = (−1)(1−σ1)(1−σ2)/4F2F1.

Proof. Choose Fi = (Ai, ρi, ψi) with Ai ∈ A(Oi) and ρi localized in Oi. Then
A1A2 = A2A1, ρ1(A2) = A2, ρ2(A1) = A1, and ερ1,ρ2 = idρ1⊗ρ2 . In view of the way
G acts on F0 we have

σi(Ai, ρi, ψi) = αk(Ai, ρi, ψi) = (Ai, ρi, kρi
ψi),

and hence kρi
ψi = σiψi. That is, ψi is homogeneous and ω(ψi) = σi. Further-

more, since E is a symmetric functor E(ερ1,ρ2) = ΣE(ρ1),E(ρ2), where ΣH,H′ is the
symmetry on SHf and therefore

ΣH,H′(ψ1 ⊗ ψ2) = (−1)(1−σ1)(1−σ2)/4(ψ2 ⊗ ψ1).

Hence

F1F2 = (A1ρ1(A2), ρ1 ⊗ ρ2, ψ1 ⊗ ψ2)

= (A1A2ερ2,ρ1, ρ1 ⊗ ρ2, ψ1 ⊗ ψ2)

= (A1A2, ρ2 ⊗ ρ1, E(ερ2,ρ1)(ψ1 ⊗ ψ2))

= (A2ρ2(A1), ρ2 ⊗ ρ1, E(ερ2,ρ1)(ψ1 ⊗ ψ2))

= (A2ρ2(A1), ρ2 ⊗ ρ1,ΣE(ρ2),E(ρ1)(ψ1 ⊗ ψ2))

= (−1)(1−σ1)(1−σ2)/4(A2ρ2(A1), ρ2 ⊗ ρ1, ψ2 ⊗ ψ1)

= (−1)(1−σ1)(1−σ2)/4F2F1.

10.25 Proposition. For all Ψ = (I, ρ, ψ),Ψ′ = (I, ρ, ψ′) with ψ,ψ′ ∈ E(ρ) we have

ΨA = ρ(A)Ψ, (44)

Ψ∗Ψ′ = (ψ,ψ′)I. (45)

For any orthonormal basis {ψi : i = 1, . . . , n} of E(ρ), we have

n∑

i=1

ΨiΨ
∗
i = I. (46)
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Proof.
(I, ρ, ψ)(A, ι, 1) = (ρ(A), ρ, ψ) = (ρ(A), ι, 1)(I, ρ, ψ),

whence (44). For (45), we check:

(I, ρ, ψ)∗(I, ρ, ψ′) = (R∗, ρ⊗ ρ, (JE(R
∗
)ψ) ⊗ ψ′)

= (I, ι, E(R∗)((JE(R
∗
)ψ) ⊗ ψ′)).

Since JE(R
∗
) : E(ρ) → E(ρ) and E(R∗) : E(ρ) ⊗ E(ρ) → C, it follows that

E(R∗)((JE(R
∗
)ψ) ⊗ ψ′) is a complex number. In fact, by the definition of J and

Lemma 10.15.3,

E(R∗)((JE(R
∗
)ψ) ⊗ ψ′) =

〈
JE(R∗) ◦ JE(R

∗
)ψ,ψ′

〉
E(ρ)

=
〈
JE((R∗ × Iρ) ◦ (Iρ ×R

∗
))ψ,ψ′

〉
E(ρ)

=
〈
ψ,ψ′

〉
E(ρ)

,

where the final equality follows by the conjugate equations. So, combining the
previous two equations we have

(I, ρ, ψ)∗(I, ρ, ψ′) =
(
I, ι, 〈ψ,ψ′〉E(ρ)) = 〈ψ,ψ′〉E(ρ)

(
I, ι, 1

)
.

For Eqn. (46), we have

∑

i

(I, ρ, ψi)(I, ρ, ψi)
∗ =

(
ρ(R)∗, ρ⊗ ρ,

∑
ψi ⊗ JE(R

∗
)ψi

)

= (ρ(R)∗, ρ⊗ ρ,E(R)1) = (ρ(R)∗R, ι, 1) = (I, ι, 1),

where the second equality follows from the definition of J and the final equality
follows by the conjugate equations.

10.3 Completion of the field net

We now construct a representation (H, π) of the ∗-algebra F0, and show that π|A
has a nontrivial subrepresentation equivalent to the GNS representation induced by
the vacuum state ω0. We do so by extending the state ω0 from A to F0, and then
by taking the GNS representation. In order to extend the state ω0 from A to F0, it
suffices to show that there is a positive linear map m : F0 → A.

10.26 Remark. Let ρ ∈ Obj(∆f ). Since ∆f is semisimple (see Prop. 8.69), ρ is
a finite direct sum ρ = ρ1 ⊕ · · · ⊕ ρn of irreducible objects in Obj(∆f ). Therefore,
there is a projection P ρι ∈ End(ρ) onto the direct sum of those irreducibles in this
decomposition that are isomorphic to ι.
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10.27 Proposition. Given (A, ρ, ψ) ∈ F0, define

m(A, ρ, ψ) := (AP ρι , ρ, ψ). (47)

Then m : F0 → A is a faithful positive linear projection from F0 onto A. Further,

m(AF ) = Am(F ), A ∈ A, F ∈ F0. (48)

Proof. We first show that m is well defined. If T ∈ Hom(ρ, ρ′) then TP ρι =

P ρ
′

ι TP
ρ
ι = P ρ

′

ι T , hence

m(AT, ρ, ψ) = (ATP ρι , ρ, ψ) = (AP ρ
′

ι T, ρ, ψ) = (AP ρ
′

ι , ρ
′, E(T )ψ) = m(A, ρ′, E(T )ψ),

as required. m is clearly linear and satisfies Eqn. (48). We now show that m is
positive. First, since ρ has finite dimension, ρ contains at most finitely many copies
of the vacuum representation. Thus, P ρι =

∑
i SiS

∗
i where Si ∈ Hom(ι, ρ) and

S∗i Sj = δij idι. Thus,

m(A, ρ, ψ) = (AP ρι , ρ, ψ) =
∑

i

(ASi, ι, E(S∗i )ψ).

However, E(S∗i )ψ = λi1 so that

m(A, ρ, ψ) =
∑

i

λi(ASi, ι, 1) ∈ A.

Since each ρ ∈ Obj(∆f ) is a finite direct sum of irreducible objects (Prop. 8.69),
any F ∈ F0 may be written as a finite sum F =

∑
i Fi, Fi = (Ai, ρi, ψi), where

ψi ∈ E(ρi) with ρi irreducible and pairwise inequivalent. Thus,

m(F ∗F ) =
∑

i,j

m(F ∗i Fj) =
∑

i

m(F ∗i Fi).

Hence, to show that m is positive and faithful, it suffices to consider m(F ∗F ) with
F = (A, ρ, ψ), ψ ∈ E(ρ) and ρ irreducible. In this case,

(A, ρ, ψ)∗(A, ρ, ψ) =
(
R∗ρ(A∗A), ρ⊗ ρ,JE(R

∗
)(ψ ⊗ ψ)

)
.

Using P ρ⊗ρι = ‖RR∗‖−1RR∗ = d(ρ)−1RR∗, we have

d(ρ)m(F ∗F ) = (R∗ρ(A∗A)RR∗, ρ⊗ ρ,JE(R
∗
)ψ ⊗ ψ)

= (R∗ρ(A∗A)R, ι,E(R∗)JE(R
∗
)ψ ⊗ ψ).

Now,
E(R∗)JE(R

∗
)(ψ ⊗ ψ) =

〈
JE(R∗)JE(R

∗
)ψ,ψ

〉
E(ρ)

,
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hence by Lemma 10.15,

d(ρ)m(F ∗F ) = R∗ρ(A∗A)R
〈
E((R

∗ × Iρ) ◦ (Iρ ×R))ψ,ψ
〉
E(ρ)

= R∗ρ(A∗A)R
〈
ψ,ψ

〉
E(ρ)

.

Thus, m(F ∗F ) ≥ 0 and m(F ∗F ) = 0 implies ψ = 0 or ρ(A)R = 0. But ρ(A)R = 0
only if

0 = R
∗
ρρ(A)ρ(R) = AR

∗
ρ(R) = A.

Thus m(F ∗F ) = 0 implies F = 0, and m is a faithful positive linear projection from
F0 onto A.

10.28 Lemma. Let P ρ0 be the projection in End(E(ρ)) onto the subspace of G
invariant vectors with respect to the action πρ(g) = gρ. Then E(P ρι ) = P ρ0 . Fur-
thermore, the conditional expectation m is G-invariant, i.e. m(αg(F )) = m(F ) for
all g ∈ G and F ∈ F0.

Proof. Recall that if (H,π) is an irreducible representation of a compact group G
and π is not the trivial representation, then H contains no G-invariant vectors. If
ρ =

⊕
ρi with ρi irreducible, then the previous observation implies that the G-

invariant vectors in E(ρ) are precisely those in the image of E(P ρι ). Thus E(P ρι ) =
P ρ0 , implying m(F ) = αg(m(F )). Furthermore,

mαg(A, ρ, ψ) = m(A, ρ, gρψ) = (AP ρι , ρ, gρψ) = (A, ρ, P ρ0 gρψ)

= (A, ρ, gρP
ρ
0ψ) = (A, ρ, P ρ0 ψ)

= (AP ρι , ρ, ψ) = m(A, ρ, ψ).

In view of Prop. 10.27, ω0 ◦m is a faithful state on the ∗-algebra F0. Let (H, π)
be the GNS representation of F induced by ω0 ◦ m, let F be the norm closure of
π(F0), and let F(O) be the weak closure of π(F0(O)). It is clear that F is the C∗-
inductive limit of the net O 7→ F(O). Since ω0 ◦m is G-invariant by Lemma 10.28,
there is a unitary representation U of G on H implementing the automorphisms αg
of F0:

π(αg(F )) = U(g)π(F )U(g)∗ , g ∈ G,F ∈ F0,

and therefore it extends to F. Since g 7→ αg is injective, U is injective.

10.29 Definition. Let σ ∈ Ĝ be an irreducible character of G. Define a map Eσ

on B(H) by

Eσ(A) =

∫

G
σ(g)U(g)AU(g)∗ dµ(g),

where µ is the Haar measure on U(G).
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10.30 Remark. Let F = (A, ρ, ψ) ∈ F0. Since the U(g) implements αg we have

Eσ(π(F )) =

∫

G
σ(g)

(
π(αg(A, ρ, ψ))

)
dµ(g) =

∫

G
σ(g)π(A, ρ, gρψ)dµ(g)

= π(A, ρ, P ρσψ), (49)

where P ρσ ∈ End(E(ρ)) is the orthogonal projection onto the subspace transforming
according to the irreducible representation σ. Since G is compact, Eσ is strongly
continuous. Note that E0(π(F )) = π[m(A, ρ, ψ)].

10.31 Lemma. F0(O)A = F0.

Proof. Let (A, ρ, ψ) ∈ F0. Since ρ is transportable, there is a unitary T ∈ Hom(ρ, ρ′)
with ρ′ localized in O. Then

(A, ρ, ψ) = (AT ∗, ρ′, E(T )ψ) = (AT ∗, ι, 1)(I, ρ′, E(T )ψ) = BF,

where B ∈ A and F ∈ F0(O). Hence AF0(O) = F0. Since A,F0(O) and F0 are
∗-algebras, F0(O)A = F0.

10.32 Theorem. (π,H,F, (G, k)) is a field system with gauge symmetry for (A, ω0)
with normal commutation relations (in the sense of Definitions 9.1 and 9.17).

Proof. It is obvious that F(O) is a G-stable von Neumann subalgebra of F. Also
the net O 7→ F(O) satisfies normal commutation relations. We now run through
the individual conditions in Definition 9.1.

(γ) We need to show that the fixed point algebra of F(O) under the G action is
π(A(O)). First note that E(π(F0(O))) = π(m(F0(O))). Thus,

F(O)G = E(F(O)) = E

(
π(F0(O))

)
= E(π(F0(O))) = π(m(F0(O))) = π(A(O)).

The third equality follows by the normality of E, and the last equality is due
to the fact that m is a conditional expectation from F0 to A.

(δ) Let j : F0 → H be the inclusion mapping derived from the GNS representation
of ω0 ◦m. Since j(A) = H0 we have

F(O)H0 = π(F0(O))H0 = π(F0(O))j(A) = j(F0(O)A) = j(F0) = H.

(ε) LetO1 and O2 be spacelike separated. The subalgebra A(O1) of F0 is pointwise
invariant under the gauge transformations. In particular, αk(A) = A for all
A ∈ A(O), i.e. elements of A(O1) are purely Bosonic. Therefore relative
locality follows by normality of the commutation relations (Prop. 10.24).
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Now we claim that AutAF = G. By Eqn. (49), Eσ(π(F0)) is isomorphic as a
Banach space to A ⊗ P ρσE(ρ), and so is a closed subspace of F, and so

Eσ(F) = Eσ(π(F0)) = Eσ(π(F0)) = Eσ(π(F0)).

Since for any F ∈ F we have F =
∑

σ∈Ĝ Eσ(F ), and Eσ(F ) ∈ π(F0), it follows that

an element F ∈ F is in π(F0) if and only if Eσ(F ) 6= 0 for only finitely many σ ∈ Ĝ.
Together with linearity of α, this implies that α(π(F0)) ⊆ π(F0). Thus there exists
a g ∈ G such that α|π(F0) = αg (by Prop. 10.19). Since αg is continuous and π(F0)
is dense in F, α is the unique extension of αg to F.

10.4 Poincaré covariance of the field net

Covariance considerations have played no prominent role in the DHR theory of
Section 7 or in the above reconstruction of a field net F. We now show that the
latter is Poincaré covariant if the underlying DHR sectors are. (Recall from Remark
8.75 that under favorable circumstances we have ∆fc = ∆f .)

10.33 Theorem. If in the construction of the field net F we start from the category
∆fc instead of ∆f , the field net constructed above is covariant under an automorphic

action of P̂ . This action is implemented by a positive energy representation on the
GNS representation space of F corresponding to the state ω0 ◦m.

Proof. Let βh = AdU(h) be the action of P on A. Recall from Note 8.72 that
ρh = βh ◦ ρ ◦ β−1

h and Xρ(h) ≡ U(h)Uρ(h)
∗ ∈ Hom(ρ, ρh) for all h ∈ P̂ . We define

an action β̂ of P̂ on F0 by

β̂h((A, ρ, ψ)) ≡ (βh(A), ρh, E(Xρ(h))ψ)

= (βh(A)Xρ(h), ρ, ψ) = (U(h)AUρ(h)
∗, ρ, ψ). (50)

Let ρ, ρ′ ∈ ∆fc and T ∈ Hom(ρ, ρ′). Then βh(T ) ∈ Hom(ρh, ρ
′
h), and TUρ(h) =

Uρ′(h)T , cf. Section 8.4. Thus,

βh(T )Xρ(h) = (U(h)TU(h)∗)(U(h)Uρ(h)
∗) = U(h)TUρ(h)

∗

= U(h)Uρ′(h)T = Xρ′(h)T,

Using this equation, we compute

β̂h((AT, ρ, ψ)) = (βh(AT ), ρh, E(Xρ(h))ψ) = (βh(A), ρ′h, E(βh(T )Xρ(h))ψ)

= (βh(A), ρ′h, E(Xρ′(h)T )ψ) = β̂h((A, ρ
′, E(T )ψ)),

thus β̂g is well defined. Let i : A 7→ (A, ι,1) be the inclusion of A in F. Then

β̂h ◦ i = i ◦ βg, thus β̂g extends βg. If F ∈ F(O) then there exists a representation
F = (A, ρ, ψ) with A ∈ A(O) and ρ ∈ ∆(O). Now it is evident from the definition
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that β̂h(F ) ∈ F(hO). That g 7→ β̂g is a group homomorphism is obvious from the
r.h.s. of Eqn. (50). Now,

β̂g((A1, ρ1, ψ1)(A2, ρ2, ψ2)) = β̂g((A1ρ1(A2), ρ1ρ2, ψ1 ⊗ ψ2))

= (U(h)A1ρ1(A2)Uρ1ρ2(h)
∗, ρ1ρ2, ψ1 ⊗ ψ2)

= (βh(A1)ρ1,h(βh(A2))U(h)Uρ1ρ2(h)
∗, ρ1ρ2, ψ1 ⊗ ψ2)

= (βh(A1)ρ1,h(βh(A2))Xρ1ρ2(h), ρ1ρ2, ψ1 ⊗ ψ2)

= (βh(A1)ρ1,h(βh(A2))Xρ1(h)ρ1(Xρ2(h)), ρ1ρ2, ψ1 ⊗ ψ2)

= (βh(A1)Xρ1(h)ρ1(βh(A2)Xρ2(h)), ρ1ρ2, ψ1 ⊗ ψ2)

= (U(h)A1Uρ1(h)
∗ρ1(U(h)A2Uρ2(h)

∗), ρ1ρ2, ψ1 ⊗ ψ2)

= (U(h)A1Uρ1(h)
∗, ρ1, ψ1)(U(h)A2Uρ2(h)

∗, ρ2, ψ2)

= β̂g((A1, ρ1, ψ1))β̂g((A2, ρ2, ψ2)),

where the fifth equality is due to Eqn. (27). Thus β̂g is an algebra homomorphism.
Let ρ ∈ ∆fc and choose a conjugate (ρ,R,R). Since the trivial morphism ι is

covariant with Xι = idι, applying Eqn. (50) with T = R∗ ∈ Hom(ρρ, ι) we get
R∗ = βh(R

∗)Xρρ(h) = βh(R
∗)Xρ(h)ρ(Xρ(h)), where we used Eqn. (27) again. This

is equivalent to
R∗ρ(Xρ(h)

∗) = βh(R
∗)Xρ(h), (51)

which will be used below. Now we compute

(β̂h(A, ρ, ψ))∗ = (U(h)AUρ(h)
∗, ρ, ψ)∗

= (R∗ρ(U(h)AUρ(h)
∗)∗, ρ,JE(R

∗
)ψ)

= (R∗ρ(Uρ(h)A
∗U(h)∗), ρ,JE(R

∗
)ψ)

= (R∗ρ(Uρ(h)U(h)∗βh(A
∗)), ρ,JE(R

∗
)ψ)

= (R∗ρ(Xρ(h)
∗βh(A

∗)), ρ,JE(R
∗
)ψ)

= (βh(R
∗)Xρ(h)ρ(βh(A))∗, ρ,JE(R

∗
)ψ)

= (U(h)R∗Uρ(h)
∗ρ(βh(A))∗, ρ,JE(R

∗
)ψ)

= (U(h)R∗ρ(A)∗Uρ(h)
∗, ρ,JE(R

∗
)ψ)

= β̂h((R
∗ρ(A)∗, ρ,JE(R

∗
)ψ))

= β̂h((A, ρ, ψ)∗),

thus β̂h is a ∗-homomorphism. (In the sixth equality we used Eqn. (51).)
In view of

β̂h((A, ρ, ψ)) = (U(h)AUρ(h)
∗, ρ, ψ)

αg((A, ρ, ψ)) = (A, ρ, πE(ρ)(g)ψ)

it is clear that β̂h ◦ αg = αg ◦ β̂h for all g ∈ G,h ∈ P̂ . In view of π ◦m = E0 ◦ π,

we have ω0 ◦ βh ◦m = ω0 ◦m. Thus the vacuum state of F is P̂-invariant, and P̂ is
unitarily implemented in the GNS representation.
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10.5 Uniqueness of the field net

In the present section we have shown that, given a fiber functor E : ∆f (A) → SH,
there exists a field net with normal commutation relations that is complete, i.e.
creates all representations in ∆f (A) from the vacuum. We call this the Roberts
field net and denote it by FRE. We first consider the dependence of this construction
on the functor E.

10.34 Proposition. Let E1, E2 : ∆f → H be two fiber functors. Then the Roberts
field nets FRE1

,FRE2
constructed from them are unitarily equivalent.

Proof. By Theorem B.2 from the appendix, there exists a unitary monoidal nat-
ural isomorphism α : E1 → E2. Based on this we define a map γ : FR0,1 → FR0,2
by γ : (A, ρ, ψ) 7→ (A, ρ, αρψ). This makes sense since ψ ∈ E1(ρ) and α ∈
Hom(E1(ρ), E2(ρ)). γ is well defined since, for T ∈ Hom(ρ, ρ′), we have

γ(AT, ρ, ψ) = (AT, ρ, αρψ) = (A, ρ′, E2(T ) ◦ αρψ)

= (A, ρ′, αρ ◦E1(T )ψ)) = γ(A, ρ′, E1(T )ψ).

That γ is an algebra homomorphism follows from

γ((A1, ρ1, ψ1))γ((A2, ρ2, ψ2)) = (A1, ρ1, αρ1ψ1)(A2, ρ2, αρ2ψ2)

= (A1ρ1(A2), ρ1 ⊗ ρ2, αρ1ψ1 ⊗ αρ2ψ2) = (A1ρ1(A2), ρ1 ⊗ ρ2, αρ1⊗ρ2(ψ1 ⊗ ψ2))

= γ((A1ρ1(A2), ρ1 ⊗ ρ2, ψ1 ⊗ ψ2)) = γ((A1, ρ1, ψ1)(A2, ρ2, ψ2)),

where we have used monoidality αρ1⊗ρ2 = αρ1 ⊗ αρ2 of α. Since an inverse can be
obtained using the natural isomorphism α∗, γ is an isomorphism between the field
algebras FR0,1 and FR0,2. It clearly respects the local structure, i.e. maps FR0,1(O) to

FR0,2(O).
Next we claim that m2 ◦ γ = γ ◦m1, where m1,m2 are the projections defined

earlier. Namely,

m2◦γ((A, ρ, ψ)) = m2((A, ρ, αρψ)) = (AP ρι , ρ, αρψ) = γ((AP ρι , ρ, ψ)) = γ◦m1((A, ρ, ψ)).

This implies that the states ω0 ◦m1 and ω0 ◦m2 ◦ γ on FR0,1 coincide, and therefore

the isomorphism γ : FR0,1 → FR0,2 extends to a unitary equivalence of the norm
completions in the GNS representations.

In order to study an arbitrary complete normal field net F, not a priori of the

form FR
‖·‖

, we use the following

10.35 Proposition. Let F be a complete normal field net for the observable net
A. Then there exists a strict tensor functor EF : ∆f (A) → SHf to the category of
finite dimensional super Hilbert spaces. On the objects, EF is given by the vector
space

EF(ρ) := {F ∈ F | Fπ0(A) = π0(ρ(A))F ∀A ∈ A}.
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The inner product is given by 〈F,F ′〉1 = F ∗F ′ and the Z2-grading by the action of
k ∈ G. For irreducible ρ, ρ′ ∈ ∆f , we have E(ε(ρ, ρ′)) = ±∑i,j ψ

′
iψjψ

′
i
∗ψ∗j , where

{ψi, i = 1, . . . , d(ρ)} and {ψ′i, i = 1, . . . , d(ρ′)} are orthonormal bases of E(ρ) and
E(ρ′), respectively, and the minus sign appears iff ρ and ρ are both fermionic.

Proof. (In this proof we write E instead of EF.) For s ∈ Hom(ρ, ρ′) we define
E(s) = π0(s) ∈ F. For F ∈ E(ρ) we have π0(s)Fπ0(A) = π0(s)π0(ρ(A))F =
π0(sρ(A))F = π0(ρ

′(A)s)F = π0(ρ
′(A))π0(s)F for all A ∈ A, thus π0(s)F ∈ E(ρ′)

and E is a functor. If F,F ′ ∈ E(ρ) then F ∗F ′ ∈ F ∩ A′ = C1, allowing us to define
〈F,F ′〉1 = F ∗F ′. Let s ∈ Hom(ρ, ρ′) and F ∈ E(ρ), F ′ ∈ E(ρ′). Then

〈F ′, E(s)F 〉 = 〈F ′, π0(s)F 〉 = F ′
∗
π0(s)F = (π0(s)

∗F ′)∗F = 〈π0(s
∗)F ′, F 〉 = 〈E(s∗)F ′, F 〉,

where we have used that π0 is ∗-preserving, shows that E is ∗-preserving. By Section
9 we have E(ρ)E(ρ′) = E(ρ⊗ ρ′). If Si ∈ Hom(ρi, ρ

′
i), Fi ∈ E(ρi) then

E(S1 × S2)F1F2 = π0(S1ρ1(S2))F1F2 = π0(S1)F1π0(S2)F2 ∈ E(ρ′1 ⊗ ρ′2),

thus E(S1 × S2) = E(S1) ⊗ E(S2), thus E is a strict tensor functor. Completeness
of the field net together with the discussion in Section 9 implies that E is faithful
and satisfies dimE(ρ) = d(ρ). (The latter follows also by Proposition A.45 of the
appendix.) Finally, let F ∈ E(ρ), F ′ ∈ E(ρ′) be of norm one. Now let ρ, ρ′ ∈ ∆f ,
and let ψi, i = 1, . . . , d(ρ) and ψ′i, i = 1, . . . , d(ρ′) be orthonormal bases of E(ρ) and
E(ρ′), respectively. Then

c̃(ρ, ρ′) =
∑

i,j

ψ′iψjψ
′
i
∗
ψ∗j

is in FG and independent of the chosen bases. Furthermore, c̃(ρ, ρ′) ∈ Hom(ρ ⊗
ρ′, ρ′ ⊗ ρ). The functoriality of E that was proven above implies that c̃(ρ, ρ′) is
natural in both arguments. If now {ρ′′ ∈ ∆f} and ψ′′k , k = 1, . . . , d(ρ′′) is an
orthonormal basis in E(ρ′′), then {ψ′jψ′′k} is an orthonormal basis in E(ρ′ ⊗ ρ′′),
thus

c̃(ρ, ρ′ ⊗ ρ′′) =
∑

i,j,k

ψ′jψ
′′
kψjψ

′′
k
∗
ψ′j
∗
ψ∗i

=
∑

i,j,m,k,l

ψ′m(ψ′′i ψjψ
′′
i
∗
ψ∗j )ψ

′
m
∗
(ψ′kψlψ

′
k
∗
ψ∗l )

= idρ′ ⊗ c̃(ρ, ρ′′) ◦ c̃(ρ, ρ′) ⊗ idρ′′ ,

which is one of the braid relations. One easily sees that c̃(ρ, ρ′)c̃(ρ′, ρ) = 1, thus c̃(·, ·)
is a symmetry for the tensor category ∆f . If ρ and ρ′ are irreducible and localized
spacelike to each other, the normal commutation relations of the corresponding fields
imply that c̃(ρ, ρ) = ±1, where the minus sign occurs iff ρ and ρ′′ are fermionic.
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Now, for irreducible ρ, ρ′ define c(ρ, ρ′) = ±c(ρ, ρ′), where we take the minus sign
iff ρ and ρ′ are fermionic, and extend c to reducible objects by naturality. Then
c(ρ, ρ′) = 1 whenever ρ, ρ′ are localized spacelike. Now it follows from the uniqueness
result Proposition 8.51 that E(ε(ρ, ρ′)) = c(ρ, ρ′). Thus EF is a symmetric tensor
functor in the sense that it maps the symmetry ε of ∆f to the symmetry c of the
category H of Hilbert spaces. Equivalently, E is a symmetric tensor functor into
the category of super Hilbert spaces equipped with the symmetry c̃.

Thus every complete normal field net F gives rise to a strict symmetric ∗-
preserving fiber functor EF. Denoting by FREF

the Roberts field net associated

to the latter, our aim is to construct an isomorphism F ∼= FREF
.

10.36 Theorem. Let F be a complete normal field net for A and EF : ∆f → SH the
fiber functor from Proposition 10.35. Then there is a unitary equivalence FEF

→ F

of field nets.

Proof. By Proposition 10.35, there is a symmetric ∗-preserving fiber functor EF :
∆f → SH. By the concrete Tannaka theorem (Theorem B.6 of the appendix), the
compact group GEF

of unitary monoidal natural transformations of E is unitarily
represented on the spaces EF(ρ). On the other hand, the compact group G coming
with our field net F also acts on these spaces, providing a homomorphism G→ GEF

.
This homomorphism is injective since G is concretely given as a group of unitaries on
the Hilbert space H where F lives. It is also surjective, since otherwise π|A would
contain representations that are not in ∆f , contradicting the assumption that F

is a complete field net. Thus the given group G can be identified with the one
reconstructed from the fiber functor EF. For every σ ∈ F̂ we define a projection Eσ
on F as in Definition 10.29. We denote by F0 the algebraic direct sum ⊕σ∈ĜEσ(F),

which is the same as {F ∈ F | Eσ(F ) = 0 for almost all σ ∈ Ĝ}.
We now define a map γ : FREF ,0

→ F by γ : (A, ρ, ψ) 7→ π0(A)ψ. At first sight,
this formula looks strange, but it makes perfect sense since ψ ∈ EF(ρ), where EF(ρ)
by definition is a subspace of F. As usual, γ is well defined since, for T ∈ Hom(ρ, ρ′),

γ((AT, ρ, ψ)) = π0(AT )ψ = π0(A)EF(T )ψ = γ((A, ρ′, EF(T )ψ)).

Furthermore,

γ((A1, ρ1, ψ1)(A2, ρ2, ψ2)) = γ((A1ρ1(A2), ρ1ρ2, ψ1 ⊗ ψ2)) = π0(A1ρ1(A2))ψ1ψ2

= π0(A1)ψ1π0(A2)ψ2 = γ((A1, ρ1, ψ1))γ((A2, ρ2, ψ2)),

where we have used ψ1 ∈ EF(ρ1) = {F ∈ F | Fπ0(A) = π0(ρ(A))F}. Thus γ is
an algebra homomorphism. This, together with (A, ρ, ψ) = (A, ι, 1)(1, ρ, ψ) implies
that γ is a ∗-homomorphism provided γ(F ∗) = γ(F )∗ for F = (1, ρ, ψ). Now, using
the ∗-operation on FR defined in Proposition 10.18, we have

γ((1, ρ, ψ)∗) = γ((R∗, ρ, (JE(R
∗
))ψ)) = π0(R

∗)(JE(R
∗
)ψ).
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On the other hand, γ((1, ρ, ψ))∗ = ψ∗, thus γ is a ∗-homomorphism provided ψ∗ =
R∗(JE(R

∗
))ψ holds for all ψ ∈ E(ρ).

Now, for any ψ ∈ E(ρ), we have R∗ψρ(A) = R∗ρρ(A)ψ = AR∗ψ, thus (R∗ψ)∗ ∈
E(ρ). Applying this to ψ = JE(R

∗
)ψ ∈ E(ρ), we see that ψ∗ = R∗(JE(R

∗
))ψ

holds iff ψ∗ψ′ = R∗(JE(R
∗
)ψ)ψ′ for all ψ′ ∈ E(ρ).

