
3.7 The Field Equations

Note. We now want a set of equations relating the metric coefficients

gµν which determine the curvature of spacetime due to the distribution

of matter in spacetime. Einstein accomplished this in his “Die Grund-

lage der allgemeinen Relativitätstheorie” (The Foundation of the Gen-

eral Theory of Relativity) in Annalen der Physik (Annals of Physics)

in 1916.

Note. Consider a mass M at the origin of a 3-dimensional system. Let

�X = (x, y, z) = (x(t), y(t), z(t)), and ‖ �X‖ =
√

x2 + y2 + z2 = r. Let �ur

be the unit radial vector �X/r. Under Newton’s laws, the force �F on a

particle of mass m located at �X is

�F = −Mm

r2 �ur = m
d2 �X

dt2
.

Therefore
d2 �X

dt2
= −M

r2 �ur.

Definition. For a particle at point (x, y, z) in a coordinate system

with mass M at the origin, define the potential function Φ = Φ(r) as

Φ(r) = −M

r

where r =
√

x2 + y2 + z2.

Theorem. The potential function satisfies Laplace’s equation

∇2Φ =
∂2Φ

∂x2 +
∂2Φ

∂y2 +
∂2Φ

∂z2 = 0
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at all points except the origin.

Proof. First

∂r

∂xi
=

∂

∂xi
[( �X · �X)1/2] =

2xi

2( �X · �X)1/2
=

xi

r

and
∂Φ

∂xi
=

∂Φ

∂r

∂r

∂xi
.

Therefore

−∇Φ = −
(
∂Φ

∂x
,
∂Φ

∂y
,
∂Φ

∂z

)

= −M

r2

(
x

r
,
y

r
,
z

r

)
= −M

r2 �ur =
d2 �X

dt2
.

Comparing components,

d2xi

dt2
= −∂Φ

∂xi
. (122)

Differentiating the relationship

∂Φ

∂xi
=

∂

∂xi

[
−M

r

]

=
∂

∂xi


 −M

((x1)2 + (x2)2 + (x3)2)1/2




=
−1(−1/2)M(2xi)

((x1)2 + (x2)2 + (x3)2)3/2 =
Mxi

r3

gives

∂2Φ

(∂xi)2
= M


r3 − xi[(3/2)r(2xi)]

r6




= M
r3 − 3r(xi)2

r6 =
M

r5 (r
2 − 3(xi)2).
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Summing over i = 1, 2, 3 gives

∇2Φ =
M

r5 {(r2 − 3(x1)2) + (r2 − 3(x2)2) + (r2 − 3(x3)2)} = 0.

Note. In the case of a finite number of point masses, the Laplace’s

equation still holds, only Φ is now a sum of terms (one for each particle).

Note. In general relativity, we replace equation (122) with

d2xλ

dτ 2 + Γλ
µν

dxµ

dτ

dxν

dτ
= 0 (125)

where the Christoffel symbols are

Γλ
µν =

1

2
gλβ

(
∂gµβ

∂xν
+

∂gνβ

∂xµ
− ∂gµν

∂xβ

)
.

Note. Comparing equations (122) and (125), we see that

∂Φ

∂xi
and Γλ

µν

dxµ

dτ

dxν

dτ

play similar roles. As the text says, “in a sense then, the metric coef-

ficients play the role of gravitational potential functions in Einstein’s

theory.”

Note. Trying to come up with a result analogous to Laplace’s equation

and treating the gµν ’s as a potential function, we might desire a field

equation of the form G = 0 where G involves the second partials of the

gµν ’s.
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Note. “It turns out” that the only tensors that are constructible from

the metric coefficients gµν and their first and second derivatives are

those that are functions of gµν and the components of Rλ
µνσ of the

curvature tensor.

Note. We want the field equations to have the flat spacetime of special

relativity as a special case. In this special case, the gµν are constants

and so we desire Rλ
µνσ = 0 for each index ranging from 0 to 3 (since the

partial derivatives of the gµν are involved). However, “it can be shown”

that this system of PDEs (in the unknown gµν ’s) implies that the gµν’s

are constant (and therefore that we are under the flat spacetime of

special relativity... we could use some details to verify this!).

Definition. The Ricci tensor is obtained from the curvature tensor by

summing over one index:

Rµν = Rλ
µνλ =

∂Γλ
µλ

∂xν
− ∂Γλ

µν

∂xλ
+ Γβ

µλΓ
λ
νβ − Γβ

µνΓ
λ
βλ.

Note. Einstein chose as his field equations the system of second order

PDEs Rµν = 0 for µ, ν = 0, 1, 2, 3. More explicitly:

Definition. Einstein’s field equations for general relativity are the

system of second order PDEs

Rµν =
∂Γλ

µλ

∂xν
− ∂Γλ

µν

∂xλ
+ Γβ

µλΓ
λ
νβ − Γβ

µνΓ
λ
βλ = 0

where

Γλ
µν =

1

2
gλβ

(
∂gµβ

∂xν
+

∂gνβ

∂xµ
− ∂gµν

∂xβ

)
.
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Therefore, the field equations are a system of second order PDEs in the

unknown function gµν (16 equations in 16 unknown functions). The gµν

determine the metric form of spacetime and therefore all intrinsic prop-

erties of the 4-dimensional semi-Riemannian manifold that is spacetime

(such as curvature)!

Note. The text argues that in a weak static gravitational field, we

need

g00 = 1 + 2Φ. (135)

See pages 204-206 for the argument. We will need this result in the

Schwarzschild solution of the next section.

Lemma III-4. For each µ,

gλβ ∂gλβ

∂xµ
=

1

g

∂g

∂xµ
=

∂

∂xµ
[ln |g|].

Proof. See pages 207-208. We will use this result in the derivation of

the Schwarzschild solution.
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