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Abstract. A Categorical Ontology of Space and Time is presented for Emergent Biosys-
tems, Super-complex Dynamics, Evolution and Human Consciousness. Relational structures
of organisms are represented by natural transformations of biomolecular reactions. The as-
cent of man and other organisms through adaptation, evolution and social co-evolution
is viewed in categorical terms as variable biogroupoid representations of evolving species.
The unifying theme of local-to-global approaches to organismic development, evolution and
human consciousness leads to novel patterns of relations that emerge in super- and ultra-
complex systems in terms of colimits of biogroupoids, and more generally, as compositions of
local procedures to be defined in terms of locally Lie groupoids. Solutions to such local-to-
global problems in highly complex systems with ‘broken symmetry’ may be found with the
help of higher homotopy theorems in algebraic topology such as the generalized van Kam-
pen theorems (HHvKT). Primordial organism structures are predicted from the simplest
Metabolic-Repair systems extended to self-replication through autocatalytic reactions. The
intrinsic dynamic ‘asymmetry’ of genetic networks in organismic development and evolution
is investigated in terms of categories of many-valued,  Lukasiewicz-Moisil logic algebras and
then compared with those obtained for (non-commutative) Quantum Logics. The claim is
defended in this essay that human consciousness is unique and should be viewed as an ultra-
complex, global process of processes. The emergence of consciousness and its existence seem
dependent upon an extremely complex structural and functional unit with an asymmetric
network topology and connectivities–the human brain– that developed through societal co-
evolution, elaborate language/symbolic communication and ‘virtual’, higher dimensional,
non–commutative processes involving separate space and time perceptions. Anticipatory
systems and complex causality at the top levels of reality are also discussed in the context
of the ontological theory of levels with its complex/entangled/intertwined ramifications in
psychology, sociology and ecology. The presence of strange attractors in modern society
dynamics give rise to very serious concerns for the future of mankind and the continued
persistence of a multi-stable Biosphere. A paradigm shift towards non-commutative, or
non-Abelian, theories of highly complex dynamics is suggested to unfold now in physics,
mathematics, life and cognitive sciences, thus leading to the realizations of higher dimen-
sional algebras in neurosciences and psychology, as well as in human genomics, bioinformatics
and interactomics.
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1. Introduction

The authors aim in this original report at a self-contained, and yet concise, presentation of
the difficult, as well as the controversial, ontological problem of Space and Time in Complex,
Super–complex and Ultra–complex Systems, ranging from biological organisms to societies,
but excluding computer-simulated systems that are recursively computable. Our report also
includes a higher-dimensional algebra approach to space/time ontology that is uniquely char-
acteristic to the human brain and the mind. This is perhaps one of the most complex systems
–a part of the human organism which has evolved over the last 2 million years and has be-
come a separate species from hominins/hominides. Thus, human consciousness emerged and
co-evolved through social interactions, elaborate speech, symbolic communication/language
perhaps over the last 400,000 years or longer.

The term ultra-complexity is here proposed to stand for the most complex level of reality
emerging from super-complex activities and top level processes in super-complex systems
through certain interactions in populations or societies constituted of living organisms. In
this sense, this is an upwards–finitary, non–reductionist categorical ontology that possesses
a maximum level of complexity encompassed by the human consciousness, v. infra–Sections
2, and 10 through 12. The focus in this essay is therefore on the emergence of super-complex
systems as categorical, universal and dynamic, structures in spacetime, followed by the even
more complex–and also more difficult to understand–emergence of human consciousness. The
claim is defended here that the emergence of ultra-complexity involved ‘symmetry breaking’
at several levels, thus leading to the asymmetry of the human brain– both functional and
anatomical– with a corresponding, sharp complexity increase in our mathematical/relational
structure representations of human consciousness and the human brain.

The human mind is then represented for the first time in this essay as an ultra–complex
‘system’ based on, but not necessarily reducible to, the human brain’s highly complex activ-
ities enabling and entailing the emergence of mind’s own consciousness; thus, an attempt is
made here to both define and represent in categorical ontology terms the human conscious-
ness as an emergent/global, ultra-complex process of mental activities as distinct from– but
correlated with– a multitude of integrated local super-complex processes that occur in the
human brain. Following a more detailed analysis, the claim is defended that the human mind
is more like a ‘multiverse with a horizon, or horizons’ rather than merely a ‘ super-complex
system with a finite boundary’. The mind has thus freed itself of the real constraints of space-
time by separating, and also ‘evading’, through virtual constructs the concepts of time and
space that are being divided in order to be conquered by the human free will. Among such
powerful, ‘virtual’ constructs of the human mind(s) are: symbolic representations, the infin-
ity concept, continuity, evolution, multi-dimensional spaces, universal objects, mathematical
categories and abstract structures of relations among relations...to still higher dimensions,
many-valued logics, local-to-global procedures, colimits/limits, Fourier transforms, and so
on, it would appear without end. One notices also the annoying, but inevitable, presence of
‘purely illusory’ concepts and theories, such as reductionism, that have little ‘contact’ with
the ‘objective’ reality–as it is–not as filtered by over–simplifying perceptions. The amazing
attribute of the ‘collective’ output of the human minds is the ability to select through a
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series of modelling, ‘self-correcting’ approximations those valid, universal concepts which
‘fit’ reality to an ever increasing degree. Although with many pitfalls, both Occam’s razor
postulate of simplicity and reductionism have their uses and misuses, as it will be discussed
in Section 4. Such a detailed consideration of the latter two philosophical stands is really
necessary because it strongly impacts on the correct selection of the main levels and ap-
proaches in the ontological theory of levels (Poli, 2001a,b; 2006a,b; 2007); the latter theory
is conceptually related to an universal/unitary, meta-categorical theory of systems (Baianu
and Marinescu, 1968), which is quite distinct from modern physicists’ so-called Theory of
Everything (TOE)– that does not exist–except as an advertisment, Messianic message, or
expectation of things to come into existence!

The first four sections will provide the essential concepts and also define the approach
required for a self-contained presentation of the subsequent six sections. Additional math-
ematical and physical details are, however, delegated to the Appendix in order to address
a wide range of interested readers whose understanding would not be hindered here by the
presence of complex mathematics where descriptive, precise wording will suffice for the pur-
pose of our ontological presentation. Therefore, the reader is not required to have either
a mathematical or physical background, although a background in biology, neurosciences
and/or psychology might be helpful to the reader in the critical evaluation and understand-
ing of the fundamental problems in the space/time categorical ontology of (super-) complex
systems, such as Life, the functional human brain, living organisms, and also ultra-complex
societies.

We shall also consider briefly how the space and time concepts evolved, resulting in the
joint concept of an objective ‘spacetime’ in the physical Relativity theory, in spite of the
distinct, (human) perception of space and time dimensions. Then, we shall proceed to define
the role(s) played by the space, time and spacetime concepts in the broader context(s) of
Categorical Ontology; this, in its turn, leads at a fundamental level to the consideration
of basic, mathematical and physical, internal symmetries widely known as ‘commutativity’
or ‘naturality’. Upon consideration of such basic, internal symmetry properties, it becomes
apparent that a paradigm shift is now occurring in both mathematics and physics towards
non-commutative concepts of space/spacetimes, that have also much wider implications for
the highly complex systems encountered in biology, psychology, sociology and the envi-
ronmental sciences. (The precise, mathematical and physical meanings of the concept of
〈commutativity〉 will be discussed in Section 2.3.) Such a paradigm shift has already begun
as early as the birth of Quantum theories and Quantum Logic which are intrinsically non-
commutative. Its implications are evident in the latest attempts in ‘Quantum Gravity’ at
unifying/reconciling Quantum Field theories with Relativistic theories of gravitation. The
claim is here defended that such theoretical developments of non-commutative spacetime
concepts will also require a shift towards non-commutative, (or non-Abelian) extensions of
Categorical Ontology.

Ontology has acquired over time several meanings and has been approached in many dif-
ferent ways, however mostly connected to the concept of an ‘objective existence’; we shall
consider here the noun ‘existence’ as a basic, or primitive, concept not definable in more
fundamental terms. The attribute ‘objective’ will be assumed with the same meaning as
in ‘objective reality’, and reality is understood as whatever has an existence which can be
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rationally or empirically verified independently by human observers in a manner which is nei-
ther arbitrary nor counter-factual. Here, we are in harmony with the theme and approach
of the ontological theory of levels of reality (Poli, 1998, 2001) by considering categorical
models of complex systems in terms of an evolutionary dynamic viewpoint. Thus our main
descriptive mechanism involves the mathematical techniques of category theory which afford
describing the characteristics and binding of levels, besides the links with other theories.
Whereas Hartmann (1952) stratified levels in terms of the four frameworks: physical, ‘or-
ganic’/biological, mental and moral, we restrict mainly to the first three. The categorical
techniques which we introduce provide a means of describing levels in both a linear and in-
terwoven fashion thus leading to the necessary bill of fare: emergence, complexity and open
non-equilibrium/irreversible systems.

Furthermore, as shown by Poli (2007) an effective approach to Philosophical Ontology is
concerned with universal items assembled in categories of objects and relations, transforma-
tions and/or processes in general. Thus, Categorical Ontology is fundamentally dependent
upon both space and time considerations. The formation, changes and indeed evolution of
the key concepts of space, time and spacetime will be therefore considered first in Section 2.
Basic aspects of Categorical Ontology can be then introduced in Section 3, whereas precise
formal definitions are relegated to the Appendix in order to maintain a self-contained presen-
tation without interrupting the flow of space and time in categorical ontology. Our viewpoint
is that models constructed from category theory and higher dimensional algebra have poten-
tial applications towards creating a higher science of analogies which, in a descriptive sense,
is capable of mapping imaginative subjectivity beyond conventional relations of complex
systems. Of these, one may strongly consider a generalized chronoidal–topos notion that
transcends the concepts of spatial–temporal geometry by incorporating non-commutative
multi–valued logic. Current trends in the fundamentally new areas of quantum–gravity the-
ories appear to endorse taking such a direction. We aim further to discuss some prerequisite
algebraic–topological and categorical ontology tools for this endeavour, however relegating
all rigorous mathematical definitions to the Appendix.

The fundamental concepts of commutativity and non-Abelian theory are then introduced
in Section 3 together with those of variable categories and chronotopoids that provide the
tools for understanding organismic network (bio)dynamics and evolution (in Sections 8 and 9,
respectively). It is interesting that commutative categorical ontology (CCO) is also acquiring
several new meanings and practical usefulness in the recent literature related to computer-
aided (ontic/ontologic) classification, as in the case of: neural network categorical ontology’
(Baianu, 1972; A. Ehresmann and Vanbremeersch, 1987, Healey, 2006), Genetic Ontology,
Biological Ontology, Environmental representations by categories and functors (Levich et al,
2001, 2006), or ultra-complex societies. On the other hand, alternative, Eastern philosophical
ontology approaches are not based on a duality of concepts such as: mind and body, system
and environment, objective and subjective, etc. In this essay, we shall follow the Western
philosophy ‘tradition’ and recognize such dual concepts as essentially distinctive items.

The claim will be defended in Section 4 through overwhelming objective evidence that the
established principles and laws of Physics and/or Chemistry are presently insufficient-even
though they are quite substantial and necessary– for understanding our Universe. Our claim
thus rejects reductionism/physicalism as the ‘ultimate’ arbiter and ‘approach’ that could
lead to a physical/chemical ‘theory of everything’ (TOE), without however denying either
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the usefulness of physical theories, models and ‘mechanisms’ or the necessity of ensuring that
higher-level theories and models, such as biological, psychological, societal, environmental,
etc,. are all logically consistent with the constraints and principles of physical and chemical
laws, in the contexts and situations that the latter would apply. Our claim is further de-
fended to a classification of systems at different levels of reality, beginning with the physical
levels (including the fundamental quantum level) and continuing in an increasing order of
complexity to the chemical/molecular levels, and then higher, towards the biological, psy-
chological, societal and environmental levels. Indeed, it is the principal tenet in the theory of
levels that there is a two-way interaction between social and mental systems that impinges
upon the material realm for which the latter is the bearer of both (Poli, 2001).

The evolution in our universe is thus seen to proceed from the level of ‘elementary’ quan-
tum ‘wave–particles’, their interactions via quantized fields (photons, bosons, gluons), also
including the quantum gravitation level, towards aggregates or categories of increasing com-
plexity. In this sense, the classical macroscopic systems are defined as ‘simple’ dynamical
systems, computable recursively as numerical solutions of mathematical systems of either or-
dinary or partial differential equations. Underlying such mathematical systems is always the
Boolean, or chryssippian, logic, namely, the logic of sets, Venn diagrams, digital computers
and perhaps automatic reflex movements/motor actions of animals. The simple dynamical
systems are always commutative, recursively computable, and in a certain specific sense, both
degenerate and non-generic, consequently also structurally unstable to small perturbations.
The next higher order of systems is then exemplified by ‘systems with chaotic dynamics’
that are conventionally called ‘complex’ by physicists and computer scientists/modellers
even though such physical, dynamical systems are still completely deterministic. It can be
formally proven that such systems are recursively non-computable (see for example, Baianu,
1987 for a mathematical proof and relevant references), and therefore they cannot be com-
pletely and correctly simulated by digital computers, even though some are often expressed
mathematically in terms of iterated maps or algorithmic-style formulas. In Section 5 we
proceed to introduce the next higher level systems above the chaotic ones, which we shall
call super–complex biological systems (SCBS, or ‘organisms’), followed at still higher levels
by the ultra-complex systems (UCS) of the human mind and human societies that will be
discussed in the last two sections. With an increasing level of complexity generated through
billions of years of evolution in the beginning, followed by millions of years for the ascent
of man, and perhaps 20,000 more years for human societies and their civilizations, there is
an increasing degree of genericity for the dynamic states of the evolving systems (Thom,
1980; Rosen, 2001). The claim is then defended in Section 9 that biological evolution which
generated numerous species and relations between species of increasing complexity at geo-
logical timescales on the order of 4 billion years– can be represented as a category which has
a categorical colimit–in a dynamic sense– which is the biological species of Homo sapiens ;
the latter emerged at the end of 200,000 to 30,000 years ago according to paleonthological
estimates, which vary according to geographical location, e.g., Africa, Europe or Asia, re-
spectively. Looking back at biological evolution, one also finds categorical colimits (Baianu,
1968; Ehresmann and Vanbermeesch, 1988; 2006) representing ‘memory–evolutive systems’
(MES), super-complex dynamics (SCD), organismic structures/functions and their natural
transformations (Baianu, 1970; 1980; 1987; 2004; 2005). The evolution to the next higher
order of complexity-the ultra-complex system of the human mind-may has become possible,
and indeed accelerated, through human societal interactions and effective/elaborate/rational
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and symbolic communication through speech (rather than screech–as in the case of chim-
panzees, gorillas, Australopithecus,..., or perhaps even Neanderthals).

The most important claim defended here is, however, that the ultra-complex process of pro-
cesses called 〈 human consciousness 〉 involves fundamentally asymmetric structures and their
corresponding, recursively non–computable dynamics/psychological processes and functions.
Such non-commutative dynamic patterns of structure-function are therefore represented by a
Higher Dimensional Algebra of neurons, neuronal (both intra- and inter-) signaling pathways,
and especially high-level psychological processes viewed as non-computable patterns of linked-
super-aggregate processes of processes, ... , of still further sub-processes. The latter, at the
biochemical /molecular-quantum level, are likely to include quantum ‘machines’ or quantum
automata (Baianu, 1971), such as essential quantum-tunnelling enzymes and certain RNAs
that are known to exist, and that are implicated in biochemical/quantum signalling pathways
in the human brain. Therefore, the claim is defended in Sections 11 and 12 that a paradigm
shift is already under way towards a non-Abelian theory of ultra-complex processes such as
human consciousness. Moreover, as already defended in Section 3, any complete Categorical
Ontology theory is necessarily non-Abelian and recursively non-computable, on account of
both the quantum level (which is generally accepted as being non-commutative), and the
top ontological level of the human mind– which also operates in a non-commutative manner,
albeit with a different, multi-valued logic than QL. To sum it up, the operating/operational
logics at both the top and the fundamental levels are non-commutative (the ‘invisible’ ac-
tor (s) who– behind the visible scene– make(s) both the action and play possible!). At the
fundamental level, spacetime events occur according to a quantum logic (QL), or Q-logic,
whereas at the top level of human consciousness, a different, non-commutative Higher Di-
mensional Logic Algebra prevails akin to the many-valued ( Lukasiewicz - Moisil, or LM)
logics of genetic networks which were shown previously to exhibit non-linear, and also non-
commutative/non-computable, biodynamics (Baianu, 1977, 1987; Baianu, Brown, Georgescu
and Glazebrook, 2006).

2. The Fundamental Concepts of Space, Time and SpaceTime. Observers
and Reference Frames. The Paradigm Shifts of Expanding Universe and

Contingent Universes.

Whereas Newton, Riemann, Einstein, Weyl, Hawking, Penrose, Weinberg and many other
exceptionally creative theoreticians regarded physical space as represented by a continuum,
there is an increasing number of proponents for a discrete, ‘quantized’ structure of space–
time, since space itself is considered as discrete on the Planck scale. Like most radical
theories, the latter view carries its own set of problems. The biggest problem arises from the
fact that any discrete, ‘point-set’ (or discrete topology), view of physical space–time is not
only in immediate conflict with Einstein’s General Relativity representation of space–time
as a continuous Riemann space, but is also conflicts with the fundamental impossibility of
carrying out quantum measurements that would localize precisely either quantum events
or masses at singular (in the sense of disconnected, or isolated), sharply defined, geometric
points in space–time.

Let us mention some attempts at this problem. In Sorkin (1991) ‘finitary topological
spaces’ were introduced to approximate, or to reproduce in the limit, a topological space
such as a manifold. The motivation reflects upon the patent inadequacies of the traditional
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differentiable manifold structure of space–time. Such a structure is perhaps too artificial
for a ‘laboratory’ model. A main premise is that the smooth structure at small time scales
breaks down to one that is more discrete– and ’quantum’–in form; there is an ideal character
of the event as observed classically and this occurs within the presence of mathematical
‘singularities’. The continuum of events and their infinitesimal separation do not yield to
the usual experimental analysis.

Differential structures in a non-commutative setting are replaced by such objects as quan-
tized differential forms, Fredholm modules and quantum groups (Connes, 1994; Majid, 1995,
2002). Again, since GR breaks down at the Planck scale, space–time may no longer be
describable by a smooth manifold structure. While not neglecting the large scale classical
model, one may propose the structure of ‘ideal observations’ as manifest in a limit, in some
sense, of ‘discrete’, or at least separable, measurements, where such a limit encompasses
the classical event. Then the latter is represented as a ‘point’ which is not influenced by
quantum interference; nevertheless, the idea is to admit coherent quantum superpositions
of events. Thus, at the quantum level, the events can de-cohere–in the large-scale limit–to
the classical events, somewhat in accordance with the correspondence principle. Algebraic
developments of the Sorkin model can be seen in Raptis and Zapatrin (2000), and quantum
causal sets were considered in Raptis (2000). A main framework is Abstract Differential Ge-
ometry (ADG) which employs sheaf–theoretic methods enabling one to avoid point–based
smooth manifolds, unusual gyroscopic frames and the chimera of ‘classical, mathematical
singularities’ (see for instance Mallios and Raptis, 2003).

Another proposed resolution of the problem is through non–commutative Geometry (NCG),
or ‘Quantum Geometry’, where QST has ‘no points’, in the sense of visualizing a ‘geometrical
space’ as some kind of a distributive and non-commutative lattice of space-time ‘points’. The
quantum ‘metric’ of QST in NCG would be related to a certain, fundamental quantum field
operator, or to a ‘fundamental triplet (or quintet)’ construction (Connes, 2004). Although
quantization is standard in Quantum Mechanics (QM) for most quantum observables, it does
encounter major difficulties when applied to position and time. In standard QM, there are
at least two implemented approaches to solve the problem, one of which was conceived by
von Neumann (1932).

2.1. Current Status of Quantum Theory vs General Relativity. The Changing
Roles of the Observer. Unitary or General Transformations ? A notable feature of
current 21-st century physical thought involves questioning the validity of the classical model
of space-time as a 4–dimensional manifold equipped with a Lorentz metric. The expectation
of the earlier approaches to quantum gravity (QG) was to cope with microscopic length
scales where, as we have mentioned, a traditional manifold structure (in the conventional

sense) needs to be forsaken (for instance, at the Planck length Lp = (G}
c3

)
1
2 ≈ 10−35m). On

the other hand, one needs to reconcile the discrete versus continuum views of space–time
diffeomorphisms with the possibility that space–time may be suitably modelled as some type
of ‘combinatorial space’ such as a simplicial complex, a poset, or a spin foam (i.e.,a cluster
of spin networks). The monumental difficulty is that to the present day, apart from a dire
absence of experimental evidence, there is no general consensus on the actual nature of the
data necessary, or the actual conceptual framework required for obtaining the data in the
first place. This difficulty equates with how one can gear the approach to QG to run the
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gauntlet of conceptual problems from non-Abelian Quantum Field Theory (NA-QFT) to
General Relativity (GR).

2.2. Dynamic Systems as Stable Spacetime Structures.

2.3. Local-to-Global Problems in Spacetime Structures. Symmetry Breaking, Ir-
reversibility and the Emergence of Highly Complex Dynamics. On summarizing in
this section the evolution of the physical concepts of space and time, we are pointing out first
how the views changed from homogeneity and continuity to inhomogeneity and discreteness.
Then, we link this paradigm shift to a possible, novel solution in terms of local-to-global ap-
proaches and procedures to spacetime structures. Such procedures will then lead to a wide
range of applications in later sections, such as the emergence of higher dimensional space-
time structures through highly complex dynamics in organismic development, adaptation,
evolution, consciousness and society interactions.

2.3.1. Spacetime Local Inhomogeneity, Discreteness and Broken Symmetries: From Local to
Global Structures. Physics, up to 1900’s, involved a concept of both continuous and homo-
geneous space and time with strict causal (mechanistic) evolution of all physical processes
(“God does not play dice”, cf. Albert Einstein). Furthermore, up to the introduction of
quanta–discrete portions, or packets–of energy by Ernst Planck (which was further elabo-
rated by Einstein, Heisenberg, Dirac, Feynman, Weyl and other eminent physicists of the
last century), energy was also considered to be a continuous function, though not homoge-
neously distributed in space and time. Einstein’s Relativity theories joined together space
and time into one ’new’ entity–the concept of spacetime. Furthermore, in the improved form
of General Relativity (GR), inhomogeneities caused by the presence of matter were allowed
to occur in spacetime. Causality, however, remained strict, but also more complicated than
in the Newtonian theories. Although Einstein’s Relativity theories incorporate the concept
of quantum of energy, or photon, into their basic structures, they also deny such discreteness
to spacetime even though the discreteness of energy is obviously accepted within Relativ-
ity theories. The GR concept of spacetime being modified, or distorted/‘bent’, by matter
goes further back to Riemann, but it was Einstein’s GR theory that introduced the idea
of representing gravitation as the result of spacetime distortion by matter. Implicitly, such
spacetime distortions remained continuous even though the gravitational field energy –as all
energy– was allowed to vary in discrete, albeit very tiny portions–the gravitational quanta.
So far, however, the detection of gravitons –the quanta of gravity–related to the spacetime
distortions by matter–has been unsuccessful. Mathematically elegant/precise and physically
‘validated’ through several crucial experiments and astrophysical observations, Einstein’s
GR is obviously not reconcilable with Quantum theories (QTs). GR was designed as the
large–scale theory of the Universe, whereas Quantum theories–at least in the beginning–were
designed to address the problems of microphysical measurements at very tiny scales of space
and time involving extremely small quanta of energy. We see therefore the QTs vs. GR as
a local-to-global problem that has not been yet resolved in the form of an universally valid
Quantum Gravity. Promising, partial solutions are suggested in the Appendix and in Part
I– the companion paper in this volume (Baianu, Brown and Glazebrook, 2007).

Quantum theories (QTs) were developed that are just as elegant mathematically as GR,
and they were also physically ‘validated’ through numerous, extremely sensitive and care-
fully designed experiments. However, to date quantum theories have not been extended, or
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generalized, to a form capable of recovering the results of Einstein’s GR as a quantum field
theory over a GR-spacetime altered by gravity is not yet available.

Furthermore, quantum symmetries occur not only on microphysical scales, but also macro-
scopically in certain, ‘special’ cases, such as liquid 3He close to absolute zero and super-
conductors where extended coherence is possible for the superfluid, Cooper electron-pairs.
Explaining such phenomena requires the consideration of symmetry breaking (Weinberg,
2003). Occasionally, symmetry breaking is also invoked as a ‘possible mechanism for hu-
man consciousness’ which also seems to involve some form of ‘global coherence’–over most
of the brain; however, the existence of such a ‘quantum coherence in the brain’–at room
temperature–as it would be precisely required/defined by QTs, is a most unlikely event. On
the other hand, a quantum symmetry breaking in a neural network considered metaphorically
as a Hopfield (‘spin-glass’) network might be conceivable close to physiological temperatures
but for the lack of existence of any requisite (electron ?) spin lattice structure which is indeed
an absolute requirement in such a spin-glass metaphor–if it is to be taken at all seriously!

Now comes the real, and very interesting part of the story: neuronal networks do form
functional patterns and structures that possess partially ‘broken’, or more general symmetries
than those described by quantum groups. Such extended symmetries can be mathematically
determined, or specified, by certain groupoids–that were previously called ‘neuro-groupoids’.
Even more generally, genetic networks also exhibit extended symmetries represented for an
organismal species by a biogroupoid structure, as previously defined and discussed by Baianu,
Brown, Georgescu and Glazebrook (2006). Such biogroupoid structures can be experimen-
tally validated, for example, at least partially through Functional Genomics observations and
computer, bioinformatics processing (Baianu, 2007). We shall discuss further several such
interesting groupoid structures in the following sections, and also how they have already been
utilized in local-to-global procedures to construct ‘global’ solutions; such global solutions in
quite complex (holonomy) cases can still be unique up to an isomorphism (the Globalization
Theorem, as to be discussed in the Appendix). Last-but-not-least, holonomy may provide
a global solution, or ‘explanation’ for ‘memory storage by ‘neuro-groupoids’, and we shall
further discuss this possibility in the next subsection and also in Section 10. Uniqueness
holonomy theorems might possibly ‘explain’ unique, persistent and resilient memories.

Related to the local-to-global problem considered here, in Mathematics, Ehresmann de-
veloped many new themes in category theory. One example is structured categories with
principal examples those of differentiable categories, groupoids, and multiple categories. His
work on these is quite distinct from the general development of the mathematical theory of
categories in the 20th century, and it is interesting to search for reasons for this distinction.
One must be the fact that he used his own language and notation, which has not helped
with the objectivation by several other, perhaps ‘competing’, mathematical schools. An-
other is surely that his early training and motivation came from analysis, rather than from
algebra, in contrast to the origins of category theory in the work of Eilenberg, Mac Lane,
and of course Steenrod, centred on homology and algebraic topology. Part of the developing
language of category theory became essential in those areas, but other parts, such as those
of algebraic theories, groupoids, multiple categories, were not used till fairly recently (see
the next sub-section and the Appendix for the precise definitions of these terms). It seems
likely that Ehresmann’s experience in analysis led him to the major theme of local-to-global
questions. The author Brown first learned of this term from R. Swan in Oxford in 1957-58,
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when as a research student Brown was writing up notes of his Lectures on the Theory of
Sheaves. Swan explained to him that two important methods for local-to-global problems
were sheaves and spectral sequences—he was thinking of Poincaré duality, which is discussed
in the lecture notes, and the more complicated theorems of Dolbeault for complex manifolds.
But in truth, such problems are central in mathematics, science and technology. They are
fundamental, for example, to differential equations and dynamical systems. Even deducing
consequences of a set of rules is a local-to-global problem: the rules are applied locally, but
we are interested in their global consequences.

Brown’s work on local-to-global problems arose from writing an account of the Seifert-van
Kampen theorem on the fundamental group. This theorem can be given as follows, as first
shown by R.H. Crowell (1959):

Theorem 2.1. Crowell (1959). Let the space X be the union of open sets U, V with in-
tersection W , and suppose W,U, V are path connected. Let x0 ∈ W . Then the diagram of
fundamental group morphisms induced by inclusions:

(2.1)

π1(W,x0)
i //

j

��

π1(U, x0)

��
π1(V, x0) // π1(X, x0)

is a pushout of groups.

Here the ‘local parts’ are of course U, V put together with intersection W and the result
describes completely, under the open set and connectivity conditions, the (non-Abelian)
fundamental group of the global space X. This theorem is usually seen as a necessary part of
basic algebraic topology, but one without higher dimensional analogues. On the other hand,
the generalization of the van Kampen theorem to groupoids, and subsequently, indeed to
the most general case of higher homotopy/higher dimensions– as well as non-Abelian cases–
was carried out by author R. Brown and his research group. Both generalized theorems are
provided in the Appendix as they are pertinent to the procedures discussed above, also to
Section 2, and Sections 7 through 11.

2.3.2. Many-Valued Logics of Emerging Structures. Higher Logical ‘Types’ Immanent in
Developing Complex Structures.

2.3.3. Iterates of Local Procedures using Groupoid. Structures. Often we will look for a mod-
elling of levels as highly complex systems described in terms of specific categorical structures
and natural transformations of functors comparing modelling diagrams or categories. A spe-
cial subclass of categories is that of groupoids–small categories with all morphisms invertible
(Brown 2006, Weinstein 1996). These are essential as descriptive models for the reciprocity
(i.e., morphism invertibility, or isomorphism) in the relay of signalling that occurs in vari-
ous classes of bionetworks and also for describing local–to–global properties in relationship to
genetic and neural (bio)networks, the collection of objects of which can comprise various gen-
era of organismic sets. Groupoid actions and certain convolution algebras of groupoids (cf.
Connes, 1994) were suggested to be the main carriers of non–commutative processes. Many
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types of cell systems such as those representative of neural networks or physiological locomo-
tion, can be described in terms of equivalence classes of cells, links and inputs, etc. leading
to the notion of a system’s symmetry groupoid the breaking of which can induce a transi-
tion from one state to another (Golubitsky and Stewart 2006). This notion of classification
involves equivalence relations, but the groupoid point of view extends this notion not only
to say that two elements are equivalent but also to label the proofs that they are equivalent.
Such an approach features in an information-based theory of interactive cognitive modules
cast within the Baars global neuronal workspace (Wallace, 2005). The theories of Shannon
(information) and Dretske (communication) are combined in an immunology/language and
network analysis/groupoid setting to describe a fundamental homology with the thermody-
namic principles as derived from statistical physics. The thread of ideas may be exemplified
by such cognitive disorders as inattentional blindness and psycho-social stress resulting from
such factors as information distortion/overload, socio-cultural pressure, and as represented
by the manifestation of network transition phases (often attributed to an induced symmetry
breaking within the network in question). Such cognitive disorders are considered as having
their analogues at the levels of culturally embedded/institutional, higher level multi-tasking
where such ailments can result in a demise or total failure of the constituent operative
systems. The latter include the general areas of public health administration, (disease pre-
vention, therapeutic practice, etc.), environmental/ecological management, to name a few.
The future development of ‘conscious machines’, is likely to be no less prone to such failures
(Wallace 2005, 2007).

The notion of holonomy occurs in many situations, both in physics and differential ge-
ometry. Non–trivial holonomy occurs when an iteration of local procedures which returns
to the starting point can yield a change of phase, or of other more general values. Charles
Ehresmann realized the notion of local procedure formalised by the notion of local smooth
admissible section of a smooth groupoid, and Pradines (1966) generalised this to obtain a
global holonomy Lie groupoid from a locally Lie groupoid: the details were presented in Aof
and Brown (1992).

This concept of local procedure may be applicable to the evolution of super-complex sys-
tems/organisms for which there are apparently “missing links”–ancestors whose fossils can-
not be found; when such links are genuinely missing, the evolution process can be viewed
as maintaining an evolutionary trend not by virtue of analytical continuity, from point to
point, but through overlapping regions from networks of genes and their expressed pheno-
type clusters. This idea of a local procedure applied to speciation is illustrated below, with
the intermediate circles representing such possible missing links, without the need to appeal
to ‘catastrophes’.

In this speciation example, the following picture illustrates a chain of local procedures
(COLP) leading from species a to species b via intermediates that are not ‘continuous’ in
the analytical sense discussed above:

a��
����
��
��
������m��
��
��
��
��
��
�����
���
��m��
��
b
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One would like to be able to define such a chain, and equivalences of such chains, without
resource to the notion of ‘path’ between points. The claim is that a candidate for this lies in
the constructions of Charles Ehresmann and Jean Pradines for the holonomy groupoid. The
globalization of structure can be thus encoded in terms of the holonomy groupoid which for
any groupoid–related system encodes the notion of the subsequent phase transition (and its
amplitude) of the latter phase towards a new phase (Aof and Brown, 1992).

One question is whether a COLP is either a fact or a description. Things evolve and change
in time. We think usually of this change as a real number modelling of time. But it may be
easier to see what is happening as a COLP, since each moment of time has an environment,
which is carried along as things evolve. The Aof-Brown paper, based on certain ideas of
Charles Ehresmann and Jean Pradines, shows that such ideas have a mathematical reality,
and that some forms of holonomy are nicely described in this framework of the globalisation
theorem for a locally Lie groupoid.

The generalization of the manifold/atlas structure (Brown, 2006) is that of the groupoid
atlas (Bak, 2006; and the Appendix) which is already relevant in ‘concurrent’ and ‘multi–
agent systems’ (Porter, 2002). But concurrent and multi-agent systems are distinct, though
they may be somehow related. Concurrency itself is a theory about many processes occurring
at the same time, or, equivalently, about processes taking place in multiple times. Since time
has a direction, multiple times have a ‘multiple direction’, hence the directed spaces. This
leads to a novel descriptive and computational technique for charting informational flow
and management in terms of directed spaces, dimaps and dihomotopies (see e.g. Goubault,
2003). These may provide alternative approaches to ‘iterates of local procedures’ along with
key concepts such as the notion of ‘scheduling of paths’ with respect to a cover that can be
used as a globalization technique, for instance, to recover the Hurewicz continuous fibration
theorem (Hurewicz, 1955) as in Dyer and Eilenberg (1988).