By Proposition A.45 of the Appendix, (E(ρ), E(R), E(R)) is a conjugate of E(ρ)
in the category of Hilbert spaces. (Or super Hilbert spaces. This doesn’t matter
since we don’t use the symmetry.) Thus there are bases {ei}, {fi} of E(ρ) and E(ρ),

respectively, with dual bases {êi}, {f̂i} in Ê(ρ), Ê(ρ) such that

E(R) =
∑

i

fi⊗ei, E(R) =
∑

i

ei⊗fi, E(R)∗ =
∑

i

f̂i⊗êi, E(R)∗ =
∑

i

êi⊗f̂i.

Thus, for ψ ∈ E(ρ), ψ ∈ E(ρ), we have

〈JE(R
∗
)ψ,ψ〉 =

(
∑

i

êi ⊗ f̂i

)
(ψ ⊗ ψ) =

∑

i

êi(ψ)f̂i(ψ)

and therefore JE(R
∗
)ψ =

∑
i êi(ψ)fi. Thus

E(R)∗((JE(R
∗
)ψ)⊗ψ′) = (

∑

i

f̂i⊗êi)(
∑

j

êj(ψ)fj⊗ψ′) =
∑

i

êi(ψ)êi(ψ
′) = 〈ψ,ψ′〉.

Now, in F, the left hand side equals R∗(JE(R
∗
)ψ)ψ′ and the right hand side equals

ψ∗ψ′, proving the desired identity ψ∗ = R∗(JE(R
∗
))ψ.

Now, for (A, ρ, ψ) ∈ FR
EF ,0

is is clear that γ((A, ρ, ψ)) is contained in a finite
dimensional G-stable subspace of F and thus in F0. Every F ∈ F0 is a sum of finitely
many terms of the form Eσ(F ) with σ ∈ Ĝ. Picking an irreducible subspace Hσ of
isometries in F0 transforming according to the class σ, there is an endomorphism
ρ ∈ ∆f induced by the subspace Hσ. Since every F ∈ Eσ(F) is a linear combination∑

iAiψi with Ai ∈ A, ψi ∈ Hσ, we have F = γ(
∑

i(A, ρ, ψi), proving γ(FREF ,0
) = F0.

Let (A, ρ, ψ) ∈ FR0 . By construction of F0, we have a finite sum representation
(A, ρ, ψ) =

∑
i(Ai, ρi, ψi), where the ρi are irreducible and mutually non-isomorphic.

Now γ((A, ρ, ψ)) =
∑

iAiψi, where the spaces E(ρi) ⊂ F transform under mutually
inequivalent irreducible representations of G. Thus γ((A, ρ, ψ)) = 0 iff Aiψi = 0 for
all i. isometries transforming according to a representation in the class σ. Since
by harmonic analysis, every F ∈ F has a unique representation of the form F =∑

σ Aσ,iψ
σ
i , this implies that for each i we have (Ai, ρi, ψi) = 0. Thus γ is injective.

We have thus proven that γ : FREF ,0
→ F0 is an isomorphism. Since the vacuum

state ωF
0 = (Ω0, ·Ω) of F is by assumption gauge invariant, the states ωF

0 ◦ γ and
ωA

0 ◦m on FREF ,0
coincide, implying that the completed nets are unitarily equivalent

in their GNS representations.
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10.37 Corollary. Every complete normal field net F is unitarily equivalent to a
Roberts field net FRE, where it doesn’t matter which fiber functor E we use.

10.38 Remark. As promised, we return to the issue of strictness of the functor
F : C → SHf that was assumed in the construction of the field net, but not proven
in the appendix. In the latter, we constructed a non-strict fiber functor, i.e. a
functor E : C → SHf together with natural isomorphisms dEρ,ρ′ : E(ρ) ⊗ E(ρ′) →
E(ρ ⊗ ρ′) and eE : 1SH → E(ι∆) satisfying Eqns. (56), (57). The construction of
the (algebraic) field algebra F0 in Subsection 10.2 can easily be generalized to this
situation: The product of fields is defined by

(A1, ρ1, ψ1)(A2, ρ2, ψ2) :=
(
A1ρ1(A2), ρ1 ⊗ ρ2, d

E
ρ1,ρ2(ψ1 ⊗ ψ2)

)

and the unit is (1, ι, eE1C). Now associativity and the unit property are obvious
consequences of Eqns. (56), (57). The rest of the constructions and proofs goes
through as before, just carrying the unitaries dE , eE along. An interesting con-
sequence of this and of Proposition 10.35 is that we can prove the existence of a
strict fiber functor E′ : ∆f → SH′, where SH′f is a strictification of the category
of finite dimensional super Hilbert spaces. This is consistent with strictification
results in category theory. (Strictification of tensor categories is nicely treated in
[Kassel, 1995, Chap. XI], but for strictification of tensor functors the best reference
remains [Joyal and Street, 1993a, Sect. 1].)

10.6 Further relations between A and F, and a Galois interpreta-
tion

In Section 9 we have discussed at length the structure of the superselection sectors of
a net A of observables in relation to the harmonic analysis of the action of a (global)
gauge group on a field net F. Note that we did not claim that all DHR represen-
tations of the fixed point net A = FG are connected to the vacuum representation
by the fields in F. In order to see that this is in general false, consider a theory A

with non-trivial DHR-category and take F := A as ‘field net’, acted upon by the
trivial group G = {e}. Obviously, all DHR representations of A are not created by
the action of F on H0. In the special case where F is Bosonic and itself satisfies
all the requirements on an observable net, it may have non-trivial DHR sectors.
Restricting a DHR representation π of F with d(π) < ∞ to A, one obtains a DHR
representation of A of the same dimension, which therefore decomposes into a finite
direct sum of irreducibles. If π is irreducible and inequivalent to the vacuum repre-
sentation π0 of F, then all the irreducible representations of A obtained in this way
are disjoint from those contained in π0|A. We refrain from a further analysis of this
issue. We do, however, wish to point out that one can specify conditions on a net
F implying that all DHR representations of A are contained in π0|A. This involves
the net-cohomology or local 1-cohomology developed by J.E. Roberts and reviewed,
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e.g., in [Roberts, 1990, §3.4]. We refrain from even attempting to give precise state-
ments and only say the following: If F has ‘quasi-trivial 1-cohomology’ and is acted
upon by a compact group G of global gauge symmetries, then the equivalent (by
Proposition 8.57) categories DHRf (A) ≃ ∆f (A) are equivalent, as symmetric ten-
sor categories to RepfG. In [Buchholz et al., 1992] it is shown, e.g., that the theory
of a free massive scalar field has quasi-trivial 1-cohomology. Thus, if one takes F

to be the direct product of N copies of such fields (of the same mass) then SO(N)
acts on F. Therefore, ∆f (A) ≃ RepfG whenever G ⊂ SO(N) is a closed subgroup

and A = FG. In [Doplicher and Piacitelli, 2002] this observation is combined with
a limit construction to prove that every (second countable) compact group arises
as a DHR gauge group. In a similar fashion, one shows that if F is the theory of a
massive Fermion with its canonical Z/2-symmetry, then ∆f (F

Z/2) ≃ RepfZ/2.
There are results in the opposite direction, i.e. from the superselection structure

of A to that of F. By [Doplicher and Roberts, 1990, Theorem 3.6], which we have not
covered entirely in Section 9, the field net reconstructed in [Doplicher and Roberts, 1990]

and in Section 10 above satisfies ‘twisted Haag duality’. In particular, if A has no
Fermionic representations then F satisfies Haag duality. In this case, one can study
the categories DHR(F) or ∆(F). In [Conti et al., 2001], the following has been
proven:

10.39 Theorem. Let A be a net of observables such that there are at most count-
ably many DHR representations of finite dimension, all of which are Bosonic. Then
the complete field net F has no non-trivial DHR representations of finite dimension.

Rather than trying to comment on the many other known results related to
those treated in the preceding sections, we close this section by commenting on a
very satisfactory mathematical interpretation of DHR/DR theory. We are referring
to the evident analogy between this theory and the Galois theory of algebraic field
extensions. (It should be clear that in the latter context, by ‘field’ we mean the
algebraic structure of which Q,R,C are examples, not the theory of classical or
quantum fields.) A field F in the latter sense is called algebraically closed if every
polynomial P (x) with coefficients in F has a zero in F. (P then is a product of
linear factors x−a.) Every field F is a subfield of an essentially unique algebraically
closed field F that is an algebraic extension of F. The latter means that F is obtained
by adjoining, typically transfinitely, solutions of polynomial equations to F. The
group GF = AutF(F) is compact, and one has a bijective correspondence between
intermediate fields F′ ⊂ F,F′ ⊃ F and closed subgroups H ⊂ G. (The correspon-

dence is given by H 7→ F
H
, F′ 7→ AutF′(F).) A similar Galois correspondence holds

in AQFT, cf. e.g. [Conti et al., 2001; Carpi and Conti, 2001]. In view of Theorem
10.39, the construction of the complete DR field net is entirely analogous to that
of the algebraic closure and can be considered as the passage to a simpler or better
behaved theory. Conversely, just as taking the fixed field of an algebraically closed
field F under the action of a closed subgroupG ⊂ AutF will result in an algebraically
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non-closed field FG, taking the G-fixed subnet of a net F with trivial category ∆f (F)
(more precisely, quasi-trivial 1-cohomology) will result in a net with non-trivial cat-
egory ∆f (A). Thus the ‘complication’ manifested by a non-trivial DHR-category
∆f (A) indicates that the theory A ‘really’ is just a subtheory of a simpler one.

Physically, however, it is not at all clear whether the ‘observable’ net A = FG

with its non-trivial representation category ∆f (A) or the ‘field net’ F with trivial
∆f (F) but non-trivial global symmetry group G is more fundamental – at least
when F is Bosonic. In [Haag, 1996] it is argued that the ‘right’ description of the
physical situation should be in terms of a net without any global symmetries. (On
the other hand, in [Haag, 1996, Section III.4.2] one finds a tentative postulate on a
‘good’ net A of observables that implies triviality of ∆f (A). As the above discussion
shows, it will be very hard to find a theory that has both a trivial DHR category
∆f and trivial global symmetry group! The theory of a single free massive Bose
field is one of the rare examples.) Whether or not one subscribes to these views,
from a mathematical point of view, both nets A and F contain the same amount
of information. This equivalence is in fact a useful tool, since it permits to view
many problems from different angles. For example, while a spin statistics theorem
can be proven in a ‘field’ framework, its physical interpretation may be clearer in
the ‘observable’ setting.

10.7 Spontaneous symmetry breaking

So far, our entire analysis has presupposed the axiom of Haag duality for the theory
A. Haag duality played an important rôle in our analysis of the category ∆(A), but
is needed also to establish the equivalence between the ∆(A) and the representations
satisfying the a priori physically motivated DHR criterion (Definition 8.55). Thus,
while it seems that the study of DHR representations is physically motivated also for
non-Haag dual nets, our mathematical analysis soon gets stuck. We will therefore
briefly comment on an approach to resolve this issue, which turns out to have a
profound physical interpretation.

10.40 Definition. Let O 7→ R(O) be a net of von Neumann algebras on a vacuum
Hilbert space H0. The dual net Rd of R is the assignment O 7→ R(O′)′.

If we have O1 ⊂ O2 thenO′2 ⊂ O′1, thus R(O′2) ⊂ R(O′1), and therefore Rd(O1) ⊂
Rd(O2). Thus the dual net really satisfies isotony. Microcausality of R is equivalent
to R(O) ⊂ R(O′)′ = Rd(O), or briefly R ⊂ Rd, and Haag duality of R is equivalent
to R = Rd. If A1 ⊂ A2 (in the sense of an inclusion for every O) then Ad2 ⊂
Ad1, thus A ⊂ Add, and a standard argument shows Ad = Addd. Note, however,
that microcausality of R does not imply microcausality of Rd! This motivates the
following

10.41 Definition. A net O 7→ R(O) ⊂ B(H0) satisfies essential duality if both R

and the dual net Rd (both indexed by double cones) satisfy microcausality.
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10.42 Lemma. If R satisfies essential duality then Rd = Rdd, i.e. Rd satisfies Haag
duality.

10.43 Remark. Essential duality can be difficult to verify. Fortunately, essential
duality follows from wedge duality, to wit R(W ′)′ = R(W ) for all wedge regions
(the regions obtained from the standard wedge W0 = {x ∈ R1+s | x0 ≥ |x1|}
by Poincaré transformations). Besides being much easier to verify than essential
duality, wedge duality is a very fundamental property that might well be required
of any ‘reasonable’ QFT.

Assuming that R satisfies essential duality, Rd satisfies Haag duality and the
D(H)R analysis applies to it. Thus we obtain a symmetric tensor ∗-category with
conjugates ∆d

f (R) := ∆f (R
d) ≃ DHRf (R

d), and we can construct the complete DR

field net F associated with (Rd,∆f (R
d)). One thus has an inclusion R ⊂ Rd ⊂ F of

nets. The DR gauge group acts on F and we have FG = Rd and also G = AutRd(F).
Since the group G is implemented by unitaries that leave the vacuum vector fixed,
G consists of ‘unbroken symmetries’. One can now define a larger group

Ĝ = AutR(F)

and topologize it suitably. Now G ⊂ Ĝ consists precisely of the elements of Ĝ that
are unitarily implemented. The point is that the net R acts irreducibly on H0, thus
a unitary whose adjoint action leaves all algebras R(O) pointwise fixed must be a
multiple of the identity also on Rd.

Concerning the categories associated with R, little can be said about the cate-
gory ∆(R), but Roberts proved the existence of an extension functorK : DHR(R) →
DHR(Rd) such that K(π)|R = π for every π ∈ DHR(R), cf. [Roberts, 1990, §3.4].
(Again, a crucial rôle is played by the theory of local 1-cohomology. Furthermore,
this result breaks down in less than three spacetime dimensions due to the phe-
nomenon of solitonic representations.) This functor actually is an equivalence, thus
spontaneous symmetry breakdown doesn’t manifest itself in the superselection struc-
ture.

For the detailed analysis we refer to [Roberts, 1974; Roberts, 1990] and the
remarkable paper [Buchholz et al., 1992], in which the Goldstone phenomenon is
analyzed in the context of algebraic QFT.

Notes: DHR superselection theory originates in a four-paper series: [Doplicher et al., 1969a]

starts with a field algebra and gauge group and then derives properties of the superselection

sectors. [Doplicher et al., 1969b] reconstructs the field algebra and gauge group from the

category of representations in the special case where the objects are all one dimensional (i.e.

the equivalence classes of objects of ∆f form an abelian group with the monoidal product

and conjugates as inverses). [Doplicher et al., 1971] defines the symmetry ερ1,ρ2
, and uses

it to give the statistical classification of objects of ∆.
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For surveys of DHR theory in general, see [Roberts, 1970; Roberts, 1990; Roberts, 2004;

Fredenhagen, 1992; Fredenhagen, 1994], [Araki, 1999, Ch. 6], and [Haag, 1996, Ch. IV.2].

The full proof of the DR reconstruction theorem is distributed over [Doplicher et al., 1974;

Doplicher and Roberts, 1972; Doplicher and Roberts, 1989] and [Doplicher and Roberts, 1990].

The alternative approach to the reconstruction theorem that we use in this paper is based

on [Roberts, ND] and [Deligne, 1990], incorporating simplifications of the latter due to

[Bichon, 1998] and ourselves.

For informal expositions of the DR econstruction theorem, see [Doplicher and Roberts, 1987;

Doplicher, 1991; Doplicher, 1992; Doplicher, 1993; Doplicher, 1995]. For an interesting de-

scription of the goal of reconstructing fields and a gauge group, written before a solution

was obtained, see [Roberts, 1975].

11 Foundational Implications of the Reconstruction The-

orem

We now return to the foundational questions (Section 7) that motivated our inves-
tigation. We also point out a few other cases where discussions in the philosophical
literature (e.g. about permutation symmetry and the identity of particles) might
benefit from the study of superselection theory.

11.1 Algebraic Imperialism and Hilbert Space Conservatism

DHR superselection theory sheds light on some questions that philosophers have
asked about the role of inequivalent representations of the algebra of observables.
But it will not answer all of our questions. We first bracket off those questions for
which DHR theory provides little help, and then we proceed to develop a case for
the relevance of DHR theory to foundational questions.

The DHR analysis requires that we fix a vacuum state ω0, and hence a base
representation (H0, π0). Inequivalent DHR representations do not correspond to
different vacuua; rather, they correspond to different local excitations of one and
the same vacuum state. So, DHR theory effectively ignores the question of how to
choose a vacuum representation. (But note that the power of the DHR analysis
strongly suggests — against the Algebraic Imperialist — that representations are
essential components of the physical content of the theory.)

Second, in some of the most familiar cases — e.g., the free Boson field — the
DHR category is trivial. That is, DHR(A) = {π0}, and so F = A. In this case, the
vacuum representation is the only DHR representation (relative to itself). Thus, in
such cases, the elaborate apparatus of DHR superselection theory seems to provide
little insight into the physical importance of inequivalent representations. (However,
if we are able to find a physical reason for choosing a preferred vacuum representa-
tion, then the DHR analysis suggests that no other representations are relevant for
explaining the phenomena.)

118



Finally, even in cases where DHR(A) is nontrivial, the field algebra itself has
inequivalent representations. (After all, it’s just another large C∗-algebra.) And
one might worry that the same Conservative versus Imperialist debate will arise
with respect to the field algebra.

But DHR theory has something to say about inequivalent DHR representations,
and about representations of the field algebra. First, the field algebra F is con-
structed concretely as operators on a Hilbert space H; i.e. F comes with a preferred
representation. (Recall that the preferred representation of F is on a Hilbert space
H that decomposes into a direct sum of superselection sectors for A.) Of course,
we could consider other representations of F. But in other representations of F, we
no longer have the intuitive interpretation of elements of F as intertwiners between
the DHR sectors of A. If the physically meaningful quantities have to have some
connection to observable phenomena, then the interpretation of elements of F in
terms of A might be thought to be a necessary condition for interpretation; and so
the given representation of F might be preferred for these reasons.

So, DHR theory suggests that the issue of inequivalent representations does not
come up for the field algebra. Regarding the issue of inequivalent representation of
the observable algebra, we can divide the problem into several questions:

1. Is there a physically privileged vacuum state/representation? What features
pick it out?

2. Are all physical representations in the DHR category of some vacuum state?
(We are ignoring for the time being theories with long range forces (see
[Buchholz and Fredenhagen, 1982]). In more general settings, we expect the
form of the question to remain the same: do we require physical states to be
reachable from a fixed vacuum state by the action of an appropriate set of
fields?)

3. If the answer to the second question is No, then how should we compare
representations that are not connected to a vacuum representation by fields
to representations that are?

Let’s suppose that the first question has been answered in the affirmative, and
that the vacuum representation (H0, π0) is fixed. Suppose also that DHR(A) is
nontrivial. Then how should we think about the inequivalent representations in
DHR(A)? A naive transcription of Hilbert Space Conservatism to the current
context would tell us the following: the representations in DHR(A) are analogous
to competing theories: one is correct, and the others are surplus structure. The
naive transcription of Algebraic Imperialism to the current context would say: the
representations in DHR(A) are surplus structure; the physical content of the theory
is in A, the abstract algebra of observables.

Both Conservatism and Imperialism are based on an oversimplified view of the
formalism: it is supposed that the elements of reality correspond to operators in
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the abstract algebra or in some Hilbert space representation thereof, and that the
possible states are either all states on the abstract algebra or some particular folium
of states. But the fundamental insight of DHR theory is that the set of represen-
tations itself has structure, and it is this structure that explains phenomena. So, a
more adequate position would take all the representations more seriously. Hence,
we propose that according to Representation Realism, the content of the theory is
given by: (i) the net O 7→ A(O), (ii) the dynamics on the quasilocal algebra (i.e.
the representation of the translation group in AutA), and (iii) the symmetric tensor
∗-category DHR(A) of DHR representations.

Recall that the Conservative claims to have the advantage in terms of explana-
tory power: more structure (provided by choosing a representation) provides more
elements of reality, and so more satisfying explanations. But DHR superselection
theory shows that this claimed advantage is misleading: the focus on one represen-
tation ignores the most interesting structure, namely the relations between repre-
sentations. Indeed, if we committed ourselves to one representation, and ignored
others, we would have no field operators, no gauge group, no definition of Bose and
Fermi fields, no definition of antiparticles, etc..

And yet there is a strong prima facie objection to Representation Realism: since
the Hamiltonian is always an observable, no possible dynamical evolution can take
us from a state in one representation to a state in an inequivalent representation. So,
inequivalent representations are dynamically isolated from each other, and abstract
relations between them cannot explain the features of states in the representation
that best describes our universe.

The fact that the Hamiltonian is an observable — hence cannot map states from
one sector to states in another — raises a further problem for our interpretation
of field operators. Recall that we speak of “creating” states in a sector Hρ by
acting on the vacuum with elements from the field algebra. That is, we can choose
F ∈ Hρ ⊆ F such that FΩ ∈ Hρ, where (Hρ, πρ) is disjoint from the vacuum
representation (H0, π0). The talk of “creation” here suggests that we are talking
about some sort of dynamical process. On the one hand, F ∈ F can be chosen
unitary, so structurally the map Ω 7→ FΩ looks like dynamics. But since the
Hamiltonian is an observable, the transition Ω 7→ FΩ is not dynamically allowable.
So, in what sense are states in Hρ accessible from the vacuum? Is the key insight
behind superselection rules that there are two notions of dynamic accessibility? If
so, then how are we to understand the differences between these two notions?

11.2 Explanatory relations between representations

If we consider a C∗-algebra A with no further structure, then the mathematically
definable relations between representations (and hence, between states in the folia
of these representations) are exhausted by the following table:
Outside of the fourth relation (which makes special reference to the topology of the
state space), these relations are precisely those that can be defined in an arbitrary
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π1 and π2 are equivalent

π1 and π2 are quasiequivalent

π1 and π2 are disjoint

π1 and π2 are weakly equivalent

Table 1: Relations Between Representations of A

∗-category C with subobjects. Two objects X,Y in C are equivalent if there is a
unitary u ∈ Hom(X,Y ); are quasiequivalent if there is an isometry v ∈ Hom(X,Y );
and are disjoint just in case they are not quasiequivalent.

Consider now the normal state space K of a C∗-algebra A. The GNS theorem
provides a map ω 7→ (Hω, πω) from K into the representation category of A. We
then use this map to induce relations corresponding to those in Table 1 on K:
we talk about equivalent, quasiequivalent, and disjoint states. Furthermore, the
individual folia (sets of states whose GNS representations are quasiequivalent) have
a rich geometrical structure which corresponds exactly to the normal state space
of B(H) for some Hilbert space H. Thus, within a folium we have a notion of
“transition probability” between pure states (corresponding to rays in H), and a
three place relation “ω is a superposition of ω1 and ω2.” However, if two states lie
in disjoint folia, then these relations trivialize. The transition probability between
disjoint states is zero, and no state can be a superposition of states from a different
folia. It seems that the only physically suggestive thing we can say about states
from different folia is that they are “orthogonal.”

It is precisely the preceding considerations that have lead philosophers to worry
about inequivalent representations. The worry is based on the fact that disjoint rep-
resentations seem to be competitors, and nothing more. In order to alleviate worries
about the competition between representations, some philosophers [Clifton and Halvorson, 2001a;
Halvorson, 2004] go so far as to claim that these representations are “complemen-
tary” descriptions of the phenomena (in the sense of Bohr). The word “comple-
mentarity” is of course meant to suggest that the representations are not merely
competitors, and the choice of one does not need to be seen as completely ruling
out the relevance of another.

We wish to replace suggestive — and possibly misleading — terminology with
some real facts about the relationships between inequivalent representations. To
illustrate what we mean by this, consider the case of group representations: let
RepfG be the category of unitary representations of a compact group G. RepfG is
not only a ∗-category, but it has a monoidal product and conjugates. That is, for
objects X,Y in RepfG, there is a product object X ⊗ Y , and a conjugate object

X . For our purposes, this is the crucial difference between group representations
and the representations of an arbitrary C∗-algebra A. For an arbitrary C∗-algebra
A, there is no product of representations, or conjugate of a representation.
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In the case of compact group representations, typically X ∈ RepfG will be dis-

joint from both X ⊗ Y and X . But in this case, we are not tempted to see X
is merely as a competitor of X ⊗ Y , or of X ; there are some interesting relations
between these representations. Roughly speaking, information about X gives us in-
formation about X⊗Y and X . Thus, although these representations are technically
“disjoint,” they are not completely unrelated to each other.5

One of the main accomplishments of the DHR analysis and DR reconstruction
theorem is to show that the category ∆f of physical representations is a tensor
∗-category with conjugates; indeed the Embedding Theorem (see the Appendix)
shows that ∆f is equivalent to the category RepfG for some compact group G.
The obvious question then is whether these additional relations on the category of
representations can help us get past the idea that disjoint representations are merely
competing descriptions.

An analogy to states might be helpful. Consider a pair H1,H2 of Hilbert spaces,
and let ψi ∈ Hi be unit vectors. Now consider the following two “descriptions of
reality”:

1. The state is ψ1.

2. The state is ψ1 ⊗ ψ2.

What do we say here: are these competing descriptions? In one sense, (1) and (2)
are competitors, because they cannot both be fully adequate descriptions of reality
at the same time. However, (1) and (2) are not competitors in the same sense that,
say, two orthogonal vectors in a single Hilbert space are competitors. The two state
descriptions are not merely competitors, because there is an interesting sense in
which ψ1 is a “part” of ψ1 ⊗ ψ2. Indeed, information about ψ1 (e.g. expectation
values it assigns to observables) does in fact give us information about ψ1 ⊗ ψ2

because of the canonical mappings between H1 and H1 ⊗H2.
Now let π1, π2 be objects in the DHR category ∆f , and suppose (as will often be

the case) that the representations π1 and π1 ⊗ π2 are disjoint. Are these competing
descriptions? Again, π1 and π1 ⊗π2 are competitors in the sense that if the state of
an object (or of the universe?) is in H(π1⊗π2) then it is not in Hπ1. Nonetheless, π1

and π1⊗π2 are not merely competitors, because in one sense π1 is “part” of π1⊗π2.
But two words of caution should be issued here. First, we must be cautious

with the use of the “part” metaphor. For example, ∆f can have a nontrivial rep-
resentation π such that π ⊗ π is equivalent to the vacuum representation. Then it
is not so clear that we should say that “π is part of π ⊗ π.” Second, there is one

5But note also: Philosophers of physics have so far not worried about inequivalent group repre-
sentations as competing descriptions of reality. And for good reason, because group elements are
not observables, and groups do not have states. Another insight of DHR theory is to show that
physicist’s intuitions about group representations are not totally baseless, because in fact the inter-
esting (DHR) representations of the observable algebra correspond to representations of a compact
group.
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significant disanalogy between the case of states ψ1 and ψ1 ⊗ ψ2 and the case of
representations π1 and π1 ⊗ π2: the two representations are GNS representations
of states on a single C∗-algebra A. Hence we can directly compare the expectation
values that these states assign to observables in A, and they will disagree signifi-
cantly (indeed, for any ε > 0 there is an observable A ∈ A such that ‖A‖ ≤ 1 and
‖ω1(A) − ω2(A)‖ > 2 − ε). Thus, there is a clear, empirically verifiable sense in
which states in π1 are competitors with states in π1 ⊗ π2.

Finally, there is an interesting physical relation between a DHR representation π
and its conjugate π, even though π and π are typically disjoint. In short, π is like an
inverse of π: if π is irreducible, then π is the unique irreducible representation such
that π ⊗ π contains a copy of the vacuum representation. In fact, when π = π0 ◦ ρ
where ρ is a dimension 1 element of ∆f , d(ρ) = 1, then this is the exact relation:
ρ is an automorphism and ρ = ρ−1. In terms of field operators, if F creates the
charge ξ, then F annihilates the charge ξ. Furthermore, when π admits a particle
interpretation, then the states in the folium of π are the antiparticle states of the
states in the folium of π [Doplicher et al., 1969b].

11.3 Fields as theoretical entities, as surplus structure

From the standpoint of superselection theory, there is a sharp distinction between
observable and unobservable fields, namely, a field operator is an observable iff it
is invariant under all gauge transformations. To what extent does this distinction
between fields and observables match up with the philosopher of science’s distinction
between theoretical and observational components of a theory? Even if the two
notions are not exactly the same, the connection is suggestive. In particular, it
seems interesting to ask about the extent to which the field plus gauge part of QFT
is fixed by the observable algebra.

First, the notion of equivalent systems of field operators seems a fairly close
analogue of the philosopher’s notion of “theoretical equivalence.”

11.1 Definition. Let F1 = (F1,H1, G1) and F2 = (F2,H2, G2) be local field systems
with gauge symmetry for (A, ω). (See Defn. 9.1 on p. 83.) Then F1 and F2 are
theoretically equivalent just in case they are unitarily equivalent as systems of local
field operators. (See Defn. 10 on p. 92.)

11.2 Remark. (i) This definition is not fully adequate, because it does not make
reference to dynamics. For example, this definition entails that the free Bose field
nets for different positive masses are theoretically equivalent. For a fully adequate
definition, it would probably be necessary to require that the unitary mapping
W : H1 → H2 also intertwines the dynamical groups on the two Hilbert spaces.
(ii) If F1 and F2 are theoretically equivalent, then they are equivalent in all physi-
cally relevant senses (modulo dynamics): they have the same type of commutation
relations (either both have normal or abnormal commutation relations), they have
isomorphic gauge groups, etc..
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The working analogy also suggests that we define “observational equivalence”
between two theories in terms of some equivalence between their nets of observ-
able algebras. There are a myriad number of ways we could explicate the notion
of observational equivalence in this setting; philosophers have their work cut out
for them. The following two definitions give extremely weak notions of observa-
tional equivalence that do not take into account a representation of the algebra of
observables.

11.3 Definition. Let F1 and F2 be two local field systems with gauge symmetry,
and let A1 and A2 be the fixed point algebras; i.e.,

Ai = {A ∈ Fi : αg(A) = A, for all g ∈ Gi}.

Then we say that F1 and F2 are weakly observationally equivalent just in case there
is a ∗-isomorphism α from the algebra A1 onto the algebra A2.

11.4 Definition. Let F1 and F2 be two local field systems with gauge symmetry,
and let A1 and A2 be their fixed point nets; i.e. for each double cone O,

Ai(O) = {A ∈ Fi(O) : αg(A) = A, for all g ∈ Gi}.

