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ABSTRACT 

Molecular models in terms of Categories, Functors and Natural 
Transformations are introduced for uni-molecular chemical 
transformations, multi-molecular chemical and biochemical 
transformations. Novel approaches to realization of Relational Biology 
Models of Complex System Biology are introduced in terms of Natural 
Transformations between Functors of Molecular Categories. Several 
applications of such natural transformations are then presented to 
protein biosynthesis, embryogenesis and nuclear transplant 
experiments. Other possible realizations in Molecular Biology and 
Relational Biology of Organisms are also suggested.  Future 
developments will include: Fuzzy Relations in Biology; Categories of 
Lukasiewicz Logic Algebras and Intuitionistic Logic Algebras for 
Modeling of Complex Neural Network Processes; Stochastic, Genetic 
Networks in Lukn-Algebras, and Relational Biology Models of Complex 
Hormonal Controls.  



 
1. MOLECULAR MODELS IN CATEGORIES 
 
A simple introduction of such a synthesis is based on set-theoretical models of chemical 
transformations (14). Consider the simple case of uni-molecular chemical transformations 
(14): 
 

T : A x I ����B x I     (1) 
 

where A is the original sample set of molecules, I = [0, t] is a finite segment of the real 
time axis and A x I denotes the indexing of each A-type molecule by the instant of time at 
which each molecule a ∈ A is actually transforming into a B-type molecule (see also eq.3 
in ref.14). B x I denotes the set of the newly formed B-type molecules which are indexed 
by their corresponding instants of birth.  
 
MOLECULAR SET -A, with f: A �A are ENDOMORPHISMS that belong to H(A,A)  
 
THE CATEGORY OF MOLECULAR SETS AND THEIR TRANSFORMATIONS is : M . 
 
THE hX FUNCTOR:    hA: M � Set    is defined as: 
 

hA(X} = H(A,X) for any X in M 
hA (t) = m: H(A,A) �H(A,B) for any  t: A�B, where: 
 
 A = MOLECULAR SET 
 B= MOLECULAR SET OF REACTION PRODUCTS OF TYPE “B”, RESULTING FROM 
a DEFINITION OF the MOLECULAR SET VARIABLE ( m.s. v.), defined as follows. 
 

The flexible notion of  molecular set variable (m.s.v) is exactly represented by the morphisms v   in the 
following diagram: 
  

                                                          A x I 
                                                     

      A                        v 
 

 
                                                                     H(A,A) 
 

where morphisms v are induced by the inclusion mappings i: A�A x I and the 
commutativity conditions hA = v o i . The naturality of this diagram simply means that 
such Conditions hold for any functor hA defined as above. 
  
THE REPRESENTATION OF UNIMOLECULAR CHEMICAL REACTIONS AS 
NATURAL TRANSFORMATIONS:  
 
The unimolecular chemical reaction can be thus represented by the natural  

 i 

hA 



                                    ηηηη 
transformations    hA             hB , as one can readily check in the commutative diagram : 
 
  
hA (A) = H(A,A)     hB (A) = H(B,A)  
  
 
hA (t)           hB (t)  
 
 
hA (B) = H(A,B)      hB (B) = H(B,B)  
 
 
if the states of the molecular sets Au = a1, ... , an and Bu = b1,... bn are represented by 
certain endomorphisms in H(A,A) and H(B,B), respectively. 
 
 
THE OBSERVABLE OF AN m.s.v, B,  CHARACTERIZING THE CHEMICAL 
PRODUCTS “B" OF A CHEMICAL REACTION IS A MORPHISM:  
 
       γγγγ: H (B , B)  ------>   R  
 
where R is THE SET OF REAL NUMBERS . 

ηηηηB 

ηηηηA 



 
THIS OBSERVABLE IS SUBJECT TO THE FOLLOWING COMMUTATIVITY or 
NATURALITY CONDITION:  
                          c 
     H (A , A)                                         H (B , B)               
                                                                                                                                             
 

                                                                                       
(5) 

         R 
 
       

 
 
with   c : Au*               Bu* ,    and A*,  B*  being specially prepared FIELDS OF 
STATES, within a measurement uncertainty range, δ.  
 