Ontological levels themselves will entail ‘processes of processes’ for which HDA seeks to
provide the general theories of transport along n–paths and subsequent n–holonomy (cf.
Brown and İçen, 2003 for the two-dimensional case), thus leading to a globalizaton of the
dynamics of local networks of organisms across which multiple morphisms interact, and
which are multiply–observable. This representation, unless further specified, may not be
able, however, to distinguish between levels and multiple processes occurring on the same
level.

3. Basic Structure of Categorical Ontology and the Theory of Levels.
Emergence of Higher Levels and Their Sublevels.

An effective Categorical Ontology requires, or generates–in the constructive sense–a ‘struc-
ture’ rather than a discrete set of items. The classification process itself generates collections
of items, as well as a hierarchy of higher-level ‘items’ of items, thus facing perhaps certain
possible antimonies if such collections were to be just sets that are subject to the Axiom of
Choice and problems arising from the set membership concept at different levels.

The categorical viewpoint as emphasized by Lawvere, etc., is that the key structure is
that of morphisms, seen, for example, as abstract relations, mappings, functions, connec-
tions, interactions, transformations, etc. Therefore, in this section we shall consider both
the Categorical viewpoint in the Ontology of Space and Time in complex/super-complex
systems, as well as the fundamental structure of Categorical Ontology, as for example in the
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Ontological Theory of Levels (Poli, 2001, 2006a,b) which will be discussed briefly in the next
section.

3.1. The Theory of Levels, Connectivity and Bionetwork Topology: Genetic On-
tology and Reconstructing Interactomics. The first subsection here will present the
fundamentals of the ontological theory of levels together with its further development in
terms of mathematical categories, functors and natural transformations, as well as the nec-
essary non-commutative generalizations of Abelian categorical conncepts to non-Abelian
formal systems and theories.

3.1.1. Levels Theory Fundamentals. The ontological theory of levels (Poli, 2001, 2006a,b,
2007) considers a hierarchy of items structured on different levels of existence with the higher
levels emerging from the lower, but usually not reducible to the latter, as claimed by wide-
spread reductionism. This approach draws from previous work by Hartmann (1935,1952)
but also modifies and expands considerably both its vision and range of possibilities. Thus,
Poli (1998; 2001a; 2006a,b; 2007) considers four realms or levels of reality: Material-
inanimate/Physico-chemical, Material-living/Biological, Psychological and Social. We har-
monize this theme by considering categorical models of complex systems in terms of an
evolutionary dynamic viewpoint using the mathematical methods of category theory which
afford describing the characteristics and binding of levels, besides the links with other theo-
ries which, a priori, are essential requirements. Whereas Hartmann stratified levels in terms
of the four frameworks: physical, organic, mental and spiritual, we restrict mainly to the top
three, albeit with a different meaning from his. The categorical techniques which form an
integral part of the discussion provide a means of describing a hierarchy of levels in both a
linear and interwoven, or entangled, fashion, thus leading to the necessary bill of fare: emer-
gence, higher complexity and open, non-equilibrium/irreversible systems. We further stress
that the categorical methodology intended is intrinsically ‘higher dimensional’ and can thus
account for ‘processes between processes...’ within, or between, the levels–and sub-levels– in
question.

Whereas a strictly Boolean classification of levels allows only for the occurrence of discrete
ontological levels, and also does not readily accommodate either contingent or stochastic sub-
levels, the LM-logic algebra is readily extended to continuous, contingent or even ”fuzzy”
(Baianu and Marinescu, 1968) sub-levels, or levels of reality (cf. Georgescu, 2006; Baianu,
1977, 1987; Baianu, Brown, Georgescu and Glazebrook, 2006). Clearly, a Non-Abelian
Ontology of Levels would require the inclusion of either Q- or LM- logics algebraic categories
because it begins at the fundamental quantum level –where Q-logic reigns– and ‘rises’ to
the emergent ultra-complex level(s) with ‘all’ of its possible sub-levels represented by certain
LM-logics.

Poli (2006a) has stressed a need for understanding causal and spatiotemporal phenomena
formulated within a descriptive categorical context for theoretical levels of reality. There
are three main points to be taken into account: differing spatiotemporal regions necessitate
different (levels of) causation, for some regions of reality analytic reductionism may be in-
adequate, and there is the need to develop a synthetic methodology in order to compensate
for the latter, although one notes (cf. Rosen, 2001) that analysis and synthesis are not
the exact inverse of each other. Following Poli (2001), we consider a causal dependence on
levels, somewhat apart from a categorical dependence. At the same time, we address the
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internal dynamics, the temporal rhythm, or cycles, and the subsequent unfolding of reality.
The genera of corresponding substances (‘processes’, ‘groups’, ‘essence’, ‘stereotypes’, etc.)
can be simply referred to as ‘items ’ which allow for the existence of many forms of causal
connection (Poli, 2007). The sense is that the irreducible multiplicity of such connections
converges, or it is ontologically integrated within a unified synthesis. Rejecting reductionism
thus necessitates accounting for an irreducible multiplicity of ontological levels, and possibly
the ontological acceptance of many worlds also. In this regard, the Brentano hypothesis is
that the class of physical phenomena and the class of psychological (or mental) phenom-
ena are complementary ; in other words, physical categories were said to be ‘orthogonal’ to
psychological categories (Poli, 2006a,b).

As befitting the situation, there are devised universal categories of reality in its entirety
and subcategories which apply to the respective sub-domains. Following Poli (2001), the
ontological procedures in question provide:

• coordination between categories (for instance, the interactions and parallels between
biological and ecological reproduction as in Poli, 2001);

• modes of dependence between levels (for instance, how the co-evolution/interaction
of social and mental realms depend and impinge upon the material);

• the categorical closure (or completeness) of levels.

Already we can underscore a significant component of this essay that relates the ontology
to geometry/topology; specifically, if a level is defined via ‘iterates of local procedures’ (cf
‘items in iteration’, Poli, 2001), then we have some handle on describing its intrinsic governing
dynamics (with feedback ) and, to quote Poli (2001), to ‘restrict the multi-dynamic frames
to their linear fragments’.

On each level of this ontological hierarchy there is a significant amount of connectivity
through inter-dependence, interactions or general relations often giving rise to complex pat-
terns that are not readily analyzed by partitioning or through stochastic methods as they
are neither simple, nor are they random connections. But we claim that such complex pat-
terns and processes have their logico-categorical representations quite apart from classical,
Boolean mechanisms. This ontological situation gives rise to a wide variety of networks,
graphs, and/or mathematical categories, all with different connectivity rules, different types
of activities, and also a hierarchy of super-networks of networks of subnetworks. Then, the
important question arises what types of basic symmetry or patterns such super-networks
of items can have, and how do the effects of their sub-networks percolate through the var-
ious levels. From the categorical viewpoint, these are of two basic types: they are either
commutative or non-commutative, where, at least at the quantum level, the latter takes
precedence over the former, as we shall further discuss and explain in the following sections.
One may place due emphasis on network topology and connectivities since these concepts are
becoming increasingly important in modern biology, as realized in rapidly unfolding areas
such as Genetic Ontology, Proteomics and Interactomics that aim at relating structure and
protein-protein-biomolecule interactions to biological function. The categories of the biolog-
ical/genetic/ecological/ levels may be seen as more ‘structured’ compared with those of the
cognitive/mental levels (hinging on epiphenomenalism, interactive dualism, etc.) which may
be seen as ‘less structured’, but not necessarily having less structural power owing to the
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increased abstraction in their design of representation. We are here somewhat on a par with
Hartmann’s laws of autonomy (Hartmann, 1952).

3.1.2. Dynamic Emergence of the Higher Complexity Levels: Organisms, the Human Mind
and Society. We shall be considering the question of how biological, psychological and so-
cial functions are entailed through emergent processes of increasing complexities in higher-
dimensional spacetime structures that are essential to Life, Evolution of Species and Human
Consciousness. Such emergent processes in the upper three levels of reality considered by
Poli (2006b) have corresponding, defining levels of increasing dynamic complexities from
biological to psychological and, finally, to the social level. It is therefore important to distin-
guish between the emergent processes of higher complexity and the underlying, component
physicochemical processes, especially when the latter are said to be ‘complex’ by physicists
only because they occur either as a result of ‘sensitivity to initial conditions, small perturba-
tions, etc., or because they give rise to unpredictable behaviour that cannot be completely
simulated on any digital computer; the latter systems with (deterministic) chaotic dynam-
ics are not, however, emergent systems because their existence does not belong to a higher
level of reality than the simple dynamic systems that are completely predictable. We are
here defending the claim that all ‘true’ dynamic complexity of higher order is irreducible
to the dynamics of sub-processes–usually corresponding to a lower level of reality–and it is
therefore a truly emergent, real phenomenon. In other words, no emergence ⇒ no com-
plexity higher than that of physicochemical systems with chaos, whereas reductionists now
attempt to reduce everything, from life to societies and ecology, to systems with just chaotic
behaviour.

The detailed nature of the higher level emergence will be further developed and treated in
a more formal/precise manner in Sections 5 through 12 after introducing and developing first
the novel, pre-requisite concepts that allow a deeper, improved understanding of dynamic
emergent processes in higher dimensions of spacetime structures.

Thus, we propose to retain the term ‘complexity’–in accord with the use adopted for the
field of physicochemical chaotic dynamics established by modern physicists and chemists.
Then, in order to avoid the recurring confusion that would occur between inanimate, chaotic
or robotic, systems that are ‘complex’ and live organisms which are at a distinctly higher
level of dynamic complexity, we propose to define the latter, (biosystems’) high complex-
ity level as ‘supercomplex’.. Because of the ongoing ambiguity between the current use of
the term ‘complex , dynamics and dynamical systems’ in chaotic physics reports and text-
books, where it is used with a very different meaning from the one customarily employed
in Relational Biology (Rosen,1987; and also earlier more general definitions proposed by
Baianu, 1968,1969,1970, 1971, 1987), it is here suggested that biological complex systems–
whose dynamics is quite distinct from that of physical ‘complex systems’– should be called
‘supercomplex’ (Baianu and Poli, 2007). Elsasser also claimed that living organisms are
‘extremely complex’, as discussed in a recent report (Baianu, 2006). From the reductionist
viewpoint, such a distinction may appear totally unnecessary because a reductionist does
believe (without any possibility of proof ) that all systems–complex or otherwise- ultimately
obey only known physical laws, as the complex systems can be ‘reduced’ (by unspecified,
and/or unspecifiable, procedures!) to a finite collection of the simple component systems
contained in any selected complex system. For example, such a collection of parts could
be assembled through a categorical colimit, as it will be shown in a subsequent section (8).
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Note also that a categorical colimit is defined not just by its parts but also by the morphisms
between the objects, which conforms with the naive view that an engine, say, is not just a
collection of parts, but depends crucially on how they are put together, if it is to work! Any
suggestion of alternative possibilities is regarded by the reductionist approach as an attempt
to introduce either ‘ghosts’ or undefinable entities/relations that ‘could not physically ex-
ist’, according to (simple) physical principles that govern the dynamics of (simple) physical
systems. Although this line of reasoning seems to satisfy Occam’s razor principle–taken as
an ‘economy’ of thought–it does exclude both life and human consciousness from having any
independent, or even emergent, ontological existence. Taken to its ultimate extreme, this
‘simple’ reductionist approach would seem to demand the reduction of even human soci-
eties not only to collections of individual people but also to the ‘elementary’ particles and
quantum-molecular fields of which humans are made of.

Interestingly, the term ‘super-complex’ is already in use in the computer industry for high
performance digital computer systems designed with a high-degree of parallel processing,
whose level of complexity is, however, much lower than that of physicochemical chaotic sys-
tems that are called ‘complex’ by physicists. On the other hand, in the fields of structural
and molecular biology, the term ‘super-complex’ recently designates certain very large super-
aggregates of biopolymers that are functional within a cell. Thus, our proposed use of the
term 〈 super-complex 〉 is for the higher level of organization–that of the whole, functional
organism, not for the first (physicochemical) level of reality–no matter how complicated,
‘chaotic’ or intricate it is at the molecular/atomic/quantum level. Therefore, in our pro-
posed terminology, the level of super-complex dynamics is the first emergent level–which
does correspond to the first emergent level of reality in the ontological theory of levels re-
cently proposed by Poli (2006a,b). A more precise formulation and, indeed, resolution of
such emergent complexity issues will be presented in Section 5.

Our approach from the perspectives of spacetime ontology and dynamic complexity thus
requires a reconsideration of the question how new levels of dynamic complexity arise at
both the biological and psychological levels. Furthermore, the close interdependence/two-
way relations of the psychological and social levels of reality (Poli, 2006a) do require a
consideration of the correlations between the dynamic complexities of human consciousness
and human society. The emergence of one is ultimately determined by the other, in what
might be expressed as iterated feedback and/or feedforward loops, though not restricted to
the engineering meaning which is usually implied by these terms. Thus, feedforward loops
should be understood here in the sense of anticipatory processes, that can, for example, lead
in the future to the improvement of social interactions through deliberate, conscious human
planning–or even more–to the prevention of the human, and other species, extinction. Fur-
ther inter-relations among the different ontological levels of system complexity are discussed
in another Chapter (x) in this volume (Baianu and Poli, 2007).

3.2. Categorical Formalization of the Ontological Theory of Levels. Develop-
ments from Abelian Categories to Non-Abelian Theories. General system analysis
seems therefore to require formulating ontology by means of categorical concepts (Poli, 2007,
TAO-1). We shall thus adopt here a categorical approach as a starting point, meaning that
we are looking for “what is universal” (in some domain, or in general), and that for simple
systems this involves commutative modelling diagrams and structures (as, for example, in
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Figure 1 of Rosen, 1987). Note that this ontological use of the word ‘universal’ is quite
distinct from the mathematical use of ‘universal property’, which means that a property of
a construction on particular objects is defined by its relation to all other objects (i.e., it is a
global attribute), usually through constructing a morphism, since this is the only way, in an
abstract category, for objects to be related. With the first (ontological) meaning, the most
universal feature of reality is that it is temporal, i.e. it changes, it is subject to countless
transformations, movements and alterations. In this select case of universal temporality, it
seems that the two different meanings can be brought into superposition through appropri-
ate formalization. Furthermore, concrete categories may also allow for the representation of
ontological ‘universal items’ as in certain previous applications to cat-neurons– categories of
neural networks (Baianu, 1972; Ehresmann and Vanbremeersch, 2006; Healey and Caudell,
2006).

As structures and relations are present at the very core of mathematical developments
(Ehresmann,1965; 1967), the theories of categories and toposes distinguish at least two
fundamental types of items: objects and arrows (also called suggestively ‘morphisms’ ). Thus,
first-level arrows may represent mappings, relations, interactions, dynamic transformations,
and so on, whereas categorical objects are usually endowed with a selected type of structure
only in ‘concrete’ categories of ‘sets with structure’. Note, however, that simple sets have
only the ‘discrete topology structure’, consisting of just discrete elements, or points.

A description of a new structure is in some sense a development of part of a new language.
The notion of structure is also related to the notion of analogy. It is one of the triumphs
of the mathematical theory of categories in the 20th century to make progress in unifying
mathematics through the finding of analogies between various behaviour of structures across
different areas of mathematics. This theme is further elaborated in the article by Brown and
Porter (2002) which argue that many analogies in mathematics, and in many other areas,
are not between objects themselves but between the relations between objects. Here, we
mention as an example, only the categorical notion of a pushout, which we shall use later in
discussing the higher homotopy, generalized van Kampen theorems. A pushout has the same
definition in different categories even though the construction of pushouts in these categories
may be widely different. Thus, focusing on the constructions rather than on the universal
properties may lead to a failure to see the analogies. Charles Ehresmann developed new
concepts and new language which have been very influential in mathematics; we mention
here only those of holonomy groupoid, Lie groupoid, fibre bundles, foliations, germs and jets.
There are other concepts whose time perhaps is just coming or has yet to come: included
here might be ordered groupoids, variable groupoids and multiple categories. Disclosing new
worlds is as worthwhile a mathematical enterprise as proving old conjectures. For example,
we are also seeking non-Abelian methods for higher dimensional local-to-global problems in
homotopy theory.

In reference to the above discussion, one of the major goals of category theory is to see how
the properties of a particular mathematical structure, say S, are reflected in the properties
of the category Cat(S) of all such structures and of morphisms between them. Thus the
first step in category theory is that a definition of a structure should come with a definition
of a morphism of such structures. Usually, but not always, such a definition is obvious.
The next step is to compare structures. This might be obtained by means of a functor
A : Cat(S)−→Cat(T ). Finally, we want to compare such functors A,B : Cat(S)−→Cat(T ).
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This is done by means of a natural transformation η : A⇒ B. Here η assigns to each object
X of Cat(S) a morphism η(X) : A(X)−→B(X) satisfying a commutativity condition for any
morphism a : X−→Y . In fact we can say that η assigns to each morphism a of Cat(S) a
commutative square of morphisms in Cat(T ) (as shown in Diagram 13.2 in the Appendix).
This notion of natural transformation is at the heart of category theory. As Eilenberg-Mac
Lane write: “to define natural transformations one needs a definition of functor, and to
define the latter one needs a definition of category”.

As explained next in subsection 3.3, the second level arrows, or 2-arrows (‘functors’ )
representing relations, or comparisons, between the first level ‘concrete’ categories of ‘sets
with structure’ do not ‘look inside’ the 1-objects, which may appear as necessarily limiting
the mathematical construction; however, the important ability to ‘look inside’ 1-objects at
their structure, for example, is recovered by the third level arrows, or 3-arrows, in terms of
natural transformations. For example, if A is an object in a mathematical category C, E is a
certain ‘corresponding’ object in a category D and F is a covariant functor F : C−→D, such
that F (A) = E, then one notes that F carries the whole object A into the category D without
’looking’ inside the object A at its components; in the case when A is a set the functor F
does not ‘look’ at the elements of A when it ‘transforms’ the whole set A into the object E
(which does not even have to be a set; a functor F , therefore, does not act like a ‘mapping’ on
elements). On the other hand, natural transformations in the case of concrete categories do
define mappings of objects with structure by acting first on functors, and then by imposing
the condition of naturality on diagrams, such as (13.2) in the Appendix, that also include
comparisons between functorial mappings of morphisms (as shown explicitly in diagram 13.2
in the Appendix, under Mathematical categories, functors and natural transformations).

From the point of view of mathematical modelling, the mathematical theory of categories
models the dynamical nature of reality by representing temporal changes through either
variable categories or through toposes. According to Mac Lane and Moerdijk (2004) variable
categories can also be generated as a topos. For example, the category of sets can be
considered as a topos whose only generator is just a single point.

The claim advanced by several recent textbooks and reports is that standard topos theory
may also suit to a significant degree the needs of complex systems. Such claims, however,
do not seem to draw any significant, qualitative ontological distinction between ‘simple’ and
‘complex’ systems, and furthermore, they do not satisfy also the second condition (nat-
urality of modelling diagrams, as pointed out in Rosen, 1987). As it will be shown in
Section 5, a qualitative distinction does exist, however, between organisms–considered as
complex systems– and ‘simple’, inanimate dynamical systems, in terms of the modelling
process and the type of predictive mathematical models or representations that they can
have (Rosen,1987, and also, previously, Baianu, 1968,1970,1971,1987).

As we shall be considering here only a few special cases of modelling diagrams that in-
clude simple, reductionist systems in order to compare them with super- complex biological
systems, the following discussion in Sections 5 through 7 will require just the use of such
‘concrete’ categories of ‘sets with structure’ (e.g., groups, groupoids, crossed complexes, etc.)
For general categories, however, each object is a kind of a Skinnerian black box, whose only
exposure is through input and output, i.e. the object is given by its connectivity through
various morphisms, to other objects. For example, the opposite of the category of sets has



20 I. C. BAIANU, R. BROWN AND J. F. GLAZEBROOK

objects but these have no structure from the categorical viewpoint. Other types of cate-
gory are important as expressing useful relationships on structures, for example lextensive
categories, which have been used to express a general van Kampen theorem by Brown and
Janelidze.

This concrete categorical approach seems also to provide an elegant formalization that
matches the ontological theory of levels briefly described above. The major restriction–as
well as for some, attraction– of the 3-level categorical construction outlined above seems to
be its built-in commutativity (see also Section 3.2 for further details). Note also how 2-arrows
become ‘3-objects’ in the meta–category, or ‘3-category’, of functors and natural transforma-
tions. This construction has already been considered to be suitable for representing dynamic
processes in a generalized Quantum Field Theory. The presence of mathematical structures
is just as important for highly complex systems, such as organisms, whose organizational
structure–in this mathematical and biological function/physiological sense–may be superfi-
cially apparent but difficult to relate unequivocally to anatomical, biochemical or molecular
‘structures’. Thus, abstract mathematical structures are developed to define relationships,
to deduce and calculate, to exploit and define analogies, since analogies are between relations
between things rather than between things themselves.

One must note in the latter case above the use of a very different meaning of the word
‘structure’, which is quite distinct from that of the organizational/physiological and mathe-
matical structure introduced at the beginning of this section. Even though concrete, molec-
ular or anatomical ‘structures’ could also be defined with the help of ‘concrete sets with
structure’, the physical structures representing ‘anatomy’ are very different from those rep-
resenting physiological-functional/organizational structures. Further aspects of this repre-
sentation problem for systems with highly complex dynamics, together with their structure–
functionality relationships, will be discussed in Sections 5 to 7.

3.3. The Hierarchical, Formal Theory of Levels. Commutative and Non-Commutative
Structures: Abelian Category Theory vs. Non-Abelian Theories. One could formalize-
for example as in Poli (2007,TAO-1)–the hierarchy of multiple-level relations and structures
that are present in biological, environmental and social systems in terms of the mathemat-
ical Theory of Categories, Functors and Natural Transformations (TC-FNT, see subsection
14.1 in the Appendix). On the first level of such a hierarchy are the links between the
system components represented as ‘morphisms’ of a structured category which are subject
to several axioms/restrictions of Category Theory, such as commutativity and associativity
conditions for morphisms, functors and natural transformations. Among such mathematical
structures, Abelian categories have particularly interesting applications to rings and modules
(Popescu, 1973; Gabriel, 1962) in which commutative diagrams are essential. Commutative
diagrams are also being widely used in Algebraic Topology (Brown, 2005; May, 1999). Their
applications in computer science also abound.

Then, on the second level of the hierarchy one considers ‘functors’, or links, between such
first level categories, that compare categories without ’looking inside’ their objects/ system
components.

On the third level, one compares, or links, functors using ‘natural transformations’ in a
3-category (meta-category) of functors and natural transformations. At this level, natural
transformations not only compare functors but also look inside the first level objects (system
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components) thus ’closing’ the structure and establishing ‘the universal links’ between items
as an integration of both first and second level links between items. The advantages of
this constructive approach in the mathematical theory of categories, functors and natural
transformations have been recognized since the beginnings of this mathematical theory in the
seminal paper of Mac Lane and Eilenberg (1945). Note, however, that in general categories
the objects have no ‘inside’, though they may do so for example in the case of ‘concrete’
categories.

A relevant example of applications to the natural sciences, e.g., neurosciences, would
be the higher-dimensional algebra representation of processes of cognitive processes of still
more, linked sub-processes (Brown, 2004). Additional examples of the usefulness of such a
categorical constructive approach to generating higher-level mathematical structures would
be that of groups of groups of items, 2-groupoids, or double groupoids of items. The hierarchy
constructed above, up to level 3, can be further extended to higher, n-levels, always in a
consistent, natural manner, that is using commutative diagrams. Let us see therefore a few
simple examples or specific instances of commutative properties. The type of global, natural
hierarchy of items inspired by the mathematical TC-FNT has a kind of internal symmetry
because at all levels, the link compositions are natural, that is, all link compositions that
exist are transitive, i.e., x < y and y < z =⇒ x < z, or f : x−→y and g : y−→z =⇒ h :
x−→z, yielding a composition h = g ◦ f . This general property of such link composition
chains or diagrams involving any number of sequential links is called commutativity, and
is often expressed as a naturality condition for diagrams. This key mathematical property
also includes the mirror-like symmetry x ? y = y ? x; when x and y are operators and the
symbol ’?’ represents the operator multiplication. Then, the equality of x ? y with y ? x
implies that the x and y operators commute; in the case of an eigenvalue problem involving
such commuting operators in quantum theories, the two operators would share the ‘same’
system of eigenvalues, thus leading to ‘equivalent’ numerical results i.e., up to a multiplication
constant). This property when present is very convenient for both mathematical and physical
applications (such as those encountered in quantum mechanics). Unfortunately, not all
operators ‘commute’, and not all categorical diagrams or mathematical structures are, or
need be, commutative. Non-commutativity may therefore appear as a result of ‘breaking’
the ‘internal symmetry’ represented by commutativity. As a physical analogy, this might
be considered a kind of ‘symmetry breaking’ which is thought to be responsible for our
expanding Universe and CPT violation, as well as many other physical phenomena such as
phase transitions and superconductivity (Weinberg, 2003).

The more general case is, therefore, the non-commutative one. On the other hand, one is
used to encounter– not only in the sciences but also in the visual arts–things or patterns,
or items that are considered to be ‘beautiful’, in the sense of being symmetric, perhaps
with the possible exception of certain abstract paintings that ignore simple symmetries.
Furthermore, with very few exceptions, the educational systems are over-emphasizing in both
mathematics and physics commutative structures, such as Abelian Lie groups, commutative
homology theory, Abelian Algebraic Topology, and Abelian theories such as Newtonian or
GR/SR theories in physics. As an example, several standard space forms are representable
in the quotient form G/K where G is a Lie group and K ⊂ G is a closed subgroup, that
is, as homogeneous spaces usually with the extra property of symmetry (thus symmetric
spaces). The n–sphere Sn, for instance is such a symmetric space, but in the traditional
Riemannian–geometric sense it is not normally considered as a ‘non-commutative space’
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unless it is ‘quantized’ by some means (à la Connes, 1994), and that is indeed a separate
matter which we shall bring to the fore later.

Whereas the Abelian Lie groups can be considered as ‘flat’, certain non–Abelian Lie groups
can be viewed as the the most basic Riemannian manifolds with non–trivial curvature prop-
erties and, thus, might provide a useful basis for generating curved quantum supergravity
spacetimes through graded Lie algebras (Weinberg, 2004; see also Baianu, Brown and Glaze-
brook, 2007 in the second volume Tao-2).

Thus, one may be often prejudiced to favor commutative structures and Abelian theories
(Gabriel, 1968; Popescu, 1973,1975) that rely heavily on symmetric representations which
are either attractive, seductively elegant, or simply ‘beautiful’, but not necessarily true to
our selected subject of discourse– that is, the real spacetime in our universe. Several intrigu-
ing counter-examples are provided by certain (‘non-commutative’) asymmetric drawings by
Escher such as his perpetuum water mill or his 3D-evading, illusory castle with monks ‘climb-
ing’ from one level to the next at ‘same-height’. (Perhaps, Escher’s monks were reductionists,
too!)

An example of a non-commutative structure relevant to Quantum Theory is that of the
Clifford algebra of quantum observable operators (Dirac, 1962; see also subsection 6.2. Yet
another- more recent and popular- example in the same QT context is that of C∗–algebras
of (quantum) Hilbert spaces.

3.3.1. Non-Abelian Theories. Last-but-not least, there are the interesting mathematical con-
structions of non-commutative ‘geometric spaces’ obtained by ‘deformation’ introduced by
Connes (1994) as possible models for the physical, quantum space-time which will be fur-
ther discussed in our companion paper (Part I: Universal Spacetime Ontology in next vol-
ume). Thus, the microscopic, or quantum, ‘first’ level of physical reality does not appear
to be subject to the categorical naturality conditions of Abelian TC-FNT– the ‘standard’
mathematical theory of categories (functors and natural transformations). It would seem
therefore that the commutative hierarchy discussed above is not sufficient for the purpose
of a General, Categorical Ontology which considers all items, at all levels of reality, in-
cluding those on the ‘first’, quantum level, which is non–commutative. On the other hand,
the mathematical, Non-Abelian Algebraic Topology (Brown, Higgins and Sivera, 2007), the
Non-Abelian Quantum Algebraic Topology (NA-QAT; Baianu et al., 2005), and the physical,
Non-Abelian Gauge theories (NAGT) may provide the ingredients for a proper foundation
for Non-Abelian, hierarchical multi-level theories of a super-complex system dynamics in a
General Categorical Ontology (GCO). Furthermore, it was recently pointed out (Baianu et
al., 2005, 2006) that the current and future development of both NA-QAT and of a quantum-
based Complex Systems Biology, a fortiori, involve non-commutative, many-valued logics of
quantum events, such as a modified  Lukasiewicz–Moisil (LMQ) logic algebra (Baianu, Brown,
Georgescu and Glazebrook, 2006), complete with a fully-developed, novel probability mea-
sure theory grounded in the LM-logic algebra (Georgescu, 2006b). The latter paves the
way to a new projection operator theory founded upon the non-commutative quantum logic
of events, or dynamic processes, thus opening the possibility of a complete, Non–Abelian
Quantum theory. Furthermore, such recent developments point towards a paradigm shift in
Categorical Ontology and to its extension to more general, Non-Abelian theories, well beyond
the bounds of commutative structures/spaces and also free from the logical restrictions and
limitations imposed by the Axiom of Choice to Set Theory. Additional restrictions imposed
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by representations using set theory also occur as a result of the ‘primitive’ notion of set mem-
bership, and also because of the ‘discrete topology’, very impoverished structure of simple
sets. It is interesting that D’Arcy W. Thompson also arrived in 1941 at an ontologic ”prin-
ciple of discontinuity” which “is inherent in all our classifications, whether mathematical,
physical or biological... In short, nature proceeds from one type to another among organic
as well as inorganic forms... and to seek for stepping stones across the gaps between is to
seek in vain, for ever. Our geometrical analogies weigh heavily against Darwin’s conception
of endless small variations; they help to show that discontinuous variations are a natural
thing, that “mutations”– or sudden changes, greater or less–are bound to take place, and
new “types” to have arisen, now and then.” (p.1094 of Thompson, 1994, re-printed edition).

3.4. Ontological Organization of Systems in Space and Time: Classification in
Categories of Items with Reference to Space and Time. Ontological classification
based on items involves the organization of concepts, and indeed theories of knowledge, into
a hierarchy of categories of items at different levels of ‘objective reality’, as reconstructed by
scientific minds through either a bottom-up (induction, synthesis, or abstraction) process, or
through a top-down (deduction) process (Poli,2007), which proceeds from abstract concepts
to their realizations in specific contexts of the ‘real’ world. A more formal approach to this
problem will be considered in the following Section 6, with several ontological examples being
also provided in subsequent sections and two related articles (Baianu and Poli, 2007, and
Baianu, Brown and Glazebrook, 2007; in this volume). The conceptual foundation for such
effective formulations in terms of different level categories and their higher-order relations
has been already outlined in the preceding subsections.

3.4.1. Chronotopoids. The hierarchical theory of levels paves the way towards the claim
that there could be different families of times and spaces, each with its own structure and
dynamics, symmetric or otherwise. We shall argue that there are numerous types of real times
and spaces endowed with structures that may differ greatly from each other. The qualifier
‘real’ is here mandatory, since the problem is not the trivial one that different abstract
theories of space and time can eventually be and have been constructed (Poli, 2007a, b).
Following Poli (2007), we shall treat the general problem of space and time as a problem of
chronotopoids (understood jointly, or separated into ‘chronoids’ and ‘topoids’ ). The guiding
intuition is that each level of reality comes equipped with its own family of chronotopoids
(as originally introduced by Poli, 2007a). Note also that the correct quantization of time
may be the major required step towards a consistent quantum theory to the Planck limit,
as energy is divided into quanta and frequency also changes in discrete steps in molecular,
atomic and sub-atomic/nuclear systems. Thus ‘chronoids’ may be thought–in a quantum
sense–as consisting of chronon regions in the Planck limit.

3.5. Categorical Logics of Processes and Structures: Universal Concepts and
Properties. The logic of classical events associated with either mechanical systems, mech-
anisms, universal Turing machines, automata, robots and digital computers is generally
understood to be simple, Boolean logic. The same applies to Einstein’s GR. It is only with
the advent of quantum theories that quantum logics of events were introduced which are
non-commutative, and therefore, also non-Boolean. Somewhat surprisingly, however, the
connection between quantum logics (QL) and other non-commutative many-valued logics,
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such as the  Lukasiewicz logic, has only been recently made (Dalla Chiara, 2004 and refs.
cited therein; Baianu, 2004; Baianu et al., 2005, Baianu et al., 2006). The universal prop-
erties of categories of LM-logic algebras are, in general, categorical constructions that can
be, in particular cases,‘just universal objects’ – which still involve categorical constructions;
therefore such a danger of confusion does not arise at all in this context. Such considera-
tions are of potential interest for a wide range of complex systems, as well as quantum ones,
as it has been pointed out previously (Baianu, 1977; 2004; Baianu et al, 2005, Baianu et
al, 2006). Furthermore, both the concept of ‘Topos’ and that of variable category, can be
further generalized by the involvement of many-valued logics, as for example in the case of
‘ Lukasiewicz-Moisil, or LM Topos’ (Baianu et al., 2005). This is especially relevant for the
development of non-Abelian dynamics of complex and super-complex systems; it may also
be essential for understanding human consciousness (as it will be discussed in the context of
Sections 9 to 11).

Whereas the hierarchical theory of levels provides a powerful, systematic approach through
categorical ontology, the foundation of science involves universal models and theories per-
taining to different levels of reality. Such theories are based on axioms, principles, postulates
and laws operating on distinct levels of reality with a specific degree of complexity. Because of
such distinctions, inter-level principles or laws are rare and over-simplified principles abound.
As relevant examples, consider the Chemical/ Biochemical Thermodynamics, Physical Bio-
chemistry and Molecular Biology fields which have developed a rich structure of specific-level
laws and principles, however, without ‘breaking through’ to the higher, emergent/integrative
level of organismic biology. This does not detract of course from their usefulness, it simply
renders them incomplete as theories of biological reality. With the possible exceptions of
Evolution and Genetic Principles/Laws, Biology has until recently lacked other universal
principles for highly complex dynamics in organisms, populations and species, as it will be
shown in the following sections. One can therefore consider Biology to be at an almost
‘pre-Newtonian’ stage by comparison with either Physics or Chemistry,

It will be therefore worthwhile considering the structure of scientific theories and how it
could be improved to enable the development of emergence principles for various complexity
levels, including inter-level ones.