Then we say that F1 and F2 are observationally equivalent just in case there is a
net isomorphism α : A1 → A2 (see Defn. 5.9 on p. 41).

11.5 Remark. The first definition is weaker because it does not require that the
net structure be preserved by the ∗-isomorphism α.

Again, the definitions omit reference to dynamics, which would be an important
component of a fully adequate treatment of observational equivalence. Nonetheless,
even with these definitions, we can make some sense of remarks about underdeter-
mination of fields by observables, or about the physical equivalence of different field
theories.

1. (Construction of observationally equivalent theories) The DR reconstruction
theorem provides a general, nontrivial recipe for constructing non-equivalent
theories that are observationally equivalent: If (A, ω0) has nontrivial DHR
superselection sectors, then it can be embedded into two nonequivalent field
algebras F1 and F2. Indeed, A is always a field algebra over itself (but in-
complete), but the field algebra F from the DR reconstruction theorem is
complete.

2. (Elimination of parafields) It has long been thought that parafields are a theo-
retical artifact. More precisely, it has been claimed that every parafield theory
is “physically equivalent” to a theory with normal commutation relations (see
[Araki, 1961]). The DR reconstruction theorem partially validates this claim
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by showing that every parafield theory is observationally equivalent to a the-
ory with normal commutation relations. Indeed, suppose that F1 is a parafield
theory. Then we can extract the observable algebra A contained in F1, and
apply the DR reconstruction theorem to construct a field algebra F2 with
normal commutation relations. Since F1 and F2 have the same net of local
observable algebras, they are observationally equivalent.

3. Some have claimed that the relation between quantum fields (the field alge-
bra F) and observables (the observable algebra A) is analogous to relation
between coordinates and a manifold in differential geometry. However, the
DR reconstruction theorem shows that (subject to normal commutation rela-
tions), there is a unique field net F and gauge group G compatible with the
observable algebra (A, ω0). Thus, there is a strong disanalogy between the two
cases, since there seems to be no sense in which one coordinate system of a
manifold is a better representation of reality than another coordinate system.

Finally, we are in a position to get a clear picture of the interrelations between
questions about inequivalent representations and questions about gauge invariance.

According to a common interpretive stance, if two states of a physical system
can be identified under a gauge symmetry, then those two states are different de-
scriptions of the same underlying reality. So, for the purposes of counting states,
we should look to the quotient of the state space under gauge orbits. Similarly, it
is thought that the “real” quantities of a theory are the gauge invariant quantities
(see [Earman, 2004]).

In the setting of DHR superselection theory, the algebra of observables A is
precisely the gauge invariant part of the field algebra F, that is,

A = {A ∈ F : αg(A) = A, for all g ∈ G},

where G is the gauge group. This of course means that for any observable A ∈ A,
there is no difference between a state ψ and the gauge transformed state U(g)ψ.
(Of course, if ψ is a state vector in the vacuum representation, then U(g)ψ = ψ,
since the representation of the gauge group there is trivial.) So, if the common
interpretive stance is correct, the physical content of the theory is in the observable
algebra A; the fields are “descriptive fluff.”

So suppose that we ignore the field algebra F, and just look to the observable
algebra A to provide the physical content of the theory. But what should we say
about the representations of A? Are they just descriptive fluff? If not, then is there
one correct representation of A, or do we somehow need inequivalent representations
in order to account for all of the physical facts?

The DR reconstruction theorem shows that the preceding two sets of questions
— regarding the status of gauge variant quantities on the one hand, and representa-
tions on the other hand — are tightly intertwined. The full structure of the theory,
field algebra F and gauge group G, is uniquely recoverable (modulo completeness,
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and normal commutation relations) from the structure of the category DHR(A) of
representations. The ontological significance of the gauge variant fields is closely
aligned with the ontological significance of inequivalent representations. (We will
revisit this question in the next section when we discuss permutation symmetry.)

Of course, there is a crucial disanalogy between the global gauge symmetries
in DHR superselection theory, and the local gauge symmetries of electromagnetism
or general relativity. But it is not clear that this disanalogy makes the DR recon-
struction theorem any less interesting for understanding the relation between gauge
symmetry and superselection rules.

11.4 Statistics, permutation symmetry, and identical particles

Philosophers have taken an active interest in the differences between the Maxwell-
Boltzmann statistics of classical physics, and the Bose-Fermi statistics of quantum
physics. Indeed, it has been provocatively claimed that Bose-Fermi statistics is
explained by permutation invariance — i.e. there are no physical differences be-
tween states with permuted particle labels — and that this entails that quantum
particles are not “individuals” in the same sense that classical particles are. (See
[French, 2000; French and Rickles, 2003] for an account of the argument.)

But such discussions can be hampered by an overly simplistic formalism. In
particular, states are usually identified with unit vectors (or at best with rays)
in a single Hilbert space, and no account is given of the status of non-permutation
invariant operators. It might be helpful then to look at the issue from the perspective
of a more flexible formalism that allows a distinction between fields and observables,
and in which states can be represented by vectors in inequivalent representations of
the algebra of observables.

There is another reason why the issue of permutation invariance should be re-
visited within the context of QFT. Some of the literature suggests that the meta-
physical problem about the individuality of particles is aufgehoben in the transition
to QFT, because: (i) QFT is about fields and not particles, and (ii) the Fock space
formalism of QFT already identifies permuted states, and so rules out a notion of
particles as individuals. We have already noted that it is not so clear how to make
sense of the idea that QFT is about fields as opposed to particles. Furthermore, the
DR reconstruction theorem shows precisely how to make sense of non-permutation
invariant quantities and states in a theory that is manifestly permutation invariant.

It is not surprising that DHR theory is relevant for the issue of permutation
invariance and statistics: one of the original goals of DHR was to clarify the role
of statistics in QFT. Riding the crest of a wave of mathematical success, Roberts
made the following bold claim about the DHR analysis of statistics:

One of the insights provided by the study of superselection sectors con-
cerns the origin of what is termed the ‘statistics’ of a particle. . . . Now
just as a theory should determine its particle states so should it de-
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termine the statistics of these particles. Ordinary quantum mechanics
ignores this challenge saying in effect that the statistics of particles is
one of the parameters determining the theory, the one telling you what
symmetry the n-particle states have. QFT does a little better: it says
that the statistics of the particles in the theory is determined by the
commutation relations of fields at spacelike separations. . . . In adopting
the philosophy that the local observables determine the theory, we are
forced to meet this challenge in full. [Roberts, 1976, p. 203]

In the remainder of the paper from which the quote is taken, Roberts shows how
Bose-Fermi particle statistics emerges naturally from the DHR analysis of physical
representations of the algebra of observables.

Roberts’ claim is of crucial relevance to the philosophical debate about statistics
and identical particles. The philosophers have asked, “what explains Bose-Fermi
statistics?” Roberts’ answer is that the explanation comes from the structure of the
category of representations of the observable algebra.

Let us recall then how the Bose-Fermi distinction is supposed to emerge from
the DHR analysis. In Section 8.3, an object ρ of the category ∆ is shown to have an
intrinsic dimension d(ρ). The dimension is finite iff ρ has a conjugate; in this case
we define a unitary operator Θρ ∈ End(ρ) called the twist of ρ. If ρ is irreducible,
then Θρ = ωρidρ where ωρ = ±1. We then stipulate that a “Bosonic” object is one
with ωρ = 1 and a “Fermionic” object is one with ωρ = −1.

Of course, ρ is not the sort of thing that the philosophers have been calling
Bosonic or Fermionic — it is not a wavefunction. To connect the two pieces of
formalism, recall that an object of ∆f (endomorphisms of the algebra of observables)
corresponds to a representation π0 ◦ ρ of the algebra of observables. So, we call
the representation π0 ◦ ρ Bosonic when ρ is Bosonic, and Fermionic when ρ is
Fermionic. Finally, we then call a state (“wavefunction”) Bosonic if it is in the
folium of a Bosonic representation, and Fermionic if it is in the folium of a Fermionic
representation. The claims to be assessed are: (i) does this stipulative definition
adequately reproduce the distinction between Bosonic and Fermionic wavefunctions
made in elementary nonrelativistic QM; and if so, (ii) what does this tell us about
permutation invariance?

11.4.1 The Bose-Fermi distinction in nonrelativistic QM

In nonrelativistic QM, the state space of n identical particles is the tensor product
H ⊗ · · · ⊗ H of n copies of a Hilbert space H. The Hilbert space H ⊗ · · · ⊗ H is
spanned by product states, i.e. states of the form

ψ1 ⊗ · · · ⊗ ψn,

with ψ1, . . . , ψn ∈ H.

127



11.6 Definition. We define the natural action of the permutation group Sn on
H⊗· · ·⊗H as follows. Let {ψ1, . . . , ψm} be an orthonormal basis for H, and define
for each permutation σ,

U(σ)(ψi1 ⊗ · · · ⊗ ψim) = ψσ(i1) ⊗ · · · ⊗ ψσ(im),

and extend U(σ) by linearity to all of H.

If dimH > 1, then the representation U of Sn is reducible. It contains copies of
the two one-dimensional representations of Sn, namely the identity representation
Sn → 1, and the alternating representation. The subspace of vectors of H⊗· · ·⊗H
transforming according to the identity representation is called the symmetric sub-
space, and the subspace of vectors transforming according to the alternating repre-
sentation is called the antisymmetric subspace. Vectors in the symmetric subspace
are called Bosonic, and vectors in the antisymmetric subspace are called Fermionic.
These traditional definitions have served as the basis of discussions of permutation
invariance in the philosophical literature.

In QM, states of n particles that differ only by permuting labels — for example,
ψ1 ⊗ ψ2 versus ψ2 ⊗ ψ1 — should not be counted separately. For the purposes of
statistical weighting, these two symbols represent one state. This has been stated
as the principle of Permutation Invariance.

Permutation Invariance (PI): Let A be the observables for the n
particle system. Then for each state ψ, and for each permutation σ ∈ Sn,
we have

〈U(σ)ψ,AU(σ)ψ〉 = 〈ψ,Aψ〉.

Permutation Invariance is sometimes also called the Indistinguishability Postulate:
two states that differ by a permutation are indistinguishable (i.e. there is no mea-
surement that can distinguish between the two). It has been claimed that PI entails
that state has Bose or Fermi statistics, no states with “parastatistics” are allowed.

Dichotomy: For each state vector ψ and permutation σ, we have
U(σ)ψ = ±ψ.

(See [van Fraassen, 1991, pp. 389ff] for an account of attempts to prove Dichotomy
from PI. See [Butterfield, 1993] for further details.) In other words, the states that
are not in the symmetric or antisymmetric subspaces are surplus structure.

This leaves us with a number of puzzles. First, what do we say about the
vectors in H ⊗ · · · ⊗H that are not in the symmetric or antisymmetric subspaces?
Are they surplus structure? Are they possibilities that are contingently not realized
in nature? More generally, not all vectors in H⊗· · ·⊗H are of a definite symmetry
type; and even among those that are of a definite symmetry type, not all are totally
symmetric or totally antisymmetric. For any irreducible representation ξ of Sn we
say that a wavefunction ψ in H ⊗ · · · ⊗H is of symmetry type ξ just in case ψ is
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contained in the subspace corresponding to the representation ξ. Then H ⊗· · ·⊗H
is the direct sum of subspaces of definite symmetry type vectors. But now the
principle of plenitude suggests that there should be particles of every symmetry
type. Why do we not see them?

11.4.2 An intrinsic characterization of symmetric and antisymmetric
subspaces

We began with the full n-particle Hilbert space H ⊗ · · · ⊗H, and then we reduced
to the symmetric and antisymmetric subspaces. We were then left wondering what
to do with the remaining elements of H ⊗ · · · ⊗H.

The intrinsic description of the symmetric and antisymmetric subspaces is that
they are representations of the group Sn. (In fact, they are quasiequivalent to the
one dimensional irreducible representations of Sn.) So we can also work backwards.
That is, if we are given a representation (H,π) of Sn, we can ask after the intrinsic
characterization of this representation. Recall that the irreducible representations
of Sn are in one-to-one correspondence with Young tableaux with n boxes (see
[Simon, 1996]). There is a natural grouping of representations of Sn into para-Bose
and para-Fermi categories: we specify the representation (H,π) by a pair of numbers
(d(π), ωπ), with d(π) ∈ {1, 2, . . . , n} and ωπ = ±1.

1. For (d,+1), all Young tableaux whose columns have length less than or equal
d. (In this case, we say that π has Para-Bose statistics of order d.)

2. For (d,−1), all Young tableaux whose rows have length less than or equal d.
(In this case, we say that π has para-Fermi statistics of order d.)

Clearly the division of representations into para-Bose and para-Fermi is mutually
exclusive, but not exhaustive. (e.g., there are representations of Sn that contain
copies of both the 1 representation and the alternating representation.)

Now suppose that we are in the following position (described vividly by Roberts
in the opening quote): we are given a pure state ω of the algebra of observables A

and we asked whether its “intrinsic” statistics of its states is Bosonic or Fermionic.
What can we do? First we construct the GNS representation (H, π) induced by ω.
At least this makes things more concrete. But the Hilbert space H is not itself a
tensor product, and so there is no natural representation of Sn on H. Nor would it
help to construct tensor products of elements of H in the normal way, because for
ψ ⊗ · · · ⊗ ψ is trivially Bosonic. So, the obvious approach does not seem to tell us
anything about the intrinsic symmetry type of elements of H.

The key insight again comes from the DHR analysis: the representation (H, π)
is naturally isomorphic to an object ρ of a symmetric tensor ∗-category, namely
the category ∆f of localized transportable endomorphisms. Since ∆f has products
we can construct ρ⊗ ρ, and the symmetry ερ,ρ gives us notion of permuting ρ⊗ ρ.
[Recall that ερ,ρ ∈ Hom(ρ ⊗ ρ).] As we will see in the following section, this gives
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us a natural representation u of Sn in End(ρ⊗ ρ). Furthermore, the pair (d(ρ), ωρ),
where d(ρ) is the dimension of ρ, and ωρ is the statistical phase of ρ, coincide with
the classification of u as a para-Bose or para-Fermi representation of Sn. We will
also see that this natural representation u of Sn corresponds to a permutation of
wavefunctions in the “larger” Hilbert space of the field algebra F.

11.4.3 Representations of Sn in a symmetric tensor ∗-category
Unitary representations of the permutation group Sn arise naturally in tensor ∗-
categories with a unitary symmetry. Let (C,⊗,1) be a tensor ∗-category with uni-
tary symmetry cX,Y . Fix an object X ∈ Obj(C), and define a map u : S2 →
End(X ⊗X) by setting

u((1)) = idX⊗X , u((1, 2)) = cX,X .

Since (cX,X)2 = idX⊗X , u is a unitary representation of S2 in End(X ⊗X). This
construction can be iterated: define a map u : Sn → End(X ⊗ · · · ⊗X) by setting

u((i, i + 1)) = idX ⊗ · · · ⊗ cX,X ⊗ · · · ⊗ idX .

It is easy to verify that u extends uniquely to a unitary representation of Sn in
End(X ⊗ · · · ⊗X).

11.7 Fact. Let C be a tensor ∗-category with unitary symmetry and conjugates.
Then for each irreducible object X ∈ Obj(C) the induced unitary representation u
of Sn in End(X⊗· · ·⊗X) is para-Bose of order d(X) if ωX = +1, and is para-Fermi
of order d(X) if ωX = −1. Furthermore, the statistical phase ωX is the trace of
u((1, 2)) = cX,X . (See Appendix B for more details.)

The physical interpretation becomes more clear in the presence of field operators.
(Of course, the point of the Reconstruction Theorem is to show that such field
operators are always available.) Let (H,F, (G, k)) be a field system with gauge
symmetry for the observable algebra A and vacuum state ω. Let O1, . . . , On be
mutually spacelike separated regions. Let ρ be an irreducible object in ∆f . Then
using the transportability of ρ we can choose Fi ∈ F(Oi) such that FiΩ is in the
sector Hρ̂. (Recall that sectors are labeled by unitary equivalent classes ρ̂ of objects
in ∆f .) In other words, Fi creates the charge ρ̂ in the region Oi. Let σ be a
permutation of {1, . . . , n} and consider the following two state vectors in H:

ψ1 × ψ2 × · · · × ψn ≡ F1F2 · · ·FnΩ, (52)

ψσ(1) × ψσ(2) × · · · × ψσ(n) ≡ Fσ(1)Fσ(2) · · ·Fσ(n)Ω. (53)

These two vectors are typically distinct. In fact, if the field net has normal com-
mutation relations then we can compute the difference between the two vectors.
Supposing that σ only permutes two numbers, the two vectors will be the same if
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ρ is Bosonic, and the two vectors will differ by a sign if ρ is Fermionic. However,
the two vectors always induce the same state on the algebra of observables π(A).
Indeed, if ρi ∈ ∆f (Oi) are the corresponding morphisms, then the states induced
by the two vectors, respectively, are

ω ◦ (ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn) = ω ◦ (ρ1ρ2 · · · ρn), (54)

ω ◦
(
ρσ(1) ⊗ ρσ(2) ⊗ · · · ⊗ ρσ(n)

)
= ω ◦ (ρσ(1)ρσ(2) · · · ρσ(n)). (55)

Since endomorphisms that are localized in spacelike separated regions commute,
these two states are equal. Thus, permutation invariance holds for the observables,
but not for the fields.

The interpretive upshot of the the DHR treatment of statistics is as follows:
permutation invariance is a gauge symmetry in the sense that it leaves all observ-
ables’ values invariant, but changes the values assigned to field operators. Are two
states related by a permutation the same or different? Of course, the answer to the
mathematical question is clear: the states of the observable algebra are the same,
the states of the field algebra are different. So, whether or not we take permutations
to correspond to “real” changes depends on what we think about the status of the
field operators. So the issue of permutation invariance is just a special version of
the issue of gauge invariance, and accordingly is tightly connection to the question
of the status of inequivalent representations.

11.4.4 Parastatistics and nonabelian gauge groups

The abstract Tannaka Theorem (Appendix B) shows that each symmetric tensor
∗-category (STC∗) C is equivalent to the representation category Repf (G, k) of
a compact supergroup (G, k). Applied to our current topic, the theorem shows
that the category ∆f of localized transportable morphisms is equivalent to the
representation category of the gauge group. Furthermore, Section B.9 shows that
each object X of an STC∗ gives rise naturally to a unitary representation of the
symmetric group Sn in End(X ⊗ · · · ⊗X), and this representation corresponds to
the intrinsic statistical characterization of X. Now, we know that the categorical
dimension of a representation (H,π) of (G, k) corresponds to the dimension of the
underlying Hilbert space H. Hence:

11.8 Lemma. The category Repf (G, k) has irreducible objects of dimension greater
than 1 iff G is nonabelian.

Sketch of proof. The set of irreducible representations of G separates the elements
of G. Hence for gh 6= hg, there is an irreducible representation (H,π) such that
π(g)π(h) 6= π(h)π(g). Therefore dimH ≥ 2.

It immediately follows from Fact 11.7, in conjunction with the fact that the embed-
ding functor preserves dimension, that:
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11.9 Proposition. There is an irreducible object X of C ≃ Repf (G, k) with paras-
tatistics iff the corresponding group G is nonabelian.

Applied to our current case, this means that there are representations and states
with parastatistics iff the gauge group G is nonabelian.6 But we have good reasons
to think that the case of nonabelian gauge groups is physically relevant. So, the
DHR approach ignores worries about the supposed nonexistence of paraparticle
states, and undermines claims that there is a proof of Dichotomy.

11.4.5 Braid group statistics

Recall from Section 8.1 that when spacetime is dimension 2, then ερ1,ρ2 is not
necessarily a symmetry on ∆f , but only a braiding. In this case, objects in ∆f

are not classified according to representations of the symmetric group Sn; rather,
objects in ∆f are classified in terms of representations of the braid group Bn. In
physical terms, states might not be permutation invariant, but satisfy the more
general braid group statistics.

11.10 Definition. The braid group Bn on n strands is the group generated by the
set {σ1, . . . , σn−1} satisfying the equations

(1) σiσj = σjσi, |i− j| ≥ 2,

(2) σi+1σiσi+1 = σiσi+1σi.

The braid group on n strands can be given the following heuristic, geometric
description: a braid consists of two sets {a1, . . . , an} and {b1, . . . , bn} of base points,
and n strands of yarn, where each yarn strand has one end attached to ai, and
the other end attached to bj, and each base point touches only one strand of yarn.
We identify two configurations if one can be transformed into the other without
disconnecting the strands from the base points. In this picture, the identity braid
has ai connected to bi, and no twists. The generating element σi can be thought
of as the simple braid where: ai is connected to bi+1, ai+1 is connected to bi, and
these two strands are twisted only once. (Otherwise, the σi braid looks just like the
identity braid.) Under this interpretation, the product gh of two braids is the braid
formed by attaching the ending points of g to the beginning points of h.

11.11 Proposition. For each n ∈ N, the mapping

ε(n)
ρ (σi) = ρi−1(ερ) = Iρ × · · · × Iρ × ερ × Iρ × · · · × Iρ,

defines a unitary representation of the braid group Bn in End (ρ⊗ · · · ⊗ ρ). For
each i, j ∈ N with i ≤ j we have

ε(i)ρ (g) = ε(j)ρ (ϕij(g)), ∀g ∈ Si.
6But there is an ambiguity in “parastatistics.” We mean para-Bose or para-Fermi statistics, not

mixtures of Bose and Fermi statistics.
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(A proof of this Proposition can be found in [Rehren et al., 1990]. Alternatively,
it is obvious given the considerations in Appendix B.) In other words, the product
object ρ⊗· · ·⊗ρ carries a unitary representation of the braid group, which is induced
by the unitary operators of the form:

Iρ × · · · × ερ,ρ × · · · × Iρ.

This represents an elementary permutation of the i-th and (i+ 1)-st copy of ρ.
There is a natural homomorphism of the braid group onto the symmetric group.

This is obvious when we recall that the definition of the symmetric group is exactly
the same as the definition of the braid group with the additional condition that
each generator is its own inverse. Hence, van Dyck’s theorem [Hungerford, 1980,
p. 78] entails that the obvious map f on generators extends uniquely to a group
homomorphism f : Bn → Sn. So, each representation π of Sn yields a representation
π ◦ f of Bn. In slogan form: a system that obeys permutation statistics also obeys
braid statistics.

Recall now the worrisome argument for the existence of paraparticles: There
should be particles corresponding to all irreducible representations of Sn. For n ≥ 3,
there are non Bose or Fermi representations of Sn, so there should be paraparticles.

Now we can see that either something is wrong with this argument, or the prob-
lem is much more severe than we thought. Since any system that has Sn as a
symmetry group also has Bn as a symmetry group, the argument commits us to
predicting the existence of particles corresponding to all irreducible representations
of Bn. But Bn has infinitely many irreducible representations. (Indeed, its repre-
sentations have so far resisted classification.) Furthermore, we could now repeat
the argument for any group K that can be mapped homomorphically onto Bn, and
there is an infinite chain of larger groups with this property. Therefore, the principle
of plenitude applied to group representations predicts more particles than we could
ever possibly describe.

Notes: For discussions of statistics of DHR representations, see [Roberts, 1976; Doplicher, 1975].
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Appendix (by Michael Müger)

Not much in these two appendices is new. (Theorem B.32 probably is, and see
Remark B.63.) However, this seems to be the first exposition of the reconstruction
theorem for symmetric tensor categories that gives complete and streamlined proofs,
including a short and transparent proof of Tannaka’s classical theorem. In the first
section we provide the necessary concepts and results of category theory to the
extent that they don’t involve the notion of fiber functor, whereas the second section
is concerned with the Tannaka theory proper. Our main reference for category
theory is [Mac Lane, 1998], preferably the second edition. The reader having some
experience with categories is advised to skip directly to Section B, using the present
section as a reference when needed.

A Categorical Preliminaries

A.1 Basics

A.1 Definition. A category C consists of:

• A class Obj(C) of Objects. We denote the objects by capital letters X,Y, . . ..

• For any two objects X,Y a set HomC(X,Y ) of arrows (or morphisms); we
write f : X → Y to indicate that f ∈ HomC(X,Y ), and we omit the subscript
C whenever there is no risk of confusion.

• For any object X a distinguished arrow idX ∈ End(X) = Hom(X,X).

• For eachX,Y,Z ∈ Obj(C), a function ◦ : Hom(Y,Z)×Hom(X,Y ) → Hom(X,Z)
such that:

h ◦ (g ◦ f) = (h ◦ g) ◦ f,
and

idY ◦ f = f, g ◦ idY = g,

whenever f ∈ Hom(X,Y ), g ∈ Hom(Y,Z), and h ∈ Hom(Z,W ).

A.2 Definition. A morphism f ∈ Hom(X,Y ) is an isomorphism iff it is invertible,
i.e. there is a g ∈ Hom(Y,X) such that g◦f = idX and f◦g = idY . If an isomorphism
X → Y exists, we write X ∼= Y .

A.3 Definition. If C is a category, then a subcategory D ⊂ C is defined by a subclass
ObjD ⊂ ObjC and, for every X,Y ∈ ObjD, a subset HomD(X,Y ) ⊂ HomC(X,Y )
such that idX ∈ HomD(X,X) for all X ∈ ObjD and the morphisms in D is closed
under the composition ◦ of C. A subcategory D ⊂ C is full if HomD(X,Y ) =
HomC(X,Y ) for all X,Y ∈ ObjD.
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A.4 Definition. A (covariant) functor F from category C to category D maps
objects of C to objects of D and arrows of C to arrows of D such that F (g ◦ f) =
F (g) ◦ F (f), and F (idX) = idF (X). A contravariant functor is just like a covariant
functor except that it reverses the order of arrows.

A.5 Definition. A functor F : C → D is faithful, respectively full, if the map

FX,Y : HomC(X,Y ) → HomD(F (X), F (Y )),

is injective, respectively surjective, for all X,Y ∈ Obj(C).

A.6 Definition. A functor F : C → D is essentially surjective if for every Y ∈
ObjD there is an X ∈ ObjC such that F (X) ∼= Y .

A.7 Definition. If F : C → D and G : C → D are functors, then a natural
transformation η from F to G associates to every X ∈ Obj(C) a morphism ηX ∈
HomD(F (X), G(X)) such that

F (X)
F (s)- F (Y )

G(X)

ηX

?

G(s)
- G(Y )

ηY

?

commutes for every arrow f ∈ HomC(X,Y ). If ηX is an isomorphism for every
X ∈ Obj(C), then η is said to be a natural isomorphism.

A.8 Definition. A functor F : C → D is an equivalence of categories if there exist a
functor G : D → C and natural isomorphisms η : FG→ idD and ε : idC → GF . Two
categories are equivalent, denoted F ≃ G, if there exists an equivalence F : C → D.

A.9 Definition. A category is small if ObjC is a set (rather than just a class). A
category is essentially small if it is equivalent to a small one, i.e. Obj C/ ∼= is a set.

A.10 Remark. Without wanting to go into foundational technicalities we point
out that the category of a ‘all representations’ of a group is a huge object. However,
considered modulo equivalence the representations are of reasonable cardinality, i.e.
are a set.

A.2 Tensor categories and braidings

A.11 Definition. Given two categories C,D, the product category C×D is defined
by

Obj(C × D) = ObjC × ObjD,
HomC×D(X × Y,Z ×W ) = HomC(X,Z) × HomD(Y,W ),

idX×Y = idX × idY
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with the obvious composition (a× b) ◦ (c× d) := (a ◦ c) × (b ◦ d).

A.12 Definition. A strict tensor category (or strict monoidal category) is a cat-
egory C equipped with a distinguished object 1, the tensor unit, and a functor
⊗ : C × C → C such that:

1. ⊗ is associative on objects and morphisms, i.e. (X ⊗ Y ) ⊗ Z = X ⊗ (Y ⊗ Z)
and (s⊗ t)⊗ u = s⊗ (t⊗u) for all X,Y,Z,X ′, Y ′, Z ′ ∈ ObjC and all s : X →
X ′, t : Y → Y ′, u : Z → Z ′.

2. The unit object behaves as it should: X ⊗ 1 = X = 1⊗X and s⊗ id1 = s =
id1 ⊗ s for all s : X → Y .

3. The interchange law

(a⊗ b) ◦ (c⊗ d) = (a ◦ c) ⊗ (b ◦ d)

holds whenever a ◦ c and b ◦ d are defined.

A.13 Remark. Many categories with tensor product are not strict in the above
sense. A tensor category is a category equipped with a functor ⊗ : C × C → C,
a unit 1 and natural isomorphisms αX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z), λX :
1⊗X → X, ρX : X ⊗ 1 → X satisfying certain identities. The notions of braiding,
monoidal functor and monoidal natural transformation generalize to such categories.
The generality achieved by considering non-strict categories is only apparent: By
the coherence theorems, every (braided/symmetric) tensor category is monoidally
naturally equivalent to a strict one. See [Mac Lane, 1998; Joyal and Street, 1993b]

for all this.
Strictly speaking (pun intended) the categories of vector spaces and Hilbert

spaces are not strict. However, the coherence theorems allow us to pretend that
they are, simplifying the formulae considerably. The reader who feels uncomfortable
with this is invited to insert the isomorphisms α, λ, ρ wherever they should appear.

A.14 Definition. A (full) tensor subcategory of a tensor category C is a (full)
subcategory D ⊂ C such that ObjD contains the unit object 1 and is closed under
the tensor product ⊗.

A.15 Definition. Let C,D be strict tensor categories. A tensor functor (or a
monoidal functor) is a functor F : C → D together with isomorphisms dFX,Y :

F (X)⊗F (Y ) → F (X ⊗Y ) for all X,Y ∈ C and a morphism eF : 1D → F (1C) such
that

1. The morphisms dFX,Y are natural w.r.t. both arguments.
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2. For all X,Y,Z ∈ C the following diagram commutes:

F (X) ⊗ F (Y ) ⊗ F (Z)
dFX,Y ⊗ idF (Z)- F (X ⊗ Y ) ⊗ F (Z)

F (X) ⊗ F (Y ⊗ Z)

idF (X) ⊗ dFY,Z

?

dFX,Y⊗Z

- F (X ⊗ Y ⊗ Z)

dFX⊗Y,Z

?

(56)

3. The following compositions are the identity morphisms of F (X)

F (X) ≡ F (X) ⊗ 1D
idF (X) ⊗ eF

- F (X) ⊗ F (1C)
dX,1- F (X ⊗ 1C) ≡ F (X)

F (X) ≡ 1D ⊗ F (X)
eF ⊗ idF (X)- F (1C) ⊗ F (X)

d1,X- F (1C ⊗X) ≡ F (X)
(57)

for all X ∈ C.