DEFINITION OF A MULTI-MOLECULAR REACTION : 
 
In the case of multi-molecular reactions, the canonical functor of category theory:  
 
h : M                      [M, Set]               (4)  
 

assigns to each molecular set A the functor hA,  and to each chemical transformation 
                                                                                                 ηηηη 
t: A           B, the natural transformation   hA                   hB.  

γγγγ   αααα 



� 

 
The simplest METABOLIC-REPAIR (M, R)-System with REVERSE 
TRANSCRIPTION.   
 
                                                                                                                 
    
 
                                                                                                                                                       REVERSE TRANSCRIPTASE… 
   
                                                                                                                                                                                                                                                                                   

 
 
 
 
 
                    
  A              
                                                                                                                                                                                        
                                                                                                                     �           �                                    
 
 
 
 
DNA Duplication and Cell Division follows next in this linear categorical diagram:  
� : H(A,B)            H[B,H(A,B)]. 
 
FIGURE 1.    The simplest (M, R)-System model of a Primordial Organism.  
 
Possible molecular candidates are indicated at the top of the diagram in Figure 1, above the 

corresponding metabolic (f) or repair/ transcription (� �  ) components.  
Living organisms have non-linear diagrams with feedback and feedforward. note in this 
case, the ‘closure’, functional mapping, �, that physically regenerates the telomere and 
closes the DNA-loop at the end of the chromosome. (note also that the above diagram in 
fig.1 was updated in 2004;  the original diagram in 1983 was completely linear, and did 
not have the closure map �, the telomere, the reverse transcriptase, and the DNA 
duplication: they are now all represented in the updated diagram).. Adding to this diagram an 
hTERT suppressor gene would provide a FEEDBACK mechanism for simulating the control 
of cell division and the possibility of cell cycle arrest that is present in somatic cells. The other 
alternative—which is preferred—is the addition of an hTERT promoter gene that may need 
to be activated in order to begin cell cycling. It would also allow us to introduce simple 
models of cancer cells and how they transform during Oncogenesis.. 
 
STRUCTURAL 'HOMOLOGY' OF C- and Nu3-PROTEINS is caused by THE 
OVERLAP OF THE GENE C WITH THE GENE Nu3 IN THE 
BACTERIOPHAGE  
 

f   B 

A 
f 

B B 
B 

� �  
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ENZYME
S 

m-,  t- , r-    RNA’ s 
 DNA / GENOME 

  
   f’ 

H (A , B) H( B, H (A , B)) 

� � 



  m* 

 
 
The mathematical representation of this Homology-like Sequence is given in Diagram 
(1): 
 
 

                           ~ igMc                                                               ~ jMc 
             

Gk x G’c              Mk x M'c                          Ak x C 
  

                                                                                        p cN 

  ~ iNM                                         ~  jMA                              

Gk x G’c             Mkx M'c                          Ak x NA 

    
 

    
 

                        ~ ik                                                                          ~ jk   

Gk  
                                               Mk

                                              Ak
 

 
                               

  
             

 
 
 
 
The “homology” is mathematically represented by the isomorphisms igMc, iNM, ik, jMc, jMA, 
jk  Regardless of the algebraic structure with which An , Am, M'c , Mk, M’N, Gk, G’c and 
GN are endowed, the projections, p', p*, m', m*, g' and g* will always be defined. It is 
apparent from diagram (1) that transcription of the overlapping genes and the 
biosynthesis of the proteins for which they code will involve certain multi-molecular 
reactions. As shown in diagram (4) of ref. (l)  these processes will lead to certain natural 
transformations, η, as specified in diagram (4) . 
 