The prejudice prevailing towards ‘pure’, i.e. unmixed, levels of reality, and its detrimental
effects on the development of Life sciences, Psychology, Sociology and Environmental sciences
will also be discussed in the next section. Then, alternatives and novel, possible solutions
are presented in subsequent sections and the closing subsection of the Appendix.

4. Theories: Axioms, Principles, Postulates and Laws. Occam’s razor and
Einstein’s Dictum. Analogies and Metaphors.

The more rigorous scientific theories, including those founded in Logics and Mathematics,
proceed at a fundamental level from axioms and principles, followed in the case of ‘natu-
ral sciences’ by laws of nature that are valid in specific contexts or well-defined situations.
Whereas axioms are rarely invoked in the natural sciences perhaps because of their abstract
and exacting attributes, (as well as their coming into existence through elaborate processes
of repeated abstraction and refinement), postulates are ‘obvious assumptions’ of extreme
generality that do not require proof but just like axioms are accepted on the basis of their
very numerous, valid consequences. Somewhat surprisingly, principles and laws, even though
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quite strict, may not apply under certain exceptional situations. Natural laws are applicable
to well-defined zones of reality, and are thus less general, or universal, than principles. Dif-
ferent books often interchange liberally principles for laws. Whereas Newton’s “Principia”
introduced ‘principles’, the latter are nowadays called the Laws of Mechanics by standard
textbooks, as they can be expressed as simple mathematical formulae– which is often the
form taken by physical laws. Principles are instead often explained in words, and tend to
have the most general form attainable/acceptable in an established theory. It would seem
natural to expect that theories of different ontological levels of reality should have different
principles. Interestingly, the founder of Relational Biology, Nicolas Rashevsky (1968) pro-
posed that physical laws and principles can be expressed in terms of mathematical functions,
or mappings, and are thus being predominantly expressed in a numerical form, whereas the
laws and principles of biological organisms and societies need take a more general form in
terms of mathematical and logical relations which cannot always be expressed numerically;
the latter are often qualitative, whereas the former are predominantly quantitative. Ac-
cording to his suggested criterion, string theories may not be characteristic of the physical
domain as they involve many qualitative relations and features.

4.1. Towards Biological Postulates and Principles. Often, Rashevsky considered in
his Relational Biology papers, and indeed made comparisons, between established physical
theories and principles. He was searching for new, more general relations in Biology and
Sociology that were also compatible with the former. Furthermore, Rashevsky also proposed
two biological principles that add to Darwin’s natural selection and the ‘survival of the fittest
principle’, the emergent relational structure defining adaptive organisms :

1. The Principle of Optimal Design, and

2. The Principle of Relational Invariance (phrased by Rashevsky as “Biological
Epimorphism”).

In essence, the ‘Principle of Optimal Design’ defines the ‘fittest’ organism which survives
in the natural selection process of competition between species, in terms of an extremal crite-
rion, similar to that of Maupertuis; the optimally ‘designed’ organism is that which acquires
maximum functionality essential to survival of the successful species at the lowest ‘cost’
possible. The ‘costs’ are defined in the context of the environmental niche in terms of ma-
terial, energy, genetic and organismic processes required to produce/entail the pre-requisite
biological function(s) and their supporting anatomical structure(s) needed for competitive
survival in the selected niche. Further details were presented by Robert Rosen in his short
but significant book on optimality (1970). The ‘Principle of Biological Epimorphism’ on the
other hand states that the highly specialized biological functions of higher organisms can be
mapped (through an epimorphism) onto those of the simpler organisms, and ultimately onto
those of a (hypothetical) primordial organism (which was assumed to be unique up to an
isomorphism or selection-equivalence). The latter proposition, as formulated by Rashevsky,
is more akin to a postulate than a principle. However, it was then generalized and re-stated
in the form of the existence of a limit in the category of living organisms and their functional
genomic networks (GNi), as a directed family of objects, GNi(−t) projected backwards in
time (Baianu and Marinescu, 1968), or subsequently as a super-limit (Baianu, 1970, 1971,
1980; 1987; Baianu, Brown, Georgescu and Glazebrook, 2006); then, it was re-phrased as the
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Postulate of Relational Invariance, represented by a colimit with the arrow of time pointing
forward (Baianu, Brown, Georgescu and Glazebrook, 2006).

Somewhat similarly, a dual principle and colimit construction was invoked for the onto-
genetic development of organisms (Baianu, 1970), and also for populations evolving forward
in time; this was subsequently applied to biological evolution although on a much longer
time scale –that of evolution– also with the arrow of time pointing towards the future in a
representation operating through Memory Evolutive Systems (MES) by A. Ehresmann and
Vanbremeersch (1987, 2001, 2006).

An axiomatic system (ETAS) leading to higher dimensional algebras of organisms in su-
percategories has also been formulated (Baianu, 1970) which specifies both the logical and
the mathematical (π− ) structures required for complete self-reproduction and self-reference,
self-awareness, etc., of living organisms. To date there is no higher dimensional algebra ax-
iomatics other than the ETAS proposed for complete self-reproduction in super-complex
systems (Baianu, 1970), or for self-reference in ultra-complex ones. On the other hand, the
preceding, simpler ETAC axiomatics, was proposed for the foundation of ‘all’ mathemat-
ics, including categories (Lawvere, 1966, 1968), but this seems to have occurred before the
emergence of higher dimensional algebra.

4.2. Occam’s razor–An ‘Economy or Simplicity Principle’. Einstein’s Dictum.
One of the often invoked ‘principles’ of Science is Occam’s razor: the simplest ‘theory’–with
the fewest hypothesis or assumptions– that explains all known facts wins over the more
sophisticated, complex explanations. An even more stringent form, or actually a disguise, of
Occam’s razor is the reductionist, or physicalist, approach which aims at reducing the study
of all complex systems to the investigation of their arbitrarily selected, ‘component’, simple
dynamic systems, and provides so called ‘explanations’ for complex dynamical processes
in terms of strict causal mechanisms. Romans have successfully employed a form of this
approach (i.e., ‘Divide et Impera’) in their conquests and empire building. It is also in
this context that the ‘local-to-global’ model approach becomes relevant, as in the case of
generalized van Kampen theorems (see the Appendix for a concise presentation of the van
Kampen generalized theorems), considered as a principle. A prime example of the failure of
reductionism is that of the Borromean rings: the whole is not simply the sum of its parts,
but, by the way it is put together, constitutes a new structure. Of course, we need to know
the parts which make this structure, but knowing just the parts, without the construction
procedure, does not allow one to assemble the Borromean rings.

Boundaries and Horizons

4.3. Reductionist-Physicalist Approaches vs. Higher Levels Emergence in Ab-
stract Relational Biology Theories. Reductionist approaches might be thought of as a
consequence of Occam’s razor insofar as they emphasize the reduction, or explanation, of all
complex systems in terms of simple physical systems and mechanisms, emergent processes
notwithstanding. The starting point of the reductionist arguments is that both chemical and
biological systems cannot contradict physical principles and laws, as they are, ultimately,
made of a large number of interacting physical component subsystems. However, this is
not at all the issue. The reductionist assumption is that the current principles and laws of
physics are both necessary and sufficient for understanding all complex systems, organisms
and societies included. Because the emergence of life, consciousness and society are not
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currently accepted as being explicable in terms of machines or digital computer simulations
involving physical mechanisms–based just on the principles and laws of physics–the reduc-
tionist approach denies the existence of emergence of complex phenomena/systems unless
these could be ‘ultimately explained’ in ‘purely’ physical terms. Another reductionist as-
sumption is that one can always find, or produce physically or chemically, a subdivision of
any complex system–including organisms–into simpler parts or components that could be
then ‘re-assembled’ into the original ‘organism’. One notes that for many classical, physical
systems such an assumption might have some merit, although it would not work even for
most open physical systems that are far from equilibrium, and which are not living systems.
On the other hand, from a quantum theoretical standpoint, as for example in QFT, AQFT,
or TQFT, this naive viewpoint can be shown to be generally incorrect. It is because of this
second, subdivision assumption that reductionism is found attractive by many experimental
biologists, neurophysiologists, behavioural psychologists, some reductionist theoretical biol-
ogists, and so on: by focusing on bits and pieces of a ‘simpler’ organism one finds some
partial, or local, facts that can be then compared with other, presumed ‘similar’, parts of
different organisms, usually from different species. This is by definition a ‘local’ approach
that does need to be supplemented, or complemented by global, as well as local-to-global
procedures in the mathematical sense discussed in this essay. Furthermore, prokaryotes and
eukaryotes have quite different patterns of genome architecture and regulatory genes. Re-
ductionist ‘similarities’ invoked for the latter, based on the simpler prokaryotes have thus
repeatedly failed, as in the case of genomic analysis of eukaryotes that cannot be followed
by genome, or interactome, reconstructions based on simpler, known prokaryote genomes or
interactomes.

Because the intellectual effort required by the reductionist approach is minimal, it is sim-
ple, and thus appears to be ‘natural’ to adopt it at least at the first stages of development
in any science dealing with ‘complex’ systems. Thus, initially, reductionist approaches have
appealed strongly to many experimental biologists, psychologists, ecologists, or even soci-
ologists in order to gather bits and pieces of data (classified by Rutherford as the ‘stamp
collection’ approach to science) followed by over-simplified, first-approximation, mechanistic
explanations that begin a subsequent chain-reaction of ‘higher-order approximations’ which
can continue to be funded almost indefinitely, and thus pursued, for many cycles, over long
periods of time. Thus is a reductionist’s success, heaven, and then failures. While sometimes,
or occasionally, useful as a first stage attempt, reductionism does become an unnecessary
burden–and indeed a very negative and harmful prejudice that severely hampers progress in
science at the practical level. This happens especially at the later, modern stages of devel-
opment in biology, psychology, ecology, sociology, etc, with disastrous outcomes for science,
and maybe later for human civilization as well. Such later stages require synthetic, powerful
integrative approaches and, unfortunately too often, reductionism is emphatically used to
block emergent approaches to higher dynamic complexity in the top two levels of reality.
The predictions of reductionist approaches have one obvious ‘advantage’: they are readily
falsified as they are, most of the time, presented in numerical form. Then, as they fail,
they are replaced by similar ones that also fail usually, and so on, with the exercise having
the potential of perpetuating itself indefinitely without ever reaching any definite solution.
Reductionism is easily recognized by its unjustified and often very strong claim of ‘being the
only game in town’.
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Furthermore, for organisms and life processes there is no special, or general, formulation of
measurement theory and it is usually assumed that the classical (commutative) theory will
suffice even though there are situations where quantum mechanisms are clearly involved,
as in the case of photosynthesis, photoreceptors/vision, and quantum tunnelling in enzyme
reactions occurring inside a living cell. Perhaps this observation is even more pertinent to
molecular genetics and ‘molecular’ biology where quantum aspects are very often completely
ignored–with a few notable exceptions (Schrödinger, 1945; Rosen, 1958; Pullman and Pull-
man,1965; Eigen and Schuster, 1999; Baianu, 1971; Rosen, 1991; Baianu, 2005; Baianu,
Brown, Georgescu and Glazebrook, 2006). The quantum question has also been raised by
Penrose (2004) in the context of human consciousness even though there is currently no es-
tablished quantum ‘mechanism’, data or link between any observable quantum process and
any aspect of consciousness of the nature invoked by Penrose and coworkers, which was pro-
posed to be in the form of ‘quantum gravity effects on microtubules inside neurons’. Clearly,
such a reductionist attempt does not satisfy even Occam’s razor postulate.

At the other extreme of approaches stands the Abstract–Relational viewpoint in which all
physicochemical structures– as well as all mathematical structures, except for those of ab-
stract sets and the category Set– are deliberately ignored, and one is concerned only with the
abstract-relational structure of organisms and/or societies. Clearly, the latter approach may
be mathematically quite a ‘convenient’ short-cut from a modelling viewpoint, but as long as
it does not include any recognizable pattern–sufficiently rich mathematical structure (e.g.,
as discussed for example by Ehresmann, 1966), physico-chemical, or anatomical structure, it
remains of rather limited interest, or consequence, to experimental biologists, for example.
Furthermore, the abstract-relational approach also conforms to a certain extent to Occam’s
razor by being ‘simple’–without too many complicated assumptions– and it may be there-
fore be considered as a kind of ‘mathematical’, or even ‘logico-mathematical’ reductionism,
although in a different sense than physicalism; it might be called, for example, ‘mathemat-
icalism’ (which seems cumbersome), ‘abstractism’, or ‘pure relationalism’. In a different
context, but in a similar vein, one also notes the objection often phrased by practicing al-
gebraic topologists to category theory by referring to it as ‘abstract nonsense’(May,1999).
This comes in the form of a warning that topological spaces (May,1999), and indeed cat-
egories, that have isomorphic, global properties can be locally quite different (Georgescu,
2006). Thus, both the local and the global properties must be investigated. Whereas global
properties, as they are presumably universal, are readily approached in categories, the local
properties may have additional structure which is overlooked in abstract categories. Hence,
the additional need for more ‘pedestrian’ tools that may enable one to deal locally with
specific structures that are globally overlooked. On the other hand, as a category can be
defined in several ways, eventually the gap between local and global will be closed, perhaps
by ‘chains of local procedures’ (Aof and Brown, 1992).

One also sees here the ontological contrast, or conflict, between concrete and abstract
items, between concrete and abstract approaches. Perhaps the middle-path approach, from
bottom → up and also from top 7→ down, (Poli, 2007), is the correct answer for improving
our understanding of complex and super-complex systems–one that combines the advantages
of ‘analytical’ (concrete-based) approaches with those of synthetic/integrative or abstract
categorical theories. So far, we have provided only broad definitions for the terms ‘complex’
and ‘super-complex’. It is the purpose of the next two sections to introduce, and for the first
time, define precisely these very important, key ontological concepts. We note here that the
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same words are currently being used in other fields, such as computer science, sociology, or
environmental sciences, with quite different, vague meanings, and also, in our view without
sufficient reason (i.e., not even satisfying Occam’s razor!).

5. Modelling and Classification of Systems: Simple, Complex and
Super-Complex Systems. Logics and Models of Higher Complexity

Levels.

The mathematician John von Neumann regarded ‘complexity’ as a measurable property
of natural systems below the threshold of which systems behave ‘simply’, but above which
they evolve, reproduce, self–organize, etc. Rosen (1987) proposed a refinement of these ideas
by a more exact classification between ‘simple’ and ‘complex’. Simple systems can be char-
acterized in terms of dynamical systems which admit maximal models, and can be therefore
re–assimilated via a hierarchy of informational levels. Besides, the duality between dynamical
systems and states is also a characteristic of such simple dynamical systems. It was claimed
that any ‘natural’ system fits this profile. But the classical assumption that natural systems
are simple, or ‘mechanistic’, is too restrictive since ‘simple’ is applicable only to machines,
closed physico-chemical systems, computers, or any system that is recursively computable .
On the other hand, an ultra-complex system as applied to psychological–sociological struc-
tures is describable in terms of variable categories or structures, and cannot be reasonably
represented by a fixed state space for its entire lifespan. Replacements by limiting dynam-
ical approximations lead to increasing system ‘errors’ and through such approximations a
complex system can be viewed in its acting as a single entity, but not conversely. Just as
for simple systems, both super–complex and ultra-complex systems admit their own orders
of causation, but the latter two types are different from the first–by inclusion rather than
exclusion– of the mechanisms that control simple dynamical systems.

On the other hand, the reductionist approach excludes the possibility of the existence of
relational laws and principles applicable only to biological organisms and/or societies that
cannot be reduced to physical laws, and that are complementary to physical laws in the
sense of being consistent with–but not reducible to–the latter. Ultimately, the ‘physical-
ist’ approach proposes to reduce all Ontology to Physics. Even Descartes, who seems to
have thought of organisms as complicated machines, drew a line between mind and matter,
because he invoked thinking as ‘proof’ of one’s existence!

Super–complex (Rosen’s ‘complex’) systems such as those supporting neurophysiological
activities are explained only in terms of ‘circular’, or non–linear, rather than linear causality.
In some way then, these systems are not normally considered as part of either traditional
physics or the complex systems physics generated by ‘chaos’, which are nevertheless fully
deterministic. However, super-complex (biological) systems have the potential to manifest
novel and counter–intuitive behaviour such as in the manifestation of ‘emergence’, develop-
ment/morphogenesis and biological evolution. Their precise meaning is formally defined for
the first time in Section 5.3.

5.1. Historical ‘Continuity’ in the Evolution of Super-Complex Systems: Topo-
logical Transformations and Discontinuities in Biological Development. Anthro-
pologists and evolutionary biologists in general have emphasized biological evolution as a
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‘continuous’ process, in a historical, rather than a topological, sense. That is, there are his-
torical sequences of organisms–phylogeny lines– which evolved in a well-defined order from
the simpler to the more complex ones, with intermediate stages becoming extinct in the
process that translates ‘becoming into being’, as Prigogine (1987) might have said. This
picture of evolution as a ‘tree of life’, due initially and primarily to Wallace and Darwin,
subsequently supported by many evolutionists, is yet to be presented in dynamic, rather
than historical, terms. Darwin’s theory of gradual evolution of more complex organisms
from simpler ones has been subject to a great deal of controversy which is still ongoing. The
alternatives are either saltatory or catastrophic changes; the latter has been especially out
of favor with biologists for a very long time. If we accept for the moment Darwin’s gradual
evolution of species, then we can envisage the emergence of higher and higher sub-levels of
super-complexity through biological evolution until a transition occurs through human soci-
ety co-evolution to ultra-complexity, the emergence of human consciousness. Thus, without
the intervention of human society co-evolution, a smooth increase in the degree of super-
complexity occurs only until a distinct/discrete transition to the (higher) ultra-complexity
level becomes possible through society co-evolution. If the previous process of increasing
complexity–which occurred previously at the super-complexity level– were to be iterated
also at the ultra-complex level, one might ask how and what will be the deciding factor for
the further ’co-evolution of minds’ and the transition towards still higher complexity levels?
Of course, one might also ask first the contingent ontology question if any such higher level
above human consciousness could at all emerge into existence. As we will show in subsequent
sections 7 to 10, the emergence of levels or sub-levels of increasing higher complexity can be
represented by means of variable structures of increasingly higher order or dimensions.

5.2. Organisms Represented as Variable Dynamic Systems: Generic States and
System Genericity. In actual fact, the super-complexity of the organism itself emerged
through the generation of dynamic, variable structures which then entail variable/flexible
functions, homeostasis, autopoiesis, anticipation, and so on. In this context, it is interest-
ing that Wiener (1950,1954,1989) proposed the simulation of living organisms by variable
machines/automata that did not exist in his time. The latter were subsequently formalized
independently in two related reports (Baianu, 1971a,b).

Unlike physical and chemical studies evolutionary studies are usually limited by the ab-
sence of controlled experiments to yield the prerequisite data needed for a complete theory.
The pace of discoveries is thus much slower in evolutionary studies than it is in either
physics or chemistry; furthermore, the timescale on which evolution has occurred, or occurs,
is extremely far from that of physical and chemical processes occurring on earth, despite
Faraday’s saying that ”life is but a delayed chemical reaction”. Such a multi-billion year
timescale for evolution is a significant part of the evolution of the universe itself, which is
thought to have an age of some 14 billion years. Thus, interestingly, both Evolutionary
and Cosmological studies work by quite different means to uncover events that span across
huge spacetime regions. Whereas in Cosmology the view of an absolute and fixed Universe
prevailed for a long time, it is currently accepted that the Universe evolves- it changes while
very rapidly expanding. The Contingent Universes are neither fixed nor absolute, they are
changing/evolving and are also relative to the observer or reference frame (as discussed
in Section 2). On a much smaller space scale, biological evolution has also ‘continuously’
generated a vast, increasing number of species, however, with the majority of such species
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becoming extinct. In this latter process, geographical location, the climate, as well as oc-
casional catastrophes (meteorites, volcanoes, etc.), seem to have played major roles. The
historical view of biological evolution stems from the fact that every organism, or living cell,
originates only from another, and there is no de nuovo re-starting of evolution. This raises
the very important question: how did life start on earth in the first place? How did the first,
primordial organism emerge some four billion years ago? We shall see briefly in Section 8
how an organismic model may provide answers to this question.

In D’Arcy Thompson’s extensive book “On Growth and Form” (ca. 1900) there are many
graphic examples of coordinate, continuous transformations (in fact homotopies) of anatom-
ical structure from one species to another, rates of growth in organisms and populations, as
well as a vast array of dynamic data serving as a source of inspiration in a valiant attempt
to understand morphogenesis in terms of physical forces and chemical reactions. It is a
remarkable, very early attempt to depart from Darwin’s historical approach to evolution,
and to understand organsimic forms in terms of their varied and complex dynamic growth;
it is often criticized for disagreeing with Darwin’s theory of evolution, and also for being a
physicalist attempt. Yet, some of the issues raised by D’Arcy W. Thompson are of interest
even today, as he explicitely pointed out in his book that the ‘morphogenetic dynamics’ he
is considering does not exhaust the real, very complex dynamics of biological development.

Separated in time by almost a century is René Thom’s work on Catastrophe Theory
(1980) that attempts to explain ‘topologically’ the presence of discontinuities and ‘chaotic’
behaviour, such as bifurcations, ‘catastrophes’, etc. in organismic development and evolu-
tion. Often criticized, his book does have the insight of structural stability in biodynamics
via ‘generic’ states that when perturbed lead to other similarly stable states. The use of
the term ‘catastrophe’ was ‘gauche’ as it reminds one of Cuvier’s catastrophic theory for the
formation of species, even though Thom’s theory had no connection to the former. When
analyzed from a categorical standpoint, organismic dynamics has been suggested to be char-
acterized not only by homeostatic processes and steady state, but also by multi-stability
(Baianu, 1970). The latter concept is clearly equivalent from a dynamic/topological stand-
point to super-complex system genericity, and the presence of multiple dynamic attractors
(Baianu, 1971) which were categorically represented as commutative super-pushouts (Baianu,
1970). The presence of generic states and regions in super-complex system dynamics is thus
linked to the emergence of complexity through both structural stability and the open system
attribute of any living organism that enable its persistence in time, in an accommodating
niche, suitable for its competitive survival.

5.3. Simple vs. Complex Dynamics–Closed vs. Open Systems. Selective Bound-
aries and Horizons. In an early report (Baianu and Marinescu, 1968), the possibility of
formulating a (super-) Categorical Unitary Theory of Systems (i.e., both simple and complex,
etc.) was pointed out both in terms of organizational structure and dynamics. Furthermore,
it was proposed that the formulation of any model or ‘simulation’ of a complex system– such
as living organism or a society–involves generating a first–stage logical model (not-necessarily
Boolean!), followed by a mathematical one, complete with structure (Baianu and Marinescu,
1968; Baianu, 1970). Then, it was pointed out that such a modelling process involves a
diagram containing the complex system, (CS) and its dynamics, a corresponding, initial
logical model, L, ‘encoding’ the essential dynamic and/or structural properties of CS, and
a detailed, structured mathematical model (M ); this initial modelling diagram may or may
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not be commutative, and the modelling can be iterated through modifications of L, and/or
M, until an acceptable agreement is achieved between the behaviour of the model and that of
the natural, complex system. Such an iterative modelling process may ultimately ‘converge’
to appropriate models of the complex system, and perhaps a best possible model could be
attained as the categorical colimit of the directed family of diagrams generated through such
a modelling process. The possible models L, or especially M, were not considered to be
necessarily either numerical or recursively computable (e.g., with an algorithm or software
program) by a digital computer (Baianu, 1971b, 1986).

5.4. Commutative vs. Non-commutative Modelling Diagrams. Interestingly, Rosen
(1987) also showed that complex dynamical systems, such as biological organisms, cannot
be adequately modelled through a commutative modelling diagram– in the sense of digital
computer simulation–whereas the simple (‘physical’/ engineering) dynamical systems can be
thus numerically simulated. Furthermore, his modelling commutative diagram for a simple
dynamical system included both the ‘encoding’ of the ‘real’ system N in (M) as well as the
‘decoding’ of (M) back into N:

[N ]
(Encoding)

//

δ

��

L⊕M
ℵM

��

N [M ]
(Decoding)

oo

where δ is the real system dynamics and ℵ is an algorithm implementing the numerical
computation of the mathematical model (M) on a digital computer. Firstly, one notes the
ominous absence of the Logical Model, L, from Rosen’s diagram published in 1987. Secondly,
one also notes the obvious presence of logical arguments and indeed (non-Boolean) ‘schemes’
related to the entailment of organismic models, such as MR-systems, in the more recent books
that were published last by Robert Rosen (1994, 2001, 2004). This will be further discussed
in sections 5 to 8, with the full mathematical details provided in the Appendix).

The importance of Logic Algebras, and indeed of Categories of Logic Algebras, is rarely
discussed in modern Ontology even though categorical formulations of specific Ontology
domains such as Biological Ontology and Neural Network Ontology are being extensively
developed. For a recent review of such categories of logic algebras the reader is referred to
the concise presentation by Georgescu (2006); their relevance to network biodynamics was
also recently assessed (Baianu, 2004, Baianu and Prisecaru, 2005; Baianu et al, 2006).

5.5. The Development of Living Organisms and Super-Complex Dynamics. Above
the level of ‘complex systems with chaos’ considered in the non-commutative diagram of the
previous section there is still a higher, super-complexity level of living organisms –which are
neither machines nor simple dynamical systems, in the above sense. Biological organisms
are extremely complex as recently discussed elsewhere in more detail (Baianu, 2006) in the
sense of their required, unique axiomatics (Baianu, 1970), super-complex dynamics (Baianu,
1970, 1971, 1986, 2006), new biological/relational principles (Rashevsky, 1968; Baianu and
Marinescu, 1968, 1970, 1971; Rosen, 1970; Baianu et al, 2006) and their non-computability
with recursive functions, digital computers or Boolean algorithms (Rosen, 1987; Baianu,
1986; Penrose, 2001; Baianu et al, 2006).
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In Section 7 we shall explain in further detail how super-complex dynamics emerges in
organisms from the molecular and supra-molecular levels that recently have already been
claimed to exist by several experimental molecular biologists to be ‘super-complex’. As
shown in previous reports (Baianu and Marinescu, 1968; Baianu, 1973,1980,1984,1987, 2004;
Baianu et al, 2006), multi-cellular organismic development, or ontogeny, can be represented
as a directed system or family of dynamic state spaces corresponding to all stages of on-
togenetic development of increasing dimensionality. The colimit of this directed system of
ontogenetic stages/dynamic state spaces represents the mature stage of the organism (Ba-
ianu, 1970, 1971a, 1974, 1984, 2004; Baianu et al. 2006). On the other hand, as shown
previously (Baianu, 1971a,b; Baianu, 1984, 1987, 2004), both single-cell and multi-cellular
organisms can be represented in terms of variable dynamic systems, such as generalized
(M,R)- systems (Baianu, 1973; Baianu and Marinescu, 1974), including dynamic realiza-
tions of (M,R)- systems (Rosen,1971a,b); this was also conjectured by Norbert Wiener in
1950 (Wiener, 1989) to be an appropriate representation of living systems, or even as a
means of constructing variable ‘machines’ mimicking organisms, however without either any
published formalization or proof by Wiener. The concept of variable automaton was formally
introduced by Baianu (1971b, 1973) along with that of quantum automaton (Baianu, 1971a;
1987) and quantum computation (1971b). This emergent process involved in ontogeny as
well as the becoming/‘birth’ of the primordial organism leads directly to variable, super-
complex dynamics and higher dimensional state spaces. As an over-simplified/pictorial–but
also formalizable– representation consider a living cell as a topological ‘cell’ or simplex of
a CW-complex. Then, as a multi-cellular organism develops a complete simplicial (CW)
complex emerges as an over-simplified picture of the whole, mature organism. The higher
dimensionality then emerges by considering each cell with its associated, variable dynamic
state space (Baianu, 1970,1971a,b); as shown in previous reports the corresponding vari-
able dynamic structure of biological relations/functionalities and dynamic transitions is an
organismic supercategory, or OS, (Baianu, 1970, 1980).

5.6. The Emergence of Unique Ultra-Complexity through the Co-Evolution of
Human Mind and Societies. Higher still than the organismic level characterized by super-
complex dynamics, there emerged perhaps even earlier than 400,000 years ago the unique,
ultra-complex levels of human mind/consciousness and human society interactions, as it will
be further discussed in sections 8 to 12. There is now only one species known who is capable
of rational, symbolic/abstract and creative thinking as part-and-parcel of consciousness–
Homo sapiens sapiens– which seems to have descended from a common ancestor with Homo
ergaster, and separated from the latter some 2.2 million years ago. However, the oldest fossils
of H. sapiens found so far are just about 400,000 years old.

The following diagram summarizes the relationships/links between such different systems
on different ontological levels of increasing complexity from the simple dynamics of physical
systems to the ultra-complex, global dynamics of psychological processes, collectively known
as ‘human consciousness’. With the emergence of the ultra-complex system of the human
mind– based on the super-complex human organism– there is always an associated progres-
sion towards higher dimensional algebras from the lower dimensions of human neural network
dynamics and the simple algebra of physical dynamics, as shown in the following, essentially
non-commutative categorical ontology diagram. This is similar–but not isomorphic– to the
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higher dimensionality emergence that occurs during ontogenetic development of an organism,
as discussed in the previous subsection.

[SUPER− COMPLEX]
(Higher Dim)

//

Λ

��

ULTRA− COMPLEX

onto
��

COMPLEX [SIMPLE]
(Generic Map)

oo

Note that the above diagram is indeed not ’natural’ for reasons related to the emergent
higher dimensions of the super–complex (biological/organismic) and/or ultra–complex (psy-
chological/neural network dynamic) levels in comparison with the low dimensions of either
simple (physical/classical) or complex (chaotic) dynamic systems. It might be possible, at
least in principle, to obtain commutativity by replacing the simple dynamical system in the
diagram with a quantum system, or a quantum ‘automaton’ (Baianu,1971,1987); however,
in this case the diagram still does not necessarily close between the quantum system and the
complex system with chaos, because it would seem that quantum systems are ‘fuzzy’–not
strictly deterministic– as complex ‘chaotic’ systems are. Furthermore, this categorical on-
tology diagram is neither recursively computable nor representable through a commutative
algorithm of the kind proposed for Boolean neural networks (Healey and Caudell, 2006; for an
extensive review of network biodynamic modelling, ‘simulations’ and also non-computability
issues for biological systems see Baianu, 1986 and references cited therein). Note also that
the top layer of the diagram has generic states and generic regions, whereas the lower layer
does not; the top layer lives, the bottom one does not.

5.7. Super-Complex, Anticipatory Systems. Feedbacks and Feedforward. Au-
topoiesis. Rosen (1985, 1987) characterized a change of state as governed by a predicted
future state of the organism and/or in respect of its environment. These factors appear
separate from the idea of simple systems since future influence (via inputs, etc.) are not
seen as compatible with causality. Since simple or mechanistic systems are not considered
as anticipatory, the latter square–up well with Rosen’s complex systems since, a fortiori, a
complex system is more susceptible to external influences beyond any dynamical represen-
tation of it. Indeed, any effort to monitor a complex system through a predictive dynamic
model results in a growing discrepancy between the actual function of the system and its
predicative counterpart thus leading to a (global) system failure (Rosen, 1987). Furthermore,
Anticipatory behaviour, considered apart from any non–feedback mechanism, is realized in
all levels of biological organization such as found in immune and neuronal systems (cf. At-
lan, 1972; Jerne, 1974; Rosen 1958a,b), or the broad–scale autopoiesis of structurally linked
systems/processes that continually inter-adjust with their environment over time (Maturana
and Varela, 1980). Within a social system the autopoiesis of the various components is a
necessary and sufficient condition for realization of the system itself. In this respect, the
structure of a society as a particular instance of a social system is determined by the struc-
tural framework of the (autopoietic components) and the sum total of collective interactive
relations. Consequently, the societal framework is based upon a selection of its component
structures in providing a medium in which these components realize their ontogeny. It is
just through participation alone that an autopoietic system determines a social system by
realizing the relations that are characteristic of that system. The descriptive and causal
notions are essentially as follows (Maturana and Varela, 1980, Chapter III):
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(1) Relations of constitution that determine the components produced constitute the
topology in which the autopoiesis is realized.

(2) Relations of specificity that determine that the components produced be the specific
ones defined by their participation in the autopoiesis.

(3) Relations of order that determine that the concatenation of the components in the
relations of specification, constitution and order be the ones specified by the au-
topoiesis.

Since simple or mechanistic systems are not considered as anticipatory, the autopoietic sys-
tems compare well with Rosen’s complex systems since, a fortiori, a complex system is more
susceptible to external influences beyond any dynamical representation of it. Indeed, any
effort to monitor a complex system through a predictive dynamic model results in a growing
discrepancy between the actual function of the system and its predicative counterpart thus
leading to a (global) system failure (Rosen, 1987).

The huge number and variety of biological organisms formed through evolution can be
understood as a result of the very numerous combinatorial potentialities of super-complex
systems, as well as the large number of different environmental niches available to organismic
evolution.

5.8. Comparing Systems: Similarity and General Relations between Systems.
Categorical Adjointness and Functional or Genetic Homology. We have seen al-
ready in the previous Subsections 5.4 and 5.5 that categorical comparisons of different types
of systems in diagrams provides a useful means for their classification and understanding
the relations between them. From a global viewpoint, comparing categories of such different
systems does reveal useful analogies, or similarities, between systems and also their univer-
sal properties. According to Rashevsky (1969), general relations between sets of biological
organisms can be compared with those between societies, thus leading to more general princi-
ples pertaining to both. Using the theory of levels does indicate however that the two levels
of super-complex and ultra-complex systems are quite distinct, and therefore, categorical
diagrams that ‘mix’ such distinct levels also fail to commute. This may be also the implicit
reason behind the Western philosophical duality between the brain and the mind, etc.