If C,D are tensor ∗-categories and F is ∗-preserving, the isomorphisms e, dX,Y are
required to be unitary.

A.16 Definition. Let C,D be strict tensor categories and F,G : C → D tensor
functors. A natural transformation α : C → D is monoidal if

F (X) ⊗ F (Y )
dFX,Y- F (X ⊗ Y )

G(X) ⊗G(Y )

αX ⊗ αY

?

dGX,Y

- G(X ⊗ Y )

αX⊗Y

?

commutes for all X,Y ∈ C and the composite 1D
eF

−→ F (1)
α1−→ G(1) coincides with

eG.

A.17 Remark. A tensor functor between strict tensor categories is called strict if
all the isomorphisms dX,Y and e are identities. However, it is not true that every
tensor functor is equivalent to a strict one!

A.18 Definition. A tensor functor F : C → D is an equivalence (of tensor cate-
gories) if there exist a tensor functor G : D → C and monoidal natural isomorphisms
GF → idC and FG→ idC .
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A.19 Proposition. A functor F : C → D is an equivalence iff F is faithful, full
and essentially surjective. A tensor functor F : C → D of (strict) tensor categories
is an equivalence of tensor categories iff F is faithful, full and essentially surjective.

Proof. For the first statement see [Mac Lane, 1998, Theorem 1, p. 91] and for the
second [Saavedra Rivano, 1972]. 2

A.20 Definition. A braiding for a strict tensor category C is a family of isomor-
phisms cX,Y : X ⊗ Y → Y ⊗X for all X,Y ∈ ObjC satisfying

1. Naturality: For every s : X → X ′, t : Y → Y ′, the diagram

X ⊗ Y
cX,Y- Y ⊗X

X ′ ⊗ Y ′

s⊗ t

? cX′,Y ′- Y ′ ⊗X ′

t⊗ s

?

commutes.

2. The ‘braid equations’ hold, i.e. the diagrams

X ⊗ Y ⊗ Z
cX,Y ⊗ idZ- Y ⊗X ⊗ Z

Y ⊗ Z ⊗X

idY ⊗ cX,Z

?

cX,Y⊗Z -

X ⊗ Y ⊗ Z
idX ⊗ cY,Z- X ⊗ Z ⊗ Y

Z ⊗X ⊗ Y

cX,Z ⊗ idY

?

cX⊗Y,Z
-

commute for all X,Y,Z ∈ ObjC.

If, in addition, cY,X ◦ cX,Y = idX⊗Y holds for all X,Y , the braiding is called a
symmetry.

A strict braided (symmetric) tensor category is a strict tensor category equipped
with a braiding (symmetry).

A.21 Definition. If C,D are strict braided (symmetric) tensor categories, a tensor
functor F : C → D is braided (symmetric) if

F (cX,Y ) = cF (X),F (Y ) ∀X,Y ∈ Obj C.

(Note that on the l.h.s., respectively r.h.s, c is the braiding of C, respectively D.

There is no additional condition for a monoidal natural transformation to be
braided/symmetric.
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A.3 Graphical notation for tensor categories

We will on some occasions use the so-called ‘tangle diagrams’ for computations
in strict (braided) tensor categories, hoping that the reader has seen them before.
By way of explanation (for much more detail see e.g. [Kassel, 1995]) we just say
that identity morphisms (equivalently, objects) are denoted by vertical lines, a mor-
phism s : X → Y by a box with lines corresponding to X and Y entering from
below and above, respectively. Compositions and tensor products of morphisms are
denoted by vertical and horizontal juxtaposition, respectively. Braiding morphisms
are represented by a crossing and the duality morphisms r, r by arcs:

Hom(X,Y ) ∋ s ≡

Y

s

X

cX,Y ≡
Y X
@@

�
�

�

@@
X Y

c−1
Y,X ≡

Y X
@

@
@��

��

X Y

rX ≡
X X

� �rX ≡
X X

� �
(If c is a symmetry, both lines are drawn unbroken.) The reason for using this dia-
grammatic representation is that even relatively simple formulae in tensor categories
become utterly unintelligible as soon as morphisms with ‘different numbers of in-
and outputs’ are involved, like s : A→ B⊗C⊗D. This gets even worse when braid-
ings and duality morphisms are involved. Just one example of a complete formula:
The interchange law s⊗ idW ◦ idX ⊗ t = idY ⊗ t ◦ s⊗ idZ for s : X → Y, t : Z → W
is drawn as

Y W

s

t

X Z

=

Y W

t

s

X Z

The diagram (correctly!) suggests that we have may pull morphisms alongside each
other.

A.4 Additive, C-linear and ∗-categories

A.22 Definition. A category is an Ab-category if all hom-sets are abelian groups
and the composition ◦ is bi-additive.

A.23 Definition. Let X,Y,Z be objects in a Ab-category. Then Z is called a
direct sum of X and Y , denoted Z ∼= X ⊕ Y , if there are morphisms u : X →

149



Z, u′ : Z → X, v : Y → Z, v′ : Z → Y such that u′ ◦ u = idX , v
′ ◦ v = idY and

u ◦ u′ + v ◦ v′ = idZ . (Note that every Z ′ ∼= Z also is a direct sum of X and Y .
Thus direct sums are defined only up to isomorphism, which is why we don’t write
Z = X ⊕Y .) We say that C has direct sums if there exists a direct sum Z ∼= X ⊕Y
for any two object X,Y .

A.24 Definition. An object 0 in a category C is called a zero object if, for every
X ∈ C, the sets Hom(X,0) and Hom(0,X) both contain precisely one element. A
morphism to or from a zero object is called a zero morphism.

It is immediate from the definition that any two zero objects are isomorphic. If
a category doesn’t have a zero object it is straightforward to add one. If z is a zero
morphism and f is any morphism, then z ◦ f, f ◦ z, z ⊗ f, f ⊗ z are zero morphisms
(provided they make sense).

A.25 Definition. An additive category is an Ab-category that has a zero object
and direct sums.

A.26 Example. The category of abelian groups (with the trivial group as zero).

A.27 Definition. A category C is called C-linear if Hom(X,Y ) is a C-vector space
for all X,Y ∈ ObjC and the composition map ◦ : (f, g) 7→ g ◦ f is bilinear. If C
is a tensor category we require that also ⊗ : (f, g) 7→ g ⊗ f is bilinear. Functors
between C-linear category are always assumed to be C-linear, i.e. HomC(X,Y ) →
HomD(F (X), F (Y )) must be C-linear.

A.28 Definition. A positive ∗-operation on a C-linear category is a family of maps
that to every morphism s ∈ Hom(X,Y ) associates a morphism s∗ ∈ Hom(Y,X).
This map must be antilinear, involutive ((s∗)∗ = s) and positive in the sense that
s∗ ◦ s = 0 implies s = 0. A ∗-category is a C-linear category equipped with a
positive ∗-operation. A tensor ∗-category is a tensor category with a positive ∗-
operation such that (s⊗ t)∗ = s∗⊗ t∗ for all s, t. We consider only unitary braidings
(symmetries) of tensor ∗-categories.

A.29 Definition. A morphism v : X → Y in a ∗-category is called an isometry if
v∗ ◦ v = idX . It is called a unitary if it satisfies v∗ ◦ v = v ◦ v∗ = idY . A morphism
p ∈ EndX is called a projector if p = p ◦ p = p∗. We say that C has subobjects if for
every projector p ∈ EndX there exists an isometry v : Y → X such that v ◦ v∗ = p.
In a ∗-category we strengthen Definition A.23 by requiring that u′ = u∗, v′ = v∗,
i.e. u, v must be isometries.

A.30 Definition. A functor F between ∗-categories is ∗-preserving if F (s∗) =
F (s)∗ for every morphism s. The isomorphisms dX,Y , e coming with a functor
between tensor ∗-categories coming with a functor of tensor ∗-categories are required
to be unitaries.
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A.31 Definition. Let C be a tensor ∗-category and X ∈ ObjC. An object X ∈
Obj C is called a conjugate object of X if there exist morphisms r : 1 → X ⊗X and
r : 1 → X ⊗X satisfying the ‘conjugate equations’

idX ⊗ r∗ ◦ r ⊗ idX = idX

idX ⊗ r∗ ◦ r ⊗ idX = idX .

We say that (X, r, r) is a conjugate of X. If every non-zero object of C has a
conjugate then we say that C has conjugates.

Note also that a zero object cannot have a conjugate. If (X, r, r), (X
′
, r′, r′) both

are conjugates of X then one easily verifies that id
X
′ ⊗ r∗ ◦ r′ ⊗ idX : X → X

′
is

unitary. Thus the conjugate is unique up to unitary equivalence.

A.32 Definition. An object in a C-linear category is irreducible if EndX = CidX .

A.33 Definition. A TC∗ is an tensor ∗-category with finite dimensional hom-sets,
with conjugates, direct sums, subobjects and irreducible unit 1. A BTC∗ is a TC∗

with a unitary braiding. An STC∗ is a TC∗ with a unitary symmetry.

A.34 Example. The tensor ∗-category H of finite dimensional Hilbert spaces is a
STC∗. The symmetry cH,H′ : H ⊗H ′ → H ′ ⊗H is given by the flip isomorphism
Σ : x ⊗ y 7→ y ⊗ x. The conjugate of an object H is the Hilbert space dual H.
Picking a basis {ei} of H with dual basis {fi}, the conjugation morphisms are given
by

r =
∑

i

fi ⊗ ei, r =
∑

i

ei ⊗ fi.

In the same way one sees that the category RepfG of finite dimensional unitary
representations of a compact group G is an STC∗.

A.35 Lemma. A TC∗ is semisimple, i.e. every object is a finite direct sum of
irreducible objects.

Proof. For every X ∈ C, EndX is a finite dimensional C-algebra with a positive
involution. Such an algebra is semisimple, to wit a multi matrix algebra. Thus idX
is a sum of projections pi that are minimal in the sense that piEndXpi ∼= C. Since
C has subobjects, there are objects Xi corresponding to the pi, which are irreducible
by minimality of the pi. Clearly, X ∼= ⊕iXi. 2

A.36 Definition. A solution (X, r, r) of the conjugate equations is called standard
if

r∗ ◦ idX ⊗ s ◦ r = r∗ ◦ s⊗ idX ◦ r
for all s ∈ EndX. In this case, (X, r, r) is called a standard conjugate.
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A.37 Lemma. Let C be a TC∗ and (X, r, r) a conjugate for X ∈ C. Let vi : Xi →
X, wi : Xi → X be isometries effecting the direct sum decomposition of X,X into
irreducibles. Then (X, r, r) is a standard conjugate iff (X i, w

∗
i ⊗ v∗i ◦ r, v∗i ⊗w∗i ◦ r)

is a standard conjugate for Xi for all i. Every object admits a standard conjugate.

Proof. For the equivalence claim, see [Longo and Roberts, 1997], in particular Lemma
3.9. (Note that in [Longo and Roberts, 1997], standardness is defined by the prop-
erty in the statement above.) We use this to prove that every objects admits a
standard conjugate. If X is irreducible, we have EndX = CidX . Therefore the stan-
dardness condition reduces to r∗ ◦ r = r∗ ◦ r, thus a conjugate (X, r, r) can be made
standard by rescaling r, r. In the general case, we use semisimplicity to find a direct
sum decomposition of X into irreducibles Xi. Let (X i, ri, ri) be standard conjugates
of the Xi and put X = ⊕Xi. Let vi : Xi → X, wi : Xi → X be the isometries
effecting the direct sums. Defining r =

∑
iwi ⊗ vi ◦ ri and r =

∑
i vi ⊗ wi ◦ ri, the

criterion in the first part of the lemma applies and gives standardness of (X, r, r).
2

A.38 Lemma. Let (X, r, r) be a (standard) conjugate of X, let p ∈ EndX a
projection and define p = r∗⊗idX ◦ idX⊗p⊗idX ◦ idX⊗r ∈ EndX. If v : Y → X, w :
Y → X are isometries such that v◦v∗ = p,w◦w∗ = p then (Y ,w∗⊗v∗ ◦ r, v∗⊗w∗ ◦ r)
is a (standard) conjugate for Y .

Proof. Omitted. For the easy proof see [Longo and Roberts, 1997] or [Müger, 2000].
2

A.39 Lemma. If (X, r, r), (Y , r′, r′) are (standard) conjugates ofX,Y , respectively,
then (Y ⊗ X, r′′, r′′), where r′′ = idY ⊗ r ⊗ idY ◦ r′, r′′ = idX ⊗ r′ ⊗ idX ◦ r) is a
(standard) conjugate for X ⊗ Y .

Proof. That (Y ⊗X, r′′, r′′) is a conjugate is an easy computation. Standardness is
less obvious since the map EndX ⊗ EndY → EndX ⊗ Y need not be surjective.
However, it follows using the alternative characterization of standardness given in
Lemma A.37. 2

A.40 Proposition. Let C be a TC∗. Let X ∈ C and let (X, r, r) be a standard
conjugate. Then the map

TrX : EndX → C, s 7→ r∗ ◦ idX ⊗ s ◦ r

is well defined, i.e. independent of the choice of (X, r, r). It is called the trace. It
satisfies

TrX(s ◦ t) = TrY (t ◦ s) ∀s : Y → X, t : X → Y,

TrX⊗Y (s⊗ t) = TrX(s)TrY (t) ∀s ∈ EndX, t ∈ EndY.
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Proof. Easy exercise. 2

A.41 Definition. Let C be a TC∗ and X ∈ C. The dimension of X is defined by
d(X) = TrX(idX), i.e. d(X) = r∗ ◦ r for any standard conjugate (X, r, r).

A.42 Lemma. The dimension is additive (d(X ⊕ Y ) = d(X) + d(Y )) and multi-
plicative (d(X ⊗Y ) = d(X)d(Y )). Furthermore, d(X) = d(X) ≥ 1 for every object,
and d(X) = 1 implies that X ⊗X ∼= 1, i.e. X is invertible.

Proof. Additivity is immediate by the discussion of standard conjugates. Multi-
plicativity of the dimension follows from Lemma A.39.

If (X, r, r) is a standard conjugate for X, then (X, r, r) is a standard conjugate
forX, implying d(X) = d(X). The positivity of the ∗-operation implies that d(X) =
r∗ ◦ r > 0. Since X ⊗X contains 1 as a direct summand, we have d(X)2 ≥ 1, thus
d(X) ≥ 1. Finally, if d(X) = 1, 1 is the only direct summand of X ⊗ X, to wit
X ⊗X ∼= 1. Similarly, X ⊗X ∼= 1. 2

A.43 Definition. Let C be a BTC∗. For every X ∈ C pick a conjugate X and a
standard solution r, r of the conjugate equations. Define the twist Θ(X) ∈ EndX
by

Θ(X) = r∗ ⊗ idX ◦ idX ⊗ cX,X ◦ r ⊗ idX .

A.44 Lemma. Let C be a BTC∗. Then

(i) Θ(X) is well defined, i.e. does not depend on the choice of (X, r, r).

(ii) For every morphism s : X → Y we have Θ(Y ) ◦ s = s ◦ Θ(X). (I.e., Θ is a
natural transformation of the identity functor of C.)

(iii) Θ(X) is unitary.

(iv) Θ(X ⊗ Y ) = Θ(X) ⊗ Θ(Y ) ◦ cY,X ◦ cX,Y for all X,Y .

(v) If C is an STC∗, this simplifies to Θ(X)2 = idX and Θ(X⊗Y ) = Θ(X)⊗Θ(Y )
for all X,Y ∈ C (i.e., Θ is a monoidal natural transformation of the identity
functor of C). If X,Y are irreducible, we have ω(X) = ±1 and ωZ = ωXωY
for all irreducible direct summands Z ≺ X ⊗ Y .

Proof. (i) is proven as Proposition A.40. The other verifications are not-too-difficult
computations, for which we refer to [Longo and Roberts, 1997] or [Müger, 2000].
We just comment on (v): In an STC∗ we have c∗X,X = c−1

X,X = cX,X , implying

Θ(X)∗ = Θ(X). Together with unitarity this gives Θ(X)2 = idX . Multiplicativity
of Θ in an STC∗ follows from cY,X ◦ cX,Y = id. If X,Y are irreducible, we have
Θ(X) = ωX idX ,Θ(Y ) = ωY idY and thus Θ(X ⊗ Y ) = ωXωY idX⊗Y . Now ω(Z) =
ωXωY for irreducible Z ≺ X ⊗ Y follows by naturality of Θ. 2

The following is a reworking of Propositions 4.4 and 4.5 in [Longo and Roberts, 1997].
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A.45 Proposition. Let C,D be BTC∗s and E : C → D a ∗-preserving braided
tensor functor. If (X, r, r) is a standard conjugate of X ∈ C, then (E(X), (dE

X,X
)−1◦

E(r) ◦ eE , (dE
X,X

)−1 ◦ E(r) ◦ eE) is a standard conjugate for E(X). In particular,

d(E(X)) = d(X), Θ(E(X)) = E(Θ(X)) ∀X ∈ C.

Proof. We assume for a while that the functor E is strict and that X is irreducible.
Let (X, r, r) be a standard conjugate. Since E preserves the conjugate equations,
(E(X), E(r), E(r)) is a conjugate for E(X), but if E is not full, standardness re-
quires proof. We begin with

X X

A
A
A��

��


 	r
=

X X

� �r∗
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A
A��
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 	r

=

X X� �r∗
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AA

�
�
�

AA
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X X

� �r∗
AA

�
�
�

AA
 	r 
 	r

= ωX

X X


 	r

Thus c∗
X,X

◦ r = ωX · r, which is equivalent to cX,X ◦ r = ωXr. Now we let

s ∈ EndE(X) and compute

E(r∗) ◦ idE(X) ⊗ s ◦ E(r) = E(r∗) ◦ c∗
E(X),E(X)

◦ cE(X),E(X) ◦ idE(X) ⊗ s ◦ E(r)

= (cE(X),E(X) ◦ E(r))∗ ◦ cE(X),E(X) ◦ idE(X) ⊗ s ◦ E(r)

= (cE(X),E(X) ◦ E(r))∗ ◦ s⊗ idE(X) ◦ cE(X),E(X) ◦ E(r)

= E(cX,X ◦ r)∗ ◦ s⊗ idE(X) ◦ E(cX,X ◦ r)
= E(ωXr)

∗ ◦ s⊗ idE(X) ◦ E(ωXr)

= E(r)∗ ◦ s⊗ idE(X) ◦ E(r),

which means that (E(X), E(r), E(r)) is a standard conjugate for E(X). (We have
used unitarity of the braiding, the fact that E is ∗-preserving and braided, cX,X ◦ r =
ωXr and |ωX | = 1.)

Now let X be reducible, (X, r, r) a standard conjugate and let vi : Xi → X,
wi : X i → X be isometries effecting the decompositions into irreducibles. Defining
ri = w∗i ⊗ v∗i ◦ r, ri = v∗i ⊗ w∗i ◦ r), (Xi, ri, ri) is standard by Lemma A.37. Thus
(E(X i), E(ri), E(ri)) is standard by the first half of this proof. In view of E(r) =
E(
∑

iwi⊗vi ◦ ri) =
∑

iE(wi)⊗E(vi) ◦ E(ri) and similarly for E(r), it follows that
(E(X), E(r), E(r)) is standard (since it is a direct sum of standard conjugates).
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If E is not strict, we have to insert the unitaries dEX,Y : E(X)⊗E(Y ) → E(X ⊗
Y ), eE : 1 → E(1) at the obvious places in the above computations, but nothing
else changes. That E preserves dimensions follows since the dimension is defined in
terms of a standard conjugate. Finally, standardness of (E(X), E(r), E(r)) together
with E(cX,Y ) = cE(X),E(Y ) imply Θ(E(X)) = E(Θ(X)). 2

We close this subsection by commenting on the relation of ∗-categories with
the more general notion of C∗-tensor categories of [Doplicher and Roberts, 1989;
Longo and Roberts, 1997].

A.46 Definition. A C∗-category is a C-linear category with a positive ∗-operation,
where Hom(X,Y ) is a Banach space for all X,Y and ‖s◦t‖Hom(X,Z) ≤ ‖s‖Hom(X,Y ) ·
‖t‖Hom(Y,Z) for all s : X → Y, t : Y → Z and ‖s∗ ◦ s‖EndX = ‖s‖2

Hom(X,Y ) for all

s : X → Y . (Thus each EndX is a C∗-algebra.) A C∗-tensor category is a C∗-
category and a tensor category such that ‖s⊗ t‖ ≤ ‖s‖ · ‖t‖ for all s, t.

A.47 Proposition. [Longo and Roberts, 1997] Let C be a C∗-tensor category with
direct sums and irreducible unit. IfX,Y ∈ C admit conjugates then dimHom(X,Y ) <
∞. Thus a C∗-tensor category with direct sums, subobjects, conjugates and irre-
ducible unit is a TC∗. Conversely, given a TC∗, there are unique norms on the
spaces Hom(X,Y ) rendering C a C∗-tensor category.

Proof. Assume that X ∈ C has a conjugate (X, r, r). Then the map EndX →
Hom(1,X ⊗ X), s 7→ idX ⊗ s ◦ r is an isomorphism of vector spaces since t 7→
r∗ ⊗ idX ◦ idX ⊗ t is its inverse, as is verified using the conjugate equations. Now,
Hom(1,X ⊗ X) is a pre-Hilbert space w.r.t. the inner product 〈a, b〉id1 = a∗ ◦ b,
and it is complete because C is a C∗-tensor category. Choose an orthogonal basis
(ei)i∈I in Hom(1,X ⊗X). Then each ei : 1 → X ⊗X is an isometry and e∗i ◦ ej = 0
for i 6= j, implying that X ⊗X contains #I copies of 1 as direct summands. Since
X has a conjugate, so does X ⊗ X, but this is impossible if #I is infinite. Thus
Hom(1,X ⊗X) and therefore EndX is finite dimensional.

Given arbitrary X,Y having conjugates, pick a direct sum Z ∼= X ⊕ Y with
isometries u : X → Z, v : Y → Z. Then also Z has a conjugate, cf. Lemma
A.37, and therefore dimEndZ < ∞. Now, the map Hom(X,Y ) → EndZ given
by s 7→ v ◦ s ◦ u∗ is injective since it has t 7→ v∗ ◦ t ◦ u as inverse. This implies
dim Hom(X,Y ) <∞.

We omit the proof of the implication TC∗ ⇒ C∗-tensor category, since it will
not be used in the sequel. It can be found in [Müger, 2000]. 2

This result shows that the assumptions made in Appendix B are equivalent to
those of [Doplicher and Roberts, 1989], formulated in terms of C∗-tensor categories.

A.5 Abelian categories

In the second half of Appendix B, which is of a purely algebraic nature, we will
need some basic facts from the theory of abelian categories. Good references are,
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e.g., [Gabriel, 1962] and [Mac Lane, 1998, Chapter VIII].

A.48 Definition. A morphism s : X → Y is called monic if s ◦ t1 = s ◦ t2 implies
t1 = t2, whenever t1, t2 are morphisms with target X and the same source. A
morphism s : X → Y is called epi if t1 ◦ s = t2 ◦ s implies t1 = t2, whenever t1, t2
are morphisms with source Y and the same target.

A.49 Definition. Let C be an additive category. Given a morphism f : X → Y ,
a morphism k : Z → X is a kernel of f if f ◦ k = 0 and given any morphism
k′ : Z ′ → X such that f ◦ k′ = 0, there is a unique morphism l : Z ′ → Z such that
k′ = k ◦ l.

A cokernel of f : X → Y is a morphism c : Y → Z if c ◦ f = 0 and given any
morphism c′ : Y → Z ′ such that c′ ◦ f = 0, there is a unique d : Z → Z ′ such that
c′ = d ◦ c.

It is an easy consequence of the definition that every kernel is monic and every
cokernel is epic.

A.50 Definition. An additive category C is abelian if

1. Every morphism has a kernel and a cokernel.

2. Every monic morphism is the kernel of some morphism.

3. Every epic morphism is the cokernel of some morphism.

A.51 Proposition. Let C be an abelian category. Then

(i) Every monic is the kernel of its cokernel and every epi is the cokernel of its
kernel.

(ii) A morphism is an isomorphism iff it is monic and epic. (‘Only if’ is trivial.)

(iii) Every morphism f : X → Y in an abelian category admits a factorization
f = m ◦ e, where e : X → Z is epi and m : Z → Y is monic. Given another
epi e′ : X → Z ′ and monic m′ : Z ′ → Y such that f = m′ ◦ e′, there exists an
isomorphism u : Z → Z ′ such that e′ = u ◦ e and m = m′ ◦ u.

Proof. See [Mac Lane, 1998, Chapter VIII]. Concerning (iii): Definingm = ker(coker(f)),
m is monic. In view of (coker f) ◦ f = 0, f factors as f = m ◦ e for a unique
e. Next one proves that e is epi and e = coker(ker(f)). For the details cf. e.g.
[Mac Lane, 1998]. 2

A.52 Definition. The image of a morphism f : X → Y in an abelian category is
the monic m : Z → Y (unique up to isomorphism) in the monic-epic factorization
X

e→ Z
m→ Y of f .
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In a concrete abelian category, the object Z is isomorphic to the usual image of
f , which is a subset of Y , whence the terminology.

A.53 Definition. An object P in an abelian category is projective if, given any
epimorphism p : A → B and any morphism b : P → B there is a morphism
a : P → A such that b = p ◦ a.
A.54 Lemma. Any TC∗ C that has a zero object is abelian.

Proof. It is clear that C is additive. The other requirements of Definition A.50 follow
with a little work from semisimplicity, cf. Lemma A.35. 2

A.6 Commutative algebra in abelian symmetric tensor categories

A considerable part of the well known algebra of commutative rings, their ideals and
modules (living in the category Ab of abelian groups) can be generalized to other
abelian symmetric or even braided tensor categories. We state just those facts that
will be needed, some of which seem to be new.

A.55 Definition. Let D be a strict tensor category. Then a monoid in D is a
triple (Q,m, η), where Q ∈ D and m : Q ⊗ Q → Q and η : 1 → Q are morphisms
satisfying

m ◦ (m⊗ idQ) = m ◦ (idQ ⊗m), m ◦ η ⊗ idQ = idQ = m ◦ idQ ⊗ η.

If D is braided then the monoid is called commutative if m ◦ cQ,Q = m.

A.56 Definition. Let (Q,m, η) be a monoid in the strict tensor category D. Then
a Q-module (in D) is a pair (M,µ), where M ∈ D and µ : Q⊗M →M satisfy

µ ◦ idQ ⊗ µ = µ ◦m⊗ idM , µ ◦ η ⊗ idM = idM .

A morphism s : (M,µ) → (R, ρ) of Q-modules is a morphism s ∈ HomD(M,R)
satisfying s ◦ µ = ρ ◦ idQ ⊗ s. The Q-modules in D and their morphisms form a
category Q − ModD. If D is k-linear then Q− ModD is k-linear. The hom-sets in
the category Q− Mod are denoted by HomQ(·, ·).
A.57 Remark. 1. The preceding definitions, which are obvious generalizations of
the corresponding notions in Vect, generalize in a straightforward way to non-strict
tensor categories.

2. If (M,µ) is a Q-module and X ∈ D then (Q⊗X,µ⊗ idX) is a Q-module.
3. If D has direct sums, we can define the direct sum (R, ρ) of two Q-modules

(M1, µ1), (M2, µ2). Concretely, if vi : Mi → R, i = 1, 2 are the isometries corre-
sponding to R ∼= M1 ⊕M2 then ρ = v1 ◦ µ1 ◦ idQ ⊗ v∗1 + v2 ◦ µ2 ◦ idQ ⊗ v∗2 provides
a Q-module structure.

4. Given a monoid (Q,m, η) in D, we have an obvious Q-module (Q,m), and for
any n ∈ N we can consider n · (Q,m), the direct sum of n copies of the Q-module
(Q,m).
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A.58 Definition. Let D be a strict tensor category with unit 1 and let (Q,m, η) be
a monoid in D. We define a monoid ΓQ in the category of sets by ΓQ = Hom(1, Q),
the multiplication being given by s • t = m ◦ t⊗ s and the unit by η. If D is braided
and (Q,m, η) commutative then ΓQ is commutative.

A.59 Lemma. Let D be a strict tensor category and (Q,m, η) a monoid in D.
Then there is an isomorphism of monoids γ : EndQ((Q,m)) → (ΓQ, •, η) given by

γ : EndQ((Q,m)) → Hom(1, Q), u 7→ u ◦ η,
γ−1 : Hom(1, Q) → EndQ((Q,m)), s 7→ m ◦ idQ ⊗ s.

If D (and thus Q − ModD) is k-linear then γ is an isomorphism of k-algebras. If
D is braided and the monoid (Q,m, η) is commutative then the monoid (k-algebra)
(ΓQ, •, η), and therefore also EndQ((Q,m)), is commutative.

Proof. That (ΓQ, •, η) is a monoid (associative k-algebra) is immediate since (Q,m, η)
is a monoid. For s ∈ Hom(1, Q) we have γ(γ−1(s)) = m ◦ idQ ⊗ s ◦ η = s by the
monoid axioms. On the other hand, for u ∈ EndQ((Q,m)) we have

γ−1(γ(u)) = m ◦ idQ ⊗ (u ◦ η) = m ◦ idQ ⊗ u ◦ idQ ⊗ η = u ◦m ◦ idQ ⊗ η = u,

where the third equality is due to the fact that s is a Q-module map (cf. Definition
A.56). Clearly γ(idQ) = η. Furthermore,

γ−1(s) ◦ γ−1(t) = (m ◦ idQ ⊗ s) ◦ (m ◦ idQ ⊗ t) = m ◦m⊗ idQ ◦ idQ ⊗ t⊗ s

= m ◦ idQ ⊗m ◦ idQ ⊗ t⊗ s = γ−1(s • t).

If D is braided and the monoid (Q,m, η) is commutative then

s • t = m ◦ t⊗ s = m ◦ cQ,Q ◦ s⊗ t = m ◦ s⊗ t = t • s,

where we used naturality of the braiding and commutativity of the monoid. 2

A.60 Remark. 1. We have seen that a monoid (Q,m, η) in any abstract tensor
category gives rise to a monoid (ΓQ, •, η) that is concrete, i.e. lives in the category
Sets. The latter has the cartesian product as a tensor product and any one-element
set is a tensor unit 1. Thus for any X ∈ Sets, Hom(1,X) is in bijective correspon-
dence to the elements of X. Therefore, if D = Sets then the monoids (Q,m, η) and
(ΓQ, •, η) are isomorphic. For this reason, we call ΓQ the monoid of elements of Q
even when D is an abstract category.