 
PHYSICOCHEMICAL MEASUREMENTS ON ORGANISMIC STRUCTURES, So, 
YIELD CERTAIN OBSERVABLES  F: So ---->   S. ;  these are defined NATURALLY,  
such that  the DIAGRAM OF CATEGORIES AND ALGEBRAIC THEORIES :  
 
 
 
 
 

 g’ 

g* 

g cN 

p’               (1) 

        
P* 

m’ 



 
S              

        
F                   ΨΨΨΨ 

X 
          So                    R 
 

 
                                                                             

            is commutative .  
 
 
 

Such observables of  So associate to each of its elements, ej, at each moment, the 
biological activities of So and the products made as a result of such activities. S was 
shown to be an algebraic theory and is built from cartesian products of the sets 
describing the biological activities and biochemical products of such activities. 
Physicochemical measurements on So produce real numbers so that certain general 
observables X: So � R are defined naturally.  
 
AN ALTERNATIVE , QUANTITATIVE APPROACH TO RELATIONAL BIOLOGY 
IS PROVIDED BY LATTICE-VALUED RELATIONS,  L.V.R' s (introduced by 
MUIR AND WARNER in ref. 8) : 
 
λλλλ : A x B ����LATTICE  
λλλλ = FUNCTION  
A = SET, B= SET. 
 
 
 
EXAMPLES: 
 
 l) λ:  A x A � [0,1]     is a FUZZY RELATION ; 
 
2) λ: S x S � H(L,I)  is a MARKOV PROCESS WITH CONTROLS  
 
(S =state-space, L= LATTICE OF MEASURABLE SETS IN A PROBABILITY 
SPACE,  
I = SET OF INPUTS  to the AUTOMATON,  
p:L �I   is a MAPPING in the SET H( L, I) ; 
 
3) λλλλ:  Lukn x Lukn ���� H(L , I) 
  
is a STOCHASTIC,GENETIC NETWORK , Lukn = L-ALGEBRA,  and H(L ,I ) is 
defined as in the MARKOV PROCESS WITH CONTROLS.  
 
 



L .V. R' s measure the STRENGTH OF RELATIONS  in ORGANISMIC 
STRUCTURES, and were applied to study HORMONAL CONTROL AND SEVERAL 
METABOLIC PROCESSES.  
 
 
 
FUTURE L.V.R. DEVELOPMENTS will include L.V.R- MORPHISMS, GROUP 
L.V.R's, L.V.R-HOMOLOGY, and N-ARY L.V.R's to model METABOLIC 
PROCESSES such as RIBOSOME BIOGENESIS AND PROTEIN BIOSYNTHESIS 
IN CELLS .   
  



NATURAL TRANSFORMATIONS IN PROTEIN BIOSYNTHESIS 

AND EMBRYOGENESIS. 

 

THE SET OF r-PROTEINS is H (A,B)  

THE SET OF r-PROTEIN mRNA’s is H( B, H(A,B))   

THE GENOME TRANSCRIBED INTO r-PROTEIN mRNA is then H(H(A,B), 

H(B,H(A,B))  

(SEE ALSO FIGURE 1 FOR CLARITY)  

Consider:   TWO SETS X and Y in THE METABOLIC CATEGORY, M   

                THE MAPPING t: X �Y of M  

DEFINITION OF THE SPECIAL FUNCTOR hX : M � Set 

hX (Y) = H(X,Y) for any set Y in M;  

hX (t) = m : H(X,X) � H(X,Y) for any t: X �Y;  

hX (g)(t)= g o t : H(X,X) �H(X,Y') for any g: Y�Y' in M , 

where X is a certain fixed object in M. The functor hX carries Y into H(X,Y)  

CONSTRUCTION OF THE SET H (B, H (A, B) of r-PROTEIN mRNAs USING THE 

CANONICAL FUNCTQR h : M �[M, Set]  

Is defined as 

                                                                   

S ~~� hX         and     t~~� hX        ηt       h
Y,  

Where t: X� Y and [M, Set] is a category of functors from M to Set.   