Considering dynamic similarity, Rosen (1968) introduced the concept of ‘analogous’ (clas-
sical) dynamical systems in terms of categorical, dynamic isomorphisms. However, the ex-
tension of this concept to either complex or super-complex systems has not yet been investi-
gated, and may be similar in importance to the introduction of the Lorentz-Poincaré group
of transformations for reference frames in Relativity theory. On the other hand, one is often
looking for relational invariance or similarity in functionality between different organisms
or between different stages of development during ontogeny–the development of an organism
from a fertilized egg. In this context, the categorical concept of ‘dynamically adjoint systems ’
was introduced in relation to the data obtained through nuclear transplantation experiments
(Baianu and Scripcariu, 1974). A left-adjoint functor between categories representing state
spaces of equivalent cell nuclei preserves limits, whereas the right-adjoint (or coadjoint) func-
tor preserves colimits. Thus, dynamical attractors and genericity of states are preserved for
nuclei up to the blastula stage of organismic develpoment. Subsequent stages of development
can be considered only ‘weekly adjoint’ or partially analogous. A more elaborate dynamic
concept of ‘homology’ between the genomes of different species during evolution was also
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proposed (Baianu, 1971a), suggesting that an entire phylogenetic series can be characterized
by a topologically–rather than biologically–homologous sequence of genomes which preserves
certain genes encoding the essential biological functions. A striking example was recently
suggested involving the differentiation of the nervous system in the fruit fly and mice (and
perhaps also man) which leads to the formation of the back, middle and front parts of the
neural tube.

6. From Object and Structure to Organismic Functions and Relations: A
Process–based Approach to Ontology.

Wiener (1950,1954,1989) made the important remark that implementation of complex
functionality in a (complicated) machine requires also the design and construction of a com-
plex structure. A similar argument holds mutatis mutandis, or by induction, for variable ma-
chines, variable automata and variable dynamic systems (Baianu,1970,1971a,b; 1973,1984,1986;
Baianu and Marinescu, 1974); therefore, if one represents organisms as variable dynamic
systems, one a fortiori requires a super-complex structure to enable or entail super-complex
dynamics, and indeed this is the case for organisms with their extremely intricate structures
at both the molecular and supra-molecular levels. It is an open question how the first organ-
ism has emerged through self-assembly, or ‘self-construction’. On the other hand, for simple
automata, or machines, there is the famous mathematical result about the existence of an
unique, Universal Turing Automaton (uUTA) that can build or construct any other automa-
ton. Furthermore, the category of all automata, and also the category of (M,R)–systems
have both limits and colimits (Baianu, 1973; Baianu and Marinescu, 1974; Baianu, 1987).
It would seem that the uUTA is isomorphic to the colimit construction in the category of
all automata (Baianu, 1973). One can also conjecture, and indeed, perhaps even prove for-
mally, that a certain Variable Universal Automaton (VUA) also exists which can build any
other variable automata; one may also hypothesize the metamorphosis of a certain selected
variable automaton through an evolution-like process into variable automata of higher com-
plexity and higher dimensionality, thus mimicking ontogeny, and possibly also phylogeny.
Thus, an analogy is here suggested with the primordial organism as a specially selected
variable universal automaton. Furthermore, the colimit of such an evolving, or developing,
direct system of variable automata may be conjectured to exist as a VUA structure; such
a VUA would then be a universal object in the supercategory of variable automata, and a
fortiori would also be unique.

Although the essence of super– and ultra– complex systems is in the interactions, relations
and dynamic transformations that are ubiquitous in such higher–level ontology, surprisingly
many a psychology, cognitive and an ontology approach begins with a very strong emphasis
on objects rather than relations. It would also seem that a basic ‘trick’ of human conscious-
ness is to pin a subjective sensation, perception and/or feeling on an internalized object, or
vice-versa to represent/internalize an object in the form of an internal symbol in the mind.
The example often given is that of a human child’s substituting a language symbol, or image
for the mother ‘object’, thus allowing ‘her permanent presence’ in the child’s consciousness.
Clearly, however, a complete approach to ontology must also include relations and inter-
connections between items, with a strong emphasis on dynamic processes, complexity and
functionality of systems, which all require an emphasis on general relations, morphisms and
the categorical viewpoint of ontology.
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The process-based approach to universal ontology is therefore essential to an understanding
of the ontology of levels, hierarchy, complexity, anticipatory systems, Life, Consciousness and
Universe(s). On the other hand, the opposite approach, based on objects, is perhaps useful
only at the initial cognitive stages in experimental science, as the reductionist approach of
‘cutting off’ functional connectivities and relations, retaining the object pieces, and then
attempting ‘to put back together the pieces’ does not work for complex, super-complex or
ultra-complex systems. Psychologists would be horrified at the proposition of ‘taking a mind
to pieces and attempting to put it back together afterwards’; not only it would not work,
but it would also be highly unethical. One could also argue that if chimpanzees are very close
to humans genetically (and maybe also to some extent functionally, even though separated
from a ‘common’, hypothetical ancestor by 5 to 8 million years of evolution), their use
in reductionist-inspired neurophysiological ‘experiments’ involving cutting and poking with
electrodes, thus presumably, altering their chimpanzee ‘consciousness’ is also unethical?!

6.1. The Object-based Approach vs Process-based (Dynamic) Ontology. In clas-
sifications, such as those developed over time in Biology for organisms, or in Chemistry for
chemical elements, the objects are the basic items being classified even if the ‘ultimate’ goal
may be, for example, either evolutionary or mechanistic studies.

Rutherford’s comment is pertinent in this context:

“There are two major types of science: physics or stamp collecting.”

.

An ontology based strictly on object classification may have little to offer from the point of
view of its cognitive content. It is interesting that many psychologists, especially behavioural
ones, emphasize the objectual approach rather than the process-based approach to the ultra-
complex process of consciousness occurring ‘in the mind’ –with the latter thought as an
‘object’. Nevertheless, as early as the work of William James in 1850, consciousness was
considered as a ‘continuous stream that never repeats itself ’–a Heraclitian concept that does
also apply to super-complex systems and life, in general. We shall see more examples of the
object-based approach to psychology in Section 11.

On the other hand, it is often thought that the object-oriented approach can be readily
converted from an ontological viewpoint into a process-based one. It would seem that the
answer to this question depends critically on the ontological level selected. For example,
at the quantum level, object and process become inter-mingled. Either comparing or mov-
ing between levels, requires ultimately a process-based approach, especially in Categorical
Ontology where relations and inter-process connections are essential to developing any valid
theory. At the fundamental level of ‘elementary particle physics’ however the answer to this
question of process-vs. object becomes quite difficult as a result of the ‘blurring’ between
the particle and the wave concepts. Thus, it is well-known that any ‘elementary quantum
object’ is considered by all accepted versions of quantum theory not just as a ‘particle’ or
just a ‘wave’ but both: the quantum ‘object’ is both wave and particle, at the same-time,
a proposition accepted since the time when it was proposed by de Broglie. At the quan-
tum microscopic level, the object and process are inter-mingled, they are no longer separate
items. Therefore, in the quantum view the ‘object-particle’ and the dynamic process-‘wave’
are united into a single dynamic entity or item, called the wave-particle quantum, which
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strangely enough is neither discrete nor continuous, but both at the same time, thus ‘refus-
ing’ intrinsically to be an item consistent with Boolean logic. Ontologically, the quantum
level is a very important starting point which needs to be taken into account by any theory of
levels that aims at completeness. Such completeness may not be attainable, however, simply
because an ‘extension’ of Gödel’s theorem may hold here also. The fundamental quantum
level is generally accepted to be dynamically, or intrinsically non-commutative, in the sense
of the non-commutative quantum logic and also in the sense of non-commuting quantum
operators for the essential quantum observables such as position and momentum.

Therefore, any ‘complete’ theory of levels, in the sense of incorporating the quantum level,
is thus –mutatis mutandi– non-Abelian. Therefore, at this point, there are two basic choices
in Categorical Ontology: either to include the quantum level and thus generate a non-Abelian
Ontology founded upon the non-commutative quantum logic, or to exclude the ‘fundamental’
level and remain strictly Abelian, that is accepting only strict determinism/linear causality
and a commutative logic for its foundation such as Boolean or Brouwer-intuitionistic logic.

Furthermore, as the non-Abelian case is the more general one, from a strictly formal
viewpoint, a non-Abelian Categorical Ontology is the preferred choice. Nevertheless, from
the point of view of simplicity (see Occam’s razor) or ’economy of thought’, the Abelian
form of Categorical Ontology may be often selected by reductionists, mathematicians or
engineers, for example; the commutativity and/or symmetry present in the Abelian theory
can be seen as quite attractive either from an esthetic viewpoint or from the standpoint of the
rapid elaboration/development of Categorical Ontology. Regardless of the latter views, the
paradigm-shift towards a non-Abelian Categorical Ontology has already started (Brown et al,
2007: ‘Non-Abelian Algebraic Topology’ ; Baianu, Brown and Glazebrook, 2006: NA-QAT).

6.2. Physico-chemical Structure–Function Relationships. Perhaps an adequate re-
sponse to both physicalist reductionism and/or ‘pure’ relationalism (as defined here in the
previous sections) consists in considering the integration of a concrete categorical ontology
approach which considers important experimentally well- studied examples of super-complex
systems of defined physico-chemical structures with organizational–relational/ logical-abstract
models that are expressed in terms of related function(s). Whereas such a combined ap-
proach does address the needs of– and in fact it is essential to– the experimental science of
complex/super-complex systems, it is also considerably more difficult than either physicalist
reductionism or abstract relationalism. Moreover, because there are many alternative ways
in which the physico-chemical structures can be combined within an organizational map or
relational complex system, there is a multiplicity of ‘solutions’ or mathematical models that
needs be investigated, and the latter are not computable with a digital computer in the
case of complex/super-complex systems such as organisms (Rosen, 1987). It is generally
accepted at present that structure-functionality relationships are key to the understanding
of super-complex systems such as living cells and organisms. This classification problem of
structure-functionality classes for various organisms and various complex models is therefore
a difficult and yet unresolved one, even though several paths and categorical methods may
lead to rapid progress in Categorical Ontology as discussed here in Section 3.3. The prob-
lem is further compounded by the presence of structural disorder (in the physical structure
sense) which leads to a multiplicity of dynamical-physicochemical structures (or ‘configura-
tions’) of a biopolymer, be it a protein, enzyme, or nucleic acid in a living cell or organism
that correspond, or ‘realize’, just a single recognizable biological function; this complicates
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the assignment of a ‘fuzzy’ physico-chemical structure to a well-defined biological function
unless extensive experimental data are available, as for example, those derived through com-
putation from 2D-NMR spectroscopy data (Wütrich, 2003), or neutron/X-ray scattering and
related multi-nuclear NMR spectroscopy/relaxation data (as for example in Chapters 2-9 in
Baianu et al, 1995). It remains to be seen if this approach can also be carried in vivo in spe-
cially favorable cases. Detailed considerations of the ubiquitous, partial disorder effects on
the structure-functionality relationships were reported for the first time by Baianu (1980).
Specific aspects were also recently discussed by Wütrich (2003) on the basis of 2D-NMR
analysis.

7. What is Life ?

7.1. The Emergence of Super-Complex Systems and Life. The ‘Primordial’, Sim-
plest (M,R)- and Autopoietic Systems. Although the distinction between living organ-
isms and simple physical systems, machines, robots and computer simulations appears obvi-
ous at first sight, the profound differences that exist both in terms of dynamics, construction
and structure require a great deal of thought, conceptual analysis, development and integra-
tion or synthesis. This fundamental, ontological question about Life occurs in various forms,
possibly with quite different attempts at answers, in several books (e.g. Schrödinger, 1945;
Rosen, 1995,1999). In the previous Sections 5 and 6 we have already discussed from the
categorical viewpoint several key systemic differences in terms of dynamics and modelling
between living and inanimate systems. The ontology of super-complex biological systems,
or biosystems (BIS), has perhaps begun with Elsasser’s paper (1969) who recognized that
organisms are extremely complex systems, that they exhibit wide variability in behaviour
and dynamics, and also from a logical viewpoint, that they form– unlike physical systems–
heterogeneous classes. (We shall use the ‘shorthand’ term ‘biosystems’ to stand for super-
complex biological systems, thus implicitely specifying the attribute super-complex within
biosystems). This intrinsic BIS variability was previously recognized as fuzziness (Baianu
and Marinescu, 1968) and some of its possible origins were suggested to be found in the par-
tial structural disorder of biopolymers and biomembranes (Baianu, 1980). Yet other basic
reasons for the presence of both dynamic and structural ‘bio-fuzziness’ is the ‘immanent’
LM-logic in biosystems, such as functional genetic networks, and possibly also the Q-logic of
signalling pathways in living cells. There are, however, significant differences between Quan-
tum Logic, which is also non-commutative, and the LM-Logics of Life processes. Whereas
certain reductionists would attempt to reduce Life’s logics, or even human consciousness,
to Quantum Logic (QL), the former are at least logically and algebraically not reducible to
QL. Nonetheless, it may be possible to formulate QL through certain modifications of non-
commutative LM-logics (Baianu, 2005; Baianu, Brown, Georgescu and Glazebrook, 2006).

Perhaps the most important attributes of Life are those related to the logics ‘immanent’
in those processes that are essential to Life. As an example, the logics and logic-algebras
associated with functioning neuronal networks in the human brain–which are different from
the many-valued ( Lukasiewicz–Moisil) logics (Georgescu, 2006) associated with functional
genetic networks (Baianu, 1977, 1987; Baianu, Brown, Georgescu and Glazebrook, 2006)
and self-reproduction (Lofgren,1968; Baianu, 1970; 1987)– were shown to be different from
the simple Boolean-chryssippian logic upon which machines and computers are built by
humans. The former n-valued (LM) logics of functional neuronal or genetic networks are
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non-commutative ones, leading to non-linear, super-complex dynamics, whereas the simple
logics of ‘physical’ dynamic systems and machines/automata are commutative (in the sense of
involving a commutative lattice structure). Here, we find a fundamental, logical reason why
living organisms are non-commutative, super-complex systems, whereas simple dynamical
systems have commutative modelling diagrams that are based on commutative Boolean logic.
We also have here the reason why a commutative Categorical Ontology of Neural networks
leads to advanced robotics and AI, but has indeed little to do with the ‘immanent logics’
and functioning of the living brain, contrary to the proposition made by McCulloch and
Pitts (1943).

There have been several attempts at defining life in reductionistic terms and a few non-
reductionist ones. Rashevsky (1968) attempted to define life in terms of the essential func-
tional relations arising between organismic sets of various orders, i.e. ontological levels,
beginning with genetic sets, their activities and products as the lowest possible order, zero,
of on ‘organismic set’ (OS). Then he pursued the idea in terms of logical Boolean predicates
(1969). Attempting to provide the simplest model possible he proposed the organismic set,
or OS, as a basic representation of living systems, but he did not attempt himself to en-
dow his OS with either a topological or categorical structure, in spite of the fact that he
previously reported on the fundamental connection between Topology and Life (Rashevsky,
1959). He did attempt, however, a logical analysis in terms of formal symbolic logics and
Hilbert’s predicates. Furthermore, his PhD student, Robert Rosen did take up the challenge
of representing organisms in terms of simple categorical models–his Metabolic-Repair,(M,R)-
systems, or (MR)s (Rosen, 1958a,b). These two seminal papers were then followed by a series
of follow up reports with many interesting, biologically relevant results and consequences in
spite of the simplicity of the MR, categorical set ‘structure’. Further extensions and gener-
alizations of MRs were subsequently explored by considering abstract categories with both
algebraic and topological structures (Baianu and Marinescu, 1973; Baianu, 1974, 1980, 1984,
1987).

Whereas simple dynamic systems, or general automata, have canonically decomposable
semigroup state spaces (the Krone-Rhodes Decomposition Theorem), super-complex systems
do not have state spaces that are known to be canonically decomposable, or partitioned
into functionally independent subcomponent spaces, that is within a living organism all
organs are inter-dependent and integrated; one cannot generally find a subsystem or organ
which retains organismic life–the full functionality of the whole organism. However, in some
of the simpler organisms, for example in Planaria, regeneration of the whole organism is
possible from several of its major parts. Pictorially, and typically, living organisms are
not ‘Frankensteins’/chimeras that can be functionally subdivided into independent smaller
subsystems (even though cells form the key developmental and ontological levels of any
multi-cellular organism that cannot survive independently unless transformed.) By contrast,
automata do have in general such canonical sub-automata/machine decompositions of their
state-space. It is in this sense also that recursively computable systems are ‘simple’, whereas
organisms are not. We note here that an interesting, incomplete but computable, model
of multi-cellular organisms was formulated in terms of ‘cellular’ or ‘tessellation’ automata
(Arbib, 1970) simulating cellular growth in planar arrays. This incomplete model is often
imitated in one form or another by seekers of computer-generated/algorithmic, artificial ‘life’.

On the one hand, simple dynamical (physical) systems are often represented through
groups of dynamic transformations. In GR, for example, these would be Lorentz–Poincare’
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groups of spacetime transformations/reference frames. On the other hand, super-complex
systems, or biosystems, emerging through self-organization and complex aggregation of sim-
ple dynamical ones, are therefore expected to be represented mathematically–at least on the
next level of complexity– through an extension, or generalization of mathematical groups,
such as groupoids, for example. Whereas simple physical systems with linear causality have
high symmetry, a single energy minimum, and thus they possess only degenerate dynamics,
the super-complex (living) systems emerge with lower symmetries but higher dynamic and
functional/relational complexity. As symmetries get ‘broken’ the complexity degree increases
sharply. From groups that can be considered as very simple categories that have just one
object and reversible/invertible endomorphisms, one moves through ‘symmetry breaking’ to
the structurally more complex groupoids, that are categories with many objects but still with
all morphisms invertible. Dynamically, this reflects the transition from degenerate dynamics
with one, or a few stable, isolated states (‘degenerate’ ones) to dynamic state regions of many
generic states that are metastable; this multi-stability of biodynamics is nicely captured by
the many objects of the groupoid and is the key to the ‘flow of life’ occurring as multiple
transitions between the multiple metastable states of the homeostatic, living system. More
details of how the latter emerge through biomolecular reactions, such as catabolic/anabolic
reactions, will be presented in the next subsections, and also in the next section, especially
under natural transformations of functors of biomolecular categories. As we shall see later
in Sections 8 through 10 the emergence of human consciousness as an ultra-complex process
became possible through the development of the bilaterally asymmetric human brain, not
just through a mere increase in size, but a basic change in brain architecture as well. Rela-
tionally, this is reflected in the transition to a higher dimensional structure, for example a
double biogroupoid representing the bilaterally asymmetric human brain architecture, as we
shall discuss further in Section 11.

Therefore, we shall consider throughout the following sections various groupoids as some of
the ‘simplest’ illustrations of the mathematical structures present in super-complex biological
systems and classes thereof, such as biogroupoids (the groupoids featuring in bio-systems) and
variable biogroupoids to represent evolving biological species. Relevant are here also crossed
complexes of variable groupoids and/or multi-groupoids as more complex representations
of biosystems that follow the emergence of ultra–complex systems (the mind and human
societies, for example) from super-complex dynamic systems (organisms).

Although Darwin’s Natural Selection theory has provided for more than 150 years a coher-
ent framework for mapping the Evolution of species, it could not attempt to explain how Life
itself has emerged in the first place, or predict the rates at which evolution occurred/occurs,
or even predict to any degree of detail what the intermediate ‘missing links’, or intervening
species, looked like, especially during their ascent to man. On the other hand, Huxley, the
major proponent of Darwin’s Natural Selection theory of Evolution, correctly proposed that
the great,‘anthropoid’ apes were in man’s ancestral line going back more than 10 million
years. The other two major pieces specified here–as well as the Relational and Molecular
Biologies–that are missing from Darwin’s and neo-Darwinist theories, are still the subject of
intense investigation. We intend to explore in the next sections some possible, and plausible,
answers to these remaining questions.
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We note here that part of the answer to the question how did life first emerge on earth
is suggested by the modelling diagram considered in Section 5 and the evolutionary taxon-
omy: it must have been the simplest possible organism, i.e., one that defined the minimum
conditions for the emergence of life on earth. Additional specifications of the path taken by
the emergence of the first super-complex living organism on earth, the ‘primordial’, come
from an extension of MR theory and the consideration of its possible molecular realizations
and molecular evolution (Baianu, 1984). The question still remains open: why primordial
life–forms or super-complex systems no longer emerge on earth, again and again. The usual
answer is that the conditions existing for the formation of the ‘primordial’ no longer exist
on earth at this point in time. Whereas, this could be part of the answer, one could then
further enquire if such conditions may not be generated artificially in the laboratory. The
answer to the latter question, however, shows that we do not yet have sufficient knowledge
to generate the primordial in the laboratory, and also that unlike natural evolution which
had billions of years available to pseudo-randomly explore numerous possibilities, man does
not have that luxury in the laboratory.

7.2. Emergence of Organisms, Essential Organismic Functions and Life. Whereas
it would be desirable to have a well-defined definition of living organisms, the list of at-
tributes needed for such a definition can be quite lengthy. In addition to super-complex,
recursively non-computable and open, the attributes: auto-catalytic, self-organizing, struc-
turally stable/generic, self-repair, self-reproducing, highly interconnected internally, multi-
level, and also possessing multi-valued logic and anticipatory capabilities would be recognized
as important. One needs to add to this list at least the following: diffusion processes, inter-
cellular flows, essential thermodynamically-linked, irreversible processes coupled to bioener-
getic processes and (bio)chemical concentration gradients, and fluxes selectively mediated
by semi-permeable biomembranes. This list is far from being complete. Some of these im-
portant attributes of organisms are inter-dependent and serve to define life categorically
as a super-complex dynamic process that can have several alternate, or complementary
descriptions/representations; these can be formulated, for example, in terms of variable
categories, variable groupoids, generalized Metabolic-Repair systems, organismic sets, hy-
pergraphs, memory evolutive systems (MES), organismic toposes, interactomes, organismic
super-categories and higher dimensional algebra.

7.2.1. The Primordial(s) and (M,R)-Systems. Enzyme Catalysis and Organismic Self-Repair.
Auto–catalytic and Autopoietic Systems. Organisms are thought of having all evolved from
a simpler, ‘primordial’, proto-system or cell formed (how?) three, or perhaps four, billion
years ago. Such a system, if considered to be the simplest, must have been similar to a
bacterium, though perhaps without a cell wall, and also perhaps with a much smaller, single
chromosome containing very few RNA ‘genes’ (two or, most likely, four).

We shall consider next a simple ‘metaphor’ of metabolic, self-repairing and self-reproducing
models called (M,R)-systems, introduced by Robert Rosen (1958 a,b). Such models can rep-
resent some of the organismic functions that are essential to life; these models have been
extensively studied and they can be further extended or generalized in several interesting
ways. Rosen’s simplest MR predicts one RNA ‘gene’ and just one proto-enzyme for the pri-
mordial ‘organism’. An extended MR (Baianu, 1969; 1984) predicts however the primordial,
PMR, equipped with a ribozyme (a telomerase-like, proto-enzyme), and this PMR is then
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also capable of ribozyme- catalized DNA synthesis, and would have been perhaps surrounded
by a ‘simple’ lipid-bilayer membrane some three billion years ago. Mathematically, this can
be represented as:

(7.1) A
f //B

Φ //<[A,B]
β //<[B,<[A,B]]

γ //. . .−→∞ . . .

where the symbol < is the MR category representing the ‘primordial’ organism, PMR,
and <[A,B] is the class of morphisms (proto-enzymes) bewteen the metabolic input class A
(substrates) and the metabolic output class B (metabolic products of proto-enzymes). The
ribozyme γ is capable of both catalizing and ‘reverse’ encoding its RNA template into the
more stable DNA duplex, ∞. One can reasonably expect that such primordial genes were
conserved throughout evolution and may therefore be found through comparative, functional
genomic studies. The first ribozymes may have evolved under high temperature conditions
near cooling volcanoes in hot water springs and their auto-catalytic capabilities may have
been crucial for rapidly producing a large population of self-reproducing primordials and
their descendant, Archea-like organisms.

Note that the primordial MR , or PMR = <, is an auto-catalytic, self-reproducing and
autopoietic system. However, its ‘evolution’ is not entailed or enabled as yet. For this, one
needs define first a variable biogroupoid or variable category, as we shall see in the next
sections.

7.3. Generalized (M,R)-Systems as Variable Groupoids. We have the important ex-
ample of MR-Systems with metabolic groupoid structures (that is, reversible enzyme reac-
tions/metabolic functions–repair replication groupoid structures), for the purpose of studying
RNA, DNA, epigenomic and genomic functions. For instance, the relationship of

METABOLISM = ANABOLISM =⇒ ⇐= CATABOLISM

can be represented by a metabolic groupoid of ‘reversible’, anabolic/catabolic processes.
In this respect the simplest MR-system can be represented as a topological groupoid with
the open neighbourhood topology defined for the entire dynamical state space of the MR-
system, that is an open/generic– and thus, a structurally stable– system, as defined by
the dynamic realizations of MR-systems (Rosen, 1971a,b). This necessitates a descriptive
formalism in terms of variable groupoids following which the human MR-system would then
arise as the colimit of its complete biological family tree expressible in terms of a family of
many linked/connected groupoids; this variable biogroupoid formalism is briefly outlined in
the next section.

7.4. Evolving Species as Variable Biogroupoids. For a collection of variable groupoids
we can firstly envisage a parametrized family of groupoids {Gλ} with parameter λ (which
may be a time parameter, although in general we do not insist on this). This is one basic and
obvious way of seeing a variable groupoid structure. If λ belongs to a set M , then we may
consider simply a projection G×M−→M , which is an example of a trivial fibration. More
generally, we could consider a fibration of groupoids G ↪→ Z−→M (Higgins and Mackenzie,
1990). However, we expect in several of the situations discussed in this paper (such as, for
example, the metabolic groupoid introduced in the previous subsection) that the systems
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represented by the groupoid are interacting. Thus, besides systems modelled in terms of a
fibration of groupoids, we may consider a multiple groupoid as defined as a set with a number
of groupoid structures any distinct pair of which satisfy an interchange law which can be
expressed as: each is a morphism for the other, or alternatively: there is a unique expression
of the following composition:

(7.2)

[
x y
z w

]
i

j

��
//

where i and j must be distinct for this concept to be well defined. This uniqueness can
also be represented by the equation

(7.3) (x ◦j y) ◦i (z ◦j w) = (x ◦i z) ◦j (y ◦i w).

This illustrates the principle that a 2-dimensional formula may be more comprehensible
than a linear one!

Brown and Higgins, 1981a, showed that certain multiple groupoids equipped with an extra
structure called connections were equivalent to another structure called a crossed complex
which had already occurred in homotopy theory. We shall say more on these later.

In general, we are interested in the investigation of the applications of the inclusions

(groups) ⊂ (groupoids) ⊂ (multiple groupoids).

The applications of groups, and Lie groups, in mathematics and physics are well known.
Groupoids and Lie groupoids are beginning to be applied (see Landsmann, 2002). Indeed it
is well known that groupoids allow for a more flexible approach to symmetry than do groups
alone. There is probably a vast field open to study.

One of the difficulties is that multiple groupoids can be very complex algebraic objects. It
is known for example that they model weak homotopy n-types. This allows the possibility
of a revolution in algebraic topology.

Another important notion is the classifying space BC of a crossed complex C. This, and
the monoidal closed structure on crossed complexes, have been applied by Porter and Turaev
to questions on Homotopy Quantum Field Theories (these are TQFT’s with a ‘background
space’ which can be helpfully taken to be of the form BC as above), and by Martins and
Porter (2006), as invariants of interest in physics.

The patching mechanism of a groupoid atlas connects the iterates of local procedures (Bak
et al., 2006). One might also consider in general a stack in groupoids (Borceux, 1994), and
indeed there are other options for constructing relational structures of higher complexity,
such as double, or multiple groupoids (Brown, 2004; 2005). As far as we can see, these are
different ways of dealing with gluing or patching procedures, a method which goes back to
Mercator!

For example, the notion of an atlas of structures should, in principle, apply to a lot of
interesting, topological and/or algebraic, structures: groupoids, multiple groupoids, Heyting
algebras, n-valued logic algebras and C∗-convolution -algebras.Australopithecus One might
incorporate a 3-valued logic here and a 4-valued logic there, and so on. An example from
the ultra-complex system of the human mind is synaesthesia–the case of extreme communi-
cation processes between different types of ‘logics’ or different levels of ‘thoughts’/thought
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processes. The key point here is communication. Hearing has to communicate to sight/vision
in some way; this seems to happen in the human brain in the audiovisual (neocortex) and in
the Wernicke (W) integrating area in the left-side hemisphere of the brain, that also commu-
nicates with the speech centers or the Broca area, also in the left brain hemisphere. Because
of this dual-functional, quasi-symmetry of the human brain, it may be useful to represent
all two-way communication/signalling pathways in the two brain hemispheres by a double
groupoid as the simplest groupoid structure that may represent such quasi-symmetry of the
two sides of the human brain. In this case, the 300 millions or so of neuronal interconnec-
tions in the corpum calossum that link up neural network pathways between the left and the
right hemispheres of the brain would be represented by the geometrical connection in the
double groupoid. The brain’s overall asymmetric distribution of functions and neural net-
work structure between the two brain hemispheres may therefore require a non-commutative,
double-groupoid structure for its relational representation. The potentially interesting ques-
tion then arises how one would mathematically represent the split-brains that have been
neurosurgically generated by cutting just the corpum calossum– some 300 million intercon-
nections in the human brain (Sperry, 1992). It would seem that either a crossed complex of
two, or several, groupoids, or indeed a direct product of two groupoids G1 and G2, G1 ×G2

might provide some of the simplest representations of the human split-brain. The latter, di-
rect product construction has a certain kind of built-in commutativity: (a, b)(c, d) = (ac, bd),
which is a form of the interchange law. In fact, from any two groupoids G1 and G2 one can
construct a double groupoid G1 1 G2 whose objects are Ob(G1) × Ob(G2). The internal
groupoid ‘connection’ present in the double groupoid would then represent the remaining
basal/‘ancient’ brain connections between the two hemispheres, below the corpum callosum
that has been removed by neurosurgery in the split-brain human patients.

The remarkable variability observed in such human subjects both between different sub-
jects and also at different times after the split-brain (bridge-localized) surgery may very well
be accounted for by the different possible groupoid representations. It may also be explained
by the existence of other, older neural pathways that remain untouched by the neurosurgeon
in the split-brain, and which re-learn gradually, in time, to at least partially re-connect the
two sides of the human split-brain. The more common health problem –caused by the senes-
cence of the brain– could be approached as a local-to-global, super-complex ageing process
represented for example by the patching of a topological double groupoid atlas connecting
up many local faulty dynamics in ‘small’ un-repairable regions of the brain neural network,
caused for example by tangles, locally blocked arterioles and/or capillaries, and also low local
oxygen or nutrient concentrations. The result, as correctly surmised by Rosen (1987), is a
global, rather than local, senescence, super-complex dynamic process.

On the other hand, for ‘simple’ physical systems it is quite reasonable to suppose that
structures associated with symmetry and transitions could well be represented by 1-groupoids,
whereas transitions between quantum transitions, could be then represented by a special
type of quantum symmetry double groupoid that we shall call here simply a quantum double
groupoid (QDG; Baianu, Brown and Glazebrook, 2007c), as it refers to fundamental quantum
dynamic processes (cf. Werner Heisenberg, as cited by Brown, 2002).
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8. Evolution and Dynamics of Systems, Networks and Organisms:
Evolution as the Emergence of Increasing Organismic Complexity.

Speciation and Molecular ‘Evolution’.

8.1. Propagation and Persistence of Organisms through Space and Time. Sur-
vival and Extinction of Species. The autopoietic model of Maturana (1987) claims to
explain the persistence of living systems in time as the consequence of their structural cou-
pling or adaptation as structure determined systems, and also because of their existence as
molecular autopoietic systems with a ‘closed’ network structure. As part of the autopoi-
etic explanation is the ‘structural drift’, presumably facilitating evolutionary changes and
speciation. One notes that autopoietic systems may be therefore considered as dynamic
realizations of Rosen’s simple MRs. Similar arguments seem to be echoed more recently by
Dawkins (2003) who claims to explain the remarkable persistence of biological organisms over
geological timescales as the result of their intrinsic, (super-) complex adaptive capabilities.

The point is being often made that it is not the component atoms that are preserved
in organisms (and indeed in ‘living fosils’ for geological periods of time), but the structure-
function relational pattern, or indeed the associated organismic categories or supercategories.
This is a very important point: only the functional organismal structure is ‘immortal’ as it
is being conserved and transmitted from one generation to the next. Hence the relevance
here, and indeed the great importance of the science of abstract structures and relations,
i.e., Mathematics.

This was the feature that appeared paradoxical or puzzling to Erwin Schrödinger from a
quantum theoretical point of view when he wrote his book “What is Life?” As individual
molecules often interact through multiple quantum interactions, which are most of the time
causing irreversible, molecular or energetic changes to occur, how can one then explain
the hereditary stability over hundreds of years (or occasionally, a great deal longer, NAs)
within the same genealogy of a family of men? The answer is that the ‘actors change
but the play does not!’. The atoms and molecules turn-over, and not infrequently, but the
structure-function patterns/organismic categories remain unchanged/are conserved over long
periods of time through repeated repairs and replacements of the molecular parts that need
repairing, as long as the organism lives. Such stable patterns of relations are, at least in
principle, amenable to logical and mathematical representation without tearing apart the
living system. In fact, looking at this remarkable persistence of certain gene subnetworks in
time and space from the categorical ontology and Darwinian viewpoints, the existence of live
‘fossils’ (e.g., a coelacanth found alive in 1923 to have remained unchanged at great depths in
the ocean as a species for 300 million years!) it is not so difficult to explain; one can attribute
the rare examples of ‘live fossils’ to the lack of ‘selection pressure in a very stable niche’.
Thus, one sees in such exceptions the lack of any adaptation apart from those which have
already occurred some 300 million years ago. This is by no means the only long lived species:
several species of marine, giant unicellular green algae with complex morphology from a
family called the Dasycladales may have persisted as long as 600 million years (Goodwin,
1994), and so on. However, the situation of many other species that emerged through super-
complex adaptations–such as the species of Homo sapiens–is quite the opposite, in the sense
of marked, super-complex adaptive changes over much shorter timescales than that of the
exceptionally ‘lucky’ coelacanths. Clearly, some species, that were less adaptable, such as
the Neanderthals or Homo erectus, became extinct even though many of their functional
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genes may be still conserved in Homo sapiens, as for example, through comparison with the
more distant chimpanzee relative. When comparing the Homo erectus fossils with skeletal
remains of modern men one is struck how much closer the former are to modern man than
to either the Australopithecus or the chimpanzee (the last two species appear to have quite
similar skeletons and skulls, and also their ‘reconstructed’ vocal chords/apparatus would not
allow them to speak). Therefore, if the functional genomes of man and chimpanzee overlap by
about 98%, then the overlap of modern man functional genome would have to be greater than
99% with that of Homo erectus of 1 million years ago, if it somehow could be actually found
and measured (but it cannot be, at least not at this point in time). Thus, one would also
wonder if another more recent hominin than H. erectus, such as Homo floresiensis– which
is estimated to have existed between 74,000 and 18,000 years ago on the now Indonesian
island of Flores– may have been capable of human speech. One may thus consider another
indicator of intelligence such as the size of region 10 of the dorsomedial prefrontal cortex,
which is thought to be associated with the existence of self-awareness ; this region 10 is about
the same size in H. floresiensis as in modern humans, despite the much smaller overall size
of the brain in the former (Falk, D. et al., 2005).