2. The commutativity of EndQ((Q,m)) in the case of a commutative monoid
(Q,m, η) in a braided tensor category D has a very natural interpretation: If D has
coequalizers, which holds in any abelian category, then the category Q − ModD is
again a tensor category and the Q-module (Q,m) is its unit object. In any tensor
category with unit 1, End1 is a commutative monoid (commutative k-algebra if
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D is k-linear). This is the real reason why EndQ((Q,m)) is commutative. More is
known: If D is symmetric and Q abelian, then the tensor category Q − ModD is
again symmetric. (In the braided case this need not be true, but Q−ModD always
has a distinguished full subcategory that is braided.)

We now specialize to abelian categories.

A.61 Proposition. Let (Q,m, η) be a monoid in an abelian strict tensor category
D. Then the category Q− ModD is abelian.

Proof. Omitted. (This is a nice exercise on abelian categories.) 2

A.62 Definition. Let D be an abelian strict symmetric tensor category. An ideal
in a commutative monoid (Q,m, η) is a monic j : (J, µJ) → (Q,m) in the category
Q− Mod. An ideal j : (J, µJ) → (Q,m) is called proper if j is not an isomorphism
(i.e. not epi). If j : (J, µJ ) → (Q,m)) and j′ : (J ′, µJ ′) → (Q,m) are ideals then
j : (J, µJ ) → (Q,m) is contained in j′ : (J ′, µJ ′) → (Q,m), denoted j ≺ j′, if
there exists a monic i ∈ HomQ((J, µJ ), (J ′, µJ ′) such that j′ ◦ i = j. A proper
ideal j : (J, µJ) → (Q,m) in (Q,m, η) is called maximal if every proper ideal
j′ : (J ′, µJ ′) → (Q,m) containing j : (J, µJ ) → (Q,m) is isomorphic to j : (J, µJ ) →
(Q,m).

A.63 Lemma. Let D be an essentially small abelian strict symmetric tensor cate-
gory, (Q,m, η) a commutative monoid in D. Then every proper ideal j : (J, µJ) →
(Q,m) in (Q,m, η) is contained in a maximal ideal j̃ : (J̃ , µ̃) → (Q,m).

Proof. The ideals in (Q,m, η) do not necessarily form a set, but the isomorphism
classes do, since D is assumed essentially small. The relation ≺ on the ideals in
(Q,m, η) gives rise to a partial ordering of the set of isomorphism classes of ideals.
The maximal elements w.r.t. this partial order are precisely the isomorphism classes
of maximal ideals. Now we can apply Zorn’s Lemma to complete the proof as in
commutative algebra. 2

As in the category R-mod, we can quotient a commutative monoid by an ideal:

A.64 Lemma. Let D be an abelian strict symmetric tensor category, (Q,m, η) a
commutative monoid and j : (J, µJ) → (Q,m) an ideal. Let p = coker j : (Q,m) →
(B,µB). Then there exist unique morphisms mB : B ⊗ B → B and ηB : 1 → B
such that

1. (B,mB, ηB) is a commutative monoid,

2. p ◦ m = mB ◦ p⊗ p,

3. p ◦ η = ηB .
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The monoid (B,mB, ηB) is called the quotient of (Q,m, η) by the ideal j : (J, µJ ) →
(Q,m). It is nontrivial (B is not a zero object) iff the ideal is proper.

Furthermore, the map pΓ : Γ : ΓQ → ΓB given by s 7→ p ◦ s is a homomorphism
of commutative algebras, which is surjective if the unit 1 ∈ D is a projective object.

Proof. The construction of mB , ηB proceeds essentially as in commutative algebra,
despite the fact that the absence of elements makes it somewhat more abstract.
Since p : (Q,m) → (B,µB) is the cokernel of j, B is non-zero iff j is not epi, to wit
if the ideal is proper. The equations p ◦ m = mB ◦ p ⊗ p and p ◦ η = ηB imply
that pΓ is a unital homomorphism. If 1 is projective then the very Definition A.53
implies that for every s : 1 → B there is t : 1 → Q such that s = p ◦ t, thus pΓ is
surjective. 2

A.65 Lemma. Let D be an essentially small abelian strict symmetric tensor cate-
gory. Let (Q,m, η) be a commutative monoid in D and j : (J, µ) → (Q,m) an ideal.
Let (B,mB , ηB) be the quotient monoid. Then there is a bijective correspondence
between equivalence classes of ideals in (B,mB , ηB) and equivalence classes of ideals
j′ : (J ′, µ′) → (Q,m) in (Q,µ, η) that contain j : (J, µ) → (Q,m).

In particular, if j is a maximal ideal then all ideals in (B,mB, ηB) are either
zero or isomorphic to (B,mB).

Proof. As in ordinary commutative algebra. 2

A.66 Lemma. Let k be a field and (Q,m, η) a commutative monoid in the strict
symmetric abelian k-linear category D. If every non-zero ideal in (Q,m, η) is iso-
morphic to (Q,m) then the commutative unital k-algebra EndQ((Q,m)) is a field.

Proof. Let s ∈ EndQ((Q,m)) be non-zero. Then im s 6= 0 is a non-zero ideal in
(Q,m), thus must be isomorphic to (Q,m). Therefore im s and in turn s are epi.
Since s 6= 0, the kernel ker s is not isomorphic to (Q,m) and therefore it must
be zero, thus s is monic. By Proposition A.51, s is an isomorphism. Thus the
commutative k-algebra EndQ((Q,m)) is a field extending k. 2

The following lemma is borrowed from [Bichon, 1998]:

A.67 Lemma. Let D be an abelian strict symmetric tensor category and (Q,m, η)
a commutative monoid in it. Then every epimorphism in EndQ((Q,m)) is an iso-
morphism.

Proof. Let g ∈ EndQ((Q,m)) be an epimorphism and let j : (J, µJ ) → (Q,m) be an
ideal in (Q,m, η). Now, Q−Mod is a tensor category whose unit is (Q,m), thus there
is an isomorphism s ∈ HomQ((J, µJ ), (Q ⊗Q J, µQ⊗QJ)). Let h ∈ EndQ((J, µJ)) be
the composition

(J, µJ )
s- (Q⊗Q J, µQ⊗QJ)

g ⊗ idJ- (Q⊗Q J, µQ⊗QJ)
s−1

- (J, µJ).
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Since the tensor product ⊗Q of Q − Mod is right-exact, g ⊗ idJ is epi. Now,
j ◦ h = g ◦ j, and if we put (j : (J, µJ) → (Q,m)) = ker g we have j ◦ h = 0
and thus j = 0 since h is epi. Thus g is monic and therefore an isomorphism. 2

A.7 Inductive limits and the Ind-category

We need the categorical version of the concept of an inductive limit. For our pur-
poses, inductive limits over N will do, but in order to appeal to existing theories we
need some definitions.

A.68 Definition. If I, C are categories and F : I → C a functor, then a colimit
(or inductive limit) of F consists of an object Z ∈ C and, for every X ∈ I, of a
morphism iX : F (X) → Z in C such that

1. iY ◦ F (s) = iX for every morphism s : X → Y in I.

2. Given Z ′ ∈ C and a family of morphisms jX : F (X) → Z ′ in C such that
jY ◦ F (s) = jX for every morphism s : X → Y in I, there is a unique
morphism ι : Z → Z ′ such that jX = ι ◦ iX for all X ∈ I.

The second property required above is the universal property. It implies that any
two colimits of F are isomorphic. Thus the colimit is essentially unique, provided
it exists.

A.69 Definition. A category I is filtered if it is non-empty and

1. For any two objects X,Y ∈ I there is an Z ∈ Z and morphisms i : X → Z, j :
Y → Z.

2. For any two morphisms u, v : X → Y in I there is a morphism w : Y → Z
such that w ◦ u = w ◦ v.

Note that any directed partially ordered set (I,≤) is a filtered category if we take
the objects to be the elements of I, and the arrows are ordered pairs {(i, j) : i ≤ j}.

A.70 Definition. Let C be a category. Then the category Ind C is defined as the
functor category whose objects are all functors F : I → C, where I is a small filtered
category. For F : I → C, F ′ : I ′ → C, the hom-set is defined by

HomInd C(F,F
′) = lim

←−
X

lim
−→
Y

HomC(F (X), F ′(Y )).

(An element of the r.h.s. consists of a family (fX,Y : F (X) → F ′(Y ))X∈I,Y ∈I′

satisfying F ′(s) ◦ fX,Y = fX,Y ′ for every s : Y → Y ′ in I ′ and fX′,Y ◦ F (t) = fX,Y
for every t : X → X ′ in I.) We leave it as an exercise to work out the composition
of morphisms.
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Some properties of IndC are almost obvious. It contains C as a subcategory:
To every X ∈ C we assign the functor F : I → C, where I has only one object ∗
and F (∗) = X. This embedding clearly is full and faithful. If C is an Ab-category
/ additive / C-linear then so is Ind C. If C is a strict (symmetric) tensor category
then so is Ind C: The tensor product of F : I → C and F : I ′ → C is defined by
I ′′ = I×I ′ (which is a filtered category) and F ⊗F ′ : I ′′ ∋ X×Y 7→ F (X)⊗F ′(Y ).
For the remaining results that we need, we just cite [SGA, 1972], to which we also
refer for the proof:

A.71 Theorem. Ind C has colimits for all small filtered index categories I. If C is
an abelian category C then Ind C is abelian.

Thus every abelian (symmetric monoidal) category is a full subcategory of an
abelian (symmetric monoidal) category that is complete under filtered colimits. For
us this means that in IndC we can make sense of infinite direct sums indexed by N,
defining

⊕
i∈N

Xi as the colimit of the functor F : I → C, where I is the poset N
interpreted as a filtered category, and F (n) =

⊕n
i=1Xi together with the obvious

morphisms F (n) → F (m) when n ≤ m.

A.72 Lemma. If C is a TC∗ then every object X ∈ C is projective as an object of
Ind C.

Proof. First assume that X is irreducible and consider s : X → B. Given an
epi p : A → B in IndC, we have A = lim−→Ai with Ai ∈ C and similarly
for B. Furthermore, Hom(A,B) = lim←− lim−→HomC(Ai, Bj) and Hom(X,B) =
lim−→HomC(X,Bj). Since X is irreducible and C is semisimple, X is a direct sum-
mand of Bj whenever sj : X → Bj is non-zero. Since p : A → B is epi, the
component Ai → Bj is epi for i sufficiently big. By semisimplicity of C, sj then
lifts to a morphism X → Ai. Putting everything together this gives a morphism
ŝ : X → A such that p ◦ ŝ = s.

Now let X be a finite direct sum of irreducible Xi with isometries vi : Xi → X
and s : X → B. Defining si = s ◦ vi : Xi → B, the first half of the proof provides
ŝi : Xi → A such that p ◦ ŝi = si. Now define ŝ =

∑
i ŝi ◦ v∗i : X → A. We have

p ◦ ŝ =
∑

i

p ◦ ŝi ◦ v∗i =
∑

i

si ◦ v∗i =
∑

i

s ◦ vi ◦ v∗i = s,

proving projectivity of X. 2

B Abstract Duality Theory for Symmetric Tensor ∗-
Categories

In the first two subsections we give self-contained statements of the results needed
for the AQFT constructions. Some of the proofs are deferred to the rest of this
appendix, which hurried (or less ambitious) or readers may safely skip.
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B.1 Fiber functors and the concrete Tannaka theorem. Part I

Let VectC denote the C-linear symmetric tensor category of finite dimensional C-
vector spaces and H denote the STC∗ of finite dimensional Hilbert spaces. We
pretend that both tensor categories are strict, which amounts to suppressing the
associativity and unit isomorphisms α, λ, ρ from the notation. Both categories have
a canonical symmetry Σ, the flip isomorphism ΣV,V ′ : V ⊗ V ′ → V ′ ⊗ V .

B.1 Definition. Let C be an STC∗. A fiber functor for C is a faithful C-linear
tensor functor E : C → VectC. A ∗-preserving fiber functor for C is a faithful functor
E : C → H of tensor ∗-categories. E is symmetric if E(cX,Y ) = ΣE(X),E(Y ), i.e. the
symmetry of C is mapped to the canonical symmetry of VectC or H, respectively.

A symmetric tensor category equipped with a symmetric ∗-preserving fiber func-
tor is called concrete, since it is equivalent to a (non-full!) tensor subcategory of
the category H of Hilbert spaces. Our main concern in this appendix are (1) Con-
sequences of the existence of a fiber functor, (2) Uniqueness of fiber functors, and
(3) Existence of fiber functors. As to (2) we will prove:

B.2 Theorem. Let C be an STC∗ and let E1, E2 : C → H be ∗-preserving sym-
metric fiber functors. Then E1

∼= E2, i.e. there exists a unitary monoidal natural
isomorphism α : E1 → E2.

We now assume a symmetric ∗-preserving fiber functor for the STC∗ C to be
given. Let GE ⊂ Nat⊗E denote the set of unitary monoidal natural transformations
of E (to itself). This clearly is a group with the identical natural transformation
as unit. GE can be identified with a subset of

∏
X∈C U(E(X)), where U(E(X)) is

the compact group of unitaries on the finite dimensional Hilbert space E(X). The
product of these groups is compact by Tychonov’s theorem, cf. e.g. [Pedersen, 1989,
Theorem 1.6.10], and since GE is a closed subset, it is itself compact. The product
and inverse maps are continuous, thus GE is a compact topological group. By its
very definition, the group GE acts on the Hilbert spaces E(X),X ∈ C by unitary
representations πX , namely πX(g) = gX where gX is the component at X of the
natural transformation g ∈ GE .

B.3 Proposition. There is a faithful symmetric tensor ∗-functor F : C → RepfGE
such that K ◦F = E, where K : RepfGE → H is the forgetful functor (H,π) 7→ H.

Proof. We define F (X) = (E(X), πX ) ∈ RepfGE for all X ∈ C and F (s) = E(s) for
all s ∈ Hom(X,Y ). For s : X → Y we have

F (s)πX(g) = F (s)gX = gY F (s) = πY (g)F (s)

since g : E → E is a natural transformation. Thus F is a functor, which is obviously
∗-preserving and faithful. In view of g1 = idE(1) for every g ∈ GE , we have F (1C) =
(C, π0) = 1RepfGE

, where π0 is the trivial representation. In order to see that F is
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a functor of tensor ∗-categories we must produce unitaries dFX,Y : F (X) ⊗ F (Y ) →
F (X⊗Y ), X, Y ∈ C and e : 1RepfGE

→ F (1C) satisfying (56) and (57), respectively.

We claim that the choice eF = eE , dFX,Y = dEX,Y does the job, where the eE and

dEX,Y are the unitaries coming with the tensor functor E : C → H. It is obvious that

eE and dEX,Y satisfy (56) and (57), but we must show that they are morphisms in

RepfGE . For dEX,Y this follows from the computation

dFX,Y ◦ (πX(g) ⊗ πY (g)) = dEX,Y ◦ gX ⊗ gY = gX⊗Y ◦ dEX,Y = πX⊗Y (g) ◦ dFX,Y ,

where we have used that g is a monoidal natural transformation. Now, by the
definition of a natural monoidal transformation we have g1 = idE(1) for all g ∈ GE ,
i.e. F (1) = (E(1), π1) is the trivial representation. If the strict unit 1H = C is in
the image of E then, by naturality, it also carries the trivial representation, thus
eF in fact is a morphism of representations. (In case 1H 6∈ E(C), we equip 1H
with the trivial representation by hand.) Since the symmetry of RepfGE is by
definition given by c((H,π), (H ′, π′)) = c(H,H ′), where the right hand side refers
to the category H, and since E respects the symmetries, so does F . K ◦ F = E is
obvious. 2

The proof of the following proposition is postponed, since it requires further
preparations.

B.4 Proposition. Let C be an STC∗ and E : C → H a symmetric ∗-preserving
fiber functor. Let GE and F : C → RepfGE as defined above. Then the following
hold:

(i) If X ∈ C is irreducible then spanC{πX(g), g ∈ GE} is dense in EndE(X).

(ii) If X,Y ∈ C are irreducible and X 6∼= Y then spanC{πX(g) ⊕ πY (g), g ∈ GE}
is dense in EndE(X) ⊕ EndE(Y ).

B.5 Theorem. Let C be an STC∗ and E : C → H a symmetric ∗-preserving fiber
functor. Let GE and F : C → RepfGE as defined above. Then F is an equivalence
of symmetric tensor ∗-categories.

Proof. We already know that F is a faithful symmetric tensor functor. In view of
Proposition A.19 it remains to show that F is full and essentially surjective.

Since the categories C and RepfGE are semisimple, in order to prove that F is full
it is sufficient to show that (a) F (X) ∈ RepfGE is irreducible if X ∈ C is irreducible
and (b) if X,Y ∈ C are irreducible and inequivalent then Hom(F (X), F (Y )) = {0}.
Now, (i) of Proposition B.4 clearly implies that End(F (X)) = C id, which is the
desired irreducibility of F (X). Assume now that X,Y ∈ C are irreducible and
non-isomorphic and let s ∈ Hom(F (X), F (Y )), to wit s ∈ Hom(E(X), E(Y )) and
sπX(g) = πY (g)s for all g ∈ GE . Then (ii) of Proposition B.4 implies su = vs for
any u ∈ EndE(X) and v ∈ EndE(Y ). With u = 0 and v = 1 this implies s = 0,
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thus the irreps F (X) = (E(X), πX ) and F (Y ) = (E(X), πY ) are non-isomorphic.
This proves that F is full.

Therefore, F is an equivalence of C with a full tensor subcategory of RepfGE .
If g ∈ GE is nontrivial, it is immediate by the definition of GE that there is an
X ∈ C such that gX 6= idE(X) – but this means πX(g) 6= 1. In other words, the
representations {F (X),X ∈ C} separate the points of GE . But it is a well known
consequence of the Peter-Weyl theorem that a full monoidal subcategory of RepfGE
separates the points of GE iff it is in fact equivalent to RepfGE . Thus the functor
F is essentially surjective, and we are done. 2

Since they so important, we restate Theorems B.2 and B.5 in a self contained
way:

B.6 Theorem. Let C be an STC∗ and E : C → H a ∗-preserving symmetric fiber
functor. Let GE be the group of unitary monoidal natural transformations of E with
the topology inherited from

∏
X∈C U(E(X)). Then GE is compact and the functor

F : C → RepfGE , X 7→ (E(X), πX ), where πX(g) = gX , is an equivalence of
STC∗s. If E1, E2 : C → H are ∗-preserving symmetric fiber functors then E1

∼= E2

and therefore GE1
∼= GE2 .

B.7 Remark. The preceding theorem is essentially a reformulation in modern
language of the classical result of Tannaka [Tannaka, 1939]. It can be generalized,
albeit without the uniqueness part, to a setting where C is only braided or even has
no braiding. This leads to a (concrete) Tannaka theory for quantum groups, for
which the interested reader is referred to the reviews [Joyal and Street, 1991] and
[Müger et al., 2004].

Before we turn to proving Theorem B.2 (Subsection B.4) and Proposition B.4
(Subsection B.5) we identify a necessary condition for the existence of fiber functors,
which will lead us to a generalization of Theorem B.6.

B.2 Compact supergroups and the abstract Tannaka theorem

According to Theorem B.6, an STC∗ admitting a symmetric ∗-preserving fiber
functor is equivalent, as a symmetric tensor ∗-category, to the category of finite
dimensional unitary representations of a compact group G that is uniquely deter-
mined up to isomorphism. Concerning the existence of fiber functors it will turn
out that the twist Θ (Definition A.43) provides an obstruction, fortunately the only
one.

B.8 Definition. An STC∗ is called even if Θ(X) = idX for all X ∈ C.

B.9 Example. A simple computation using the explicit formulae for r, r, cX,Y given
in Example A.34 shows that the STC∗ H of finite dimensional Hilbert spaces is even.
The same holds for the category RepfG of finite dimensional unitary representations
of a compact group G.
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This suggests that an STC∗ must be even in order to admit a fiber functor. In
fact:

B.10 Proposition. If an STC∗ C admits a ∗-preserving symmetric fiber functor
E then it is even.

Proof. By Proposition A.45, we have E(Θ(X)) = Θ(E(X)). Since H is even, this
equals idE(X) = E(idX). Since E is faithful, this implies Θ(X) = idX . 2

Fortunately, this is the only obstruction since, beginning in the next subsection,
we will prove:

B.11 Theorem. Every even STC∗ admits a ∗-preserving symmetric fiber functor
E : C → H.

Combining this with Theorem B.6 we obtain:

B.12 Theorem. Let C be an even STC∗. Then there is a compact group G, unique
up to isomorphism, such that there exists an equivalence F : C → RepfG of STC∗s.

Theorem B.12 is not yet sufficiently general for the application to quantum field
theory, which is the subject of this paper. Making the connection with DHR theory,
we see that the twist of an irreducible DHR sector is ±1, depending on whether the
sector is bosonic or fermionic. Since in general we cannot a priori rule out fermionic
sectors, we cannot restrict ourselves to even STC∗s. What we therefore really need
is a characterization of all STC∗s. This requires a generalization of the notion of
compact groups:

B.13 Definition. A (compact) supergroup is a pair (G, k) where G is a (compact
Hausdorff) group and k is an element of order two in the center of G. An isomor-

phism α : (G, k)
∼=→ (G′, k′) of (compact) supergroups is an isomorphism α : G→ G′

of (topological) groups such that α(k) = k′.

B.14 Definition. A (finite dimensional, unitary, continuous) representation of a
compact supergroup (G, k) is just a (finite dimensional, unitary, continuous) repre-
sentation (H,π) of G. Intertwiners and the tensor product of representations are
defined as for groups, thus Rep(f)(G, k)

∼= Rep(f)G as C∗-tensor tensor categories.
(Since k is in the center of G, morphisms in Rep(f)(G, k) automatically preserve
the Z2-grading induced by π(k). Rep(f)(G, k) is equipped with a symmetry Σk as
follows: For every (H,π) ∈ Rep(G, k) let P π± = (id + π(k))/2 be the projector on
the even and odd subspaces of a representation space H, respectively. Then

Σk((H,π), (H ′, π′)) = Σ(H,H ′)(1 − 2P π− ⊗ P π
′

− ),

where Σ(H,H ′) : H ⊗H ′ → H ′ ⊗H is the usual flip isomorphism x ⊗ y 7→ y ⊗ x.
Thus for homogeneous x ∈ H, y ∈ H ′ we have Σk((H,π), (H ′, π′)) : x⊗y 7→ ±y⊗x,
where the minus sign occurs iff x ∈ H− and y ∈ H ′−. In the case (G, k) = ({e, k}, k),
we call Repf (G, k) the category SH of super Hilbert spaces.
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B.15 Remark. Note that the action of k induces a Z2-grading on H that is stable
under the G-action. Since the symmetry Σk defined above is precisely the one on
the category SH of finite dimensional super Hilbert spaces, we see that there is a
forgetful symmetric tensor functor Repf (G, k) → SH.

B.16 Lemma. Σk as defined above is a symmetry on the category Rep(G, k). Thus
Repf (G, k) is a STC∗. For every object X = (H,π) ∈ Repf (G, k), the twist Θ(X)
is given by π(k).

Proof. Most of the claimed properties follow immediately from those of RepfG. It
is clear that Σk((H,π), (H ′, π′)) ◦Σk((H

′, π′), (H,π)) is the identity of H ′⊗H. We
only need to prove naturality and compatibility with the tensor product. This is an
easy exercise. The same holds for the identity Θ((H,π)) = π(k). 2

We need a corollary of (the proof of) Theorem B.12:

B.17 Corollary. For any compact group G, the unitary monoidal natural transfor-
mations of the identity functor on RepfG form an abelian group that is isomorphic
to the center Z(G).

Proof. If k ∈ Z(G) and (H,π) ∈ RepfG is irreducible then π(k) = ω(H,π)idH ,
where ω(H,π) is a scalar. Defining Θ((H,π)) = ω(H,π)id(H,π) and extending to re-
ducible objects defines a unitary monoidal natural isomorphism of RepfG. Con-
versely, let {Θ((H,π))} be a unitary monoidal isomorphism of the identity functor
of RepfG and K : RepfG → H the forgetful functor. Then the family (α(H,π) =
K(Θ((H,π)))) is a unitary monoidal natural isomorphism of K. By Theorem B.6,
there is a g ∈ G such that α(H,π) = π(g) for all (H,π) ∈ RepfG. Since π(g) is a
multiple of the identity for every irreducible (H,π), g is in Z(G) by Schur’s lemma.
Clearly the above correspondence is an isomorphism of abelian groups. 2

Modulo Theorem B.11 we can now can prove the Main Result of this appendix:

B.18 Theorem. Let C be an STC∗. Then there exist a compact su-
pergroup (G, k), unique up to isomorphism, and an equivalence F :
C → Repf (G, k) of symmetric tensor ∗-categories. In particular, if K :
Repf (G, k) → SH is the forgetful functor, the composite E = K ◦ F : C →
SH is a ‘super fiber functor’, i.e. a faithful symmetric ∗-preserving tensor
functor into the STC∗ of super Hilbert spaces.

Proof. We define a new STC∗ C̃ (the ‘bosonization’ of C) as follows. As a tensor
∗-category, C̃ coincides with C. The symmetry c̃ is defined by

c̃X,Y = (−1)(1−Θ(X))(1−Θ(Y ))/4cX,Y
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for irreducible X,Y ∈ Obj C = Obj C̃, and extended to all objects by naturality. It
is easy to verify that (C̃, c̃) is again a symmetric tensor category, in fact an even
one. Thus by Theorem B.12 there is a compact group G such that C̃ ≃ RepfG

as STC∗s. Applying Corollary B.17 to the category C̃ ≃ RepfG and the family
(Θ(X))X∈C , as defined in the original category C proves the existence of an element
k ∈ Z(G), k2 = e, such that Θ((H,π)) = π(k) for all (H,π) ∈ C̃ ≃ RepfG. Clearly
(G, k) is a supergroup. We claim that C ≃ Repf (G, k) as STC∗s. Ignoring the
symmetries this is clearly true since Repf (G, k) ≃ RepfG as tensor ∗-categories.
That C and Repf (G, k) are equivalent as STC∗s, i.e. taking the symmetries into

account, follows from the fact that C is related to C̃ precisely as Repf (G, k) is to
RepfG, namely by a twist of the symmetry effected by the family (Θ((H,π)) =
π(k)). To conclude, we observe that the uniqueness result for (G, k) follows from
the uniqueness of G in Theorem B.12 and that of k in Corollary B.17. 2

B.19 Remark. Theorem B.18 was proven by Doplicher and Roberts in [Doplicher and Roberts, 1989,
Section 7] exactly as stated above, the only superficial difference being that the ter-
minology of supergroups wasn’t used. (Note that our supergroups are not what
is usually designated by this name.) As above, the proof was by reduction to
even categories and compact groups. Independently and essentially at the same
time, a result analogous to Theorem B.11 for (pro)algebraic groups was proven
by Deligne in [Deligne, 1990], implying an algebraic analogue of Theorem B.12 by
[Saavedra Rivano, 1972; Deligne and Milne, 1982]. Recently, Deligne also discussed
the super case, cf. [Deligne, 2002].

This concludes the discussion of the main results of this appendix. We now turn
to proving Theorem B.2, Proposition B.4 and Theorem B.11.

B.3 Certain algebras arising from fiber functors

Let C be a TC∗ and E1, E2 : C → VectC fiber functors. Recall that they come with
natural isomorphisms diX,Y : Ei(X) ⊗ Ei(Y ) → Ei(X ⊗ Y ) and ei : 1Vect = C →
Ei(1C). Consider the C-vector space

A0(E1, E2) =
⊕

X∈C

Hom(E2(X), E1(X)).

ForX ∈ C and s ∈ Hom(E2(X), E1(X)) we write [X, s] for the element of A0(E1, E2)
which takes the value s at X and is zero elsewhere. Clearly, A0 consists precisely of
the finite linear combinations of such elements. We turn A0(E1, E2) into a C-algebra
by defining [X, s] · [Y, t] = [X ⊗ Y, u], where u is the composite

E2(X ⊗ Y )
(d2
X,Y )−1

- E2(X) ⊗E2(Y )
s⊗ t- E1(X) ⊗ E1(Y )

d1
X,Y- E1(X ⊗ Y )
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Since C is strict, we have (X ⊗ Y ) ⊗ Z = X ⊗ (Y ⊗ Z) and 1 ⊗X = X = X ⊗ 1.
Together with the 2-cocycle type equation (56) satisfied by the isomorphisms diX,Y
this implies that A0(E1, E2) is associative. The compatibility (57) of diX,Y with ei

for i = 1, 2 implies that [1, e1 ◦ (e2)−1] is a unit of the algebra A0(E1, E2).

B.20 Lemma. Let C be a TC∗ and E1, E2 : C → VectC fiber functors. The subspace

I(E1, E2) = spanC{[X,a◦E2(s)]−[Y,E1(s)◦a] | s : X → Y, a ∈ Hom(E2(Y ), E1(X))}
is a two-sided ideal.

Proof. To show that I(E1, E2) ⊂ A0(E1, E2) is an ideal, let s : X → Y, a ∈
Hom(E2(Y ), E1(X)), thus [X,a ◦E2(s)]− [Y,E1(s) ◦ a] ∈ I(E1, E2), and let [Z, t] ∈
A0(E1, E2). Then

([X,a ◦ E2(s)] − [Y,E1(s) ◦ a]) · [Z, t]
= [X ⊗ Z, d1

X,Z ◦ (a ◦ E2(s)) ⊗ t ◦ (d2
X,Z)−1] − [Y ⊗ Z, d1

Y,Z ◦ (E1(s) ◦ a) ⊗ t ◦ (d2
Y,Z)−1]

= [X ⊗ Z, d1
X,Z ◦ a⊗ t ◦ (d2

Y,Z)−1 ◦ E2(s ⊗ idZ)] − [Y ⊗ Z,E1(s ⊗ idZ) ◦ d1
X,Z ◦ a⊗ t ◦ (d2

Y,Z)−1]

= [X ′, a′ ◦ E2(s
′)] − [Y ′, E1(s

′) ◦ a′] ∈ I(E1, E2),

where in the second equality we used naturality of di, and in the last line we wrote
X ′ = X ⊗ Z, Y ′ = Y ⊗ Z, s′ = s⊗ idZ : X ′ → Y ′ and a′ = d1

X,Z ◦ a⊗ t ◦ (d2
Y,Z)−1 ∈

Hom(E2(Y
′), E1(X

′) in order to make clear that the result is in I(E1, E2). This
proves that the latter is a left ideal in A0(E1, E2). Similarly, one shows that it is a
right ideal. 2

We denote by A(E1, E2) the quotient algebra A0(E1, E2)/I(E1, E2). It can
also be understood as the algebra generated by symbols [X, s], where X ∈ C, s ∈
Hom(E2(X), E1(X)), subject to the relations [X, s] + [X, t] = [X, s+ t] and [X,a ◦
E2(s)] = [Y,E1(s) ◦ a] whenever s : X → Y, a ∈ Hom(E2(Y ), E1(X)). Therefore
it should not cause confusion that we denote the image of [X, s] ∈ A0(E1, E2) in
A(E1, E2) again by [X, s].