An embedding I: M �Set  and   Phi: I-� hX  are natural transformations  

and define protein and  mRNA’s (elements of H (X, H (X, Y)) ) 



 

EMBRYOGENESIS AND NUCLEAR EQUIVALENCE.  NUCLEAR 

TRANSPLANT EXPERIMENTS 

 
NUCLEAR EQUIVALENCE IMPLIES THE EXISTENCE OF CERTAIN DYNAMIC 

ISOMORPHISMS BETWEEN THE DYNAMIC SYSTEMS REPRESENTING NUCLEI AT 

DIFFERENT, EQUIPOTENT STAGES OF DEVELOPMENT: 

                                                         S[A,U(B)] 
~
--�S’[K(A,B)] 

CATEGORIES: S -GENERATES THE DYNAMIC SYSTEM ASSOCIATED WITH THE 

NUCLEUS AT STAGE 1; THIS IS A DYNAMIC SYSTEM D;    

S’ -GENERATES THE DYNAMIC SYSTEM CORRESPONDING TO NUCLEUS IN 

DEVELOPMENTAL STAGE 2 : 

THIS IS SYSTEM D’ 

ADJOINT FUNCTORS: U and K (form an ADJOINT PAIR)  

S    K       S’     U         S 

THE PROGRESSIVELY RESTRICTED ABILITY OF THE NUCLEUS TO DEVELOP 

“NORMALLY” WHEN TRANSPLANTED FROM THE MORE ADVANCED 

STAGES OF DEVELOPMENT IS MODELLED BY DYNAMIC EPIMORPHISMS:  

S [X,V(Y)] --EPI
�S’ [W(X),Y] 

where V and W are a PAIR OF WEAKLY ADJQINT EUNCTORS:  

S ----W-----� S’----V----�S 

THE DYNAMIC TRANSFORMATION    d: So ---���� So   .OF AN EMBRYO  



DESCRIBES THE EMBRYOGENESIS WHEN NATURAL TRANSFORMATIONS OFd-TYPE 

FUNCTORS DEFINE DEVELOPMENTAL STAGES IN MOLECULAR TERMS- AS  

MULTI-MOLECULAR TRANSFORMATIONS. 

 

 

PROTEIN BIOSYNTHESIS DEFINED AS A MULTI-MOLECULAR REACTION 

VIA NATURAL  TRANSFORMATIONS 

 

SUCH MULTI-MOLECULAR REACTIONS LEAD TO GENERALIZED OBSERVABLES  

Such processes induce certain natural transformations �:  � ---��*:  and �: � --��*:, 

with � , �*: Set �R and � , �*: Set� R being certain special functors.  From the 

definitions of natural transformations and multi-molecular reactions (see formulae (2)-(5) 

in Section (1) one obtains the following commutative diagram  

 

          Set     R 

 

 

 
          M          [M, Set] 
 

with L playing the role of a generalized observable. In this diagram, the canonical 
functor h assigns to each molecular set A the functor hA and to each chemical 
transformation t: A�B, the natural transformation � : hA � hB.  
 
 
 
 
 
 

hA hB 

� , �*, � , �*, ... 

L 

h 
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Note:  
 
The Earliest Quantum Automata and Quantum Dynamics in terms of Category Theory: 
 
It is often assumed that 'Categorification' of Quantum Field Theory, or the formal use of the Theory 
of Categories in Quantum Gravity and Topological Quantum Field theories (TQFTs) began in the 
1990s. In fact, the concepts of Quantum Automata and Quantum Dynamics represented in terms of 
Categories, Functors and Natural Transformations were formally introduced as early as 1968-1973 
(Bull. Math. Biophysics, 33:339-354 (1971), and references cited therein). The self-contained 
presentation in the earliest 1968 paper on  Categorical Dynamics introduce all necessary concepts 
for a student just entering this 'new' field. This earliest  1968 publication is currently available on 
the web. 
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