Passing the threshold towards human consciousness and awareness of the human self may
have occurred –with any degree of certainty–only with the ascent of the Cro–Magnon man
which is thought to belong to the modern species of Homo sapiens sapiens, (chromosomally
descended from the Y haplogroup F/mt haplogroup N populations of the Middle East).
This important transition seems to have taken place between 60,000 and 10,000 years ago
through the formation of Cro–Magnon, human ‘societies’–perhaps consisting of small bands
of 25 individuals or so sharing their hunting, stone tools, wooden or stone weapons, a fire,
the food, a cave, one large territory, and ultimately reaching human consensus.

8.1.1. Biological Species. After a century-long debate about what constitutes a biological
species, taxonomists and general biologists seem to have now adopted the operational con-
cept proposed by Mayr: ‘‘a species is a group of animals that share a common gene pool
and that are reproductively isolated from other groups.” Unfortunately, this concept is not
readily applicable to extinct species and their fossils, the subject of great interest to pale-
oanthropologists, for example. From an ontology viewpoint, the biological species can be
defined as a class of equivalent organisms from the point of view of sexual reproduction
and or/functional genome, or as a biogroupoid (Baianu, Brown, Georgescu and Glazebrook,
2006). Whereas satisfactory as taxonomic tools these two definitions are not directly useful
for understanding evolution. The biogroupoid concept, however, can be readily extended
to a more flexible concept, the variable groupoid, which can be then utilized in theoretical
evolutionary studies, and through predictions, impact on empirical evolutionary studies, and
perhaps organismic taxonomy also.

8.2. Super–Complex Network Biodynamics in Variable Biogroupoid Categories.
Variable Bionetworks and their Super-Categories. This section is an extension of
the previous one in which we introduced variable biogroupoids in relation to speciation and
the evolution of species. The variable category concept generalizes the concept of variable
groupoid which can be thought as a variable category whose morphisms are invertible. The
latter is thus a more ‘symmetric’ structure than the general variable category.

We have seen that variable biogroupoid representations of biological species, as well as
their categorical limits and colimits, may provide powerful tools for tracking evolution at the
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level of species. On the other hand, the representation of organisms, with the exception of
unicellular ones, is likely to require more general structures, and super-structures of struc-
tures (Baianu, 1970). In other words, this leads towards higher-dimensional algebras (HDA)
representing the super-complex hierarchies present in a complex–functional, multi-cellular
organism, or in a highly-evolved functional organ such as the human brain. The latter (HDA)
approach will be discussed in a later section in relation to neurosciences and consciousness,
whereas we shall address here the question of representing biosystems in terms of variable
categories that are lower in complexity than the ultra-complex human mind. A variable
category approach is, on the other hand, a simpler alternative to the organismic LM-topos
that will be employed in sections 8.6 and 8.7 to represent the emergence and evolution of
genetic network biodynamics, comparative genomics and phylogeny. In terms of represen-
tation capabilities, the range of applications for variable categories may also extend to the
neurosciences, neurodynamics and brain development, in addition to the evolution of the
simpler genomes and/or interactomes. Last-but-not-least, it does lead directly to the more
powerful ‘hierarchical’ structures of higher dimensional algebra.

8.3. Evolution as a Local-to- Global Problem: The Metaphor of Chains of Local
Procedures. Alternate Representations of Evolution by MES and Colimits of
Transforming Species. Bifurcations, Phylogeny and the ‘Tree of Life’. Darwin’s
theory of natural selection, sometimes considered as a reductionist attempt in spite of its
consideration of both specific and general biological functions such as adaptation, reproduc-
tion, heredity and survival, has been substantially enriched over the last century; this was
achieved through more precise mathematical approaches to population genetics and molec-
ular evolution which developed new solutions to the key problem of speciation (Bendall,
1982; Mayr and Provine, 1980; Pollard, 1984; Sober, 1984; Ridley, 1985; Gregory, 1987).
Modified evolutionary theories include neo-Darwinism, the ‘punctuated evolution’ (Gould,
1977) and the ‘neutral theory of molecular evolution’ of Kimura (1983). The latter is partic-
ularly interesting as it reveals that evolutionary changes do occur much more frequently in
unexpressed/silent regions of the genome, thus being ‘invisible’ phenotypically. Therefore,
such frequent changes (‘silent mutations’) are uncorrelated with, or unaffected by, natural
selection. For further progress in completing a logically valid and experimentally-based evo-
lutionary theory, an improved understanding of speciation and species is required, as well as
substantially more experimental, genomic data related to speciation.

Furthermore, there is a theory of levels, ontological question that has not yet been ad-
equately addressed, although it has been identified: at what level does evolution operate:
species, organism or molecular (genetic)? According to Darwin the answer seems to be the
species; however, not everybody agrees because in Darwin’s time a valid theory of inherited
characters was neither widely known nor accepted. Moreover molecular evolution and con-
certed mutations are quite recent concepts whose full impact has not yet been realized. As
Brian Goodwin (2002) puts it succintly:

”Where has the organism disappeared in Darwin’s evolutionary theory?”
The answer in both Goodwin’s opinion, and also ours, lies in the presence of key func-

tional/relational patterns that emerged and were preserved in organisms throughout various
stages over four billion years or so of evolution. The fundamental relations between or-
ganism, species and the speciation process itself do need to be directly addressed by any
theory that now claims to explain the Evolution of species and organisms. Furthermore, an
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adequate consideration of the biomolecular levels and sub-levels involvement in Speciation
and Evolution must also be present in any modern evolutionary theory. These fundamental
questions will be addressed for the first time from the categorical ontology standpoint in this
and the next section.

To date there is no complete, direct observation of the formation of even one live, new
species through natural selection, in spite of the rich paleontological, indirect evidence. How-
ever, man generated many new species through selective breeding/artificial selection based on
a fairly detailed understanding of hereditary principles, both Mendelian and non-Mendelian.
Still more species of the simpler organisms are being engineered by man through molecular
genetic manipulations, often raising grave concerns to the uninitiated layman leading to very
restrictive legislation, especially in Europe. There are several differences between natural
and artificial selection, with the main difference being seen in the pseudo-randomness of
natural selection as opposed to the sharply directed artificial selection exerted by human
breeders. This is however a matter of degree rather than absolute distinction: natural se-
lection is not a truly random process either and artificial selection does involve some trial
and error as it is not a totally controllable exercise. Furthermore, natural selection operates
through several mechanisms on different levels whereas artificial selection involves strictly
controlled reproduction and may involve just the single organism level to start with, followed
by deliberate inbreeding, as an example. Therefore one can reasonably argue that natural
selection mechanisms differ from those of artificial selective breeding, with adaptive ‘mecha-
nisms’ being largely eliminated in the latter, even though the laws of heredity are of course
respected by both, but with fertilization and embryonic/organismal development being often
under the breeder’s control.

In this section, we shall endeavor to address the question of super-complex systems’ evolu-
tion as a local-to-global problem and we shall seek solutions in terms of the novel categorical
concepts that we introduced in the previous subsections. Thus, we shall consider biological
evolution by introducing the unifying metaphor of ‘local procedures’ which may represent
the formation of new species that ‘branch out’ to generate still more evolving species.

In his widely read book, D-Arcy W. Thompson (1994, re-printed edition) gives a large
number of biological examples of organismic growth and forms analyzed at first in terms
of physical forces. Then, he is successful in carrying out analytical geometry coordinate
transformations that allow the continuous, homotopic mapping of series of species that are
thought to belong to the same branch–phylogenetic line– of the tree of life. However, he finds
it very difficult or almost impossible to carry out such transformations for fossil species, skele-
ton remains of species belonging to different evolutionary branches. Thus, he arrives at the
conclusion that the overall evolutionary process is not a continuous sequence of organismic
forms or phenotypes (p. 1094 of his book).

Because genetic mutations that lead to new species are discrete changes as discussed
above in Section 3.4, we are therefore not considering evolution as a series of continuous
changes–such as a continuous curve drawn analytically through points representing species
–but heuristically as a tree of ‘chains of local procedures’ (Brown, 2006). Evolution may be
alternatively thought of and analyzed as a composition of local procedures. Composition is a
kind of combination and so it might be confused with a colimit, but they are substantially
different concepts.
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Therefore, one may attempt to represent biological evolution as an evolutionary tree, or
tree of life, with its branches completed through chains of local procedures (pictured be-
low as overlapping circles) involving certain groupoids, which informally we call variable
topological biogroupoids, and with the overlaps corresponding to ‘intermediate’ species or
classes/populations of organisms which are rapidly evolving under strong evolutionary pres-
sure from their environment (including competing species, predators, etc., in their niche).

A more specific formalization follows. The notion of ‘local procedure’ is an interpretation
of Ehresmann’s formal definition of a local admissible section s for a groupoid G in which
X = Ob(G) is a topological space. Then s is a section of the source map α : G → X such
that the domain of s is open in X. If s, t are two such sections, their composition st is
defined by st(x) = s(βt(x)) ◦ t(x) where ◦ is the composition in G. Thus the domain of st
may be empty. One may also put the additional condition that s is ‘admissible’ , namely βs
maps the open domain of s homeomorphically to the image of βs, which itself is open in X.
Then an admissible local section is invertible with respect to the above composition.

The categorical colimits of MES, that may also be heuristically thought as ‘chains of local
procedures’ (COLP), have their vertex object at the branching point on the evolutionary tree.
The entire evolutionary tree–tracked to present day–is then intuitively represented through
such connected chains of local procedures beginning with the primordial(s) and ending with
Homo, thus generating an intuitive global colimit in the 2-category of all variable topological
biogroupoids (VTBs) that correspond to all classes of evolving organisms (either dead or
alive). Such VTBs have a generic- dynamic, pictorial illustration which is shown as circles
in the following diagram of this global (albeit intuitive) evolutionary colimit (“ lim ↪→” ).
The primordial can be selected in this context as represented by the special PMR which is
(was) realized by ribozymes as described in Section 7.3.1.

Note also that organisms were previously represented in terms of categories of dynamic
state-spaces (Baianu, 1970; 1980, 1987; Baianu et al, 2006) which are defined in terms of
the various stages of ontogenetic development with increasing numbers of cells and functions
as specialization and morphogenesis proceed in real time. This representation thus leads to
the concept of colimit defined by the family of ontogenetic development stages/state-spaces,
indexed by the corresponding intervals of time (∆ t ε R), as fully specified in previous papers
(Baianu, 1970; Baianu and Scripcariu, 1974; Baianu, 1980; 1984).

Such constructions of ontogenetic development colimits in terms of cocone diagrams of
objects and morphisms (see Diagram 10.2) can be viewed as specific examples of ‘local proce-
dures’. Nevertheless, in a certain specific sense, these organismic (ontogenetic) development
(OOD) colimits play the role of ‘local procedures’ in the 2-category of evolving organisms.
Thus, the global colimit of the evolutionary 2-category of organisms may be regarded as a
super-colimit, or an evolutionary colimit of the OOD colimits briefly mentioned above from
previous reports. A tree-graph that contains only single-species biogroupoids at the ‘core’ of
each ‘local procedure’ does define precisely an evolutionary branch without the need for sub-
division because a species is an ‘indivisible’ entity from a breeding or reproductive viewpoint.
Interestingly, in this dynamic sense, biological evolution ‘admits’ super-colimits (Baianu and
Marinescu, 1968; Comoroshan and Baianu, 1969; Baianu, 1970; 1980, 1987; Baianu, Brown,
Georgescu and Glazebrook, 2006), with a higher-dimensional structure less restrictive than
either MES (Ehresmann and Vanbremersch, 1987), or simple MRs (which admit both limits
and colimits, cf. Baianu, 1973).
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Diagram 8.4.1: Pictorial representation of Biological Evolution as the unique colimit
(up to an isomorphism) of the category of global ‘chains of local procedures’ with variable
biogroupoids. COLPs form the branches of the evolutionary tree, oriented in this diagram
with the time arrow pointing to the right.

We note that several different concepts introduced by distinct ontological approaches to
organismal dynamics, stability and variability converge here on the metaphor of (chains of)
‘local procedures’ for evolving organisms and species. Such distinct representations are: the
dynamic genericity of organismic states which lead to structural stability–as introduced by
Robert Rosen (1987) and René Thom (1980), the logical class heterogeneity of living organ-
isms introduced by Elsasser (1980x), the inherent ‘bio-fuzziness’ of organisms (Baianu and
Marinescu, 1968; also discussed by Comoroshan and Baianu, 1969) in both their structure
and function, or as ranges of autopoietic ‘structural variability’ exhibited by living systems
(Maturana, 1980), imposed to the organism through its coupling with a specific environment
or niche.

The circles in Diagram 8.4.1 provide a pictorial representation of ‘the chain of local proce-
dures’ (see also Diagram 3.1), and are more precisely formalized as a colimit (lim

−→
F ), where

F : I → So is a functor from a discrete category of ordered time instants, or intervals, i6j
to the category So of classes of evolving species represented as objects SOi in the category
(or metacategory) of all possible classes of species of organisms. The objects F (SOi) form
a directed system of variable biogroupoids whose unique colimit is lim

−→
F of the 2-category of

classes of evolving species represented here as variable biogroupoids. In fact, this construc-
tion involves both the universal object lim

−→
F , as well as the universal natural transformation

u : F → ∆(lim
−→

F ) , where ∆ : So → [I, So].

which can be visualized via the cocones in Diagram 10.2. One notes in the last stages of
this construction the natural ‘emergence’ of the higher categorical dimensions, such as the
2– and 3– level arrows.

(The few precise mathematical details of the colimit, that were left out here for simplicity
of presentation, are provided in the Appendix). This may be a concept which is fairly hard to
grasp in one step, or at first encounter, as it involves several construction stages on different
ontological levels: it begins with organisms (or even with biomolecular categories!), emerges
to the level of populations/subspecies/species that evolve into classes of species, that are
then further evolving,...and so on, towards the point in time where the emergence of man’s,
Homo family of species began to separate from other hominin/hominide families of species
some 5 to 8 million years ago. Therefore, it is not at all surprising that even excellent minds
have had, or still encounter, difficulties in understanding the real intricacies of evolutionary
processes which operate on several different levels/sublevels of reality, different time scales,
and also aided by geographical barriers or geological accidents. In this case, Occam’s razor
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may seem to patently fail as the simplest ‘explanations’, or long-lasting myths, ultimately do
not win when confronted by the emerging higher (or highest?) complexity levels of reality.

Furthermore, we note also that the organisms within the species represented by VTBs
have an ontogenetic development represented in the dynamic state space of the organism as a
categorical colimit. Therefore, the evolutionary, global colimit is in fact a super-colimit of all
organismic developmental colimits up to the present stage of evolution. This works to a good
approximation insofar as the evolutionary changes occur on a much longer timescale than the
lifespan of the ‘simulation’ model. Thus, the degree of complexity increases above the level
of super-complexity characteristic of individual organisms, or even species (biogroupoids), to
a next, evolutionary meta-level, that we shall call evolutionary meta-complexity. Whenever
there are uncertainties concerning taxonomy one could compare the alternate evolutionary
possibilities by means of pairs of functors that preserve limits or colimits, called respectively,
right– and left– adjoint functors. Moreover, such adjoint functor pairs also arise in comparing
different developmental stages of the same organism from the viewpoint of preserving their
developmental potential (Baianu and Scripcariu, 1974), dynamic colimits preserved by the
right-adjoint functor, G, and/or the functional, projective limits preserved by a left-adjoint
functor of G (cf. Rashevsky’s Principle of Biological Epimorphism, or the more general
Postulate of Relational Invariance (cf. Baianu, Brown, Georgescu and Glazebrook, 2006);
see also the Appendix for both the relevant definitions and theorems.)

8.4. Natural Transformations of Organismic Structures.

8.4.1. Bio-Molecular Models in Categories. A simple introduction of molecular models in
categories is based here on set-theoretical models of chemical transformations (Bartholomay,
1971). Consider the simple case of unimolecular chemical transformations (Bartholomay,
1971):

(8.1) T : A× I −→ B × I

where A is the original sample set of molecules, I = [0, t] is a finite segment of the real
time axis and A× I denotes the indexing of each A-type molecule by the instant of time at
which each molecule aεA is actually transforming into a B-type molecule (see also eq.3 of
Bartholonay, 1971). B x I denotes the set of the newly formed B-type molecules which are
indexed by their corresponding instance of birth.

A molecular class, denoted A, is specified along with with f : A −→ A are endomorphisms
that belong to H(A,A).

8.4.2. The Category, M, of Molecular Classes and their Chemical Transformations. Let C be
any category and let X be an object of C. We denote by hX : C−→Set the functor obtained
as follows: for any Y ∈ Ob(C) and any f : X−→Y , hX(Y ) = HomC(X, Y ); if g : Y−→Y ′
is a morphism of C then hX(f) : HomC(X, Y )−→HomC(X, Y ′) is the map hX(f)(g) = fg.
One can also denote hX as HomC(X, −). Let us define now the very important concept of
natural transformation which was first introduced by Eilenberg and Mac Lane(1945). Let
X ∈ Ob(C) and let F : C−→Set be a covariant functor. Also, let x ∈ F (X). We shall
denote by ηX : hX−→F the natural transformation (or functorial morphism) defined as
follows: if Y ∈ Ob(C) then (ηx)Y : hX(Y )−→F (Y ) is the mapping defined by the equality
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(ηx)Y (f) = F (f)(x); furthermore, one imposes the naturality (or commutativity) condition
on the following diagram:

(8.2) F (X)
ηX //

F (f)

��

F (Y )

F (g)

��
G(X) ηY

//G(Y )

.

The hom-functor, hA, for a specified object A, hA : M −→ Set has its action defined as:

hA(X) = H(A,X) for any X ∈M

hA(t) = m : H(A,A) −→ H(A,B) for any t : A −→ B

where:

A = Molecular Class and B= Molecular class of reaction products of type ”B”,
resulting from a chemical reaction.

8.4.3. Definition of the Molecular Class (or set) variable, mcv.) :

The flexible notion of a molecular class variable (m.c.v) is exactly represented by the
morphisms v in the following diagram:

A× I

v

##GGGGGGGGGGGGGGGGGGG

A

i

==||||||||||||||||||

hA

// H(A,A)

where morphisms v are induced by the inclusion mappings i : A −→ A × I and the
commutativity conditions hA = v ◦ i . The naturality of this diagram simply means that
such commutativity conditions hold for any functor hA defined as above. Note also that by
using this diagram and also endowing A× I and A with the appropriate structures one can
define a (non-commutative) Clifford algebra (Baianu, Brown and Glazebrook, 2007), for the
mcv–observables , thus generating an mcv–quantum space that is its own dual! The precise
definition of such an mcv-observable is provided in the next subsection.

8.4.4. The Representation of Unimolecular (Bio)Chemical Reactions as Natural Transfor-
mations. Quantum Observables of a Molecular Class Variable.
The unimolecular chemical reaction is here represented by the natural transformations
η : hA −→ hB , through the following commutative diagram:
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(8.3) hA(A) = H(A,A)
ηA //

hA(t)

��

hB(A) = H(B,A)

hB(t)

��
hA(B) = H(A,B) ηB

//hB(B) = H(B,B)

with the states of the molecular sets Au = a1, . . . , an and Bu = b1, . . . bn being represented
by certain endomorphisms in H(A,A) and H(B,B), respectively.

The observable of an m.c.v, B, characterizing the products ”B” of a chemical reaction is
defined as a morphism:

γ : H(B,B) −→ R

where R is the set of real numbers. This mcv–observable is subject to the following
commutativity conditions:

(8.4) H(A,A)
f

//

e

��

H(B,B)

γ

��
H(A,A)

δ
//R

.
with c : A∗u −→ B∗u, and A∗u, B

∗
u being specially prepared fields of states, within a mea-

surement uncertainty range, ∆.

8.4.5. An Example of an Emerging Super-Complex System as A Quantum–Enzymatic
Realization of the Simplest (M,R)–System. Note that in the case of either uni-molecular or
multi-molecular, reversible reactions one obtains a quantum-molecular groupoid, QG, defined
as above in terms of the mcv-observables. In the case of an enzyme, E, with an activated
complex, (ES)∗, a quantum biomolecuar groupoid can be uniquely defined in terms of mcv-
observables for the enzyme, its activated complex (ES)∗ and the substrate, S. Quantum
tunnelling in (ES)∗ then leads to the separation of the reaction product and the enzyme, E,
which enters then a new reaction cycle with another substrate molecule S’, indistinguishable–
or equivalent to–S. By considering a sequence of two such reactions coupled together,

QG1 � QG2,

corresponding to an enzyme f, coupled to a ribozyme φ, one obtains a quantum-molecular
realization of the simplest (M,R)-system, (f, φ) (see also the previous Section 7.2.1 for
further details about the MR/PMR).
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The non-reductionist caveat here is that the relational systems considered above are open
ones, exchanging both energy and mass with the system’s environment in a manner which is
dependent on time, for example in cycles, as the system ‘divides’–reproducing itself; there-
fore, even though generalized quantum-molecular observables can be defined as specified
above, neither a stationary nor a dynamic Schrödinger equation holds for such examples
of ‘super-complex’ systems. Furthermore, instead of just energetic constraints–such as the
standard quantum Hamiltonian–one has the constraints imposed by the diagram commuta-
tivity related to the mcv-observables, canonical functors and natural transformations, as well
as to the concentration gradients, diffusion processes, chemical potentials/activities (molec-
ular Gibbs free energies), enzyme kinetics, and so on. Both the canonical functors and the
natural transformations defined above for uni- or multi- molecular reactions represent the
relational increase in complexity of the emerging, super-complex dynamic system, such as,
for example, the simplest (M,R)-system, (f, φ).

Definition of a Multi-molecular Reaction.

In the case of multi-molecular reactions, the canonical functor of category theory:

h : M −→ [M, Set]

assigns to each molecular set A the functor hA, and to each chemical transformation t :
A −→ B, the natural transformation hA −→ hB.

8.4.6. A Simple Metabolic-Repair (M,R)– System with Reverse Transcription as an example
of Multi-molecular Reactions Represented by Natural Transformations. We shall consider
again the diagram corresponding to the simplest (M, R)-System realization of a Primordial
Organism, PO.

The RNA and/or DNA duplication and cell divisions would occur by extension to the
right of the simplest MR-system, (f, Φ), through the β : H(A,B)→ H(B,H(A,B)) and γ :
H(B,H(A,B)) → H(H(A,B), H(B,H(A,B))) morphism. Note in this case, the ’closure’
entailed by the functional mapping, γ, that physically represents the regeneration of the
cell’s telomere thus closing the DNA-loop at the end of the chromosome in eukaryotes. Thus
γ represents the activity of a reverse transcriptase. Adding to this diagram an hTERT
suppressor gene would provide a feedback mechanism for an effective control of the cell
division and the possibility of cell cycle arrest in higher, multi-cellular organisms (which is
present only in somatic cells). The other alternative-which is preferred here-is the addition
of an hTERT promoter gene that may require to be activated in order to begin cell cycling.
This also allows one to introduce simple models of carcinogenesis or cancer cells.

Rashevsky’s hierarchical theory of organismic sets can also be constructed by employing
mcv’s with their observables and natural transformations as it was shown in a previous report
(Baianu, 1980).

Thus, one obtains by means of natural transformations and the Yoneda-Grothendieck con-
struction a unified, categorical-relational theory of organismic structures that encompasses
those of organismic sets, biomolecular sets, as well as the general (M,R)-systems/autopoietic
systems which takes explicitly into account both the molecular and quantum levels in terms
of molecular class variables (Baianu, 1980, 1984, 1987).
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8.5.  Lukasiewicz and LM-Logic Algebra of Genome Network Biodynamics. The
representation of categories of genetic network biodynamics GNETs as subcategories of LM-
Logic Algebras (LMAs) was recently reported (Baianu, Brown, Georgescu and Glazebrook,
2006) and several theorems were discussed in the context of morphogenetic development
of organisms. The GNET section of the cited report was a review and extension of an
earlier article on the ‘immanent’ logic of genetic networks and their complex dynamics and
non-linear properties (Baianu, 1977). Comparison of GNET universal properties relevant
to Genetic Ontology can be thus carried out by colimit- and/or limit– preserving functors
of GNETs that belong to adjoint functor pairs (Baianu and Scripcariu, 1974; Baianu, 1987;
Baianu et al, 2006). Furthermore, evolutionary changes present in functional genomes can be
monitored by natural transformations of such universal-property preserving functors, thus
pointing towards evolutionary patterns that are of importance to the emergence of increasing
complexity through evolution, and also to the emergence of man and ultra-complexity in the
human mind. Missing from this approach is a consideration of the important effects of social,
human interactions in the formation of language, symbolism, rational thinking, cultural
patterns, creativity, and so on... to full human consciousness. The space and especially time
ontology of such societal interaction effects on the development of human consciousness will
also be briefly considered in the following sections.

8.6. The Organismic LM-‘Topos’. As reported previously (Baianu et al., 2006) it is
possible to represent directly the actions of LM, many-valued logics of genetic network bio-
dynamics in a categorical structure generated by selected LM-logics. The combined logico-
mathematical structure thus obtained may have several operational and consistency advan-
tages over the GNET-categorical approach of ‘sets with structure’. Such a structure was
called an ‘LM-Topos’ and represents a significant, non-commutative logic extension of the
standard Topos theory which is founded upon a commutative, intuitionist (Heyting-Brouwer)
logic. Whereas the latter topos may be more suitable for representing general dynamics of
simple systems, machines, computers, robots and AI structures, the non-commutative logic
LM–topos offers a more appropriate foundation for structures, relations and organismic or
societal functions that are respectively super-complex or ultra-complex. This new concept
of an LM–topos thus paves the way towards a Non-Abelian Ontology of SpaceTime in Or-
ganisms and Societies regarded and treated precisely as super– or ultra– complex dynamic
systems.

8.7. Quantum Genetics and Microscopic Entropy. Following Schrödinger’s attempt
(Schrödinger, 1945), Robert Rosen’s report in 1960 was perhaps one of the earliest quantum–
theoretical approaches to genetic problems that utilized explicitly the properties of von
Neumann algebras and spectral measures/self–adjoint operators (Rosen, 1960). A subse-
quent approach considered genetic networks as quantum automata and genetic reduplica-
tion processes as quantum relational oscillations of such bionetworks (Baianu, 1971a). This
approach was also utilized in subsequent reports to introduce representations of genetic
changes that occur during differentiation, biological development, or oncogenesis (Baianu,
1971c) in terms of natural transformations of organismal (or organismic) structures (Ba-
ianu,1980,1983,1984,1987a,b; 2004a,b; Baianu and Prisecaru, 2004), thus paving the way to
a Quantum Relational Biology (Baianu, 1971a, 2004a). The significance of these results for
quantum bionetworks has been considered in a previous report (Baianu, Brown, Georgescu
and Glazebrook, 2006) from both a logical and an axiomatic viewpoint. The extension of
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quantum theories, and especially quantum statistics, to non-conservative systems, for ex-
ample by Prigogine (1987) has opened the possibility of treating irreversible, super-complex
systems that vary in time and ‘escape’ the constraints of unitary transformations. Further-
more, the latter approach allows the consideration of functional genetic networks from the
standpoint of quantum statistics and microscopic entropy; thus information transfer of the
’genetic messages’ throughout repeated cell divisions may be considered in a modified form
of Shannon’s theory of communication channels in the presence of ‘noise’.

9. Super-Complex Dynamics on Evolutionary Timescales.

9.1. The Ascent of Man through Evolution: Biological Evolution of Hominins
(Hominides) and Their Social Interactions. Studies of the difficult problem of the
emergence of man have made considerable progress over the last 50 years with several key
hominide/hominin fossils (to name just a few), such as Australopithecines, Homo erectus,
and Homo habilis being found, preserved, studied and analyzed in substantial detail. Other
species considered to belong to Homo are: H. habilis, H. rudolfensis, H. georgicus , H.
ergaster and H. erectus.

Hominini is defined as the tribe of Homininae that only includes humans (Homo), chim-
panzees (Pan), and their extinct ancestors. Members of this tribe are called hominins (cf.
Hominidae or ‘hominids’).

In the case of hominin species alternate names are sometimes used also for purely histori-
cal reasons. Consider, for example, the scientific classification of Australopithecus africanus :
Kingdom: Animalia; Phylum: Chordata; Class: Mammalia; Order: Primates; Family: Ho-
minidae; Subfamily: Homininae; Tribe: Hominini; Subtribe: Hominina; Genus: Australop-
ithecus (cf. R.A. Dart, 1925) Its other closely related species are: A. afarensis (”Lucy”), A.
anamensis, A. bahrelghazali, and A. garhi. Note also that the following species were also clas-
sified formerly as Australopithecus , but are now classified as Paranthropus : P. aethiopicus,
P. robustus and P. boisei.

Humans, on the other hand are: of the Kingdom: Animal; Phylum: Chordate; Class:
Mammal; Order: Primate ;...; Tribe: hominin. The Tribe hominini describes all the human/
human-line species that ever evolved (including the extinct ones) which excludes the chim-
panzees and gorillas. On the other hand, the corresponding, old terminology until 1980 was
‘hominides’, now hominoides.

It would seem however that– according to the Chimpanzee Genome Project– both hominin
(Ardipithecus, Australopithecus and Homo) and chimpanzee (Pan troglodytes and Pan panis-
cus) lineages might have diverged from a common ancestor about 5 to 6 million years ago,
if one were to assume a constant rate of evolution (which does not seem to be the case!).
Phylogeny became complicated once more, however, when two earlier hominide fossils were
found: Sahelanthropus tchadensis , commonly called “Toumai” which is about 7 million
years old, and Orrorin tugenensis that lived at least 6 million years ago; both of this homin
‘apes’ they were bipedal and had possibly diverged from the common ancestor further back
during evolution. Therefore, there is still considerable controversy among paleontologists
about their place in human ancestry because the ‘molecular clock’ approach claims to show
that humans and chimpanzees had an evolutionary split at least 5 million years ago, i.e., at
least 2 million years after the appearance of the “Toumai” hominins!
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The overall picture completed from such paleoanthropologic and geological studies seems
to indicate an accelerated biological evolution towards man between 15 million and 7 million
years ago, and then perhaps even further accelerated when Homo erectus (the upright man)
some two million years ago seems to have emerged from Africa as the victor over the more
distant hominins. Its fossils were first found on Solo River at Trinil (in central Java) in
1890 by the Dutch anatomist Eugene Dubois and were named by him as Pithecanthropus
erectus ; similar fossils were later found also as far East as China (Homo erectus pekinensis).
However, some paleoanthropologists believe that H. erectus, (Dubois, 1892) is ‘too derived’
an evolutionary lineage to have been the ancestor to the modern man species , H. sapiens.
The fact remains that the H. erectus skull is so much closer to that of modern man than any
of the found skulls of Australophitecines in both shape and internal capacity. Homo erectus
(and H. ergaster) were probably the first hominins to form a hunter gatherer society; many
anthropologists along with Richard Leakey are inclined to think that H. erectus was moving
socially somewhat closer to modern humans than any of the other, more primitive species
before it. Even though H. erectus used more sophisticated tools than the previous hominin
species, the discovery of the Turkana boy in 1984 has produced the very surprising evidence
that despite the H. erectus ’s human-like skull and general anatomy, it was disappointingly
incapable of producing sounds of the complexity required for either, ancient (¡8,000 BC) or
modern, elaborate speech. Therefore, as we shall see later, it could not have topped the
super-complexity threshold towards human consciousness!

9.2. The Evolution of the Human Brain and the Emergence of Human Conscious-
ness: The Key Roles Played Human Social Interactions. Following Homo erectus,
however, some apparent and temporary slowing down of hominin biological evolution may
have occurred over the next 1.9 million years or so. Thus, the emergence of language, and
the whole social co-evolution and progression towards consciousness may have accelerated
only over the last 100,000 to 60,000 years; some certainty of human speech comes only with
the pre-historic Cro–Magnon man some 60,000 years ago. To sum up the entire sequence of
paleontologic findings for the 4 billion years of biological evolution: whereas the evolution
towards increasing complexity has accelerated towards the appearance of of H. erectus some
7 to 6 million years ago, it always remained within the very wide limits of super-complexity
up to the emergence of the Cro–Magnon man some 60,000 years ago. Only then can one
assume– with some degree of certainty–that a ‘very rapid’ transition either occurred or
began from super- to ultra- complexity, from biologically-based evolution to the societally-
based ‘co-evolution’ of human consciousness. This relatively high speed of societal-based
‘co-evolution’ in comparison with the very slow, preceding biological evolution is consistent
with consciousness ‘co-evolving’ rapidly as the result of primitive societal interactions that
have acted nevertheless as a powerful, and essential, ‘driving force’. On the other hand, one
may expect that the degree of complexity of human primitive societies which supported and
promoted the emergence of human consciousness was higher than that of what one might
call the individual hominin ‘consciousness’. Mutatis mutandi. Once human consciousness
fully emerged, it acted as a positive feedback on the human society through multiple societal
interactions, thus leading to an ever increasing complexity of the already ultra-complex sys-
tem of the first historic–not pre-historic–human societies some 10,000 years ago. Should one
therefore consider modern society as a ‘hyper-complex’ system, whatever that may be? Not
necessarily, because the human–human societal interactions may not be as intense, restric-
tive, or ‘strong’ as those among the cells belonging to the whole human body, or those of the



TOWARDS NON-ABELIAN SPACETIME ONTOLOGY IN HIGHLY COMPLEX SYSTEMS: II. 59

neurons in the human brain’s neural networks with their highly complex dynamic hierarchy
and inter-connections of global processes.