B.21 Proposition. Let C be an STC∗ and E1, E2 : C → VectC fiber functors. If
E1, E2 are symmetric then A(E1, E2) is commutative.

Proof. Assume C is symmetric and the fiber functors satisfy Ei(cX,Y ) = ΣEi(X),Ei(Y ).
Let [A,u], [B, v] ∈ A0(E1, E2), thus A,B ∈ C and u : E2(A) → E1(A), v : E2(B) →
E1(B). Then

[A,u] · [B, v] = [A⊗B, d1
A,B ◦ u⊗ v ◦ (d2

A,B)−1],

and

[B, v] · [A,u] = [B ⊗A, d1
B,A ◦ v ⊗ u ◦ (d2

B,A)−1]

= [B ⊗A, d1
B,A ◦ ΣE1(A),E2(B) ◦ u⊗ v ◦ ΣE2(B),E1(A) ◦ (d2

B,A)−1]

= [B ⊗A, d1
B,A ◦E1(cB,A) ◦ u⊗ v ◦ E2(cB,A) ◦ (d2

B,A)−1]

= [B ⊗A,E1(cA,B) ◦ d1
A,B ◦ u⊗ v ◦ (d2

A,B)−1 ◦E2(cB,A)]
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With X = A⊗B,Y = B ⊗ A, s = cA,B and a = d1
A,B ◦ u⊗ v ◦ (d2

A,B)−1 ◦ E2(cB,A)
we obtain

[A,u] · [B, v] = [X,a ◦ E2(s)]

[B, v] · [A,u] = [Y,E1(s) ◦ a]
Thus

[A,u] · [B, v] − [B, v] · [A,u] = [X,a ◦ E2(s)] − [Y,E1(s) ◦ a] ∈ I(E1, E2),

implying [A0(E1, E2), A0(E1, E2)] ⊂ I(E1, E2). ThusA(E1, E2) = A0(E1, E2)/I(E1, E2)
is commutative. 2

B.22 Proposition. Let C be a TC∗ and let E1, E2 : C → H be ∗-preserving
fiber functors. Then A(E1, E2) has a positive ∗-operation, i.e. an antilinear and
antimultiplicative involution such that a∗a = 0 implies a = 0.

Proof. We define a ∗-operation ⋆ on A0(E1, E2). Let [X, s] ∈ A0(E1, E2). Pick a
standard conjugate (X i, ri, ri) and define [X, s]⋆ := [X, t], where

t = idE1(X)⊗E2(r
∗) ◦ idE1(X)⊗s∗⊗idE2(X) ◦E1(r)⊗idE2(X) ∈ HomH(E2(X), E1(X)).

(Of course, s∗ is defined using the inner products on the Hilbert spaces E1(X), E2(X).)

If we pick another standard conjugate (X
′
, r′, r′) of X, we know that there is a uni-

tary u : X → X
′
such that r′ = u⊗ idX ◦ r and r′ = idX ⊗ u ◦ r. Using (X

′
, r′, r′)

we obtain ([X, s]⋆)′ := [X
′
, t′] with t′ defined by replacing r, r by r′, r′. Now,

[X, t] − [X
′
, t′] = [X, idE1(X) ⊗ E2(r

∗) ◦ idE1(X) ⊗ s∗ ⊗ idE2(X) ◦ E1(r) ⊗ idE2(X)]

−[X
′
, id

E1(X
′
)
⊗ E2(r

′∗) ◦ id
E1(X

′
)
⊗ s∗ ⊗ id

E2(X
′
)
◦ E1(r

′) ⊗ id
E2(X

′
)
]

= [X, (idE1(X) ⊗ E2(r
′∗) ◦ idE1(X) ⊗ s∗ ⊗ id

E2(X
′
)
◦ E1(r) ⊗ id

E2(X
′
)
) ◦ E2(u)]

−[X
′
, E1(u) ◦ (idE1(X) ⊗E2(r

′∗) ◦ idE1(X) ⊗ s∗ ⊗ id
E2(X

′
)
◦ E1(r) ⊗ id

E2(X
′
)
)],

which is in the ideal I(E1, E2) defined in Proposition B.27. Thus, while [X, s]⋆

depends on the chosen conjugate (X, r, r) of X, its image γ([X, s]⋆) ∈ A(E1, E2)
doesn’t.

In order to be able to define a ∗-operation on A(E1, E2) by x∗ := γ◦⋆◦γ−1(x) we
must show that the composite map γ ◦ ⋆ : A0(E1, E2) → A(E1, E2) maps I(E1, E2)
to zero. To this purpose, let X,Y ∈ C, s : X → Y, a ∈ Hom(E2(Y ), E1(X)) and
choose conjugates (X, rX , rX), (Y , rY , rY ). Then

[X,a ◦E2(s)]
⋆ − [Y,E1(s) ◦ a]⋆

= [X, idE1(X) ⊗ E2(rX
∗) ◦ idE1(X) ⊗ (a ◦E2(s))

∗ ⊗ idE2(X) ◦ E1(rX) ⊗ idE2(X)]

−[Y , idE1(X) ⊗ E2(rY
∗) ◦ idE1(X) ⊗ (E1(s) ◦ a)∗ ⊗ idE2(X) ◦ E1(rY ) ⊗ idE2(X)]

= [X, ã ◦E2(s̃)] − [Y ,E1(s̃) ◦ ã],
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where

ã = idE1(X) ⊗ E2(r
∗
X) ◦ idE1(X) ⊗ a∗ ⊗ idE2(Y ) ◦ E1(rX) ⊗ idE2(Y ) ∈ HomH(E2(Y ), E1(X)),

s̃ = idY ⊗ r∗X ◦ idY ⊗ s∗ ⊗ idX ◦ rY ⊗ idX ∈ Hom(X,Y ).

This clearly is in I(E1, E2), thus x∗ := γ ◦ ⋆ ◦ γ−1(x) defines a ∗-operation on
A(E1, E2).

Now it is obvious that the resulting map ∗ on A(E1, E2) is additive and antilin-
ear. It also is involutive and antimultiplicative as one verifies by an appropriate use
of the conjugate equations. We omit the tedious but straightforward computations.
It remains to show positivity of the ∗-operation. Consider [X, s] ∈ A0(E1, E2), pick
a conjugate (X, r, r) and compute [X, s]∗ · [X, s] = [X ⊗X, t], where

t = d1
X,X

◦
(
idE1(X) ⊗ E2(r

∗) ◦ idE1(X) ⊗ s∗ ⊗ idE2(X) ◦ E1(r) ⊗ idE2(X)

)
⊗s ◦ (d2

X,X
)∗.

Now,

[X ⊗X, t] = [X ⊗X,E1(r
∗) ◦ E1(r) ◦ t] = [1, E1(r) ◦ t ◦E2(r

∗)]

=
[
1, E1(r

∗) ◦
(
idE1(X) ⊗ E2(r

∗) ◦ idE1(X) ⊗ s∗ ⊗ idE2(X)

◦E1(r) ⊗ idE2(X)

)
⊗ s ◦ E2(r)

]

= [1, E1(r
∗) ◦ id ⊗ (s ◦ s∗) ◦ E1(r)] = [1, u∗u],

where we have used the conjugate equations and put u = id ⊗ s∗ ◦ E1(r). Thus,
[X, s]∗ · [X, s] = [1, u∗u] is zero iff u∗u is zero. By positivity of the ∗-operation
in H, this holds iff u = 0. Using once again the conjugate equations we see that
this is equivalent to s = 0. Thus for elements a ∈ A(E1, E2) of the form [X, s],
the implication a∗a = 0 ⇒ a = 0 holds. For a general a =

∑
i[Xi, si] we pick

isometries vi : Xi → X such that
∑

i vi ◦ v∗i = idX (i.e. X ∼= ⊕iXi). Then [Xi, si] =
[X,E1(vi) ◦ si ◦E2(v

∗
i )], thus

∑

i

[Xi, si] = [X,
∑

i

E1(vi) ◦ si ◦ E2(v
∗
i )],

implying that every element of A(E1, E2) can be written as [X, s], and we are done.
2

B.23 Proposition. Let C be a TC∗ and let E1, E2 : C → H be ∗-preserving fiber
functors. Then

‖a‖ = inf
b

′ sup
X∈C

‖bX‖EndE(X),

where the infimum is over all representers b ∈ A0(E1, E2) of a ∈ A(E1, E2), defines
a C∗-norm on A(E1, E2).
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Proof. Let [X, s], [Y, t] ∈ A0(E1, E2). Then [X, s] · [Y, t] = [X ⊗ Y, u], where u =
d1
X,Y ◦ s ⊗ t ◦ (d2

X,Y )−1. Since d1
X,Y , d

2
X,Y are unitaries, we have ‖[X ⊗ Y, u]‖ =

‖u‖ ≤ ‖s‖ · ‖t‖. Thus ‖b‖ = supX∈C ‖bX‖EndE(X) defines a submultiplicative norm
on A0(E1, E), and the above formula for ‖a‖ is the usual definition of a norm on the
quotient algebra A0(E1, E2)/I(E1, E2). This norm satisfies ‖[X, s]‖ = ‖s‖. Since
every a ∈ A(E1, E2) can be written as [X, s], we have ‖a‖ = 0 ⇒ a = 0. Finally,
the computations in the proof of Proposition B.22 imply

‖[X, s]∗[X, s]‖ = ‖[1, u∗u]‖ = ‖u∗u‖ = ‖u‖2 = ‖s‖2 = ‖[X, s]‖2,

which is the C∗-condition. 2

B.24 Definition. Let C be a TC∗ and let E1, E2 : C → H be ∗-preserving fiber
functors. Then A(E1, E2) denotes the ‖ · ‖-completion of A(E1, E2). (This is a
unital C∗-algebra, which commutative if C, E1, E2 are symmetric.)

B.4 Uniqueness of fiber functors

B.25 Lemma. [Joyal and Street, 1993b] Let C be a TC∗, D a strict tensor category
and E1, E2 : C → D strict tensor functors. Then any monoidal natural transforma-
tion α : E1 → E2 is a natural isomorphism.

Proof. It is sufficient to show that every component αX : E1(X) → E2(X) has a
two-sided inverse βX : E2(X) → E1(X). The family {βX ,X ∈ C} will then auto-
matically be a natural transformation. If (X, r, r) is a conjugate for X, monoidality
of α implies

E2(r
∗) ◦ αX ⊗ αX = E2(r

∗) ◦ αX⊗X = α1 ◦ E1(r
∗) = E1(r

∗). (58)

If we now define

βX = idE1(X) ⊗ E2(r
∗) ◦ idE1(X) ⊗ αX ⊗ idE2(X) ◦ E1(r) ⊗ idE2(X),

we have

βX ◦ αX = (idE1(X) ⊗ E2(r
∗) ◦ idE1(X) ⊗ αX ⊗ idE2(X) ◦ E1(r) ⊗ idE2(X)) ◦ αX

= idE1(X) ⊗ E2(r
∗) ◦ idE1(X) ⊗ αX ⊗ αX ◦ E1(r) ⊗ idE1(X)

= idE1(X) ⊗ E1(r
∗) ◦ E1(r) ⊗ idE1(X) = idE1(X).

The argument for αX ◦ βX = idE2(X) is similar. 2

B.26 Remark. The lemma remains correct if one allows E1, E2 (or even C,D) to
be non-strict. To adapt the proof one must replace E1(r) (which is a morphism
E1(1) → E1(X ⊗ X)) by (dE1

X,X
)−1 ◦ E1(r) ◦ eE1 (which is a morphism 1Vect →

E1(X) ⊗ E1(X)). Similarly with E2(r).
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B.27 Proposition. Let C be a TC∗ and E1, E2 : C → VectC fiber functors. The
pairing between A0(E1, E2) and the vector space

Nat(E1, E2) =
{

(αX)X∈C ∈
∏

X∈C

Hom(E1(X), E2(X)) |

E2(s) ◦ αX = αY ◦ E1(s) ∀s : X → Y
}

of natural transformations E1 → E2 that is given, for (αX) ∈ Nat(E1, E2) and
a ∈ A0(E1, E2), by

〈α, a〉 =
∑

X∈C

TrE1(X)(aXαX) (59)

descends to a pairing between Nat(E1, E2) and the quotient algebra A(E1, E2) =
A0(E1, E2)/I(E1, E2) such that

Nat(E1, E2) ∼= A(E1, E2)
∗.

Under this isomorphism, an element a ∈ A(E1, E2)
∗ corresponds to an element of

Nat⊗(E1, E2), i.e. a monoidal natural transformation (thus isomorphism by Lemma
B.25), iff it is a character, to wit multiplicative.

Proof. The dual vector space of the direct sum A0(E1, E2) is the direct product∏
X∈C Hom(E2(X), E1(X))∗, and since the pairing between Hom(E2(X), E1(X))×

Hom(E1(X), E2(X)), s× t 7→ Tr(s ◦ t) is non-degenerate, we have

A0(E1, E2)
∗ ∼=

∏

X∈C

Hom(E1(X), E2(X))

w.r.t. the pairing given in (59). Now, A(E1, E2) is the quotient of A0(E1, E2) by
the subspace I(E1, E2), thus the dual space A(E1, E2)

∗ consists precisely of those
elements of A0(E1, E2)

∗ that are identically zero on I(E1, E2). Assume (aX)X∈C
satisfies 〈α, a〉 = 0 for all a ∈ I(E1, E2), equivalently 〈α, [X,a ◦ E2(s)] − [Y,E1(s) ◦
a]〉 = 0 for all s : X → Y and a ∈ Hom(E2(Y ), E1(X)). By definition (59) of the
pairing, this is equivalent to

TrE1X(a◦E2(s)◦αX)−TrE1(Y )(E1(s)◦a◦αY ) = 0 ∀s : X → Y, a ∈ Hom(E2(Y ), E1(X)).

Non-degeneracy of the trace implies that α = (αX)X∈C must satisfy E2(s) ◦ αX =
αY ◦ E1(s) for all s : X → Y , thus α ∈ Nat(E1, E2), implying

A(E1, E2)
∗ ∼= Nat(E1, E2).

Now we consider the question when the functional φ ∈ A(E1, E2)
∗ corresponding

to α ∈ Nat(E1, E2) is a character, i.e. multiplicative. This is the case when

〈α, [X, s] · [Y, t]〉 = 〈α, [X, s]〉〈α, [Y, t]〉 ∀[X, s], [Y, t] ∈ A(E1, E2).
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(Strictly speaking, [X, s], [Y, t] are representers in A0(E1, E2) for some elements in
A(E1, E2).) In view of (59) and the definition of the product in A(E1, E2) this
amounts to

TrE1(X⊗Y )(d
1
X,Y ◦ s⊗ t ◦ (d2

X,Y )−1 ◦ αX⊗Y ) = TrE1(X)(s ◦ αX)TrE1(Y )(t ◦ αY )

= TrE1(X)⊗E2(X)((s ◦ αX) ⊗ (t ◦ αY ))

= TrE1(X)⊗E2(X)(s⊗ t ◦ αX ⊗ αY )

In view of the cyclic invariance and non-degeneracy of the trace, this is true for all
s : E2(X) → E1(X) and t : E2(Y ) → E1(Y ), iff

αX⊗Y = d2
X,Y ◦ αX ⊗ αY ◦ (d1

X,Y )−1 ∀X,Y ∈ C.

This is precisely the condition for α ∈ Nat(E1, E2) to be monoidal, to wit α ∈
Nat⊗(E1, E2). 2

B.28 Proposition. Let C be a TC∗ and let E1, E2 : C → H be ∗-preserving fiber
functors. Then a monoidal natural transformation α ∈ Nat⊗(E1, E2) is unitary
(i.e. each αX is unitary) iff the corresponding character φ ∈ A(E1, E2) is a ∗-
homomorphism (i.e. φ(a∗) = φ(a)).

Proof. Let α ∈ Nat⊗(E1, E2) and [X, s] ∈ A(E1, E2). By definition of the pairing of
A(E1, E2) and Nat(E1, E2),

φ([X, s]) = 〈α, [X, s]〉 = TrE1(X)(s ◦ αX),

and therefore, using Tr(AB) = Tr(A∗B∗),

φ([X, s]) = TrE1(X)(s
∗ ◦ α∗X).

On the other hand,

φ([X, s]∗) = 〈α, [X, idE1(X) ⊗ E2(r
∗) ◦ idE1(X) ⊗ s∗ ⊗ idE2(X) ◦ E1(r) ⊗ idE2(X)]〉

= TrE1(X)(idE1(X) ⊗E2(r
∗) ◦ idE1(X) ⊗ s∗ ⊗ idE2(X) ◦ E1(r) ⊗ idE2(X) ◦ αX)

= E2(r
∗) ◦ s∗ ⊗ αX ◦ E1(r)

= E2(r
∗) ◦ (αX ◦ α−1

X ◦ s∗) ⊗ αX ◦ E1(r)

= E1(r
∗) ◦ (α−1

X ◦ s∗) ⊗ idE2(X) ◦ E1(r)

= TrE1(X)(α
−1
X ◦ s∗).

(In the fourth step we have used the invertibility of α (Lemma B.25) and in the
fifth equality we have used (58) with X and X interchanged and r replaced by r.).
Now non-degeneracy of the trace implies that φ([X, s]) = φ([X, s]∗) holds for all
[X, s] ∈ (E1, E2) iff α∗X = α−1

X for all X ∈ C, as claimed. 2
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Now we are in a position to prove the first of our outstanding claims:

Proof of Theorem B.2. By the preceding constructions, the ‖·‖-closure A(E1, E2) of
A(E1, E2) is a commutative unital C∗-algebra. As such it has (lots of) characters, i.e.
unital ∗-homomorphisms into C. (Cf. e.g. Theorem B.30 below.) Such a character
restricts to A(E1, E2) and corresponds, by Propositions B.27 and B.28, to a unitary
monoidal natural transformation α ∈ Nat(E1, E2). 2

B.29 Remark. 1. The discussion of the algebra A(E1, E2) is inspired by the
one in the preprint [Bichon, ND] that didn’t make it into the published version
[Bichon, 1998]. The above proof of Theorem B.2 first appeared in [Bichon, 1999].

2. Lemma B.25 implies that the category consisting of fiber functors and
monoidal natural transformations is a groupoid, i.e. every morphism is invertible.
Theorem B.2 then means that the category consisting of symmetric ∗-preserving
fiber functors and unitary monoidal natural transformations is a transitive groupoid,
i.e. all objects are isomorphic. That this groupoid is non-trivial is the statement
of Theorem B.11, whose proof will occupy the bulk of this section, beginning in
Subsection B.6.

B.5 The concrete Tannaka theorem. Part II

In order to prove Proposition B.4 we need the formalism of the preceding sub-
sections. We write A(E) for the commutative unital C∗-algebra A(E,E) defined
earlier. In order to study this algebra we need some results concerning commutative
unital C∗-algebras that can be gathered, e.g., from [Pedersen, 1989].

B.30 Theorem. Let A be a commutative unital C∗-algebra. Let A∗ be its Banach
space dual and let

P (A) = {φ ∈ A∗ | φ(1) = 1, ‖φ‖ ≤ 1},
X(A) = {φ ∈ A∗ | φ(1) = 1, φ(ab) = φ(a)φ(b), φ(a∗) = φ(a) ∀a, b ∈ A}.

P (A) and X(A) are equipped with the w∗-topology on A according to which φι → φ
iff φι(a) → φ(a) for all a ∈ A. Then:

(i) X(A) ⊂ P (A) (thus ∗-characters have norm ≤ 1.)

(ii) X(A) is compact w.r.t. the w∗-topology on P (A).

(iii) The map A → C(X(A)) given by a 7→ (φ 7→ φ(a)) is an isomorphism of
C∗-algebras.

(iv) The convex hull
{

N∑

i=1

ciφi , N ∈ N, ci ∈ R+,
∑

i

ci = 1, φi ∈ X(A)

}
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of X(A) is w∗-dense in P (A).

Proof. (i) Any unital ∗-homomorphism α of Banach algebras satisfies ‖α(a)‖ ≤ ‖a‖.
(ii) By Alaoglu’s theorem [Pedersen, 1989, Theorem 2.5.2], the unit ball of A∗ is

compact w.r.t. the w∗-topology, and so are the closed subsets X(A) ⊂ P (A) ⊂ A∗.
(iii) This is Gelfand’s theorem, cf. [Pedersen, 1989, Theorem 4.3.13].
(iv) This is the Krein-Milman theorem, cf. Theorem 2.5.4 together with Propo-

sition 2.5.7 in [Pedersen, 1989]. 2

Theorem B.30, (ii) implies that the set X ≡ X(A(E)) of ∗-characters of A(E) is
a compact Hausdorff space w.r.t. the w∗-topology. By (iii) and Proposition B.28, the
elements of X are in bijective correspondence with the set GE of unitary monoidal
transformations of the functor E.

B.31 Lemma. The bijection X ∼= GE is a homeomorphism w.r.t. the topologies
defined above.

Proof. By definition of the product topology on
∏
X∈C U(E(X)), a net (gι) in GE

converges iff the net (gι,X) in U(E(X)) converges for every X ∈ C. On the other
hand, a net (φι) in X converges iff (φι(a)) converges in C for every a ∈ A(E). In
view of the form of the correspondence φ↔ g established in Proposition B.27, these
two notions of convergence coincide. 2

The homeomorphism X ∼= GE allows to transfer the topological group structure
that GE automatically has to the compact space X. Now we are in a position to
complete the proof of our second outstanding claim.

Proof of Proposition B.4. Since C is semisimple and essentially small, there exist
a set I and a family {Xi, i ∈ I} of irreducible objects such that every object is
(isomorphic to) a finite direct sum of objects from this set. If Nat(E) ≡ Nat(E,E)
is the space of natural transformations from E to itself, with every α ∈ Nat(E)
we can associate the family (αi = αXi

)i∈I , which is an element of
∏
i∈I EndE(Xi).

Semisimplicity of C and naturality of α imply that every such element arises from
exactly one natural transformation of E. (In case it is not obvious, a proof can be
found in [Müger et al., 2004, Proposition 5.4].) In this way we obtain an isomor-
phism

γ : Nat(E) →
∏

i∈I

EndE(Xi), α 7→ (αXi
)i∈I

of vector spaces. Now consider the linear map

δ :
⊕

i∈I

EndE(Xi) → A(E), (ai) 7→
∑

i

[Xi, ai].

Since every a ∈ A(E) can be written as [X, s] (proof of Proposition B.22) and ev-
ery [X, s] is a sum of elements [Xi, si] with Xi irreducible, δ is surjective. When
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understood as a map to A0(E), δ obviously is injective. As a consequence of
Hom(Xi,Xj) = {0} for i 6= j , the image in A0(E) of of δ has trivial intersec-
tion with the ideal I(E), which is the kernel of the quotient map A0(E) → A(E),
thus δ is injective and therefore an isomorphism (of vector spaces, not algebras). If
the C∗-norm on A(E) is pulled back via δ we obtain the norm

‖(ai)i∈I‖ = sup
i∈I

‖ai‖EndE(Xi)

on
⊕

i∈I EndE(Xi). Thus we have an isomorphism δ :
⊕

i∈IEndE(Xi)
‖·‖ → A(E)

of the norm closures. W.r.t. the isomorphisms γ, δ, the pairing 〈·, ·〉 : Nat(E) ×
A(E) → C of Proposition B.27 becomes

〈·, ·〉∼ :
∏

i∈I

EndE(Xi) ×
⊕

i∈I

EndE(Xi) → C, (αXi
)×(ai) 7→

∑

i∈I

TrE(Xi)(αiai).

(More precisely: 〈·, δ(·)〉 = 〈γ(·), ·〉∼ as maps Nat(E) ×⊕i∈I EndE(Xi) → C.)
Thus if α ∈ Nat(E) is such that γ(α) ∈ ∏i∈I EndE(Xi) has only finitely many
non-zero components (i.e. γ(α) ∈ ⊕i∈IEndE(Xi)), then 〈α, ·〉 ∈ A(E)∗ extends to
an element of A(E)∗.

Now (iv) of Theorem B.30 implies that every φ ∈ A(E)∗ is the w∗-limit of
a net (φι) in the C-span of the ∗-characters X(A(E)) of A(E). Thus for every
(αi) ∈

⊕
i∈I EndE(Xi) there is a such a net (φι) for which

w∗ − limφι = 〈γ−1((αi)), ·〉 ∈ A(E)∗.

Restricting the φι to A(E) and using the isomorphism NatE ∼= A(E)∗, we obtain
a net in NatE that converges to γ−1((αi)). By Propositions B.27, B.28, the iso-
morphism A(E)∗ → NatE maps the elements of X(A(E)) to the unitary natural
monoidal transformations of E, i.e. to elements of GE . Thus, in particular for every
finite S ⊂ I we have

spanC{πs1(g) ⊕ · · · ⊕ πs|S|(g)︸ ︷︷ ︸
all s∈S

, g ∈ GE} =
⊕

s∈S

EndE(Xs),

which clearly is a good deal more than claimed in Proposition B.4. 2

This concludes the proof of all ingredients that went into the proof of Theorem
B.6. From the proof it is obvious that the commutative C∗-algebra A(E) is just
the algebra of continuous functions on the compact group GE , whereas A(E) is the
linear span of the matrix elements of the finite dimensional representations of GE .

B.6 Making a symmetric fiber functor ∗-preserving

The aim of his subsection is to prove the following result, which seems to be new:
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B.32 Theorem. An even STC∗ C that admits a symmetric fiber functor C → VectC

also admits a symmetric ∗-preserving fiber functor C → H.

B.33 Lemma. Let C be an STC∗ and E : C → VectC a symmetric fiber functor.
Choose arbitrary positive definite inner products 〈·, ·〉0X (i.e. Hilbert space struc-
tures) on all of the spaces E(X),X ∈ C. Then the mapsX 7→ E(X) and s 7→ E(s∗)†,
where E(s∗)† is the adjoint of E(s∗) w.r.t. the inner products 〈·, ·〉0X , define a faithful

functor Ẽ : C → VectC. With dẼX,Y = ((dEX,Y )†)−1 and eẼ = ((eE)†)−1, this is a
symmetric fiber functor.

Proof. First note that s 7→ Ẽ(s) is C-linear and really defines a functor, since
Ẽ(idX) = id

Ẽ(X)
and

Ẽ(s◦t) = E((s◦t)∗)† = E(t∗◦s∗)† = (E(t∗)◦E(s∗))† = E(s∗)†◦E(t∗)† = Ẽ(s)◦Ẽ(t).

Faithfulness of E clearly implies faithfulness of Ẽ. With dẼX,Y = ((dEX,Y )†)−1 and

eẼ = ((eE)†)−1, commutativity of the diagrams (56) and (57) is obvious. Since E
is a tensor functor, we have

E(s⊗ t) ◦ dEX,Y = dEX′,Y ′ ◦ E(s) ⊗ E(t)

for all s : X → X ′, t : Y → Y ′, which is equivalent to

(E(s ⊗ t))† ◦ ((dEX′,Y ′)
−1)† = ((dEX,Y )−1)† ◦ (E(s) ⊗ E(t))†.

Since this holds for all s, t, we have proven naturality of the family (dẼX,Y ), thus Ẽ
is a tensor functor. The computation

Ẽ(cX,Y ) = E(c∗X,Y )† = E(cY,X)† = Σ†E(Y ),E(X) = ΣE(X),E(Y ),

where we have used Σ†H,H′ = ΣH′,H , shows that Ẽ is also symmetric. Thus Ẽ is a
symmetric fiber functor. 2

Now the discussion of Subsection B.3 applies and provides us with a commuta-
tive unital C-algebra A(E, Ẽ). However, we cannot appeal to Proposition B.22 to
conclude that A(E, Ẽ) is a ∗-algebra, since E, Ẽ are not ∗-preserving. In fact, for
arbitrary symmetric fiber functors E1, E2 there is no reason for the existence of a
positive ∗-operation on A(E1, E2), but in the present case, where the two functors
are related by E2(s) = E1(s

∗)†, this is true:

B.34 Proposition. Let C be an STC∗, E : C → VectC a symmetric fiber functor
and Ẽ as defined above. Then

[X, s]⋆ = [X, s†]

is well defined and is a positive ∗-operation on A(E, Ẽ). With respect to this ∗-
operation, the norm ‖ · ‖ from Proposition B.23 is a C∗-norm, i.e. ‖a⋆a‖ = ‖a‖2 for
all a ∈ A(E, Ẽ).
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Proof. For [X, s] ∈ A0(E, Ẽ) we define [X, s]⋆ = [X, s†], where s† is the adjoint
of s ∈ EndE(X) w.r.t. the inner product on E(X). Clearly, ⋆ is involutive and
antilinear. Now, if s : X → Y, a ∈ Hom(E2(Y ), E1(X)), then

([X,a ◦E2(s)] − [Y,E1(s) ◦ a])⋆ = [X,a ◦ E(s∗)†]⋆ − [Y,E(s) ◦ a]⋆

= [X,E(s∗) ◦ a†] − [Y, a† ◦ E(s)†] = [X,E1(s
∗) ◦ a†] − [Y, a† ◦ E2(s

∗)],

Since s∗ ∈ Hom(Y,X) and a† ∈ Hom(E(X), E(Y )), the right hand side of this
expression is again in I(E, Ẽ). Thus I(E, Ẽ) is stable under ⋆, and ⋆ descends to
an antilinear involution on A(E, Ẽ). In A0(E, Ẽ) we have

([X, s] · [Y, t])⋆ = [X ⊗ Y, dẼX,Y ◦ s⊗ t ◦ (dEX,Y )−1]⋆

= [X ⊗ Y, (dEX,Y
†
)−1 ◦ s⊗ t ◦ (dEX,Y )−1]⋆

= [X ⊗ Y, (dEX,Y
†
)−1 ◦ s† ⊗ t† ◦ (dEX,Y )−1]

= [X ⊗ Y, dẼX,Y ◦ s† ⊗ t† ◦ (dEX,Y )−1]

= [X, s]⋆ · [Y, t]⋆.