The overall effect of such an emergence of the ultra-complex human mind has been the
complete and uncontested dominance by man of all the other species on earth. Is it possible
that the emergence of the hyper-complex society of modern man is also resulting in the
eventual, complete domination of man as an individual by ‘his’ hyper-complex society ? The
historical events of the last two centuries would seem to be consistent with this possibility,
without however providing indisputable proof. Whereas the biological evolution of Homo
sapiens may typically be unobservable over the last 15,000 years, the complexification and
expansion of human society has occurred at a rapidly accelerating pace with the exception of
several centuries during Middle Ages. Furthermore, as we have seen that society has strongly
influenced hominin consciousness, indeed making possible its very emergence, what major
effect(s) may modern, hyper-complex society have on human consciousness? Or is it that
the biological limitations of the human brain which emerged in its present form some 60,000
years ago (or more!) are preventing, or partially ‘filtering out’ the complexification pressed
onto man by the hyper–complex modern societies? There are arguments that human con-
sciousness has already changed since ancient Greece, but has it substantially changed since
the beginnings of the industrial revolution? There are indications of human consciousness
perhaps ‘resisting’– in spite of societal reification–changes imposed from the outside, perhaps
as a result of self-preservation of the self. Hopefully, an improved complexity/super- and
ultra–complexity theory, as well as a better understanding of spacetime ontology in both
human biology and society, will provide answers to such difficult and important questions.

9.3. Organization in Societies: Interactions, Cooperation and Society Complex
Dynamics. A Rosetta Biogroupoid of Social Interactions. Our discussion concerning
the ontology of biological and genetic networks may be seen to have a counterpart in how
scientific technologies, socio–political systems and cultural trademarks comprise the method-
ology of the planet’s evolutionary development (or possibly its eventual demise!). Dawkins
(1982) coined the term ‘meme’ as a unit of cultural information having a societal effect in
an analogous way to how the human organism is genetically coded. The idea is that memes
have ‘hereditary’ characteristics similar to how the human form, behaviour, instincts, etc.
can be genetically inherited. Csikzentmihalyi (1990) suggests a definition of a meme as “any
permanent pattern of matter or information produced by an act of human intentionality”. A
meme then is a concept auxiliary to that of the ontology of a ‘level’: to an extent, the latter
is the result of generations of a ‘memetic evolution’ via the context of their ancestry. Memes
occur as the result of a neuro–cognitive reaction to stimuli and its subsequent assimilation in
an effective communicable form. Any type of scientific invention, however primitive, satisfies
this criteria. Once a meme is created there is a subsequent inter–reaction with its inventor,
with those who strive to develop and use it, and so forth (e.g. from the first four–stroke
combustion engine to the present day global automobile industry). Csikzentmihalyi (1990)
suggests that mankind is not as threatened by natural biological evolution as by the overall
potential content of memes. This is actually straightforward to see as global warming serves
as a striking example. Clearly, memetic characteristics are quite distinct from their genetic
counterparts. Cultures evolve through levels and species compete. Memetic competition can
be found in the conflicting ideologies of opposing political camps who defend their policies in
terms of economics, societal needs, employment, health care, etc. Memes that function with
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the least expenditure of psychic energy are more likely to survive (as did the automobile over
the horse and cart, the vacuum cleaner over the house broom). Whether we consider the
meme in terms of weapons, aeronautics, whatever, its destiny reaches to as far as mankind
can exploit it, and those who are likely to benefit are founding fathers of new industrial cul-
tures, inventors and explorers alike, the reformers of political and educational systems, and
so on. Unfortunately, memes can create their own (memetic) entropy: addiction, obesity and
pollution are such examples. Thus to an extent memetic systems are patently complex and
at ontologically different levels possessing their respective characteristic order of causality.

9.3.1. A Rosetta Biogroupoid of Social, Mutual Interactions: The Emergence of Self. One
may consider a human pre-historic society consisting of several individuals engaged in hunt-
ing and afterwards sharing their food. The ability to share food seems to be unique to
humans, perhaps because of the pre-requisite consensual interactions, which in their turn
will require similar mental abilities, as well as an understanding of the need for such sharing
in order to increase the survival chances of each individual. Furthermore, it seems that the
awareness of the self of the other individuals developed at first, and then, through/as an
extension of the others to oneself, self awareness emerges in a final step. These pre-historic
societal interactions that are based on consensus, and are thus mutual, lead to a natural
representation of the formation of ‘self’ in terms of a ‘Rosetta biogroupoid’ structure as de-
picted below, but possibly with as many as twenty five branches from the center, reference
individual:

(9.1) Neighbour’s Self
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Neighbour’s Self // Oneself //oo

OO

��

Neighbour’s Selfoo

Neighbour’s Self
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Diagram 9.1: A Rosetta biogroupoid of consensual, societal interactions leading to self-
awareness, one’s self and full consciousness; there could be as few as five, or as many as
twenty five, individuals in a pre-historic society of humans; here only four are represented
as branches.

10. Emergence of a Higher Dimensional Algebra of Human Brain’s
SpaceTime Structures and Functions. Local-to-Global Relations and

Hierarchical Models of Space and Time in Neurosciences

10.1. Relations in Neurosciences and Mathematics. The Greeks devised the axiomatic
method, but thought of it in a different manner to that we do today. One can imagine that
the way Euclid’s Geometry evolved was simply through the delivering of a course covering
the established facts of the time. In delivering such a course, it is natural to formalize the
starting points, and so arranging a sensible structure. These starting points came to be called
postulates, definitions and axioms, and they were thought to deal with real, or even ideal,
objects, named points, lines, distance and so on. The modern view, initiated by the discovery
of non Euclidean geometry, is that the words points, lines, etc. should be taken as undefined
terms, and that axioms give the relations between these. This allows the axioms to apply
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to many other instances, and has led to the power of modern geometry and algebra. This
suggests a task for the professionals in neuroscience, in order to help a trained mathematician
struggling with the literature, namely to devise some kind of glossary with clear relations
between these various words and their usages, in order to see what kind of axiomatic system
is needed to describe their relationships. Clarifying, for instance, the meaning to be ascribed
to ‘concept’, ‘percept’, ‘thought’, ‘emotion’, etc., and above all the relations between these
words, is clearly a fundamental but difficult step. Although relations–in their turn–can be,
and were, defined in terms of sets, their axiomatic/categorical introduction greatly expands
their range of applicability. Ultimately, one deals with relations among relations and relations
of higher order as discussed next.

10.2. The Thalamacortical Model. In many regions within the various cortical zones,
neuronal groups from one zone can arouse those in another so to produce a relatively orga-
nized re–projection of signals back to the former, thus creating a wave network of reverber-
ating loops as are realized in the hippocampus, the olfactory system and cortical–thalamus.
It is assumed that the synchronization of neurons occurs through resonance and periodic
oscillations of the neighbouring population activity. The theories of re–entry and thalamo-
cortical looping maps between neuron and receptor cells describe component mechanisms of
the cerebral anatomy which are both endowed with and genetically coded by such networks
(Edelman, 1989, 1992; Edelman and Tononi, 2000). Re–entry is a selective process whereby
a multitude of neuronal groups interact rapidly by two–way signaling (reciprocity) where
parallel signals are inter–relayed between maps; take for instance the field of reverberat-
ing/signalling cycles active within the thalamocortical meshwork which in itself is a complex
system. The maps/re–entry processes comprise a representational schemata for external
stimuli on the nervous system, ensuring the context dependence of local synaptic dynamics
at the same time mediating conflicting signals. Thus re–entrant channels between hierarchial
levels of cortical regions assist the synchronous orchestration of neural processes. Impedi-
ments and general malfunctioning of information in the re–entry processes (possibly due to
some biochemical imbalance) may then be part explanation for various mental disorders such
as depression and schizophrenia. The association of short–term memory with consciousness
within an architecture of thalamocortical reverberatory loops flowing in a wave–like fashion
is proposed by Crick and Koch (1990). The reticular nucleus of the thalamus is considered
by Baars and Newman (1994) as instrumental in gating attention.

10.3. Memory Evolutive Systems. Global Organization of MES into Super-Complex
Systems and the Brain. Following Ehresmann and Vanbremeersch (1987, 2006), if we
have a system as represented by a graph, it is said to be hierarchial if the objects can be di-
vided into specified complexity levels representative of the embeddings of contexts. The idea
is to couple this with a family of categories indexed by time, as first proposed for biosystems
by Baianu and Marinescu (1968), thus leading recently to the important concept of evolu-
tionary system (ES; Ehresmann and Vanbremeersch, 1987). Mathematically, this requires
the construction of categorical colimits, very useful ‘tools’ in many topological and algebraic
contexts dealing, respectively, with spaces and group/groupoid symmetries, but here also
incorporating time through the ES concept.

The concept of a colimit in a category generalizes that of forming the union A∪B of two
overlapping sets, with intersection A∩B. However, rather than concentrating on the actual
sets A,B, we place them in context with the role of the union as permitting the construction
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of functions f : A ∪ B−→C, for any C, by specifying functions fA : A−→C , fB : B−→C
agreeing on A∩B . Thus the union A∪B is replaced by a property which describes in terms
of functions the relationship of this construction to all other sets. In practical terms it is
how we might relate between input and output. In this respect, a colimit has ‘input data’,
viz a cocone. For the union A ∪B, the cocone consists of the two functions iA : A ∩B−→A
and iB : A ∩B−→B (see Brown et al. 2004).

If we regard objects as labeled in terms of ordered states A < A′, a transition functor
F (A,A′) : FA−→FA′ , represents a change in states A−→A′, and satisfies

(10.1) F (A,A′′) = F (A,A′) ◦ F (A′, A′′) .

Consider a pattern of linked objects A as a family of objects Ai with specified links (edges)
between them, as well as another object B to which we can associate a collective link from A
to B by a family of links fi : Ai−→B. We can picture then a cone with a base consisting of
A = {A1, A2, . . .} and with B as the vertex. The pattern is said to admit a colimit denoted
C, if there exists a collective link A−→C such that any other collective link A−→B admits a
unique factorization through C . If such a colimit C exists, then locally C is well–defined by
the nature of the pattern to which it is attached, and globally, C enjoys a universal property
determined by the totality of the possible collective links of the pattern. In other words, C
effectively binds the pattern objects while at the same time functions as the entire pattern
in the sense that the collective links to B (regarded as a central processor) are in a one–to-
one correspondence with those to C . Further, a category can be said to be hierarchial if
its objects can be partitioned into different levels of complexity, with an object C of level
n+ 1 say, being the colimit of at least one pattern of linked objects of (strictly) lower levels
n, n− 1, . . .

(10.2) B
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In this way, colimits are instrumental for dealing with local to global properties, and
the above description thus models an evolutionary autonomous system (or organism) with a
hierarchy of components dealing with organized exchanges within an environment. By means
of a network of learning, this system re–adapts to changing conditions in that environment,
thus creating a Memory Evolutive System (MES). The colimit C then functions as the binding
agent for the respective channels for an MES modeled on some configuration of say, neural
networks leading to an emergence of strictly increasing complexity. The multiplicity principle
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(MP) leads to the existence of both simple and complex links between components. In the
category of quantum objects the colimit may represent an entanglement or superposition
of states and the MP is satisfied at the microscopic level by the laws of quantum physics
(Ehresmann and Vanbremeersch, 1987, 2006).

10.4. Neuro-groupoids and Cat-Neurons. Such categorical representations in the termi-
nology of Ehresmann and Vanbremeersch (1987,2006) are called ‘categorical neurons’ (or cat–
neurons for short). Consciousness loops (Edelmann 1989, 1992) and the neuronal workspace
of Baars (1988) (see also Baars and Franklin, 2003) are among an assortment of models that
have such a categorical representation. Among other things, there is proposed several criteria
for studying the binding problem via the overall integration of neuronal assemblies and con-
cepts such as the archetypal core: the cat–neuron resonates as an echo propagated to target
concepts through series of thalamocortical loops suggesting that the thalamus is responsive
to stimuli. Analogous to how neurons communicate mainly through synaptic networks, cat–
neurons interact in accordance with certain linking procedures and can be studied in the
context of categorical logic which in turn may be applied to semantic modelling for neural
networks (Healy and Caudell, 2004, 2006) and possibly the schemata of adaptive resonance
theory (Grossberg 1999). For such interactive network systems we expect the role of global
actions and groupoid atlases to play a more instrumental role such as they are realized in
various types of multi–agent systems (Bak et al, 2006). But let us be aware that such models
may tend to be reductionist in character and fall somewhere between simple and complex
systems. Although useful for the industry of higher level automata and robotics, they are
unlikely to explain the ontology of human mind in themselves.

10.5. Holographic, Holonomic and Hierarchical Models of Space and Time in
Neurosciences. The ideas of holography/uncertainty have been further explored by Pri-
bram (1991) in the context of neural networks and brain transition states, to some extent
based upon the Gabor theory. It also hinges upon the fact that cognitive processes up to
consciousness may emerge from the neural level, but this emergence necessitates the inte-
gration of lower levels as in a MES. Within neuronal systems, dendritic–processing employs
analogous uncertainty in order to optimize the relay of information by micro–processing.
Both time and spectral information (frequencies) are considered as stored in the brain which
supposedly maintains a process of self–organization in order to minimize the uncertainty
through a wide–scale regulatory system of phase transitions the origin of which involves
the various computational neuroscientific mechanisms of (hyper) polarizing action poten-
tials, spiking, bursting and phase–locking, etc. These contribute to a multitude of network
cells that register and react to an incoming perceptive signal. Pribram introduced the term
‘holonomic’ in relationship to the principles of a ‘dynamically varying hologram’ since the
resulting sharp phase transitions through states of chaos, enable the brain to perform its
neuro–cognitive tasks. The hypothesis suggests that the neuronal functions employ holo-
nomic and inverse transformations as distributing spectral information across domains of
vast numbers of neurons which are later re–focused in the form of memory. This is described
by a subcellular level, complex system: namely, an entirety of an axonic–teledendronic- -
synaptic–dendritic–perikaryonic–axonic cycle forming a distributed memory store across a
‘holoscape’ upon which information processing can occur. This store of information, or
memory, can be accessed by the same means which developed it in the first place, that is,
by the reduction of (quantum) wave forms which function as attractors (Pribram 2000). As
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for the cortical neuropil, the holoscape is a level of complexity within those constituting
the overall operative working of the brain. However, vastly difficult questions remain such
as how Pribram’s ‘holoscape’ is linked e.g. to the ‘dendron mind field’ suggested by Eccles
(1986), or to Stapp’s quantum approach to ‘neural intention’ via the von Neumann–Wigner
theory (Stapp, 1993). Nevertheless, as viewed as the successive complexifications of a neural
category, the ‘holoscopic’ process may be modelled by the descriptive mechanism of a MES.
The central memory developing in time allows for the choice of local operations. The MES
also fits the meaning of an “organism” in the sense of R. Rosen (1985) (see Ehresmann and
Vanbremeersch, 2006). The categories evolving with time within the colimit structure are
descriptive of local and temporal anticipatory mechanisms based on memory. This follows
from how the MP induces and regulates the formation of higher levels from the culmination
of those at lower stages. Just as chemical reactions and synthesis engage canonical func-
tors to build up neural networks, and natural transformations between them to possibly
enable ‘continuous’ perceptions, the various neural dynamic super-network structures– at
increasingly higher levels of complexity– may allow the dynamic emergence of the contin-
uous, coherent and global ‘flow of human consciousness’ as a new, ultra-complex level of
the mind– as clearly distinct from the underlying human brain’s localized neurophysiological
processes.

10.5.1. Holonomy and Monodromy. Over the last twenty five years considerable attention
has been paid to the question of whether or not mental processes have some physical content,
and if not, how do they affect physical processes. Bohm (1990) and Hiley and Pylkkännen
(2005) have suggested theories of active information enabling ‘self’ to control brain functions
without violating energy conservation laws. Such ideas are relevant to how quantum tunnel-
ing is instrumental in controlling the engagement of synaptic exocytosis (Beck and Eccles,
1992) and how the notion of a ‘(dendron) mind field’ (Eccles, 1986) could alter quantum
transition probabilities as in the case of synaptic vesicular emission (nevertheless, there are
criticisms to this approach as in Wilson, 1999). Active information at the quantum level
plays an organizational role for the dynamic evolution of the system for which there is a quan-
tum potential energy, namely a form of internal energy which contains information about
the environment. If according there exist quantum processes that trigger off some neural
process, then these processes can in turn be influenced by some higher level organizational
process with both a mental and physical quality. Thus mind is understood as a new level
housing active information affecting the quantum potential energy which subsequently bears
influence on the brain’s physical process (Hiley and Pylkkännen, 2005).

11. What is Consciousness?

The existence of human consciousness was admitted even by Descartes– a determined
reductionist that claimed living organisms are just ‘machines’. Attempting to define con-
sciousness runs into similar problems to those encountered in attempting to define Life; there
is a long list of attributes of human consciousness from which one must decide which ones
are essential and which ones are derived from the primary attributes. Human consciousness
is unique– it is neither an item nor an attribute shared with any other species on earth. It is
also unique to each human being even though certain ‘consensual’ attributes do exist, such
as, for example, reification. We shall return to this concept later in this section.
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William James (1958) in “Principles of Psychology” considered consciousness as ‘the
stream of thought’ that never returns to the same exact ‘state’. Both continuity and ir-
reversibility are thus claimed as key defining attributes of consciousness. We note here that
our earlier metaphor for evolution in terms of ‘chains of local (mathematical) procedures’
may be viewed from a different viewpoint in the context of human consciousness–that of
chains of ‘local’ thought processes leading to global processes of processes..., thus emerging
as a ‘higher dimensional’ stream of consciousness. Moreover, in the monic –rather than
dualist–view of ancient Taoism the individual flow of consciousness and the flow of all life
are at every instant of time interpenetrating one another; then, Tao in motion is constantly
reversing itself, with the result that consciousness is cyclic, so that everything is –at some
point– without fail changing into its opposite. One can visualize this cyclic patterns of Tao
as another realization of the Rosetta biogroupoids that we introduced earlier in a different
context– relating the self of others to one’s own self. Furthermore, we can utilize our previous
metaphor of ‘chains of local procedures’ –which was depicted in Diagram 8.4.1–to represent
here the Tao “flow of all life” as a dynamic global colimit–according to Tao– not only of
biological evolution, but also of the generic local processes involving sensation, perception,
logical/‘active’ thinking and/or meditation that are part of the ‘stream of consciousness’ (as
described above in dualist terms). There is a significant amount of empirical evidence from
image persistence and complementary colour tests in perception for the existence of such
cyclic patterns as invoked by Tao and pictorially represented by the Rosetta biogroupoids in
our Diagram 3.1; this could also provide a precise representation of the ancient Chinese con-
cept of “Wu-wei” –literally ‘inward quietness’–the perpetual changing of the stream of both
consciousness and the unconscious into one another/each other. ‘Wu’, in this context, is just
awareness with no conceptual thinking (Chang, 1959, p.80). Related teachings by Hui-neng
can be interpreted as implying that “consciousness of what is normally unconscious causes
both the unconscious and consciousness to change/become something else than what they
were before’.

The important point here is the opposite approaches of Western (duality) and Eastern
(monic) views of Consciousness and Life. On the other hand, neither the Western nor the
Eastern approaches discussed here represent the only existing views of human consciousness,
or even consciousness in general. The Western ‘science’ of consciousness is divided among
several schools of thought: cognitive psychology–the mainstream of academic orientation, the
interpretive psychoanalytic tradition–emphasizing the dynamics of the unconscious,(and its
relation to the adaptive functioning of the ego), the ‘humanistic’ movement–with a focus on
the creative relationship between consciousness and the unconscious, and finally, the trans-
personal psychology which focuses on the ‘inner’ exploration and actualization by the human
individual of ‘the ultimate states’ of consciousness through practicing ‘mental exercises’ such
as meditation, prayer, relaxation and yoga, or whatever one’s practice towards transcendence.

Because the spacetime ontology of man has as key items both human Life and Con-
sciousness, the investigation/research of these two subjects should be of very high priority
to society. However, as there are major difficulties encountered with studying, modelling
and understanding the global functions of highly complex systems such as the human brain
and the mind, society’s pragmatic approach to supporting human biology and psychology
studies has consistently fallen far short in modern times by comparison with the support
for research in physics, chemistry or medicine. Perhaps, this is also a case of ‘familiarity
breeding contempt’, and/or of short-term practical implications/applications winning over
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long-term ones? Some of the conceptual difficulties encountered in studying highly complex
systems were already pointed out in Sections 4 and 5, and they have so far severely im-
peded, or deterred, fundamental progress in this fundamental area of human knowledge-the
cognition of our own self. As reductionism does not go beyond Platonic simplicity, it has
only produced a large number of pieces but no valid means of putting together the puzzle
of emergent complexities of the human brain and consciousness. At the other extreme, un-
founded theories–that are ‘not even wrong’ abound. Clearly, a thorough understanding of
how complex levels emerge, develop, and evolve to still higher complexity is a prerequisite
for making progress in understanding the human brain and the mind; Categorical Ontology
and Higher Dimensional Algebra are tools indeed equal to this hard task of intelligent and
efficient learning about our own self, and also without straying into a forest of irrelevant
reductionist concepts. It may not be enough for ‘all’ future, but it is one big, first step on
the long road of still higher complexities.

Consciousness is always intentional, in the sense that it is always directed towards (or in-
tends) objects (Pickering and Skinner, 1990). Amongst the earlier theories of consciousness
that have endured are the objective self-awareness theory and Mead’s (1934) psychology of
self-consciousness. According to the pronouncement of William James (1890, pp.272-273),

“the consciousness of objects must come first”.

The reality of everyday human experience ‘appears already objectified’ in consciousness, in
the sense that it is ‘constituted by an ‘ordering of objects ’ (lattice) which have already been
designated ‘as objects’ before being reflected in one’s consciousness. All individuals that are
endowed with consciousness live within a web, or dynamic network, of human relationships
that are expressed through language and symbols as meaningful objects. One notes in this
context the great emphasis placed on objects by such theories of consciousness, and also the
need for utilizing ‘concrete categories that have objects with structure’ in order to lend preci-
sion to fundamental psychological concepts and utilize powerful categorical/ mathematical
tools to improve our representations of consciousness. A new field of categorical psychology
may seem to be initiated by investigating the categorical ontology of ultra-complex systems;
this is a field that may link neurosciences closer to psychology, as well as human ontogeny
and phylogeny. On the other hand, it may also lead to the ‘inner’, or ‘immanent’, log-
ics of human consciousness in its variety of forms, modalities (such as ‘altered states of
consciousness’-ACS) and cultures.

Furthermore, consciousness classifies different objects to different ‘spheres’ of reality, and
is capable also of moving through such different spheres of reality. The world as ‘reflected’ by
consciousness consists of multiple ‘realities’. As one’s mind moves from one reality to another
the transition is experienced as a kind of ‘shock’, caused by the shift in attentiveness brought
about by the transition. Therefore, one can attempt to represent such different ‘spheres of
reality’ in terms of concrete categories of objects with structure, and also represent the
dynamics of consciousness in terms of families of categories/‘spheres of reality’ indexed by
time, thus allowing ‘transitions between spheres of reality’ to be represented by functors
of such categories and their natural transformations for ‘transitions between lower-order
transitions’. Thus, in this context also one finds the need for categorical colimits and MES
representing coherent thoughts which assemble different spheres of reality (objects reflected
in consciousness).
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There is also a common, or universal, intentional character of consciousness. Related to
this, is the apprehension of human phenomena as if they were ‘things’, which we call ‘reifi-
cation’. Reification can also be described as the extreme step in the process of objectivation
at which the objectivated world loses its comprehensibility as an enterprise originated and
established by human beings. Complex theoretical systems can be considered as reifications,
but “reification also exists in the consciousness of the man in the street” (Pickering and
Skinner, 1990). Both psychological and ethnological data seem to indicate that the original
apprehension of the social world (including society) is highly reified both ontogenetically and
philogenetically.

11.1. Human Consciousness as an Ultra-Complex Process of Brain’s Super-Complex
Subprocesses: The Emergence of An Ultra-Complex < System > from Many In-
teracting Super-Complex Subsystems.

11.1.1. Intentionality. Kant considered that the internal structure of reasoning was essen-
tial to human nature for knowledge of the world but the inexactness of empirical science
amounted to limitations on the overall comprehension. Brentano considered intentional
states as defined via the mental representation of objects regulated by mental axioms of
reason. As it is experienced, Freeman (1997,1999) regards intentionality as the dynamical
representation of animal and human behaviour with the aim of achieving a particular state
circumstance in a sense both in unity and entirety. This may be more loosely coined as
‘aboutness’, ‘goal seeking’ and or ‘wound healing’. The neurophysiological basis according
to Freeman is harbored in the limbic system: momentarily the structure of intentional action
extends through the forebrain based in the fabric of cortical neuropil, a meshwork of synaptic
connections interconnected by axons and dendrites within which a field of past experiences is
embedded via learning. Kozma et al. (2004) use network percolation techniques to analyze
phase transitions of dynamic neural systems such as those embedded within segments of
neuropil. This idea of neuro-percolation so provides a means of passage via transition states
within a neurophysiological hierarchy (viz. levels). But the actual substance of the hierarchy
cannot by itself explain the quality of intention. The constitution of the latter may be in
part consciousness, but actual neural manifestations, such as for example pain, are clearly
not products of a finite state Turing machine (Searle, 1983).

It is the olfactory system among others that presents a range of chemical sensors through
which a neural process can classify its inputs – a principle of Hebbian learning (Hebb, 1949) -
between selected neurons a reinforced stimulus induces a strengthening of the synapses. But
there remains the question how populations of neurons do actually create the patterns of
neural activity that can engender intentionality which we might consider as attained through
some hierarchy of structured levels, and a matter than clearly warrants further investigation.

Most species possess subject awareness even though the individual nature of awareness
differs dramatically de facto. Whereas states of of mind, intention, qualia etc. are ingredient
factors of consciousness that instantaneously occur with subjective awareness, none of these
are essential for the latter. Bogen (1995) discusses the neurophysiological aspect of this
property in relationship to the intra-laminar nuclei (ILN) which is a critical site when normal
consciousness is impaired as the result of thalamic injury. It is suggested that the ILN
provides an optimal candidate for a cerebral mechanism and subjective awareness is an
emergent property of some such mechanism as subserved by the ILN.
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As a working hypothesis, one can formulate a provisional (and most likely incomplete)
definition of human consciousness as an ultra–complex process integrating numerous super-
complex ‘sub-processes’ in the human brain that are leading to a ‘higher-dimensional onto-
logical, mental level’ capable of free will, new problem solving, and also capable of speech,
logical thinking, generating new conceptual, abstract, emotional, etc., ontological structures,
including –but not limited to–‘awareness’, self, high-level intuitive thinking, creativity, sym-
pathy, empathy, and a wide variety of ‘spiritual’ or ‘mental’ introspective experiences. It
may be possible to formulate a more concise definition but for operational and modelling
purposes this will suffice, at least provisionally. The qualifier ‘ultra-complex’ is mandatory
and indicates that the ontological level of consciousness, or mental activities that occur in the
conscious ‘(psychological) state’, is higher than the levels of the underlying, super-complex
neurodynamic sub-processes leading to, and supporting, consciousness. A methaporical com-
parison is here proposed of consciousness with the mathematical structure of a (‘higher
dimensional’) double groupoid constructed from a ‘single’ topological groupoid–that would,
through much over-simplifying, represent the topology of the human brain network processes
(occurring in the two interconnected brain hemispheres) which lead to consciousness.

In order to obtain a sharper, more ‘realistic’ (or should one perhaps say instead, ‘ideal’)
representation of consciousness one needs consider psychological ‘states’ (Ψ), ‘structures’
(Φ) as well as consciousness modes (CMs) in addition, or in relation to neurophysiological
network structure and neural network super-complex dynamics. According to James (W.,
1890), consciousness consists in a ‘continuous stream or flow’ of psychological ‘states’ which
never repeats the same ‘state’ because it is continually changing through the interaction
with the outer world, as well as through internal thought processes (suggested to have been
metaphorically expressed by the saying of Heraclitus that ‘one never steps in the same
water of a flowing river’, and also by his “Panta rhei”–“Everything flows!”). However, the
recurrence of patterns of thoughts, ideas, mental ‘images’, as well as the need for coherence of
thought, does seem to establish certain psychological ‘states’ (Ψ), psychological ‘structures’
(Φ), and indeed at least two ‘modes’ of consciousness: an active mode and a ‘receptive’, or
‘meditative’ one. Whereas the ‘active’ mode would be involved in biological survival, motor,
speech/language, abstract thinking, space or time perception and volitional acts (that might
be localized in the left-side hemisphere for right-handed people), the ‘receptive’ mode would
be involved in muscle-or general-relaxation, meditation, imagination, intuition, introspection,
and so on (i.e., mental processes that do not require interaction with the outside world, and
that might be localized in the right-side cerebral hemisphere in right-handed people). The
related issue of the obvious presence of two functional hemispheres in the human brain has
been the subject of substantial controversy concerning the possible dominance of the left-side
brain over the right-side, as well as the possibility of a subject’s survival with just one of
his/her brain’s hemisphere.

An important ‘structural’ aspect related to the human or the chimpanzee brain’s active
mode, and also possibly pertinent to autism in children, is the recently discovered presence
of groups of mirror neurons (A. B. and C, Science, 2006). All of these related ‘psi’ categories
and attributes are relevant to a mathematical representation of consciousness as an ultra-
complex process emerging through the integration of super-complex sub-processes that have
evolved as a result of both biological evolution/survival of the human organism, and also–just
as importantly–through human social interactions which have both shaped and ‘sharpened’
human consciousness (especially over the last 5,000 years, or so).
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11.1.2. Psychological Time, Memory and Anticipation. Subdivisions of space and spatiotem-
poral recognition cannot satisfactorily answer the questions pertaining to the brains capa-
bility to register qualia–like senses arising from representations alone (such as a sense of
depth, ambiguity, incongruity, etc.) Graphic art in its many forms such as cubism, sur-
realism, etc. which toy around with spatial concepts, affords a range of mysterious visual
phenomena often escaping a precise neuro–cognitive explanation. For instance, we can be
aware of how an extra dimension (three) can be perceived and analyzed from a lower dimen-
sional (respectively, two) dimensional representation by techniques of perceptual projection
and stereoscopic vision, and likewise in the observation of holographic images. Thus any
further analysis or subdivision of the perceived space would solely be a task for the ‘minds–
eye’ (see Velmans, 2000 Chapter 6 for a related discussion). Through such kaleidoscopes
of cognition, the induced mental states, having no specified location, may escape a unique
descriptive (spatiotemporal) category. Some exception may be granted to the creation of
holographic images as explained in terms of radiation and interference patterns; but still the
perceived three dimensional image is illusory since it depends on an observer and a light
source; the former then peers into an ‘artificial’ space which otherwise would not have ex-
isted. However, the concept of holography heralds in one other example of the ontological
significance between space–time and spectra in terms of a fundamental duality. The major
mathematical concept for this analysis involves the methods of the Fourier transform that
decompose spatiotemporal patterns into a configuration of representations of many different,
single frequency oscillations by which means the pattern can be re–constructed via either
summation or integration. Note, however, that visualizing a 4-dimensional space from a pic-
ture or painting, computer-generated drawing, etc., is not readily achieved possibly because
the human mind has no direct perception of spacetime, having achieved separate perceptions
of 3D-space and time; it has been even suggested that the human brain’s left-hemisphere
perceives time as related to actions, for example, whereas the right-hemisphere is involved in
spatial perception, as supported by several split-brain and ACS tests. This may also imply
that in all other species–which unlike man– have symmetric brain hemispheres temporal
perception–if it exists at all– is not readily separated from space perception, at least not in
terms of localization in one or the other brain hemisphere.

Gabor (1946) considered how this ‘duality’ may be unified in terms of phase spaces in
which space–time and spectra are embedded in terms of an orthogonal pair of system com-
ponents/coordinates which comprise a certain ‘framing’. Gabor postulated an ‘uncertainty’
– a quantum of information corresponding to a limit to which both frequency modulations
and spatial information can be simultaneously measured. The ensuing techniques afforded a
new class of (Gabor) elementary functions along with a modification of the Weyl–Heisenberg
quantization procedure. Thus was realized a representation of a one–dimensional signal in
the two dimensions of (time, frequency) and hence a basic framework for holographic prin-
ciples leading eventually to a theory of wavelets.

The purely mathematical basis relating to the topographical ideas of Pribram’s work lies in
part within the theory of harmonic analysis and (Lie) transformation groups. Relevant then
are the concepts of (Lie) groupoids and their convolution algebras/algebroids (cf Landsman,
1998) together with species of ‘localized’ groupoids. Variable groupoids (with respect to
time) seem then to be relevant, and thus more generally is the concept of a fibration of
groupoids (see e.g. Higgins and Mackenzie, 1990) as a structural descriptive mechanism.
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These observations, in principle representative of the ontological theory of levels, can be
reasonably seen as contributing to a synthetic methodology for which psychological categories
may be posited as complementary to physical, spatiotemporal categories (cf Poli 2007). Such
theories as those of Pribram do not fully address the question of universal versus personal
mind: how, for instance, does mind evolve out of spatiotemporal awareness of which the latter
may by continuously feedback into the former by cognition alone? The answer –not provided
by Pribram, but by previous work by Mead (cca. 1850)–seems to be negative because hu-
man ‘consciousness appears to have evolved through social, consensual communications that
established symbolic language, self-talk and thinking leading to consciousness, as modelled
above by the Rosetta biogroupoid of human/hominin social interactions. A possible, partial
mechanism may have involved the stimulation of forming an increased number of specialized
‘mirror neurons’ that would have facilitated human consciousness and symbolism through
the evoked potentials of mirror neuron networks; yet another is the synaesthesia, presum-
ably occurring in the Wernicke area (W) of the left-brain, coupled to the ‘mimetic mirror
neurons’ thus facilitating the establishment of permanent language centers (Broca) linked
to the W-area, and then strongly re-enforced and developed through repeated consensual
social human interactions. Clearly, both a positive feedback, and a feedforward (anticipatory)
mechanism were required and involved in the full development of human consciousness, and
may still be involved even today in the human child’s mind development and its later growth
to full adult consciousness.

A sidetrack is to regard these ‘mysteries’ as contributing to the (hard) problem of con-
sciousness: such as how one can fully comprehend the emergence of non–spatial forms arising
from one that is spatial (such as the brain) within the subjective manifold of human sensi-
bility? The brain matter is insentient and does not by itself explain causal, spatiotemporal
events as agents of consciousness.

The claim is made by practitioners of meditation that its goal is something beyond the
bounds of our customary experience. However, attempts such as those made by Austin (1998)
to ‘link’ the brain’s neurobiology in order to explain the qualities of conscious experience, in
this case within a Buddhist-philosophical (strictly non-dual or monic) context of awareness;
the latter is inconsistent with the Western, dual approach extensively discussed in this essay,
in the sense of the mind vs. the brain, organism vs. life, living systems vs inanimate ones,
super-complex vs simple systems, environment vs system, boundary vs horizon, and so on,
considering them all as pairs of distinct (and dual/apposed, but not opposed) ontological
items. Surprisingly, reductionism shares with Buddhism a monic view of the world–but
coming from the other, physical extreme– and unlike Buddhism, it reduces all science to
simple dynamic systems and all cognition to mechanisms. On the other hand Buddhism aims
‘higher’ than the human consciousness– at Enlightenment–, towards a completely ‘spiritual’,
internal world without ‘objectivity’, and also claimed to be free of all pains accompanying
the human, mortal existence, but consistently declining to recognize the existence of an
immortal human ‘soul’. The enlightenment is thus considered by Buddhists to be an eternal
form of existence, of dimensions high above the level of human consciousness, still very rarely
reachable from, but transcending, through the highest level of consciousness.

One might say that in the ancient Buddhist philosophy, the non-duality postulate trans-
lates into ‘an openness of all ontic items’, the universal ‘all’, indivisible and undivided
multiverses, ‘having neither a beginning nor an end’ – either in time or space– a philosophy
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which was also expounded in the West in a quantum-based form by David Bohm, a desenting
quantum physicist; this is quite the opposite of the new astrophysical Cosmology of the ‘Big
Bang’– the inflationary theory of our Universe, or the Creationist theology.

The problems of mind versus brain remain perplexing, however. Kantian intuitionism
may reduce matters to an interplay of intellect and imagination as far as differing qualities
of ‘space’ are concerned, but the dictum of physics, however, claims ‘non–existence if it can’t
be measured’ , even though the quantum wave function is supposed to (somehow ‘magically’)
collapse upon being measured. It would thus acquire ‘existence’ upon being measured even
though it collapses at that very instant of measurement, very much like a rabbit pulled out
of a magic hat! Not surprisingly, many quantum physicists no longer subscribe to the idea
of the ”collapse of the wave function”. (Bohm did not agree with the collapse either). Such
predicaments are not new to groups of philosophers who claim metaphysical limits upon
intellectually conceived representations, to the extent that definitive explanations might
remain beyond the grasp of human comprehension (e.g. McGinn, 1995). Others (cf. Bennett
and Hacker, 2003) in part echoing Gilbert Ryle’s pronouncement of “categorical problems”
(Ryle, 1949), argue that brain science alone cannot explain consciousness owing to a plague
of intrinsic (categorical) errors such as when a certain neuropsychological entity is conceived
as a ‘linear’ superposition of it constituent parts (“the mereological fallacy”); in this regard,
Bennett and Hacker (2003) spare very few reductionist ‘theories of neuroscience’.

To what degree the visual and auditory processes are “sharp” or “fuzzy” remains open to
further research. Nevertheless, it is conceivable that certain membrane–interactive neuro-
physiological phenomena occur via a fuzzy, a semi–classical or a quantum stochastic process.
From the “sharp” point of view, Stapp (1999) has described a dynamic/body/brain/mind
schemata as a quantum system complete with an observer on the basis of the von Neumann–
Wigner theory involving projection operators P as above. The intentional viewpoint inter-
prets “Y es” = P and in the complementary case, “No” = I − P , where I is the identity
operator. The projection P is said to act on the degrees of freedom of the brain of the
observer and reduces the latter as well as a universal state to one that is compatible with
“Yes” or “No” reduced states :

(“Yes”) S 7→ PSP (“No”) S 7→ (I − P )S(I − P ) .

The actualization of a single thought creates a chain of subsequent thoughts and con-
scious action which might be realized by projection into the future of a component of the
thought to which the body/world scheme itself becomes actualized. In turn, the neuronal
processes that result from this associated body/world scheme eventually achieve the actual
intention itself. As this process unfolds, consciousness is sustained through the continued
interplay of fundamental neuro–cognitive processes (such as, recognition, sensory–motor re-
sponses, information management, logical inferences,learning, and so on), as well as through
language/speech/communication, symbol/picture manipulation, analogies, metaphors, and
last-but-not least, illusory and imaginary/virtual processes that both enable and trap the
mind into performing superbly its ‘magic’ continuity tricks– the creative acts of bringing into
existence many completely new things out of old ones, or simply out of ‘nothing at all’.

On the one hand, Wittgenstein claimed that we cannot expect language to help us re-
alize the effects of language. On the other hand, Mathematics–the democratic Queen of
sciences (cf.Gauss)- is, or consists to a large extent of, precise, formal type(s) of language(s),
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(cf.Hilbert, or more recently, the Bourbaki school) which do allow one to have ‘clear, sharp
and verifiable representations of items’; these, in turn, enable one to make powerful de-
ductions and statements through Logics, intuition and abstract thoughts, even about the
undecidability of certain types of its own theorems (Gödel, 1945). Last-but-not-least, even
though the human brain consists in a very large (approximately 100,000,000,000), yet finite,
number of neurons– and also a much higher number of neuronal connections greater than
1029– the power of thought enables us to construct symbols of things, or items, apart from the
things themselves, thus allowing for our extension of representations to higher dimensions, to
infinity, enlightenment, and so on, paradoxically extending the abilities of human conscious-
ness very far beyond the apparent, finite limitations, or boundaries, of our super-complex
human brain. Thus, one may consider the human mind not as a ‘system’–as it seems to have
no boundary– but as a ‘multiverse with a horizon’.

By comparison, species other than Homo sapiens, even though they may have ‘comparable’
brain sizes or numbers of neurons/neuronal connections, seem to be unable of achieving such
ultra-complexity as the human consciousness, which is leading us either to higher dimensions
and to infinity..., or else to the total destruction of life and consciousness on earth–as in a
nuclear ‘accident’ or through intentional conflagration. This moral ‘duality’ –as long as it
persists– may make to us, all, the difference between ”to be or not to be?” , that is the
question!

The problem of how mind and matter are related to each other has many facets, and it can
be approached from many different starting points. Of course, the historically leading disci-
plines in this respect are philosophy and psychology, which were later joined by behavioural
science, cognitive science and neuroscience. In addition, the physics of complex systems
and quantum physics have played stimulating roles in the discussion from their beginnings.
Regarding the issue of complexity, this is quite evident: the brain is one of the most complex
systems we know. The study of neural networks, their relation to the operation of single
neurons and other important topics do, and will, profit a great deal from complex systems
approaches. As regards quantum physics, the situation is different. Although there can be
no reasonable doubt that quantum events occur in the brain as elsewhere in the material
world, it is the subject of controversy whether these events are in any way efficacious and
relevant for those aspects of brain activity that are correlated with mental activity.

12. Human Society and Ultra-Complexity. Criticality and Decision
Making. The Human Use of Human Beings.

12.1. Society and Cybernetics: The Human Use of Human Beings.

13. Conclusions and Discussion

Current developments in the SpaceTime Ontology of Complex, Super-Complex and Ultra-
Complex Systems were here presented covering a very wide range of ‘complex’ systems,
including the human brain and neural networks supporting, perception, consciousness and
logical/abstract thought. Mathematical generalizations such as higher dimensional algebra
are concluded to be logical requirements of the unification between complex system and
consciousness theories that would be leading towards a deeper understanding of man’s own
spacetime ontology, which is claimed here to be both unique and universal. However, we
have not been able to consider to any significant extent in our essay the broader, interesting
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implications of objectivation processes for human societies, Cultures and Civilizations. To
what extent the tools of Categorical Ontology and Higher Dimensional Algebra are suit-
able for the latter three items remains thus an open question. Furthermore, the possible
extensions of our approach to investigating the biosystem, and indeed, the

Biosphere ⇐⇒ Environment interactions

remain as a further object of study in need of developing a formal definition of the horizon
concept, only briefly touched upon here.

In a subsequent paper (Baianu, Brown and Glazebrook, 2007), we shall further consider
spacetime ontology in the context of Astrophysics and our Universe represented in terms of
quantum algebraic topology and quantum gravity approaches founded upon the theory of
categories/functors/natural transformations, quantum logics, non-Abelian Algebraic Topol-
ogy and Higher Dimensional Algebra, as well as the integrated viewpoint of the Quantum
Logics in a Generalized ‘Topos’–a new concept that ties in closely Q-logics with many-valued,
LM-logics and category theory.

New areas of Categorical Ontology are likely to develop as a result of the recent paradigm
shift towards non-Abelian theories. Such new areas would be related to recent developments
in: non-Abelian Algebraic Topology, non-Abelian gauge theories of Quantum Gravity, non-
Abelian Quantum Algebraic Topology and Noncommutative Geometry, that were briefly
outlined in this essay in relation to spacetime ontology.

Although the thread of the current essay strongly entails the elements of ‘non–linear’ and
‘non–commutative’ science, we adjourn contesting the above strictures. One can always
adopt the Popperian viewpoint that theoretical models, at best, are approximations to the
truth, and the better models (or the hardest to de-bunk myths, according to Goodwin, 1994)
are simply those that can play out longer than the rest, such as Darwin’s theory on the
origin of species. As Chalmers (1996) and others suggest, re–conceptualizing the origins of
the universe(s) may provide an escape route towards getting closer to a definitive explanation
of consciousness. Whether such new explanations will dispel the traditional metaphysical
problems of the phenomenal world, that remains to be seen.

Several claims were defended in this essay regarding the spacetime ontology of emergent,
highly complex systems and the corresponding ontological theory of levels of reality. Fur-
thermore, claims were also defended concerning important consequences of non-commutative
complex dynamics for human society and the Biosphere; potential non-Abelian tools and
theories that are most likely to enable solutions to such ultra-complex problems were also
pointed out in connection with the latter consequences. Such claims are summarized here
as follows:

• The non-commutative, fundamentally ‘asymmetric’ character of Categorical Spacetime
Ontology relations and structure, both at the top and bottom levels of reality; the origins
of a paradigm shift towards non-Abelian theories in science and the need for developing a
non-Abelian Categorical Ontology, especially a complete, non-commutative theory of levels
founded in LM– and Q– logics.
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• The existence of super-complex systems (organisms/biosystems) and highly-complex pro-
cesses which emerged and evolved through dynamic symmetry breaking from the molecu-
lar/quantum level, but are not reducible to their molecular or atomic components, and/or
any known physical dynamics; succinctly put: no emergence =⇒ no real complexity ;

• The co-evolution of the unique human mind(s) and society, with the emergence of an
ultra–complex level of reality; the emergence of human consciousness through such co-
evolution/societal interactions and highly efficient communication through elaborate speech
and symbols;

• The potential for exact, symbolic calculation of the non-commutative invariants of space-
time through logical or mathematical, precise language tools (categories of LM–logic algebras,
generalized LM–toposes, HHvKT, higher Dimensional Algebra, ETAS, and so on).

• The urgent need for a resolution of the moral duality between creation/creativity and
destruction posed to the human mind and the current society/civilization which is potentially
capable of not only self-improvement and progress, but also of total Biosphere annihilation
on land, in oceans, seas and atmosphere; the latter alternative would mean the complete,
rapid and irrevocable reversal of four billion years of evolution. Arguably, human mind and
society may soon reach a completely unique cross-road–a potentially non-generic/strange
dynamic attractor– unparalleled since the emergence of the first (so humble) primordial(s)
on earth.

• The great importance to human society of rapid progress through fundamental, cognitive
research of Life and Human Consciousness that employs highly efficient, non-commutative
tools, or precise ‘language’, towards developing a complete, Categorical Ontology Theory of
Levels and Emergent Complexity.

We have thus considered a wide range of important problems whose eventual solutions
require an improved understanding of the ontology of both the space and time dimensions
of ‘objective’ reality especially from both relational complexity and categorical viewpoints.

Among these important problems, currently of great interest in science, we have considered
here:

• SpaceTime Structures and Local-to-Global Procedures.

• Reductionism, Occam’s razor, Biological Axioms (ETAS) and Relational Principles.

• The Emergence of Life and Highly Complex Dynamics.

• What is Life and Life’s multiple Logics, Biological Evolution, Global and Local aspects of
Biological Evolution in terms of Variable Biogroupoids, Colimits and Compositions of Local
Procedures.

• The Primordial organism models from the perspective of Generalized Metabolic-Repair
Systems, Temporal and Spatial Organization in Living Cells, Organisms and Societies.

• The Ascent of Man and the Human Brain, Split-brain models and Bilateral Asymmetry
of the Human Brain, the Thalamocortical Model, Colimits and the MES.
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• What is Consciousness and Synaesthesia–the Extreme Communication between different
‘logics’ or thoughts, the Emergence of Human Consciousness through Social Interactions and
Symbolic Communication, the Mind, Consciousness and Brain Dynamics as Non-Abelian
Ultra-Complex Processes.

• The emergence of higher complexity, ontological levels of reality represented by organisms,
the unique human mind and societies as a dynamic consequence of iterated, symmetry break-
ing stemming from the fundamental non-commutative logics underlying reality. Related also
to such LM– and Q– logics, we considered the key attributes of life, evolution/co-evolution
and the human mind: multistability and genericity of nonlinear dynamics delimited by bio-
fuzziness.

• How one might possibly extend in the future higher homotopy tools and apply Non-
Abelian Algebraic Topology results–such as the Higher Homotopy van Kampen theorems
to calculate exactly the non-commutative invariants of higher dimensional dynamic spaces
in highly complex systems–organisms, and perhaps also for the ultra-complex system of the
human mind and societies.

14. Appendix: Background and Concept Definitions

14.1. Background to Category Theory.

14.1.1. Categories. A category C consists of :

1. a class Ob(C) called the objects of C ;

2. for each pair of objects a, b of Ob(C), a set of arrows or morphisms f : a−→b. We
sometimes denote this set by HomC(a, b) . Here we say that a is the domain of f ,
denoted a = dom f , and b is the codomain of f , denoted b = cod f ;

3. given two arrows f : a−→b and g : b−→c with dom g = cod f , there exists a
composite arrow g ◦ f : a−→c .

Further

i) Composition is associative : given f ∈ HomC(a, b), g ∈ HomC(b, c) and h ∈ HomC(c, d),
we have h ◦ (g ◦ f) = (h ◦ g) ◦ f .

ii) Each object admits an identity arrow ida : a−→a, where for all f ∈ HomC(a, c) and all
g ∈ HomC(b, a), we have f ◦ ida = f , and ida ◦ g = g .

Typical examples of a category are :

C = Set where the objects of Set are sets and the arrows are simply set maps.

C = Top where the objects of Top are topological spaces and the set of arrows HomTop(X, Y )
is the set of all continuous maps f : X−→Y between objects X and Y , and where the com-
position law in Top is the composition of continuous functions.

C = Group where the objects are groups and the arrows f : G−→H are group homomor-
phisms between groups G and H .

Observe that Ob(C) need not be a set. When it is we shall say that C is a small category.
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For the purpose of semantic modeling, let us say that an object i in any category is said
to be initial if for every object a, there is exactly one arrow f : i−→a, whereas an object
t in any category is said to be terminal if for every object a, there is exactly one arrow
f : a−→t . Any two initial (resp. terminal) objects can be shown to be isomorphic.

Corresponding to each category C, is its opposite category Cop obtained by reversing the
arrows. Specifically, Cop has the same objects as C, but to each arrow f : a−→b in C, there
corresponds an arrow f− : b−→a in Cop, so that f− ◦ g− is defined once g ◦ f is defined, and
so f− ◦ g− = (g ◦ f)− .

Let Q and C be categories. We say that Q is a subcategory of C if

1. (inclusion of object sets) each object of Q is an object of C ;
2. (inclusion of arrow sets) for all objects a, b of Q, HomQ(a, b) ⊆ HomC(a, b) ;
3. composition ‘◦’ is the same in both categories and the identity ida : a−→a in Q is the

same as in C .

A morphism m with codomain x is called monic if for all objects y and pairs of morphisms
u, v : x→ y, um = vm implies u = v. One can then define a subobject of x as an equivalence
class of monics. The category of sets has preferred monics, namely the inclusions of subsets.

Let C and Q be two categories. A covariant functor is a function F : Q−→C satisfying :

1. for each object a of Q, there is an object F(a) of C ;
2. to each arrow f ∈ HomQ(a, b), there is assigned an arrow F(f) : F(a)−→F(b), such that

F(ida) = idF(a), and if g ∈ HomC(b, c), then F(g ◦ f) = F(g) ◦ F(f) .

Likewise one can define a contravariant functor by standard modifications to the previous
definition: F(f) : F(b)−→F(a) , F(g ◦ f) = F(f) ◦ F(g), etc.

A basic example is the (covariant) forgetful functor F : Top−→Set, which for any topo-
logical space X, F(X) is just the underlying set, and for a continuous map f , F(f) is the
corresponding set map.

14.2. Natural Transformations and Functorial Constructions in Categories. Cat-
egorical constructions make use of functors between categories as well as the higher or-
der ‘morphisms’ between such functors called natural transformations that belong to a ‘2-
category ’ (see for example Lawvere, 1966). Such constructions also pave the way to Higher
Dimensional Algebra which will be introduced in the next section. Especially effective are
the functorial constructions which employ the ‘hom’ functors defined next; this construc-
tion will then allow one to prove a very useful categorical result–the Yoneda–Grothendieck
Lemma.

Let C be any category and let X be an object of C. We denote by hX : C−→Set the functor
obtained as follows: for any Y ∈ Ob(C) and any f : X−→Y , hX(Y ) = HomC(X, Y ); if
g : Y−→Y ′ is a morphism of C then hX(f) : HomC(X, Y )−→HomC(X, Y ′) is the map
hX(f)(g) = fg. One can also denote hX as HomC(X, −). Let us define now the very
important concept of natural transformation which was first introduced by Eilenberg and
Mac Lane (1945). Let X ∈ Ob(C) and let F : C−→Set be a covariant functor. Also, let
x ∈ F (X). We shall denote by ηX : hX−→F the natural transformation (or functorial
morphism) defined as follows: if Y ∈ Ob(C) then (ηx)Y : hX(Y )−→F (Y ) is the mapping
defined by the equality (ηx)Y (f) = F (f)(x); furthermore, one imposes the (commutativity)
or naturality conditions on the following diagram:
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(14.1) F (X)
ηX //

F (f)

��

F (Y )

F (g)

��
G(X) ηY

//G(Y )

Lemma 14.1. The Yoneda–Grothendieck Lemma. Let X ∈ Ob(C) and let F : C−→Set
be a covariant functor. The assignment x ∈ F (X) 7→ ηx defines a bijection, or one–to–one
correspondence, between the set F (X) and the set of natural transformations (or functorial
morphisms) from hX to F .

This important lemma can be interpreted as stating that any category can be realized
as a category of family of ‘sets with structure’ and structure preserving families of func-
tions between sets (see also Section 6 and the references cited therein for its applications to
the construction of categories of genetic networks or (M,R)–systems). Note also that the
Yoneda–Grothendieck Lemma was previously employed to construct generalized Metabolic–
Replication, or (M,R)–Systems (Baianu, 1973; Baianu and Marinescu, 1974), which are cat-
egorical representations of the simplest enzymatic (metabolic) and genetic networks (Rosen,
1958a).

We shall illustrate in subsequent Sections 4 to 7 several applications to bionetworks of
another very important type of functorial construction which preserves colimits (and/or
limits); this construction is only possible for those pairs of categories which exhibit certain
important similarities represented by an adjointness relation. Therefore, adjoint functor
pairs (Kan, 1958) are here defined with the aim of utilizing their properties in representing
similarities between categories of bionetworks, as well as preserving, respectively, their limits
and colimits.

Definition 14.1. Let us consider two covariant functors F and G between two categories C
and C′ arranged as follows:

(14.2) C
F //C′

G //C

We shall define F to be a left adjoint functor of G, and we define G to be a right adjoint
functor of F , if for any X an object of category C, and any object X ′ of C′, there exists a
bijection

t(X,X ′) : HomC(X,G(X ′))−→HomC′(F (X), X ′) ,

such that for any morphism f : X−→Y of C and morphism f ′ : X ′−→Y ′ of C′, the following
diagrams of sets and canonically constructed mappings are natural (or commutative) :

(14.3) HomC(Y,G(X ′))

hG(X′)(f)

��

t(Y,X ′)
//HomC′(F (Y ), X ′)

hX′(F (f))

��
HomC(X,G(X ′))

t(X,X ′)
//HomC′(F (X), X ′)
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(14.4) HomC(X,G(X ′))

hG(X′)(f)

��

t(X,X ′)
//HomC′(F (X), X ′)

hX′(F (f))

��
HomC(X,G(Y ′))

t(X, Y ′)
//HomC′(F (X), Y ′)

In particular, we shall denote by ηX : X−→GF (X), the morphism t−1(X,F (X))(1F (X)) .
Also, we shall denote by

εX′ : FG(X ′)−→X ′ ,
the morphism ε(G(X ′), X ′)(1G(X′)), (N. Popescu, 1975, p.11).

One can easily verify that the following diagrams, which are canonically constructed,
are also natural in C and C′ for any morphism f : X−→Y in C, and for any morphism
f ′ : X ′−→Y ′ in C′, respectively.

(14.5) X

f

��

ηX //GF (X)

GF (f)

��
Y

ηY //GF (Y )

and

(14.6) FG(X ′)

FG(f ′)

��

εX′ //X ′

GF (f)

��
FG(Y ′)

εY ′ //Y ′

Such adjoint functors commute, respectively, with either limits or colimits as specified by
the following theorem (Theorem 5.4 on p.17 of N. Popescu, 1975).

Theorem 14.1. Given categories C and D, let F : C−→D be the left adjoint of the functor
G : D→ C. Then, one has:

(1) F commutes with the colimit in C of any functor;
(2) ] G commutes with the limit in D of any functor.

One also has the following important theorem (N. Popescu 1975, Theorem 5.3, p. 13).

Theorem 14.2. Let F : C−→C′ be a covariant functor. The following assertions are equiv-
alent :

(1) F is full and faithful and any object X ′ of C′ is isomorphic to an object F (X), with X
being an object of C;

(2) F is full and faithful, and has a full and faithful left adjoint;
(3) F is full and faithful, and has a full and faithful right adjoint.
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Definition 14.2. Two categories C and C′ will be called equivalent if there is a covariant
functor F : C−→C′ which satisfies any of the three assertions in Theorem ??. The functor
F will be called an equivalence from C to C′.

14.3. Higher order categories and cobordism. In higher dimensional algebra the con-
cept of a category generalizes to that of an n–category. We list here a short (but tentative)
dictionary of analogies between general relativity theory (GR) and quantum theory (QT) :

(1) (GR) pairs of spatial (n−1)–manifolds (M1,M2) – (QT) assigned Hilbert spaces H1, H2,
respectively

(2) (GR) cobordism leading to a spacetime n–manifold M – (QT) (unitary) operator T :
H1−→H2

(3) (GR) composition of cobordisms – (QT) composition of operators
(4) (GR) identity cobordism – (QT) identity operator.

The next step is to re–phrase this interplay of ideas categorically. So let Hilb denote the
category whose objects are Hilbert spaces H with arrows the bounded linear operators on
H . Let nCob denote the category whose objects are (n−1)–dimensional manifolds as above,
and whose arrows are cobordisms between objects. Next we define a functor

(14.7) Z : nCob −→ Hilb ,

which assigns to any (n − 1)–manifold M1, a Hilbert space of states Z(H1), and to any n–
dimensional cobordismM : M1−→M2, a (bounded) linear operator Z(M) : Z(M1)−→Z(M2),
satisfying :

i) given n–cobordismsM : M1−→M2 and M̌ : M̌1−→M̌2, we have Z(MM̌) = Z(M̌)Z(M) .
ii) Z(idM1) = idZ(M1) .

Observe that i) means the duration of time corresponding to the cobordism M followed by
that of the cobordism M̌ , is the same as the combined duration for that of M, M̌ . Part ii)
says that given there is no topology change in some duration of time, then there is no effect
on the state of the universe. Since a TQFT omits local degrees of freedom, only a topology
change influences a change in the universe. Such a theory necessitates development, on the
one hand, the relationship between nCob and n–categories (cf Baez and Dolan 1995), and on
the other, that of a (non-commutative) theory of presheaves of Hilbert spaces/C∗–algebras
which can be fitted into some quantum logical mechanism. Further, there is a necessity
to realize the Grothendieck (1971) idea of fibrations of n–categories over n–categories as a
possible unifying model for these theories.

14.4. Heyting–Brouwer Intuitionistic Foundations of Categories and Toposes.

14.4.1. Subobject Classifier and the notion of a Topos. One of our main interests is in the
notion of topos, a special type of category for which several (equivalent) definitions can be
found in the literature. An important standard example is the category of (pre) sheaves
on a small category C. We will need an essential component of the topos concept called
a subobject classifier. In order to motivate the discussion, suppose we take a set X and a
subset A ⊆ X . A characteristic function χA : X−→{0, 1} specifies ‘truth values’ in the
sense that one defines
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(14.8) χA(x) =

{
1 if x ∈ A
0 if x 6= A .

A topos C is required to possess an analog of the truth–value sets {0, 1}. In order to specify
this particular property, we consider a category C with a covariant functor C−→Set, called a
presheaf. The collection of presheaves on C forms a category in its own right, once we have
specified the arrows. If E and F are two presheaves, then an arrow is a natural transformation
N : C−→F , defined in the following way. Given a ∈ Ob(C) and f ∈ HomC(a, b), then there
is a family of maps Na : E(a)−→F(a), such that the diagram

(14.9)

E(a)
E(f)−−−→ E(b)

Na

y yNb

F(a)
F(f)−−−→ F(b)

commutes. Intuitively, an arrow between E and F serves to replicate E inside of F .

Towards classifying subobjects we need the notion of a sieve on an object a of Ob(C) .
This is a collection S of arrows f in C such that if f : a−→b is in S and g ∈ HomC(b, c) is
any arrow, then the composition f ◦ g is in S .

We define a presheaf Ω : C−→Set, as follows. Let a ∈ Ob(C), then Ω(a) is defined as the
set of all sieves on a . Given an arrow f : a−→b, then Ω(f) : Ω(a)−→Ω(b), is defined as

(14.10) Ω(f)(S) := {g : b−→c : g ◦ f ∈ S} ,
for all S ∈ Ω(a) . Let ↑ b denote the set of all arrows having domain the object b . We say
that ↑ b is the principal sieve on b, and from the above definition, if f : a−→b is in S, then

(14.11) Ω(f)(S) = {g : b−→c : g ◦ f ∈ S} = {g : b−→c} =↑ b .
Let us return for the moment to our motivation for defining Ω . The set of truth values

{0, 1} is itself a set and therefore an object in Set, furthermore, the set of subsets of a given
set X corresponds to the set of characteristic functions χA as above. Likewise if C is a topos,
Ω is an object of C, and there exists a bijective correspondence between subobjects of an
object a and arrows a−→Ω, leading to the nomenclature subobject classifier. In this respect,
a typical element of Ω relays a string of answers about the status of a given object in the
topos. Furthermore, for a given object a, the set Ω(a) enjoys the structure of a Heyting
algebra (a distributive lattice with null and unit elements, that is relatively complemented).

14.5. Quantum Logics vs. Chryssippian Logic in Categorical Ontology. Quantum
Logics (QL) and Logical Algebras. Von Neumann-Birkhoff (VNB) Quantum Logic. Opera-
tional Quantum Logic (OQL) and  Lukasiewicz Quantum Logic (LQL)

14.5.1. Quantum Logics (QL) and Logical Algebras (LA). As pointed out by von Neumann
and Birkhoff (1930), a logical foundation of quantum mechanics consistent with quantum
algebra is essential for both the completeness and mathematical validity of the theory. With
the exception of a non-commutative geometry approach to unified quantum field theories
(Connes, 2004), the Isham and Butterfield framework in terms of the ‘standard’ Topos
(Mac Lane and Moerdijk, 2000), and the 2-category approach by John Baez (2000, 2002);
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other quantum algebra and topological approaches are ultimately based on set-theoretical
concepts and differentiable spaces (manifolds). Since it has been shown that standard set
theory which is subject to the axiom of choice relies on Boolean logic (Diaconescu, 1976;
Mac Lane and Moerdijk, 2000), there appears to exist a basic logical inconsistency between
the quantum logic–which is not Boolean–and the Boolean logic underlying all differentiable
manifold approaches that rely on continuous spaces of points, or certain specialized sets of
elements. A possible solution to such inconsistencies is the definition of a generalized Topos
concept, and more specifically, of a Quantum Topos concept which is consistent with both
Quantum Logic and Quantum Algebras, being thus suitable as a framework for unifying
quantum field theories and physical modelling of complex systems and systems biology.

The problem of logical consistency between the quantum algebra and the Heyting logic
algebra as a candidate for quantum logic is here discussed next. The development of Quan-
tum Mechanics from its very beginnings both inspired and required the consideration of
specialized logics compatible with a new theory of measurements for microphysical systems.
Such a specialized logic was initially formulated by von Neumann and Birkhoff (1932) and
called ‘Quantum Logic’. Subsequent research on Quantum Logics (Chang, 1958; Genoutti,
1968; D. Chiara, 1968, 2004) resulted in several approaches that involve several types of
non-distributive lattice (algebra) for n–valued quantum logics. Thus, modifications of the
 Lukasiewicz Logic Algebras that were introduced in the context of algebraic categories by
Georgescu and Vraciu (1973), can provide an appropriate framework for representing quan-
tum systems, or– in their unmodified form- for describing the activities of complex networks
in categories of  Lukasiewicz Logic Algebras (Baianu, 1977).

14.5.2. Lattices and Von Neumann-Birkhoff (VNB) Quantum Logic: Definitions and Logical
properties. We commence here by giving the set-based Definition of a Lattice. An s–lattice
L, or a ‘set-based’ lattice, is defined as a partially ordered set that has all binary products
(defined by the s–lattice operation “

∧
”) and coproducts (defined by the s–lattice operation

“
∨

”), with the ”partial ordering” between two elements X and Y belonging to the s–lattice
being written as “X � Y ”. The partial order defined by � holds in L as X � Y if and only
if X = X

∧
Y (or equivalently, Y = X

∨
Y Eq.(3.1)(p. 49 of Mac Lane and Moerdijk, 1992)

Categorical Definition of a Lattice
Utilizing the category theory concepts defined in the Appendix, we need introduce a cate-

gorical definition of the concept of lattice that need be ‘set–free’ in order to maintain logical
consistency with the algebraic foundation of Quantum Logics and relativistic spacetime ge-
ometry. Such category–theoretical concepts unavoidably appear also in several sections of
this paper as they provide the tools for deriving very important, general results that link
Quantum Logics and Classical (Boolean) Logic, as well as pave the way towards a universal
theory applicable also to semi-classical, or mixed, systems. Furthermore, such concepts are
indeed applicable to measurements in complex biological networks, as it will be shown in
considerable detail in a subsequent paper in this volume (Baianu and Poli, 2007).

A lattice is defined as a category (see, for example: Lawvere, 1966; Baianu, 1970; Baianu et
al., 2004b) subject to all ETAC axioms, (but not subject, in general, to the Axiom of Choice
usually encountered with sets relying on (distributive) Boolean Logic), that has all binary
products and all binary coproducts, as well as the following ’partial ordering’ properties:

(i) when unique arrows X−→Y exist between objects X and Y in L such arrows will be
labelled by “� ”, as in “ X � Y ”;
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(ii) the coproduct of X and Y , written as “X
∨
Y ” will be called the “sup object, or “the

least upper bound”, whereas the product of X and Y will be written as “X
∧
Y ”,

and it will be called an inf object, or “the greatest lower bound”;

(iii) the partial order defined by � holds in L , as X � Y if and only if X = X
∧
Y (or

equivalently, Y = X
∨
Y ( p. 49 of Mac Lane and Moerdijk, 1992).

If a lattice L has 0 and 1 as objects, such that 0−→X−→1 (or equivalently, such that
0 � X � 1 ) for all objects X in the lattice L viewed as a category, then 0 and 1 are the
unique, initial, and respectively, terminal objects of this concrete category L. Therefore,
L has all finite limits and all finite colimits (p. 49 of Mac Lane and Moerdijk, 1992), and
is said to be finitely complete and co-complete. Alternatively, the lattice ’operations’ can
be defined via functors in a 2-category (for definitions of functors and 2-categories see, for
example, p. 50x of Mac Lane, 2000, p. xx of Brown, 1998, or Section 9 of Baianu et al.,
2004b), as follows:

(14.12)
∧

: L× L−→L ,
∨

: L× L→ L

and 0, 1 : 1→ L as a “lattice object” in a 2-category with finite products.

A lattice is called distributive if the following identity :

(14.13) X
∧

(Y
∨

Z) = (X
∧

Y )
∨

(X
∧

Z) .

holds for all X, Y, and Z objects in L. Such an identity also implies the dual distributive
lattice law:

(14.14) X
∨

(Y
∧

Z) = (X
∨

Y )
∧

(X
∨

Z) .

(Note how the lattice operators are ‘distributed’ symmetrically around each other when they
appear in front of a parenthesis.) A non-distributive lattice is not subject to either restriction
(13.13) or (13.14). An example of a non-distributive lattice is (cf. Pedicchio and Tholen,
2004):

(14.15) 1

A

??~~~~~~~~
B

OO

C

``@@@@@@@@

0

__@@@@@@@@

>>~~~~~~~~

OO

14.5.3. Definitions of an Intuitionistic Logic Lattice. A Heyting algebra, or Brouwerian lat-
tice, H, is a distributive lattice with all finite products and coproducts, and which is also
cartesian closed. Equivalently, a Heyting algebra can be defined as a distributive lattice
with both initial (0) and terminal (1) objects which has an ”exponential” object defined for
each pair of objects X, Y, written as: “X ⇒ Y ” or Y X , such that:

(14.16) Z = (X ⇒ Y ) ⇐= Z = XY ,
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In the Heyting algebra, X ⇒ Y is a least upper bound for all objects Z that satisfy the
condition Z = XY . Thus, in terms of a categorical diagram, the partial order in a Heyting
algebra can be represented as

(14.17) X =⇒ Y

X

::tttttttttt
Y

ddJJJJJJJJJJ

X
∧
Y

ddIIIIIIIII

::uuuuuuuuu

OO

A lattice will be called complete when it has all small limits and small colimits (e.g., small
products and coproducts, respectively). It can be shown (p.51 of Mac Lane and Moerdijk,
1992) that any complete and infinitely distributive lattice is a Heyting algebra.