Together with commutativity of A(E, Ẽ) this implies that ⋆ is antimultiplicative.
Recall that there is an isomorphism δ :

⊕
i∈I EndE(Xi) → A(E, Ẽ) such that

‖δ((ai)i∈I)‖ = supi ‖ai‖, where ‖ · ‖ is the norm defined in Subsection B.3. By defi-

nition of ⋆ we have δ((ai))
⋆ = δ((a†i )), implying ‖a⋆a‖ = ‖a‖2. Thus (A(E, Ẽ), ⋆, ‖·‖)

is a pre-C∗-algebra. 2

(Note that the involution ⋆ has nothing at all to do with the one defined in
Subsection B.3!)

B.35 Proposition. Let C be an STC∗ and E : C → VectC a symmetric fiber
functor. With Ẽ as defined above, there exists a natural monoidal isomorphism
α : E → Ẽ, whose components αX are positive, i.e. 〈u, αXu〉0X > 0 for all nonzero
u ∈ E(X).

Proof. As in Subsection B.4, the norm-completion A(E, Ẽ) of A(E, Ẽ) is a com-
mutative unital C∗-algebra and therefore admits a ∗-character φ : A(E, Ẽ) → C.
Restricting to A(E, Ẽ), Proposition B.27 provides a monoidal natural isomorphism
α : E → Ẽ. But we know more: The character φ is positive, i.e. φ(a⋆a) > 0 for all
a 6= 0. With a = [X, s] and taking (59) into account, we have

φ(a⋆a) = φ([X, s†s]) = TrE(X)(s
†sαX) = TrE(X)(sαXs

†)

=
∑

i

〈ei, sαXs†ei〉0X =
∑

i

〈s†ei, αXs†ei〉0X ,

where {ei} is any basis of E(X) that is orthonormal w.r.t. 〈·, ·〉0X . This is positive

for all a = [X, s] ∈ A(E, Ẽ) iff 〈u, αXu〉0X > 0 for all nonzero u ∈ E(X). 2
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Now we are in a position to prove the main result of this subsection, which is a
more specific version of Theorem B.32.

B.36 Theorem. Let C be an even STC∗ and E : C → VectC a symmetric fiber func-
tor. Then there exist Hilbert space structures (i.e. positive definite inner products
〈·, ·〉X ) on the spaces E(X),X ∈ C such that X 7→ (E(X), 〈·, ·〉X ) is a ∗-preserving
symmetric fiber functor C → H.

Proof. Pick non-degenerate inner products 〈·, ·〉0X on the spaces E(X),X ∈ C. Since
E(1) is one-dimensional and spanned by eE1, where 1 ∈ C = 1VectC

, we can define

〈·, ·〉0
1

by 〈aeE1, beE1〉0
1

= ab, as will be assumed in the sequel. Let Ẽ and α ∈
Nat⊗(E, Ẽ) as above. Defining new inner products 〈·, ·〉X on the spaces E(X) by

〈v, u〉X = 〈v, αXu〉0X ,

the naturality

αY ◦ E(s) = Ẽ(s) ◦ αX = E(s∗)† ◦ αX ∀s : X → Y,

of (αX) implies

〈v,E(s)u〉Y = 〈v, αY E(s)u〉0Y = 〈v,E(s∗)†αXu〉0Y = 〈E(s∗)v, αXu〉0X = 〈E(s∗)v, u〉X

for all s : X → Y, u ∈ E(X), v ∈ E(Y ). This is the same as E(s∗) = E(s)∗, where
now E(s)∗ denotes the adjoint of E(s) w.r.t. the inner products 〈·, ·〉. Thus the
functor X 7→ (E(X), 〈·, ·〉X ) is ∗-preserving. The new inner products 〈·, ·〉X are non-
degenerate since the αX are invertible, and the positivity property 〈u, αXu〉0X > 0
for u 6= 0 implies that (E(X), 〈·, ·〉X ) is a Hilbert space. The monoidality

αX⊗Y ◦ dEX,Y = dẼX,Y ◦ αX ⊗ αY = ((dEX,Y )†)−1 ◦ αX ⊗ αY ∀X,Y

of the natural isomorphism α : E → Ẽ is equivalent to

αX ⊗ αY = (dEX,Y )† ◦ αX⊗Y ◦ dEX,Y . (60)

Using this we have

〈dEX,Y (u′ ⊗ v′), dEX,Y (u⊗ v)〉X⊗Y = 〈dEX,Y (u′ ⊗ v′), αX⊗Y ◦ dEX,Y (u⊗ v)〉0X⊗Y
= 〈(u′ ⊗ v′), (dEX,Y )† ◦ αX⊗Y ◦ dEX,Y (u⊗ v)〉0X⊗Y = 〈(u′ ⊗ v′), (αX ⊗ αY )(u⊗ v)〉0X⊗Y
= 〈u′, αXu〉0X〈v′, αY v〉0Y = 〈u′, u〉X〈v′, v〉Y ,

thus the isomorphisms dEX,Y : E(X) ⊗ E(Y ) → E(X ⊗ Y ) are unitary w.r.t. the
inner products 〈·, ·〉.
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Now, the compatibility (57) of dE and eE implies that dE
1,1 ◦ eE1 ⊗ eE1 = eE1

and therefore, using our choice of the inner product 〈·, ·〉0
1
,

〈dE
1,1(aeE1 ⊗ beE1), dE

1,1(ceE1 ⊗ deE1)〉0
1⊗1

= 〈abeE1, cdeE1〉0
1

= abcd = 〈aeE1, ceE1〉0
1
〈beE1, deE1〉0

1
.

This means that dE
1,1 : E(1) ⊗ E(1) → E(1) is unitary w.r.t. the inner product

〈·, ·〉0
1
. Taking X = Y = 1 in (60) and using α1 = λidE(1), we get λ2 = λ. Since α1

is invertible, we have λ = 1, thus α1 = idE(1) and therefore 〈·, ·〉1 = 〈·, ·〉0
1
. Now,

〈eE1, eE1〉1 = 〈eE1, α1e
Eu〉0

1
= 〈eE1, eE1〉0

1
= 1 = 〈1, 1〉C,

thus (eE)∗eE = idC. By one-dimensionality of the spaces involved, we also have
eE(eE)∗ = idE(1), thus eE : 1 → E(1) is unitary w.r.t. the inner new products 〈·, ·〉.
2

B.7 Reduction to finitely generated categories

B.37 Definition. An additive tensor category C is finitely generated if there exists
an object Z ∈ C such that every object X ∈ C is a direct summand of some tensor
power Z⊗n = Z ⊗ · · · ⊗ Z︸ ︷︷ ︸

n factors

, n ∈ N, of Z.

B.38 Lemma. Let C be a TC∗. Then the finitely generated tensor subcategories
of C form a directed system, and C is the inductive limit of the latter:

C ∼= lim
−→
ι∈I

Ci.

Proof. Consider all full tensor subcategories of C. Since C is essentially small, the
equivalence classes of such subcategories form a set, partially ordered by inclu-
sion. If C1, C2 ⊂ C are finitely generated, say by the objects X1,X2, then then
the smallest tensor subcategory containing C1 and C2 is generated by X1 ⊕ X2,
thus we have a directed system. Clearly there is a full and faithful tensor functor
lim−→

ι∈I
Ci → C. Since every object X is contained in a finitely generated tensor sub-

category (e.g., the one generated by X), this functor is essentially surjective and
thus an equivalence of categories, cf. [Mac Lane, 1998], in fact of tensor categories,
cf. [Saavedra Rivano, 1972]. 2

B.39 Remark. 1. The reason for considering finitely generated categories is that
the existence problem of fiber functors for such categories can be approached using
powerful purely algebraic methods. The general case can then be reduced to the
finitely generated one using Lemma B.38.
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2. Note that we don’t require the generator Z to be irreducible. Thus if we
a priori only know that C is generated by a finite set Z1, . . . , Zr of objects, the
direct sum Z = ⊕iZi will be a (reducible) generator of C. This is why only a single
generating object appears in the definition.

3. If G is a compact group, the category RepfG is finitely generated iff G is a
Lie group. (Proof: ⇐ is a consequence of the well known representation theory of
compact Lie groups. ⇒: It is well known that the finite dimensional representations
of G separate the elements of G. Therefore, if (H,π) is a generator of RepfG, it
is clear that π must be faithful. Thus G is isomorphic to a closed subgroup of the
compact Lie group U(H), and as such it is a Lie group.)

4. The index set I in Lemma B.38 can be taken countable iff C has countably
many isomorphism classes of irreducible objects. The category RepfG, where G is a
compact group, has this property iff G is second countable, equivalently metrizable.

In Subsections B.8-B.11 we will prove the following result, which we take for
granted for the moment:

B.40 Theorem. A finitely generated even STC∗ admits a symmetric fiber functor
E : C → VectC.

Proof of Theorem B.11: By Lemma B.38, we can represent C as an inductive limit
lim−→

ι∈I
Ci of finitely generated categories. Now Theorem B.40 provides us with sym-

metric fiber functors Ei : Ci → VectC, i ∈ I, and Theorem B.36 turns the lat-
ter into ∗-preserving symmetric fiber functors Ei : Ci → H. By Theorem B.6,
we obtain compact groups Gi = Nat⊗Ei (in fact compact Lie groups by Remark
B.39.3) with representations πi,X on the spaces Ei(X),X ∈ Ci such that the func-
tors Fi : Ci → RepfGi, X 7→ (Ei(X), πi,X are equivalences. Let now i ≤ j,
implying that Ci is a full subcategory of Cj. Then Ej ↾ Ci is a fiber functor for
Ci and thus Theorem B.2 implies the existence of a unitary natural isomorphism
αi,j : F1 → F2 ↾ Ci. (Note that αi,j is not unique!) Now, by definition every g ∈ G2

is a family of unitaries (gX ∈ U(E2(X)))X∈C2 defining a monoidal natural automor-
phism of E2. Defining, for every X ∈ C1, hX := αi,jX ◦ gX ◦ (αi,jX )∗ we see that the
family (hX ∈ U(E1(X)))X∈C1 is a unitary monoidal natural automorphism of E1,
to wit an element of G1. In this way we obtain a map βi,j : Gj → Gi that clearly

is a group homomorphism and continuous. By Schur’s lemma, the unitary αi,jX is

unique up to a phase for irreducible X. Thus for such X, βi,jX is independent of
the chosen αi,j, and thus βi,j is uniquely determined. It is also surjective in view of
the Galois correspondence between the full tensor subcategories of RepfG and the
quotients G/N , where N ⊂ G is a closed normal subgroup. Now the inverse limit

G = lim
←−
i∈I

Gi = {(gi ∈ Gi)i∈I | βi,j(gj) = gi whenever i ≤ j}
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is a compact group with obvious surjective homomorphisms γi : G → Gi for all
i ∈ I. Now we define a functor E : C → RepfG as follows: For every X ∈ C pick
an i ∈ I such that X ∈ Ci and define F (X) = (Ei(X), πi(X) ◦ γi). Clearly this is
an object in RepfG, and its isomorphism class is independent of the chosen i ∈ I.
In this way we obtain a functor from C = lim→ Ci to RepfG

∼= lim→RepfGi that
restricts to equivalences Ci → RepfGi. Thus E is full and faithful. Finally, E is
essentially surjective since every finite dimensional representation of G = lim←Gi
factors through one of the groups Gi. 2

B.41 Remark. In view of Remark B.39.3, the preceding proof also shows that
every compact group is an inverse limit of compact Lie groups.

B.8 Fiber functors from monoids

Our strategy to proving Theorem B.40 will be essentially the one of Deligne [Deligne, 1990],
replacing however the algebraic geometry in a symmetric abelian category by fairly
elementary commutative categorical algebra. There are already several exposi-
tions of this proof [Bichon, 1998; Rosenberg, 2000; Hái, 2002], of which we find
[Bichon, 1998] the most useful, see also [Bichon, ND]. However, we will give more
details than any of these references, and we provide some further simplifications.

The following result clearly shows the relevance of the notions introduced in
Subsection A.6 to our aim of proving Theorem B.40:

B.42 Proposition. Let C be a TC∗ and Ĉ be a C-linear strict tensor category
containing C as a full tensor subcategory. Let (Q,m, η) be a monoid in Ĉ satisfying

(i) dimHomĈ(1, Q) = 1. (I.e., HomĈ(1, Q) = Cη.)

(ii) For every X ∈ C, there is n(X) ∈ Z+ such that n(X) 6= 0 whenever X 6∼= 0
and an isomorphism αX : (Q⊗X,m⊗ idX) → n(X) · (Q,m) of Q-modules.

Then the functor E : C → VectC defined by

E : C → H, X 7→ Hom
Ĉ
(1, Q⊗X),

together with

E(s)φ = idQ ⊗ s ◦ φ, s : X → Y, φ ∈ Hom(1, Q⊗X) (61)

is a faithful (strong) tensor functor and satisfies dimC E(X) = n(X).
If Ĉ has a symmetry c w.r.t. which (Q,m, η) is commutative then E is symmetric

monoidal w.r.t. the symmetry Σ of VectC, i.e. E(cX,Y ) = ΣE(X),E(Y ).
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Proof. We have E(X) = Hom(1, Q ⊗ X) ∼= Hom(1, n(X)Q) ∼= d(X)Hom(1, Q) ∼=
Cn(X), thus E(X) is a vector space of dimension n(X). Since E(X) 6= 0 for every
non-zero X ∈ C, the functor E is faithful.

To see that E is monoidal first observe that by (ii) we have E(1) = Hom(1, Q) =
Cη. Thus there is a canonical isomorphism e : C = 1VectC

→ E(1) = Hom(1, Q)
defined by c 7→ cη. Next we define morphisms

dEX,Y : E(X) ⊗ E(Y ) → E(X ⊗ Y ), φ⊗ ψ 7→ m⊗ idX⊗Y ◦ idQ ⊗ φ⊗ idY ◦ ψ.

By definition (61) of the map E(s) : E(X) → E(Y ) it is obvious that the family
(dEX,Y ) is natural w.r.t. both arguments. The equation

dEX1⊗X2,X3
◦ dEX1,X2

⊗ idE(X3) = dEX1,X2⊗X3
◦ idE1 ⊗ dEX2,X3

∀X1,X2,X3 ∈ C

required from a tensor functor is a straightforward consequence of the associativity
of m. The verification is left as an exercise.

That (E, (dX,Y ), e) satisfies the unit axioms is almost obvious. The first condi-
tion follows by

dX,1(idE(X) ⊗ e)φ = dX,1(φ⊗ η) = m⊗ idX ◦ idQ ⊗ φ ◦ η = φ,

and the second is shown analogously.
So far, we have shown that E is a weak tensor functor for which e : 1H → E(1C)

is an isomorphism. In order to conclude that E is a (strong) tensor functor it
remains to show that the morphisms dEX,Y are isomorphisms. Let X,Y ∈ C. We
consider the bilinear map

γX,Y : HomQ(Q,Q⊗X) ⊠ HomQ(Q,Q⊗ Y ) → HomQ(Q,Q⊗X ⊗ Y ),

s⊠ t 7→ s⊗ idY ◦ t.

(We write ⊠ rather than ⊗C for the tensor product of VectC in order to avoid
confusion with the tensor product in Q−Mod.) By 2., we have Q-module morphisms
si : Q→ Q⊗X, s′i : Q⊗X → Q for i = 1, . . . , n(X) satisfying s′i ◦ sj = δij idQ, and∑

i si ◦ s′i = idQ⊗X , and similar morphisms ti, t
′
i, i = 1, . . . , n(Y ) for X replaced

by Y . Then the γij = γX,Y (si ⊗ tj) are linearly independent, since they satisfy
γ′i′j′ ◦ γij = δi′iδj′j idQ with γ′i′j′ = t′j ◦ s′i ⊗ idY . Bijectivity of γX,Y follows now
from the fact that both domain and codomain of γX,Y have dimension n(X)n(Y ).
Appealing to the isomorphisms δX : HomQ(Q,Q⊗X) 7→ Hom(1, Q⊗X) one easily
shows

dEX,Y = δX⊗Y ◦ γX,Y ◦ δ−1
X ⊠ δ−1

Y ,

which implies that dEX,Y is an isomorphism for every X,Y ∈ C.

We now assume that Ĉ has a symmetry c and that (Q,m, η) is commutative. In
order to show that E is a symmetric tensor functor we must show that

E(cX,Y ) ◦ dEX,Y = ΣE(X),E(Y ) ◦ dEY,X
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for all X,Y ∈ C. Let φ ∈ E(X), ψ ∈ E(Y ).
By definition of E we have

(E(cX,Y ) ◦ dEX,Y )(φ⊗ ψ) = idQ ⊗ cX,Y ◦ m⊗ idX⊗Y ◦ idQ ⊗ φ⊗ idY ◦ ψ

=

Q Y X
A
A
A�

�
�

AA
m � �

φ

A
A
A �

�
�

ψ

=

Q Y X

m � �
@

@
@�

�
�

ψ φ

=

Q Y X

m � �
A
A
A�

�
�

AA

ψ

A
A
A �

�
�

φ

On the other hand,

(dEY,X ◦ cE(X),E(Y ))(φ⊗ψ) = (dEY,X ◦ΣE(X),E(Y ))(φ⊗ψ) = dEY,X(ψ⊗φ) =

Q Y X

m � �
ψ

A
A
A �

�
�

φ

If m is commutative, i.e. m = m ◦ cQ,Q, these two expressions coincide, and we are
done. 2

B.43 Remark. 1. The property (ii) in the proposition is called the ‘absorbing
property’.

2. The conditions in Proposition B.42 are in fact necessary for the existence
of a fiber functor! Assume that a tensor ∗-category C admits a ∗-preserving fiber
functor E : C → H. By [Müger et al., 2004], which reviews and extends work of
Woronowicz, Yamagami and others, there is a discrete algebraic quantum group
(A,∆) such that C ≃ Repf (A,∆). In [Müger and Tuset, ND] it is shown that

taking Ĉ ≃ Rep(A,∆) (i.e. representations of any dimension) and Q = πl, there is
a monoid (Q,m, η) satisfying the conditions of Proposition B.42. Namely, one can
take Q = πl, the left regular representation. In [Müger and Tuset, ND] it shown
that (i) dim Hom(π0, πl) = 1, i.e. there exists a non-zero morphism η : π0 → πl,
unique up to normalization; (ii) πl has the required absorbing property; (iii) there
exists a morphism m : πl ⊗ πl → πl such that (Q = πl,m, η) is a monoid.

3. In the previous situation, the left regular representation πl lives in Repf (A,∆)
iff A is finite dimensional. This already suggests that the category C in general
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is too small to contain a monoid of the desired properties. In fact, assume we
can take Ĉ = C. Then for every irreducible X ∈ C we have dimHom(X,Q) =
dim Hom(1, Q ⊗X) = n(X) > 0. Thus Q contains all irreducible objects as direct
summands. Since every object in C is a finite direct sum of simple objects, Ĉ = C is
possible only if C has only finitely many isomorphism classes of simple objects. In
fact, even in this case, our construction of (Q,m, η) will require the use of a bigger
category Ĉ. It is here that the category Ind C of Subsection A.7 comes into play.

Since we have already reduced the problem of constructing a fiber functor to
the case of finitely generated tensor categories, we want a version of the preceding
result adapted to that situation:

B.44 Corollary. Let C be a TC∗ with monoidal generator Z ∈ C and let Ĉ be a
C-linear strict tensor category containing C as a full tensor subcategory. If (Q,m, η)
is a monoid in Ĉ satisfying

(i) dimHomĈ(1, Q) = 1.

(ii) There is d ∈ N and an isomorphism αZ : (Q ⊗ Z,m ⊗ idZ) → d · (Q,m) of
Q-modules.

Then the hypothesis (ii) in Proposition B.42 follows. Thus E : X 7→ HomĈ(1, Q⊗X)
is a fiber functor.

Proof. If X ∈ C, there exists n ∈ N such that X ≺ Z⊗n. Concretely, there are
morphisms u : X → Z⊗n and v : Z⊗n → X such that v ◦ u = idX . Then the
morphisms ũ = idQ⊗u : Q⊗X → Q⊗Z⊗n and ṽ = idQ⊗v : Q⊗Z⊗n → Q⊗X are
morphisms of Q-modules. Thus the Q-module (Q⊗X,m⊗idX) is a direct summand
of (Q⊗ Z⊗n,m ⊗ idZ⊗n). By assumption, the latter is isomorphic to a direct sum
of dn copies of (Q,m). By Lemma A.59 and assumption (i), EndQ((Q,m)) ∼= C,
thus (Q,m) ∈ Q−Mod is irreducible. Thus the direct summand (Q⊗X,m⊗ idX)
of dn · (Q,m) is a direct sum of r copies of (Q,m) with r ≤ dm and r 6= 0 whenever
X 6= 0. Thus hypothesis (ii) in Proposition B.42 holds. 2

In view of Corollary B.44, proving Theorem B.40 amounts to finding a symmetric
tensor category Ĉ containing C as a full subcategory and a commutative monoid
(Q,m, η) in Ĉ such that dimHom(1, Q) = 1 and Q⊗Z ∼= d⊗Q as Q-modules for a
suitable monoidal generator Z of C. This will be achieved in Subsection B.11, based
on thorough analysis of the permutation symmetry of the category C.

B.9 Symmetric group action, determinants and integrality of di-
mensions

We now turn to a discussion of certain representations of the symmetric groups
Pn, n ∈ N, present in tensor ∗-categories with a unitary symmetry. It is well known
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that the symmetric group Pn on n labels has the presentation

Pn = (σ1, . . . , σn−1 | |i− j| ≥ 2 ⇒ σiσj = σjσi,

σiσi+1σi = σi+1σiσi+1 ∀i ∈ {1, . . . , n− 1}, σ2
i = 1 ∀i).

Since C is strict we may define the tensor powers X⊗n, n ∈ N, in the obvious
way for any X ∈ C. We posit X⊗0 = 1 for every X ∈ C.

B.45 Lemma. Let C be an STC∗. Let X ∈ C and n ∈ N. Then

ΠX
n : σi 7→ idX⊗i−1 ⊗ cX,X ⊗ idX⊗n−i−1

uniquely determines a homomorphism ΠX
n from the group Pn into the unitary group

of EndX⊗n.

Proof. It is clear that ΠX
n (σi) and ΠX

n (σj) commute if |i− j| ≥ 2. That ΠX
n (σi)

2 =
idX⊗n is equally obvious. Finally,

ΠX
n (σi) ◦ ΠX

n (σi+1) ◦ ΠX
n (σi) = ΠX

n (σi+1) ◦ ΠX
n (σi) ◦ ΠX

n (σi+1)

follows from the Yang-Baxter equation satisfied by the symmetry c. 2

B.46 Remark. Dropping the relations σ2
i = 1 the same formulae as above define

homomorphisms of the Artin braid groups Bn into EndX⊗n. However, none of the
following considerations has known analogues in the braided case.

Recall that there is a homomorphism sgn : Pn → {1,−1}, the signature map.

B.47 Lemma. Let C be an STC∗. For any X ∈ C we define orthogonal projections
in EndX⊗0 = End1 by SX0 = AX0 = id1. For any n ∈ N, the morphisms

SXn =
1

n!

∑

σ∈Pn

ΠX
n (σ),

AXn =
1

n!

∑

σ∈Pn

sgn(σ)ΠX
n (σ)

satisfy
ΠX
n (σ) ◦ SXn = SXn ◦ ΠX

n (σ) = SXn ,

ΠX
n (σ) ◦ AXn = AXn ◦ ΠX

n (σ) = sgn(σ)AXn

for all σ ∈ Pn and are thus orthogonal projections in the ∗-algebra EndX⊗n.

Proof. Straightforward computations. 2

B.48 Definition. The subobjects (defined up to isomorphism) of X⊗n correspond-
ing to the idempotents SXn and AXn are denoted by Sn(X) and An(X), respectively.
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The following was proven both in [Doplicher and Roberts, 1989] and [Deligne, 1990]:

B.49 Proposition. Let C be an even STC∗. For any X ∈ C we have

TrX⊗n AXn =
d(X)(d(X) − 1)(d(X) − 2) · · · (d(X) − n+ 1)

n!
∀n ∈ N. (62)

Proof. (Sketch) Making crucial use of the fact that C is even, i.e. Θ(X) = idX for
all X ∈ C, one can prove

TrX⊗n ΠX
n (σ) = d(X)#σ ∀X ∈ C, σ ∈ Pn,

where #σ is the number of cycles into which the permutation σ decomposes. (The
reader familiar with tangle diagrams will find this formula almost obvious: Triviality
of the twist Θ(X) implies invariance under the first Reidemeister move. Thus the
closure of the permutation σ is equivalent to #σ circles, each of which contributes
a factor d(X).) Now the result follows at once from the definition of AXn and the
formula ∑

σ∈Pn

sgn(σ) z#σ = z(z − 1)(z − 2) · · · (z − n+ 1),

which holds for all n ∈ N and z ∈ C, as one can prove by induction over n. 2

B.50 Corollary. In an STC∗ we have d(X) ∈ N for every non-zero X ∈ C.

Proof. Assume first that C is even, and let X ∈ C. Since C has subobjects there exist
an object An(X) ∈ C and a morphism s : An(X) → X⊗n such that s∗ ◦ s = idAn(X)

and s ◦ s∗ = AXn . Then by part 1 and 2 in Proposition A.40, we get

TrX⊗n AXn = TrX⊗n(s ◦ s∗) = TrAn(X)(s
∗ ◦ s) = TrAn(X) idAn(X) = d(An(X)).

Since the dimension of any object in a ∗-category is non-negative we thus conclude
that TrX⊗n AXn ≥ 0 for all n ∈ N. From the right-hand side in the formula (62)
for TrX⊗n AXn we see that TrX⊗n AXn will become negative for some n ∈ N unless
d(X) ∈ N.

If C is odd, the above argument gives integrality of the dimensions in the
bosonized category C̃. Since the categorical dimension is independent of the braid-
ing, we have dC(X) = d

C̃
(X) and are done. 2

Let C be an STC∗ and X ∈ C non-zero and set d = d(X) ∈ N. Consider
the subobject Ad(X) of X⊗d, introduced in the proof of Corollary B.50, which
corresponds to the orthogonal projection AXd ∈ EndX⊗d defined in Lemma B.47.
Then

d(Ad(X)) = TrX⊗d AXd =
d!

d!
= 1,

we see that Ad(X) is an irreducible and invertible object of C (with inverse Ad(X)).
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B.51 Definition. The isomorphism class of Ad(X)(X) is called the determinant
det(X) of X.

B.52 Lemma. Let C be an STC∗ and X,Y ∈ C. Then

(i) det(X) ∼= det(X).

(ii) det(X ⊕ Y ) ∼= det(X) ⊗ det(Y ).

(iii) det(X ⊕X) ∼= 1.

Proof. (i) Let (X, r, r) be a standard left inverse of X. By inductive use of Lemma

A.39 one obtains standard left inverses (X
⊗n
, rn, rn) of X⊗n for any n ∈ N. If now

σ = σi1 · · · σir ∈ Pn, one can verify that

ΠX
n (σ′) = r∗n ⊗ id

X
⊗n ◦ id

X
⊗n ⊗ ΠX

n (σ) ⊗ id
X
⊗n ◦ id

X
⊗n ⊗ rn,

where σ′ = σ−1
n−ir

· · · σ−1
n−i1

. In particular, sgnσ′ = sgnσ, implying

AXn = r∗n ⊗ id
X
⊗n ◦ id

X
⊗n ⊗AXn ⊗ id

X
⊗n ◦ id

X
⊗n ⊗ rn,

for any n ∈ N. Now the claim follows from Lemma A.38.
(ii) For any X ∈ C we abbreviate dX = d(X) and AX = AXdX

∈ EndX⊗dX .
Let u : X → Z, v : Y → Z be isometries implementing Z ∼= X ⊕ Y . Then
X⊗dX is a subobject of Z⊗dX , and similarly for Y ⊗dY . By definition, det(Z) is
the subobject of Z⊗dZ corresponding to the projector AZ ∈ EndZ⊗dZ . On the
other hand, det(X) ⊗ det(Y ) is the subobject of X⊗dX ⊗ Y ⊗dY corresponding to
the projector AX ⊗ AY , and therefore it is isomorphic to the subobject of Z⊗dZ

corresponding to the projector

u⊗ · · · ⊗ u⊗ v ⊗ · · · ⊗ v ◦ AX ⊗AY ◦ u∗ ⊗ · · · ⊗ u∗ ⊗ v∗ ⊗ · · · ⊗ v∗ ∈ EndZ⊗dZ ,

where there are dX factors u and u∗ and dY factors v and v∗. This equals

1

dX !dY !

∑

σ∈PdX
σ′∈PdY

sgn(σ)sgn(σ′)u⊗· · ·⊗u⊗v⊗· · ·⊗v ◦ΠX
dX

(σ)⊗ΠY
dY

(σ′) ◦u∗⊗· · ·⊗u∗⊗v∗⊗· · ·⊗v∗

By naturality of the braiding, this equals

1

dX !dY !

∑

σ∈PdX
σ′∈PdY

sgn(σ)sgn(σ′)ΠZ
dX

(σ) ⊗ ΠZ
dY

(σ′) ◦ pX ⊗ · · · ⊗ pX ⊗ pY ⊗ · · · ⊗ pY ,

where pX = u ◦ u∗, pY = v ◦ v∗. With the juxtaposition σ × σ′ ∈ PdX+dY
= PdZ

of
σ and σ′ this becomes

1

dX !dY !

∑

σ∈PdX
σ′∈PdY

sgn(σ × σ′)ΠZ
dZ

(σ × σ′) ◦ pX ⊗ · · · ⊗ pX ⊗ pY ⊗ · · · ⊗ pY , (63)
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On the other hand,

AZ =
1

dZ !

∑

σ∈PdZ

sgn(σ)ΠZ
dZ

(σ) =



∑

σ∈PdZ

sgn(σ)ΠZ
dZ

(σ)


 ◦ (pX+pY )⊗· · ·⊗(pX+pY ).

Of the 2dZ terms into which this can be decomposed, only those with dX factors pX
and dY factors pY are nonzero since AXn = 0 for n > dX and AYn = 0 for n > dY .
We are thus left with a sum of dZ !/dX !dY ! terms, and working out the signs we see
that they all equal to dX !dY !/dZ ! times (63), thus the sum equals (63). This proves
the isomorphism det(Z) ∼= det(X) ⊗ det(Y ).

Finally, (iii) follows from

det(X ⊕X) ∼= detX ⊗ detX ∼= detX ⊗ detX ∼= detX ⊗ (detX)−1 ∼= 1,

where we have used (i) and (ii) of this lemma, d(det X) = 1 and (iii) of Lemma
A.42. 2

For later use we state a computational result:

B.53 Lemma. Let X satisfy detX ∼= 1 and write d = d(X). If s : 1 → X⊗d is an
isometry for which s ◦ s∗ = AXd then

s∗ ⊗ idX ◦ idX ⊗ s = (−1)d−1d−1 idX . (64)

Proof. We abbreviate x = s∗ ⊗ idX ◦ idX ⊗ s and observe that by non-degeneracy
of the trace it is sufficient to show that TrX(ax) = (−1)d−1d−1TrX(a) for all a ∈
EndX. In order to show this, let (X, r, r) be a standard solution of the conjugate
equations and compute

TrX(ax) =

' $
r∗�

�
�

a

s∗

X X Xd−1

s
 	r

= (−1)d−1

' $
r∗�

�
�

a

s∗

X

X

A
A
A�

�
�

AAX
d−1

s
 	r

= (−1)d−1

s∗� �r∗
X

A
A
A�

�
�

AA
 	r�
�

�

a

Xd−1

s

= (−1)d−1

s∗�
�

�

a

Xd−1

s

We have in turn used the total antisymmetry of s (Lemma B.47), the naturality
properties of the braiding and the triviality of the twist ΘX . Now,

s∗ ◦ a⊗ idX⊗d−1 ◦ s = Tr1(s
∗ ◦ a⊗ idX⊗d−1 ◦ s)

= TrX⊗d(a⊗ idX⊗d−1 ◦ s ◦ s∗) = TrX⊗d(a⊗ idX⊗d−1 ◦ AXd ).
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In order to complete the proof we need to show that this equals d−1TrXa, which is
done by suitably modifying the proof of Proposition B.49. By the same argument
as given there, it suffices to prove TrX⊗d(a ⊗ idX⊗d−1 ◦ ΠX

d (σ)) = d#σ−1TrXa.
Again, the permutation σ decomposes into a set of cyclic permutations, of which
now precisely one involves the index 1. It is therefore sufficient to prove TrX⊗n(a⊗
idX⊗n−1 ◦ ΠX

n (σ)) = TrXa for every cyclic permutation σ of all n indices. Inserting
a at the appropriate place, the calculation essentially proceeds as before. The only
difference is that instead of TrX idX = d(X) one is left with TrXa, giving rise to
the desired result. 2

B.54 Remark. Objects with determinant 1 were called special in [Doplicher and Roberts, 1989],
where also all results of this subsection can be found.

This concludes our discussion of antisymmetrization and determinants, and we
turn to symmetrization and the symmetric algebra. It is here that we need the
Ind-category that was introduced in Subsection A.7.

B.10 The symmetric algebra

In “ordinary” algebra one defines the symmetric algebra S(V ) over a vector space
V . Unless V = {0}, this is an infinite direct sum of non-trivial vector spaces.
We will need a generalization of this construction to symmetric tensor categories
other than Vect. While infinite direct sums of objects make sense in the setting of
C∗-tensor categories (Definition A.46), a more convenient setting for the following
considerations is given by the theory of abelian categories.

B.55 Lemma. Let C be an STC∗ and X ∈ C. For every n ∈ N choose an object
Sn(X) and an isometry un : Sn(X) → X⊗n such that un ◦ u∗n = SXn . Also, let
u0 = id1, interpreted as a morphism from S0(X) = 1 toX0 = 1. The the morphisms
mi,j : Si(X) ⊗ Sj(X) → Si+j(X) defined by

mi,j : Si(X) ⊗ Sj(X)
ui ⊗ uj- X⊗i ⊗X⊗j ≡ X⊗(i+j)

u∗i+j- Si+j(X)

satisfy
mi+j,k ◦mi,j ⊗ idSk(X) = mi,j+k ◦ idSi(X) ⊗mj,k

for all i, j, k ∈ Z+. Furthermore,

mi,j = mj,i ◦ cSi(X),Sj(X) ∀i, j

and mi,0 = m0,i = idSi(X).

Proof. As a consequence of SXn ◦ ΠX
n (σ) = SXn (σ) for all σ ∈ Pn, cf. Lemma B.47,

we have

SXi+j+k ◦ SXi+j ⊗ idX⊗k ◦ SXi ⊗ SXj ⊗ idX⊗k = SXi+j+k ◦ SXi+j ⊗ idX⊗k = SXi+j+k,
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SXi+j+k ◦ idX⊗k ⊗ SXj+k ◦ idX⊗k ⊗ SXj ⊗ SXk = SXi+j+k ◦ idX⊗i ⊗ SXj+k = SXi+j+k.

Multiplying all this with u∗i+j+k on the left and with ui ⊗ uj ⊗ uk on the right and

using u∗i ◦ SXi = u∗n and SXi ◦ ui = ui this implies

u∗i+j+k ◦SXi+j⊗idX⊗k ◦ui⊗uj⊗uk = u∗i+j+k ◦ui⊗uj⊗uk = u∗i+j+k ◦ idX⊗k⊗SXj+k ◦ui⊗uj⊗uk

Using again that SXi+j = ui+j ◦ u∗i+j, we have the first identity we wanted to prove.
Furthermore,

mj,i ◦ cSi(X),Sj(X) = u∗i+j ◦ uj ⊗ ui ◦ cSi(X),Sj(X) = u∗i+j ◦ cX⊗i,X⊗j ◦ ui ⊗ uj

= u∗i+j ◦ ΠX
i+j(σ) ◦ ui ⊗ uj = u∗i+j ◦ SXi+j ◦ ΠX

i+j(σ) ◦ ui ⊗ uj = u∗i+j ◦ SXi+j ◦ ui ⊗ uj

= u∗i+j ◦ ui ⊗ uj = mi,j,

where σ ∈ Pi+j is the permutation exchanging the first i with the remaining j
strands. The last claim is obvious in view of S0(X) = 1. 2

In view of Lemma A.54, C (with a zero object thrown in) is an abelian category,
thus there exists an abelian C-linear strict symmetric tensor category Ind C contain-
ing C as a full subcategory and complete w.r.t. filtered inductive limits. Therefore,
for any object X in the STC∗ C, there exists an object

S(X) = lim
−→
n→∞

n⊕

i=0

Sn(X)

together with monomorphisms vn : Sn(X) → S(X).

B.56 Proposition. Let C be an STC∗ and X ∈ C. Then there exists a morphism
mS(X) : S(X) ⊗ S(X) → S(X) such that

mS(X) ◦ vi ⊗ vj = vi+j ◦mi,j : Si(X) ⊗ Sj(X) → S(X)

and (S(X),mS(X), ηS(X) ≡ v0) is a commutative monoid in IndC.

Proof. This amounts to using

HomInd C(S(X) ⊗ S(X), S(X)) = lim
←−
m

lim
−→
n

HomC




m⊕

i,j=0

Si(X) ⊗ Sj(X),
n⊕

k=0

Sk(X)




to assemble the morphisms mi,j : Si(X)⊗Sj(X) → Si+j(X) into one big morphism
S(X) ⊗ S(X) → S(X). We omit the tedious but straightforward details. Asso-
ciativity (mS(X) ◦ mS(X) ⊗ idS(X) = mS(X) ◦ idS(X) ⊗ mS(X)) and commutativity
(mS(X) = mS(X) ◦ cS(X),S(X)) then follow from the respective properties of the mi,j

established in Lemma B.55. The unit property mS(X) ◦ idS(X) ⊗ v0 = idS(X) ⊗ v0 =
idS(X) follows from mi,0 = m0,i = idSi(X). 2
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We now study the interaction between the operations of symmetrization and
antisymmetrization, i.e. between determinants and symmetric algebras, that lies at
the core of the embedding theorem. We begin by noting that given two commutative
monoids (Qi,mi, ηi), i = 1, 2 in a strict symmetric tensor category, the triple (Q1⊗
Q2,mQ1⊗Q2, ηQ1⊗Q2), where ηQ1⊗Q2 = η1 ⊗ η2 and

mQ1⊗Q2 = m1 ⊗m2 ◦ idQ1 ⊗ cQ2,Q1 ⊗ idQ2,

defines a commutative monoid, the direct product (Q1,m1, η1) × (Q2,m2, η2). The
direct product × is strictly associative, thus multiple direct products are unambigu-
ously defined by induction.

B.57 Lemma. Let C be a STC and assume Z ∈ C satisfies detZ ∼= 1. We write
d = d(Z) and pick s : 1 → Z⊗d, s′ : Z⊗d → 1 such that s′ ◦ s = id1 and s ◦ s′ = AZd .
Let S(Z) be the symmetric tensor algebra over Z with the canonical embeddings
v0 : 1 → S(Z), v1 : Z → S(Z). Consider the commutative monoid structure on
Q = S(Z)⊗d given by

(Q,mQ, ηQ) = (S(Z),mS(Z), ηS(Z))
×d.

Define morphisms f : 1 → Q and ui : Z → Q, ti : Z⊗(d−1) → Q, i = 1, . . . , d by

f = v1 ⊗ . . . ⊗ v1︸ ︷︷ ︸
d factors

◦ s,

ui = v0 ⊗ . . .⊗ v0︸ ︷︷ ︸
i−1 factors

⊗ v1 ⊗ v0 ⊗ . . .⊗ v0︸ ︷︷ ︸
d−i factors

,

ti = (−1)d−i v1 ⊗ . . . ⊗ v1︸ ︷︷ ︸
i−1 factors

⊗ v0 ⊗ v1 ⊗ . . . ⊗ v1︸ ︷︷ ︸
d−i factors

.

Then s, f, ui, tj satisfy

mQ ◦ tj ⊗ ui ◦ s = δij f ∀i, j ∈ {1, . . . , d}. (65)

Proof. First note that s : 1 → Z⊗d as required exists since detZ ∼= 1 and that f is
a composition of monics, thus non-zero. We compute

mQ ◦ ti ⊗ ui ◦ s = (−1)d−i idS(Z)(i−1) ⊗ cS(Z)⊗(d−i),S(Z) ◦ v1 ⊗ v1 ⊗ · · · ⊗ v1 ◦ s

= (−1)d−i v1 ⊗ v1 ⊗ · · · ⊗ v1 ◦ idZ⊗(i−1) ⊗ cZ⊗(d−i),Z ◦ s

= v1 ⊗ v1 ⊗ · · · ⊗ v1 ◦ s

= f.

In the first equality we used the definition of (Q,mQ, ηQ) as d-fold direct product
of (S(Z),mS(Z), ηS(Z)) and the fact that v0 = ηS(Z) is the unit, naturality of the

193



braiding in the second and Lemma B.47 in the third. To see that mQ ◦ tj⊗ui ◦ s = 0
if i 6= j consider j = d− 1, i = d. Then mQ ◦ tj ⊗ ui ◦ s is the composite

1
s - Z⊗d

d−2 factors︷ ︸︸ ︷
v1 ⊗ · · · ⊗ v1 ⊗v0 ⊗ v1 ⊗ v1- S(Z)⊗(d+1)

idS(Z)⊗(d−1) ⊗mS(Z)- S(Z)⊗d ≡ Q.

Now,

idS(Z)⊗(d−1) ⊗mS(Z) ◦ v1 ⊗ · · · ⊗ v1 ⊗ v0 ⊗ v1 ⊗ v1 ◦ s

= idS(Z)⊗(d−1) ⊗ (mS(Z) ◦ cS(Z),S(Z)) ◦ v1 ⊗ · · · ⊗ v1 ⊗ v0 ⊗ v1 ⊗ v1 ◦ s

= idS(Z)⊗(d−1) ⊗mS(Z) ◦ idS(Z)⊗(d−1) ⊗ cS(Z),S(Z) ◦ v1 ⊗ · · · ⊗ v1 ⊗ v0 ⊗ v1 ⊗ v1 ◦ s

= idS(Z)⊗(d−1) ⊗mS(Z) ◦ v1 ⊗ · · · ⊗ v1 ⊗ v0 ⊗ v1 ⊗ v1 ◦ idZ⊗(d−2) ⊗ cZ,Z ◦ s

= − idS(Z)⊗(d−1) ⊗mS(Z) ◦ v1 ⊗ · · · ⊗ v1 ⊗ v0 ⊗ v1 ⊗ v1 ◦ s,

where we used the commutativity of mS(Z) in the first step and the total antisym-
metry of s in the last. Thus mQ ◦ ud ⊗ td−1 ◦ s = −mQ ◦ ud ⊗ td−1 ◦ s = 0. For
general i 6= j the argument is exactly the same, but becomes rather tedious to write
up in detail. 2

B.58 Remark. Lemma B.57 and Proposition B.59 below, both taken from [Bichon, 1998],
are the crucial ingredients in our approach to the reconstruction theorem.

B.11 Construction of an absorbing commutative monoid

Throughout this subsection, let C be an even STC∗ with monoidal generator Z.
Consider the commutative monoid (Q,m, η) = (S(Z),mS(Z), ηS(Z))

×d(Z) in IndC
and the morphisms s, s′, f, ui, tj as defined in Lemma B.57. Then m0 ∈ EndQ
defined by

m0 = mQ ◦ idQ ⊗ (f − ηQ) = mQ ◦ idQ ⊗ f − idQ

is a Q-module map, thus m0 ∈ EndQ((Q,mQ)). Then its image j = imm0 :
(J, µJ ) → (Q,mQ) (in the abelian category Q−Mod) defines an ideal j : (J, µJ ) →
(Q,m) in (Q,m, η). This ideal is proper iff j is not an isomorphism iff m0 is not an
isomorphism. Postponing this issue for a minute, we have:

B.59 Proposition. Let C be an even symmetric STC∗ and let Z ∈ C be such that
detZ ∼= 1. Let (Q,m, η) and s, s′, f, ui, tj be as defined in Lemma B.57 and m0

as above. Let j′ : (J ′, µ′) → (Q,m) be any proper ideal in (Q,m, η) containing
the ideal j : (J, µ) → (Q,m), where j = imm0. Let (B,mB , ηB) be the quotient
monoid. Then there is an isomorphism

(B ⊗ Z,m⊗ idZ) ∼= d(Z) · (B,mB)

of B-modules.

194



Proof. Since the ideal is proper, the quotient (B,mB , ηB) is nontrivial and we have
an epi p : Q→ B satisfying

p ◦mQ = mB ◦ p⊗ p, (66)

p ◦ f = p ◦ ηQ = ηB . (67)

In order prove the claimed isomorphism B ⊗ Z ∼= dB of B-modules we define
morphisms q̃i ∈ Hom(1, B ⊗ Z), p̃i ∈ Hom(Z,B), i = 1, . . . , d as the following
compositions:

q̃i : 1
s - Z⊗d ≡≡≡≡ Z⊗(d−1) ⊗ Z

ti ⊗ idZ- Q⊗ Z
p⊗ idZ- B ⊗ Z,

p̃i : Z
ui - Q

p - B.

Using, first (66), then (65) and (67) we compute

B� �mB

p̃i

Z
q̃j

=

B� �mB�
�

�

p

�
�

�

ui

�
�

�

p

�
�

�

tj

s

=

B�
�

�

p

mQ

� �
�
�

�

tj

�
�

�

ui

Zd−1AA ��Z
s

= δij p ◦ f = δij ηB . (68)

Defining, for i = 1, . . . , d,

qi =

B Z
mB

� �
q̃i

B

pi =

B
mB

� �
p̃i

B Z
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we find

pi ◦ qj =

B
mB

� �
p̃i

mB
� �

Z
q̃j

B

=

B

mB

� �
� �mB

p̃i

Z
q̃j

B

= δij

B

mB
� �

e
ηB

B

= δij idB,

where in the next to last step we used (68). It is obvious from their definitions
that pi, qi are morphisms of B-modules. We have thus shown that the B-module
(B ⊗ Z,mB ⊗ idZ) has d direct summands (B,mB), and therefore

(B ⊗ Z,mB ⊗ idZ) ∼= (B,mB) ⊕ . . .⊕ (B,mB)︸ ︷︷ ︸
d summands

⊕ (N,µN ).

It remains to be shown that N = 0 or, equivalently,
∑d

i=1 qi ◦ pi = idB⊗Z . A
short argument to this effect is given in [Deligne, 1990; Bichon, 1998], but since it
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is somewhat abstract we give a pedestrian computational proof. We calculate

d∑

i=1

qi ◦ pi =

d∑

i=1

B Z� �
q̃i� ��

�
�

p̃i

B Z

=

d∑

i=1

B Z

mB

� �
mB

� �
q̃i�

�
�

p̃i

B Z

=

d∑

i=1

B Z

mB

� �

mB

� �
�
�

�

p

�
�

�

ti

s�
�

�

p

�
�

�

ui

B Z

=

d∑

i=1

B Z

mB

� �
�
�

�

p

mQ

� �
�
�

�

ui

�
�

�

ti

Zd−1

s

B Z

Composition with ηB ⊗ idZ shows that this equals idB⊗Z iff

d∑

i=1

B Z�
�

�

p

mQ

� �
�
�

�

ui

�
�

�

ti

Zd−1

s

Z

=

B Z

ηB
e
Z

(69)
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In view of the definition of (Q,mQ, ηQ), the left hand side of (69) equals

d∑

i=1

(−1)d−i
(
p ◦ cS(Z),S(Z)⊗(i−1) ⊗ idS(Z)⊗(d−i) ◦ v1 ⊗ · · · ⊗ v1

)
⊗ idZ ◦ idZ ⊗ s (70)

= (p ◦ v1 ⊗ · · · ⊗ v1) ⊗ idZ ◦
(

d∑

i=1

(−1)d−i cZ,Z⊗(i−1) ⊗ idZ⊗(d−i) ⊗ idZ ◦ idZ ⊗ s

)
.

Writing Ki = cZ,Z⊗(i−1) ⊗ idZ⊗(d−i+1) ◦ idZ ⊗ s, where i ∈ {1, . . . , d}, one easily
verifies

ΠZ
d+1(σj) ◦ Ki =





Ki−1 : j = i− 1
Ki+1 : j = i
−Ki : otherwise

for all j ∈ {1, . . . , i− 1}. This implies that the morphism Z → Z⊗(d+1) in the large
brackets of (70) is totally antisymmetric w.r.t. the first d legs, i.e. changes its sign
upon multiplication with ΠZ

d+1(σj), j = 1, . . . , d − 1 from the left. We can thus

insert AZd = s ◦ s′ at the appropriate place and see that (70) equals

= (p ◦ v1 ⊗ · · · ⊗ v1) ⊗ idZ ◦ (s ◦ s′) ⊗ idZ

◦
(

d∑

i=1

(−1)d−i cZ,Z⊗(i−1) ⊗ idZ⊗(d−i) ⊗ idZ ◦ idZ ⊗ s

)

= (p ◦ v1 ⊗ · · · ⊗ v1 ◦ s) ⊗ idZ

◦
(

d∑

i=1

(−1)d−i s′ ⊗ idZ ◦ cZ,Z⊗(i−1) ⊗ idZ⊗(d−i) ⊗ idZ ◦ idZ ⊗ s

)

Now, p ◦ v1⊗· · ·⊗v1 ◦ s = p ◦ f = ηB . On the other hand, by the total antisymmetry
of s we have s′ ◦ cZ,Z⊗(i−1) ⊗ idZ⊗(d−i) = (−1)i−1s′ and thus

d∑

i=1

(−1)d−i s′ ⊗ idZ ◦ cZ,Z⊗(i−1) ⊗ idZ⊗(d−i) ⊗ idZ ◦ idZ ⊗ s

=

d∑

i=1

(−1)d−i(−1)i−1 s′ ⊗ idZ ◦ idZ ⊗ s = d(−1)d−1 s′ ⊗ idZ ◦ idZ ⊗ s = idZ ,

where the last equality is provided by Lemma B.53. Thus (69) is true, implying∑d
i=1 qi ◦ pi = idB⊗Z and therefore the claimed isomorphism B ⊗ Z ∼= d(Z)B of

B-modules. 2

B.60 Lemma. Let C, Z and the monoid (Q,m, η) be as in Lemma B.57. Then
the commutative algebra ΓQ = Hom(1, Q) is Z+-graded and has at most countable
dimension.
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Proof. By construction of Q we have

ΓQ = Hom(1, Q) = lim
−→
n

n⊕

i=0

Hom(1, Si(Z)) =
⊕

i≥0

Hom(1, Si(Z)).

Each of the direct summands on the right hand side lives in C and thus has finite
dimension. It follows that ΓQ has at most countable dimension. That ΓQ is a
Z+-graded algebra is evident from the definition of mQ in terms of the morphisms
mi,j : Si(X) ⊗ Sj(X) → Si+j(X) of Lemma B.55. 2

B.61 Theorem. Let Z ∈ C be such that detZ ∼= 1. Then there exists a commuta-
tive monoid (B,mB , ηB) in IndC such that dim HomInd C(1, B) = 1 and there is an
isomorphism B ⊗ Z ∼= d(Z)B of B-modules.

Proof. Let (Q,m, η) and the ideal j = imm0 : (J, µ) → (Q,m) as before. Assume
that j is an isomorphism, thus epi. Then m0 is epi and thus an isomorphism by
Lemma A.67. In particular, the map ΓQ → ΓQ given by s 7→ s • (f − η) is an
isomorphism, thus f − η ∈ ΓQ is invertible. This, however, is impossible since ΓQ
is Z+-graded and f − η ∈ ΓQ is not in the degree-zero part. Thus the ideal j is

proper. By Lemma A.63 there exists a maximal ideal j̃ : (J̃ , µ̃) → (Q,m) containing
j : (J, µ) → (Q,m). If the monoid (B,mB , ηB) is the quotient of (Q,m, ηQ) by

j : (J̃ , µ̃) → (Q,m), Proposition B.59 implies the isomorphism B ⊗ Z ∼= d(Z) · B
of B-modules. By Lemma A.65, the quotient module (B,mB , ηB) has no proper
non-zero ideals, thus by Lemma A.66, the commutative C-algebra EndB((B,mB))
is a field extending k. By Lemma A.59, EndB((B,m)) ∼= Hom(1, B) =: ΓB as a C-
algebra. By Lemma A.72, the unit 1 ∈ Ind C is projective, thus Lemma A.64 implies
that ΓB is a quotient of ΓQ, and by Lemma B.60 it has at most countable dimension.
Now Lemma B.62 below applies and gives ΓB = C and therefore dim Hom(1, B) = 1
as desired. 2

B.62 Lemma. Let K ⊃ C a field extension of C. If [K : C] ≡ dimCK is at most
countable then K = C.

Proof. Assume that x ∈ K is transcendental over C. We claim that the set { 1
x+a | a ∈

C} ⊂ K is linearly independent over C: Assume that
∑N

i=1
bi

x+ai
= 0, where the ai

are pairwise different and bi ∈ C. Multiplying with
∏
i(x+ai) (which is non-zero in

K) we obtain the polynomial equation
∑N

i=1 bi
∏
j 6=i(x+aj) = 0 =

∑N−1
k=0 ckx

k for x.
Since x is transcendental, we have ck = 0 for all k = 0, . . . , N−1. This gives usN lin-
ear equations

∑N
i=1Mkibi = 0, k = 1, . . . , N , where Mki =

∑
S⊂{1,...,N}−{i}

#S=k−1

∏
s∈S as.

This matrix can be transformed into the matrix (Vki = ak−1
i ) by elementary row

transformations. By Vandermonde’s formula, det V =
∏
i<j(aj − ai) 6= 0, thus the

only solution of Mb = 0 is b1 = · · · = bN = 0, proving linear independence. Since
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C is uncountable this contradicts the assumption that K has countable dimension
over C. Thus K/C is algebraic and therefore K = C since C is algebraically closed.
2

Finally we have:

Proof of Theorem B.40. If C is an even STC∗ with monoidal generator Z, Lemma
B.52 allows us to assume detZ ∼= 1 (replacing Z by Z ⊕ Z). Now Theorem B.61
provides a monoid (B,m, η) in IndC satisfying the assumptions of Corollary B.44,
which gives rise to a symmetric fiber functor E : C → VectC. 2

B.63 Remark. It seems instructive to point out the main difference of our proof of
Theorem B.40 w.r.t. the approaches of [Deligne, 1990; Bichon, 1998]. In [Deligne, 1990],
a commutative monoid (Q,m, η) for which there is an isomorphism Q⊗Z ∼= d(Z)Q
of Q-modules is constructed by a somewhat complicated inductive procedure. The
explicit construction of the monoid that we gave is due to [Bichon, 1998]. Deligne
proceeds by observing that, for every X ∈ C, the k-vector space Hom(1, Q ⊗X) is
a module over the commutative ring ΓQ := EndQ((Q,m)) ∼= Hom(1, Q), and the
functor Ẽ : X 7→ Hom(1, Q⊗X) is monoidal w.r.t. the tensor product of ΓQ−Mod
(rather than that of VectC). Now, a quotienting procedure w.r.t. a maximal ideal
J in ΓQ is used to obtain a tensor functor E : C → K −Vect, where K = ΓQ/J is a
field extension of the ground field k. If Hom(1, Q) is of at most countable dimension
then [K : k] ≤ ℵ0, and if k is uncountable and algebraically closed it follows that
K = k.

Our approach differs in two respects. Less importantly, our insistence on det Z ∼=
1 makes the construction of the monoid (Q,m, η) slightly more transparent than
in [Bichon, 1998]. More importantly, we perform the quotienting by a maximal
ideal inside the category of Q-modules in Ind C rather than in the category of ΓQ-
modules, yielding a monoid (Q′,m′, η′) in IndC with ΓQ′ = C. Besides giving rise
to a symmetric fiber functor E : C → VectC in a more direct fashion, this has the
added benefit, as we will show in the final subsection, of allowing to recover the group
Nat⊗E without any reference to the fiber functor and its natural transformations!
The ultimate reason for this is that, due to uniqueness of the embedding functor,
the monoid (Q′,m′, η′) in IndC is nothing but the monoid (πl, m̃, η̃) in RepG that
arises from the left regular representation of G, cf. [Müger and Tuset, ND].

B.12 Addendum

In the previous subsection we have concluded the proof of the existence of a fiber
functor and, by the concrete Tannaka theorem, of the equivalence C ≃ Repf (G, k),
where (G, k) is a compact supergroup. However, we would like to show how the
group Nat⊗E, and in some cases also G, can be read off directly from the monoid
(Q,m, η), bypassing fiber functors, natural transformations etc.
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B.64 Definition. The automorphism group of a monoid (Q,m, η) in a strict tensor
category C is

Aut(Q,m, η) = {g ∈ AutQ | g ◦m = m ◦ g ⊗ g, g ◦ η = η}.

B.65 Proposition. Let C be an STC∗ and (Q,m, η) a monoid in IndC satisfying

(i) dimHomInd C(1, Q) = 1.

(ii) For every X ∈ C, there is n(X) ∈ Z+ such that n(X) 6= 0 whenever X 6∼= 0
and an isomorphism αX : (Q⊗X,m⊗ idX) → n(X) · (Q,m) of Q-modules.

Then the group Nat⊗E of monoidal natural automorphisms of the functor con-
structed in Proposition B.42 is canonically isomorphic to the group Aut(Q,m, η).

Proof. Let g ∈ Aut(Q,m, η). For every X ∈ C define gX ∈ EndE(X) by

gX ψ = g ⊗ idX ◦ ψ ∀ψ ∈ E(X) = Hom(1, Q⊗X).

From the definition of (gX)X∈C and of the functor E it is immediate that (gX)X∈C is
a natural transformation from E to itself. We must show this natural transformation
is monoidal, i.e.

E(X) ⊗ E(Y )
dX,Y- E(X ⊗ Y )

E(X) ⊗ E(Y )

gX ⊗ gY

? dX,Y- E(X ⊗ Y )

gX⊗Y

?

commutes. To this end consider φ ∈ E(X) = Hom(1, Q ⊗ X), ψ ∈ E(X) =
Hom(1, Q ⊗ Y ) and g ∈ Aut(Q,m, η) with (gX)X∈C as just defined. Then the
image of φ⊠ ψ ∈ E(X) ⊗ E(Y ) under gX⊗Y ◦ dX,Y is

g ⊗ idX⊗Y ◦ m⊗ idX⊗Y ◦ idQ ⊗ φ⊗ idY ◦ ψ,

whereas its image under dX,Y ◦ gX ⊗ gY is

m⊗ idX⊗Y ◦ g ⊗ g ⊗ idX⊗Y ◦ idQ ⊗ φ⊗ idY ◦ ψ.

In view of g ◦m = m ◦ g ⊗ g, these two expressions coincide, thus (gX) ∈ Nat⊗E.
It is very easy to see that the map σ : Aut(Q,m, η) → Nat⊗E thus obtained is a
group homomorphism.

We claim that σ is an isomorphism. Here it is important that we work in IndC
rather than any category Ĉ, since this implies that Q is an inductive limit of objects
in C. The assumptions (i),(ii) then give Hom(X,Q) ∼= Hom(1, Q ⊗X) ∼= Cn(X) for
all X ∈ C and thus (using n(X) = n(X) = dimE(X))

Q ∼= lim
−→
S⊂I

⊕

i∈S

n(Xi)Xi and EndQ ∼=
∏

i∈I

EndE(Xi), (71)
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where S runs though the finite subsets of I. Assume now that σ(g) is the identity
natural transformation, i.e. g⊗ idX ◦ φ = φ for all X ∈ C and φ ∈ Hom(1, Q⊗X).
Be the existence of conjugates in C, this is equivalent to g ◦ s = s for all Y ∈ C and
s ∈ Hom(Y,Q). Since Q is an inductive limit of objects in C, this implies g = idQ.

If now α ∈ Nat⊗E, we first observe that α is a natural isomorphism by B.25.
By the isomorphisms NatE ∼=

∏
i∈I EndE(Xi) (cf. the proof of Proposition B.4)

and (71), we have a map Nat⊗E → AutQ. Reversing the preceding computations
shows that every α ∈ Nat⊗E gives rise to an element of Aut(Q,m, η). 2

B.66 Remark. This result shows that the group Nat⊗E can be recovered directly
from the absorbing monoid (Q,m, η) in IndC. In general the compact group G
as defined in Subsection B.1 is a true subgroup of Nat⊗E, the latter being the
pro-algebraic envelope of G. (In the cases of G = U(1), SU(2), U(2), e.g., that
would be C×, SL(2,C), GL(2,C), respectively.) But if C is finite (i.e. has finitely
many isomorphism classes of simple objects) then Nat⊗E is finite and G = Nat⊗E.
Interestingly, even in the case of finite C, where the monoid (Q,m, η) actually lives
in C, there seems to be no way to recover G without using IndC at an intermediate
stage.
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