14.5.4.  Lukasiewicz Quantum Logic (LQL). With all assertions of the type system A is
excitable to the i-th level and system B is excitable to the j-th level” on e can form a
distributive lattice, L (as defined above in subsection 3.1). The composition laws for the
lattice will be denoted by

⋃
and

⋂
. The symbol

⋃
will stand for the logical non-exclusive

‘or’, and
⋂

will stand for the logical conjunction ‘and’. Another symbol “� ” allows for the
ordering of the levels and is defined as the canonical ordering of the lattice. Then, one is
able to give a symbolic characterization of the system dynamics with respect to each energy
level i. This is achieved by means of the maps δt : L → L and N : L → L, (with N being
the negation). The necessary logical restrictions on the actions of these maps lead to an
n-valued  Lukasiewicz Algebra:

(I) There is a map N : L−→L, so that

(14.18) N(N(X)) = X ,

(14.19) N(X
⋃

Y ) = N(X)
⋂

N(Y )

and

(14.20) N(X
⋂

Y ) = N(X)
⋃

N(Y ) ,

for any X, Y ∈ L.

(II) There are (n− 1) maps δi : L−→L which have the following properties:

(a) δi(0) = 0, δi(1) = 1, for any 16i6n− 1;

(b) δi(X
⋃
Y ) = δi(X)

⋃
δi(Y ), δi(X

⋂
Y ) = δi(X)

⋂
δi(Y ),

for any X, Y ∈ L, and 16i6n− 1;

(c) δi(X)
⋃
N(δi(X)) = 1, δi(X)

⋂
N(δi(X)) = 0, for any X ∈ L;

(d) δi(X) ⊂ δ2(X) ⊂ ... ⊂ δ(n− 1)(X), for any X ∈ L;

(e) δi ∗ δj = δi for any 16i, j6n− 1;

(f) If δi(X) = δi(Y ) for any 16i6n− 1, then X = Y ;
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(g) δi(N(X)) = N(δj(X)), for i+ j = n.

(Georgescu and Vraciu, 1970).

The first axiom states that the double negation has no effect on any assertion concerning
any level, and that a simple negation changes the disjunction into conjunction and conversely.
The second axiom presents ten sub–cases that are summarized in equations (a) - (g). Sub–
case (IIa) states that the dynamics of the system is such that it maintains the structural
integrity of the system. It does not allow for structural changes that would alter the lowest
and the highest energy levels of the system. Thus, maps δ : L−→L are chosen to represent
the dynamic behaviour of the quantum or classical systems in the absence of structural
changes. Equation (IIb) shows that the maps (d) maintain the type of conjunction and
disjunction. Equations (IIc) are chosen to represent assertions of the following type: 〈the
sentence “a system component is excited to the i-th level or it is not excited to the same
level” is true〉, and 〈the sentence “a system component is excited to the i-th level and it is
not excited to the same level, at the same time” is always false〉.

Equation (IId) actually defines the actions of maps δt. Thus, Eq. (I) is chosen to represent
a change from a certain level to another level as low as possible, just above the zero level of
L. δ2 carries a certain level x in assertion X just above the same level in δ1(X), δ3 carries
the level x-which is present in assertion X–just above the corresponding level in δ2(X), and
so on. Equation (IIe) gives the rule of composition for the maps δt. Equation (IIf) states
that any two assertions that have equal images under all maps δt, are equal. Equation (IIg)
states that the application of δ to the negation of proposition X leads to the negation of
proposition δ(X), if i+ j = n.

In order to have the n-valued  Lukasiewicz Logic Algebra represent correctly the basic
behaviour of quantum systems (observed through measurements that involve a quantum
system interactions with a measuring instrument –which is a macroscopic object), several
of these axioms have to be significantly changed so that the resulting lattice becomes non-
distributive, possibly non-commutative, and also non–associative (Chiara, 2004).

On the other hand for classical systems, modelling with the unmodified  Lukasiewicz Logic
Algebra can include both stochastic and fuzzy behaviour. For an example of such models
the reader is referred to a previous publication (Baianu, 1977) modelling the activities of
complex genetic networks from a classical standpoint. One can also define as in (Georgescu
and Vraciu, 1970) the ‘centers’ of certain types of  Lukasiewicz n-Logic Algebras; then one
has the following important theorem for such Centered  Lukasiewicz n-Logic Algebras which
actually defines an equivalence relation.

Theorem 14.3. Adjointness Theorem (Georgescu and Vraciu, 1970). There exists an Ad-
jointness between the Category of Centered  Lukasiewicz n-Logic Algebras, CLuk–n, and the
Category of Boolean Logic Algebras (Bl).

Note : this adjointness (in fact, actual equivalence) relation between the Centered  Lukasiewicz
n-Logic Algebra Category and Bl has a logical basis: non(non(A)) = A in both Bl and
CLuk–n.

Conjecture 14.1. There exist adjointness relationships, respectively, between each pair of
the Centered Heyting Logic Algebra, Bl, and the Centered CLuk–n Categories.
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Remark 14.1. R1. Both a Boolean Logic Algebra and a Centered  Lukasiewicz Logic
Algebra can be represented as/are Heyting Logic algebras (the converse is, of course,
generally false!).

R2. The natural equivalence logic classes defined by the adjointness relationships in the
above Adjointness Theorem define a fundamental, ‘logical groupoid’ structure.

Note also that the above  Lukasiewicz Logic Algebra is distributive whereas the quantum
logic requires a non-distributive lattice of quantum ’events’. Therefore, in order to generalize
the standard  Lukasiewicz Logic Algebra to the appropriate Quantum  Lukasiewicz Logic
Algebra, LQL, axiom I needs modifications, such as : N(N(X)) = Y 6= X (instead of the
restrictive identity N(N(X)) = X, and, in general, giving up its ‘distributive’ restrictions,
such as

(14.21) N(X
⋃

Y ) = N(X)
⋂

N(Y ) and N(X
⋂

Y ) = N(X)
⋃

N(Y ) ,

for any X, Y in the  Lukasiewicz Quantum Logic Algebra, LQL, whenever the context, ‘ref-
erence frame for the measurements’, or ‘measurement preparation’ interaction conditions
for quantum systems are incompatible with the standard ’negation’ operation N of the
 Lukasiewicz Logic Algebra that remains however valid for classical systems, such as various
complex networks with n-states (cf. Baianu, 1977).

14.5.5. Quantum Fields, General Relativity and Symmetries. As the experimental findings
in high-energy physics–coupled with theoretical studies– have revealed the presence of new
fields and symmetries, there appeared the need in modern physics to develop systematic
procedures for generalizing space–time and Quantum State Space (QSS) representations in
order to reflect these new concepts.

In the General Relativity (GR) formulation, the local structure of space–time, charac-
terized by its various tensors (of energy–momentum, torsion, curvature, etc.), incorporates
the gravitational fields surrounding various masses. In Einstein’s own representation, the
physical space–time of GR has the structure of a Riemannian R4 space over large distances,
although the detailed local structure of space–time – as Einstein perceived it – is likely to
be significantly different.

On the other hand, there is a growing consensus in theoretical physics that a valid theory
of Quantum Gravity requires a much deeper understanding of the small(est)–scale struc-
ture of Quantum Space–Time (QST) than currently developed. In Einstein’s GR theory
and his subsequent attempts at developing a unified field theory (as in the space concept
advocated by Leibnitz), space-time does not have an independent existence from objects,
matter or fields, but is instead an entity generated by the continuous transformations of
fields. Hence, the continuous nature of space–time was adopted in GR and Einstein’s subse-
quent field theoretical developments. Furthermore, the quantum, or ‘quantized’, versions of
space-time, QST, are operationally defined through local quantum measurements in general
reference frames that are prescribed by GR theory. Such a definition is therefore subject
to the postulates of both GR theory and the axioms of Local Quantum Physics. We must
emphasize, however, that this is not the usual definition of position and time observables in
‘standard’ QM. Therefore, the general reference frame positioning in QST is itself subject
to the Heisenberg uncertainty principle, and therefore it acquires through quantum mea-
surements, a certain ‘fuzziness’ at the Planck scale which is intrinsic to all microphysical
quantum systems,
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14.6. Measurement Theories.

14.6.1. Measurements and Phase–Space. We have already mentioned the issue of quantum
measurement and now we offer a sketch of the background to its origins and where it may
lead. Firstly, the question of measurement in quantum mechanics (QM) and quantum field
theory (QFT) has flourished for about 75 years. The intellectual stakes have been dramat-
ically high, and the problem rattled the development of 20th (and 21st) century physics at
the foundations. Up to 1955, Bohr’s Copenhagen school dominated the terms and practice
of quantum mechanics having reached (partially) eye–to–eye with Heisenberg on empirical
grounds, although not the case with Einstein who was firmly opposed on grounds on incom-
pleteness with respect to physical reality. Even to the present day, the hard philosophy of
this school is respected throughout most of theoretical physics. On the other hand, post
1955, the measurement problem adopted a new lease of life when von Neumann’s beauti-
fully formulated QM in the mathematically rigorous context of Hilbert spaces of states. As
Birkhoff and von Neumann (1936) remark:

“There is one concept which quantum theory shares alike with classical me-
chanics and classical electrodynamics. This is the concept of a mathematical
“phase–space”. According to this concept, any physical system C is at each
instant hypothetically associated with a “point” in a fixed phase–space Σ;
this point is supposed to represent mathematically, the “state” of C, and the
“state” of C is supposed to be ascertained by “maximal” observations.”

In this respect, pure states are considered as maximal amounts of information about the sys-
tem, such as in standard representations using position–momenta coordinates (Dalla Chiara
et al. 2004).

The concept of ‘measurement’ has been argued to involve the influence of the Schrödinger
equation for time evolution of the wave function ψ, so leading to the notion of entanglement
of states and the indeterministic reduction of the wave packet. Once ψ is determined it is
possible to compute the probability of measurable outcomes, at the same time modifying ψ
relative to the probabilities of outcomes and observations eventually causes its collapse. The
well–known paradox of Schrödinger’s cat and the Einstein–Podolsky–Rosen (EPR) experi-
ment are questions mooted once dependence on reduction of the wave packet is jettisoned,
but then other interesting paradoxes have shown their faces. Consequently, QM opened the
door to other interpretations such as ‘the hidden variables’ and the Everett–Wheeler assigned
measurement within different worlds, theories not without their respective shortcomings. In
recent years some countenance has been shown towards Cramer’s ‘advanced–retarded waves’
transactional formulation (Cramer, 1980) where ψψ∗ corresponds to a probability that a
wave transaction has been finalized (‘the quantum handshake’).

Let us now turn to another facet of quantum measurement. Note firstly that QFT pure
states resist description in terms of field configurations since the former are not always
physically interpretable. Algebraic quantum field theory (AQFT) as expounded by Roberts
(2004) points to various questions raised by considering theories of (unbounded) operator
–valued distributions and nets of von Neumann algebras. Using in part a gauge theoretic
approach, the idea is to regard two field theories as equivalent when their associated nets
of observables are isomorphic. More specifically, AQFT considers taking (additive) nets of
field algebras O−→F(O) over subsets of Minkowski space, which among other properties,
enjoy Bose–Fermi commutation relations. Although at first glances there may be analogues
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with sheaf theory, these analogues are severely limited. The typical net does not give rise to
a presheaf because the relevant morphisms are in reverse. Closer then is to regard a net as
a precosheaf, but then the additivity does not allow proceeding to a cosheaf structure. This
may reflect upon some incompatibility of AQFT with those aspects of quantum gravity (QG)
where for example sheaf–theoretic/topos approaches are advocated (as in e.g. Butterfield
and Isham, 1999, 2004).

14.6.2. The Kochen-Specker (KS) Theorem. Arm–in–arm with the measurement problem
goes a problem of ‘the right logic’, for quantum mechanical/complex biological systems and
quantum gravity. It is well–known that classical Boolean truth–valued logics are patently
inadequate for quantum theory. Logical theories founded on projections and self–adjoint
operators on Hilbert space H do run into certain problems. One ‘no–go’ theorem is that
of Kochen–Specker (KS) which for dimH > 2, does not permit an evaluation (global) on
a Boolean system of ‘truth values’. In Butterfield and Isham (1999)–(2004), self–adjoint
operators on H with purely discrete spectrum were considered. The KS theorem is then
interpreted as saying that a particular presheaf does not admit a global section. Partial val-
uations corresponding to local sections of this presheaf are introduced, and then generalized
evaluations are defined. The latter enjoy the structure of a Heyting algebra and so comprise
an intuitionistic logic. Truth values are describable in terms of sieve–valued maps, and the
generalized evaluations are identified as subobjects in a topos. The further relationship with
interval valuations motivates associating to the presheaf a von Neumann algebra where the
supports of states on the algebra determines this relationship.

The above considerations lead directly to the next subsections which proceeds from linking
quantum measurements with Quantum Logics, and then to the construction of spacetime
structures on the basis of Quantum Algebra/Algebraic Quantum Field Theory (AQFT)
concepts ; such constructions of QST representations as those presented in Sections 4 and
5 of Baianu et al. (2007) are based on the existing QA, AQFT and Algebraic Topology
concepts, as well as several new QAT concepts that are being developed in this paper. For
the QSS detailed properties, and also the rigorous proofs of such properties, the reader is
referred to the recent book by Alfsen and Schultz, 2003). We utilized in Sections 6 and 7 of
loc.cit. a significant amount of recently developed results in Algebraic Topology (AT), such
as for example, the Higher Homotopy van Kampen theorem (see the relevant subsection in the
Appendix for further mathematical details) to illustrate how constructions of QSS and QST,
non-Abelian representations can be either generalized or extended on the basis of GvKT.
We also employ the categorical form of the CW–complex Approximation (CWA) theorem)
in Section 7 to both systematically construct such generalized representations of quantum
space–time and provide, together with GvKT, the principal methods for determining the
general form of the fundamental algebraic invariants of their local or global, topological
structures. The algebraic invariant of Quantum Loop (such as, the graviton) Topology in
QST is defined in Section 5 as the Quantum Fundamental Groupoid (QFG) of QST which can
be then calculated– at least in principle – with the help of AT fundamental theorems, such
as GvKT, especially for the relevant case of spacetime representations in non–commutative
algebraic topology.

Several competing, tentative but promising, frameworks were recently proposed in terms
of categories and the ’standard’ topos for Quantum, Classical and Relativistic observation
processes. These represent important steps towards developing a Unified Theory of Quantum
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Gravity, especially in the context-dependent measurement approach to Quantum Gravity
(Isham, 1998; Isham and Butterfield, 1999, Isham, 2003). The possibility of a unified theory
of measurement was suggested in the context of both classical, Newtonian systems and
quantum gravity (Isham, 1998; Isham and Butterfield, 1999; Butterfield and Isham, 1999).
From this standpoint, Isham and Butterfield (1997, 1999) proposed to utilize the concept
of ’standard’ topos (Mac Lane and Moerdijk, 1996) for further development of an unified
measurement theory and quantum gravity (see also, Butterfield and Isham, 1999 for the
broader aspects of this approach). Previous and current approaches to quantum gravity
in terms of categories and higher dimensional algebra (especially, 2-categories) by John
Baez (1998, 2000, 2002) should also be mentioned in this context. Furthermore, time -as in
Minkowski ’spacetime’- is not included in this mathematical concept of “most general space”
and, therefore, from the beginning such quantum gravity theories appear to be heavily skewed
in favor of the quantum aspects, at the expense of time as considered in the space-time of
general relativity theory.

The first choice of logic in such a general framework for quantum gravity and context-
dependent measurement theories was intuitionistic related to the set-theoretic and presheaf
constructions utilized for a context-dependent valuation theory (Isham, 1998; 2003). The
attraction, of course, comes from the fact that a topos is arguably a very general, mathemat-
ical model of a ‘generalized space’ that involves an intuitionistic logic algebra in the form of
a special distributive lattice called a Heyting Logic Algebra, as was discussed earlier.

14.7. The Basic Principle of Quantization. At the microscopic/indeterministic level
certain physical quantities assume only discrete values. The means of quantization describes
the passage from a classical to an associated quantum theory where, at the probabilistic level,
Bayesian rules are replaced by theorems on the composition of amplitudes. The classical
situation is considered as ‘commutative’: one considers a pair (A,Π) where typically A is
a commutative algebra of a class of continuous functions on some topological space and Π
is a state on A. Quantization involves the transference to a ‘non-commutative’ situation
via an integral transform: (A,Π)−→(Aad, ψ) where Aad denotes the self-adjoint part of the
non-commutative Banach algebra A = L(H), the bounded linear operators (observables) on
a Hilbert space H. In this case, the state ψ can be specified as ψ(T ) = Tr(ρT), for T in L(H)
and where ρ is a density operator. Alternative structures may involve a Poisson manifold
(with Hamiltonian) and (Aad, ψ) possibly with time evolution. Such quantization procedures
are realized by the transforms of Weyl-Heisenberg, Berezin, Wigner-Weyl-Moyal, along with
certain variants of these. Problematic can be the requirements that the adopted quantum
theory should converge to the clasical limlit, as }−→0, meaning that in the Planck limit, } is
small in relationship to other relevant quantities of the same dimension (Landsman, 1998).

14.8. Quantum Effects. Let H be a (complex) Hilbert space (with inner product denoted
〈 , 〉) and L(H) the bounded linear operators on on H . We place a natural partial ordering
“6” on L(H) by S 6 T if

〈Sψ, ψ〉6〈Tψ, ψ〉 , for all ψ ∈ H .

In the terminology of Gudder (2004), an operator A ∈ H is said to represent a quantum
effect if 0 6 A 6 I . Let E(H) denote the set of quantum effects on H . Next, let
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P (H) = {P ∈ L(H) : P 2 = P , P = P ∗} ,
denote the space of projection operators on H. The space P (H) ⊆ E(H) constitutes the
sharp quantum effects on H . Likewise a natural partial ordering “6” can be placed on
P (H) by defining P 6 Q if PQ = P .

A quantum state is specified in terms of a probability measure m : P (H)−→[0, 1], where
m(I) = 1 and if Pi are mutually orthogonal, then m(

∑
Pi) =

∑
m(Pi) . The corresponding

quantum probabilities and stochastic processes, may be either “sharp” or “fuzzy”. A brief
mathematical formulation following Gudder (2004) accounts for these distinctions as will be
explained next.

Let A(H) be a σ–algebra generated by open sets and consider the pure states as denoted
by Ω(H) = {ω ∈ H : ‖ω‖ = 1} . We have then relative to the latter an effects space
E(Ω(H),A(H)) less “sharp” than the space of projections P (H) and thus comprising an
entity which is “fuzzy” in nature. For a given unitary operator U : H−→H, a sharp observable
XU is expressed abstractly by a map

XU : A(H)−→E(Ω(H),A(H)) ,

for which XU(A) = IU−1(A) .

Suppose then we have a dynamical group (t ∈ R) satisfying U(s+t) = U(s)U(t), such as in
the case U(t) = exp(−itH) where H denotes the energy operator of Schrödinger’s equation.
Such a group of operators extends XU as above to a fuzzy (quantum) stochastic process

X̃U(t) : A(H)−→E(Ω(H),A(H)) .

One can thus define classes of analogous quantum processes with ‘similar’ dynamic behaviour
(see also our discussion in the previous Section 7 ) by employing dynamical group isomor-
phisms, whereas comparisons between dissimilar quantum processes could be represented by
dynamical group homomorphisms.

14.9. Groupoids. Recall that a groupoid G is a small category in which every morphism is
an isomorphism; we denote the set of objects by X = Ob(G) . One often writes Gyx for the
set of morphisms in G from x to y .

A topological groupoid is a groupoid internal to the category Top . More specifically this
consists of a space G, a distinguished space G(0) = Ob(G) ⊂ G, called the space of objects of
G, together with maps

(14.22) r, s : G
r //
s

// G(0)

called the range and source maps respectively, together with a law of composition

(14.23) ◦ : G(2) := G×G(0) G = { (γ1, γ2) ∈ G× G : s(γ1) = r(γ2) } −→ G ,

such that the following hold :

(1) s(γ1 ◦ γ2) = r(γ2) , r(γ1 ◦ γ2) = r(γ1) , for all (γ1, γ2) ∈ G(2) .
(2) s(x) = r(x) = x , for all x ∈ G(0) .
(3) γ ◦ s(γ) = γ , r(γ) ◦ γ = γ , for all γ ∈ G .
(4) (γ1 ◦ γ2) ◦ γ3 = γ1 ◦ (γ2 ◦ γ3) .
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(5) Each γ has a two–sided inverse γ−1 with γγ−1 = r(γ) , γ−1γ = s(γ) .

For u ∈ Ob(G), the space of arrows u−→u forms a group Gu, called the isotropy group of G
at u.

14.10. The concept of a Groupoid Atlas. Motivation for the notion of groupoid atlas
comes from considering families of group actions, in the first instance on the same set. As
a notable instance, a subgroup H of a group G gives rise to a group action of H on G
whose orbits are the cosets of H in G. However a common situation is to have more than
one subgroup of G, and then the various actions of these subgroups on G are related to
the actions of the intersections of the subgroups. This situation is handled by the notion of
Global Action, as defined in Bak 2000. A global action A consists of the following data:

(a) an indexing set ΨA called the coordinate system of A, together with a reflexive relation
6 on ΨA;

(b) a set XA and a family of subsets (XA)α of XA for a ∈ ΨA;
(c) a family of group actions (GA)α y (XA)α, i.e. maps (GA)α× (XA)α−→(XA)α, with the

usual group action axioms, for all a ∈ ΨA;
(d) For each pair α6β in ΨA, a group homomorphism

(GA)α6β : (GA)α−→(GA)β .

This data must satisfy the following axioms:

(a) If α6β in ΨA, then (GA)α leaves (XA)α ∩ (XA)β invariant.
(b) For each pair α6β, if σ ∈ (GA)α, and x ∈ (XA)α ∩ (XA)β, then σx = (GA)α6β(σ)x .

The diagram GA : ΨA−→ Groups, is called the global group of A, and the set XA is called
the enveloping set or the underlying set of A.

Suppose we have a group action G y X. Then we have a category Act(G,X) with object
set X and G × X its arrow set. It is straightforward to show that Act(G,X) is actually a
groupoid (Bak et al., 2006). Effectively, given an arrow (g, x), we have source and target
defined respectively by s(g, x) = x, and t(g, x) = g ·x, represented by (g, x) : x→ g ·x . The
composition of (g, x) and (g′, x′) is defined when the target of (g, x) is the source of (g′, x′),
i.e. x′ = g · x . This yields a composition (g′g, x) as shown in:

(14.24) x
(g,x)

// g · x (g′,gx)
// g′g · x

We have an identity at x given by (1, x), and for any element (g, x) its inverse is (g−1, g ·x) . A
key point in this construction is that the orbits of a group action then become the connected
components of a groupoid. Also this enables relations with other uses of groupoids.

The above account motivates the following. A groupoid atlas A on a set XA consists of a
family of ‘local groupoids’ (GA) defined with respective object sets (XA)α taken to be subsets
of XA. These local groupoids are indexed by a set ΨA, again called the coordinate system
of A which is equipped with a reflexive relation denoted by 6 . This data is to satisfy the
following conditions (Bak et al., 2006) :

(1) If α6β in ΨA, then (XA)α ∩ (XA)β is a union of components of (GA), that is, if x ∈
(XA)α ∩ (XA)β and g ∈ (GA)α acts as g : x−→y, then y ∈ (XA)α ∩ (XA)β .
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(2) If α6β in ΨA, then there is a groupoid morphism defined between the restrictions of the
local groupoids to intersections

(GA)α|(XA)α ∩ (XA)β−→(GA)β|(XA)α ∩ (XA)β ,

and which is the identity morphism on objects.

14.11. The van Kampen Theorem and Its Generalizations to Groupoids and
Higher Homotopy. The van Kampen Theorem 2.1 has an important and also anoma-
lous rôle in algebraic topology. It allows computation of an important invariant for spaces
built up out of simpler ones. It is anomalous because it deals with a nonabelian invariant,
and has not been seen as having higher dimensional analogues.

However Brown, 1967, found a generalisation of this theorem to groupoids, as follows. In
this, π1(X,X0) is the fundamental groupoid of X on a set X0 of base points: so it consists
of homotopy classes rel end points of paths in X joining points of X0 ∩X.

Theorem 14.4 (The Van Kampen Theorem for the Fundamental Groupoid, (Brown,1967)).
Let the space X be the union of open sets U, V with intersection W , and let X0 be a subset
of X meeting each path component of U, V,W . Then
(C) (connectivity) X0 meets each path component of X, and
(I) (isomorphism) the diagram of groupoid morphisms induced by inclusions:

(14.25) π1(W,X0)
i //

j

��

π1(U,X0)

k

��
π1(V,X0)

l
//π1(X,X0)

is a pushout of groupoids.

Theorem 2.1 discussed in Section 2 is the special case when X0 = {xo}. From Theorem ??
one can compute a particular fundamental group π1(X, x0) using combinatorial information
on the graph of intersections of path components of U, V,W . For this it is useful to develop
some combinatorial groupoid theory, as in Brown, 2006, and Higgins, 1971. Notice two
special features of this method:
(i) The computation of the invariant one wants to obtain, the fundamental group, is obtained
from the computation of a larger structure, and so part of the work is to give methods for
computing the smaller structure from the larger one. This usually involves non canonical
choices, such as that of a maximal tree in a connected graph.
(ii) The fact that the computation can be done is surprising in two ways: (a) The funda-
mental group is computed precisely, even though the information for it uses input in two
dimensions, namely 0 and 1. This is contrary to the experience in homological algebra and
algebraic topology, where the interaction of several dimensions involves exact sequences or
spectral sequences, which give information only up to extension, and (b) the result is a non
commutative invariant, which is usually even more difficult to compute precisely. Thus exact
sequences by themselves cannot show that a group is given as an HNN-extension: however
such a description may be obtained from a pushout of groupoids, generalising the pushout
of groupoids in diagram (see Brown, 2006).
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The reason for this success seems to be that the fundamental groupoid π1(X,X0) contains
information in dimensions 0 and 1, and therefore it can adequately reflect the geometry
of the intersections of the path components of U, V,W and the morphisms induced by the
inclusions of W in U and V . This fact also suggested the question of whether such methods
could be extended successfully to higher dimensions.

The following special case shows how the groupoid van Kampen Theorem gives an analogy
between geometry and algebra. Let X be the circle S1; choose U, V to be slightly extended
semicircles including X0 = {+1,−1}. Then W = U ∩ V is not path connected and so it is
not clear where to choose a single base point. The day is saved by hedging one’s bets, and
using the two base points {+1,−1}. Now a key feature of groupoid theory is the groupoid
I, the indiscrete groupoid on two objects 0, 1, which acts as a unit interval object in the
category of groupoids. It also plays a rôle analogous to that of the infinite cyclic group Ç
in the category of groups. One then compares the pushout diagrams, the first in spaces, the
second in groupoids.

{0, 1}

��

// {0}

��
[0, 1] // S1

spaces

{0, 1}

��

// {0}

��
I // Z

groupoids

The left hand diagram shows the circle as obtained from the unit interval [0, 1] by identifying,
in the category of spaces, the two end points 0, 1. The right hand diagram shows the infinite
group of integers Z as obtained from the finite groupoid I, again by identifying 0, 1, but this
time in the category of groupoids. Thus groupoid theory satisfactorily models this geometry.

The groupoid I with its special arrow ι : 0→ 1 has also the following property: if g is an
arrow of a groupoid G then there is a unique morphism ĝ : I → G whose value on ι is g.
Thus the groupoid I with ι plays for groupoids the same role as does for groups the infinite
cyclic group Z with the element 1: they are each free on one generator in their respective
category. However we can draw a complete diagram of the elements of I as follows:

088
ι

))
1

ι−1

ii ff

whereas we cannot draw a complete picture of the elements of Z.
The fundamental group is a kind of anomaly in algebraic topology because of its non-

Abelian nature. Topologists in the early part of the 20th century were aware that:

(1) The non–commutativity of the fundamental group was useful in applications; for path
connected X there was an isomorphism

H1(X) ∼= π1(X, x)ab.

(2) The abelian homology groups existed in all dimensions.

Consequently there was a desire to generalize the non-abelian fundamental group to all
dimensions.
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14.11.1. The Generalized Van Kampen Theorem (GvKT) for Covering Spaces and Covering
Groupoids. There is yet another approach to the Van Kampen Theorem which goes via the
theory of covering spaces, and the equivalence between covering spaces of a reasonable space
X and functors π1(X)−→Set (Brown, 2005). See also an example (Douady and Douady,
1979) that consists in an exposition of the relation of this approach with the Galois theory.
Another paper (Brown and Janelidze, 1997) gives a general formulation of conditions for the
theorem to hold in the case X0 = X in terms of the map U t V → X being an ‘effective
global descent morphism’ (the theorem is given in the generality of lextensive categories).
The latter work has been developed for topoi (Bunge and Lack, 2003). However, analogous
interpretations of the topos work for higher dimensional Van Kampen theorems are not
known so far.

The justification for changing from groups to groupoids is here threefold:
• the elegance and power of the results obtained with groupoids;
• the increased linking with other uses of groupoids (Brown, 2004), and
• the opening out of new possibilities in higher dimensions, which allowed for new results,
calculations in homotopy theory, and also suggested new algebraic constructions.

The notion of the fundamental groupoid of a space goes back at least to Reidemeister
(1934), and an exposition of the main theorems of 1-dimensional homotopy theory in terms
of the fundamental groupoid π1(X,A) on a set A of base points was given by the first author
in 1968, 1988 (see Brown et al. 2007). This was inspired by work of Philip Higgins in
applying groupoids to group theory, (Higgins, 1966). The success of the applications to 1-
dimensional homotopy theory, as perceived by the writer, led to the idea of using groupoids
in higher homotopy theory, as announced in Brown (1967). There was an idea of a proof
in search of a theorem. The chief obstacle was constructing and applying higher homotopy
groupoids. The overall aim became subsumed in the following diagram:

(14.26)

topological data
Ξ //

U
((PPPPPPPPPPPPPPPPPP

algebraic data
B

oo

B
wwnnnnnnnnnnnnnnnnn

topological spaces

The aim is to find suitable categories of topological data, algebraic data and functors as
above, where U is the forgetful functor and B = U ◦ B, with the following properties:

(1) the functor Ξ is defined homotopically and satisfies a higher homotopy van Kampen
theorem (HHvKT), in that it preserves certain colimits;

(2) Ξ ◦ B is naturally equivalent to 1;
(3) there is a natural transformation 1−→B ◦ Ξ preserving some homotopical information.

The purpose of (1) is to allow some calculation of Ξ. This condition also rules out at present
some widely used algebraic data, such as simplicial groups or groupoids, since for those cases
no such functor Ξ is known. (2) shows that the algebraic data faithfully captures some of
the topological data. The imprecise (3) gives further information on the algebraic modelling.
The functor B should be called a classifying space functor because it often generalises the
classifying space of a group or groupoid.
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We explain more about the HHvKT, in the case when the topological data is that of a
filtered topological space

(14.27) X∗ : X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · · ⊆ X.

The advantage of this situation is to hope to obtain global information on X by climbing up
the ‘ladder’ of the subspaces Xn, which again may be considered ‘local’. But now we consider
‘local’ in another sense by supposing that there is given a cover U = {Uλ}λ∈Λ of X such that

the interiors of the sets of U coverX. For each ζ ∈ Λn we set U ζ = U ζ1∩· · ·∩U ζn , U ζ
i = U ζ∩Xi.

Then U ζ
0 ⊂ U ζ

1 ⊂ · · · is called the induced filtration U ζ
∗ of U ζ . Thus we can describe the

filtered space X∗ as a colimit in terms of the following diagram:

(14.28)
⊔
ζ∈Λ2 U ζ

∗
a //

b
//
⊔
λ∈Λ U

λ
∗

c // X∗

Here
⊔

denotes disjoint union; a, b are determined by the inclusions aζ : Uλ ∩Uµ−→Uλ, bζ :
Uλ ∩Uµ−→Uµ for each ζ = (λ, µ) ∈ Λ2; and c is determined by the inclusions cλ : Uλ−→X.
We would like this diagram to express that X∗ is built from all the local filtered spaces
Uλ
∗ by gluing them along the intersections U ζ

∗ = Uλ
∗ ∪ Uµ

∗ whenever ζ = (λ, µ). The useful
categorical term for this is that diagram (??) is a coequaliser diagram in the category of
filtered spaces.

We would like to turn this topological information into algebraic information. to enable
us to understand and to calculate. So we apply the functor Ξ and if it preserves disjoint
union we have the following diagram:

(14.29)
⊔
ζ∈Λ2 Ξ(U ζ

∗ )
a //

b
//
⊔
λ∈Λ Ξ(Uλ

∗ )
c // Ξ(X∗)

We would like this diagram (??) to be a coequaliser diagram in our category of algebraic
data. This is not true in general but needs an extra condition, which we call connected
for that topological data, not only on the Uλ

∗ but on all finite intersections of these. The
conclusion of the HHvKT is then the important fact that X∗ is also connected, and that
diagram (??)is indeed a coequaliser diagram. This implies that the global algebraic invariant
ΞX∗ is completely determined by the local algebraic invariants ΞUλ

∗ , and the way these are
glued together using the information on the ΞU ζ

∗ . Note that this is not a reductionist result:
the whole is not just made up of its parts, but, as is only sensible, is made up of its parts
and the way they are put together.

In the case the open cover consists of two elements, then the above coequaliser reduces to
a pushout, and so includes the cases of the van Kampen Theorem considered earlier.

A feature of this scheme is that the algebraic data that we use has structure in a range of
dimensions. This is necessary for homotopy theory since change in a low dimension can con-
siderably affect higher dimensional behaviour. We do not define the connectivity condition
precisely here, but note that while it does considerably restrict the range of applications,
it still allows for new proofs of classical theorems of homotopy theory, such as the relative
Hurewicz theorem,and allows allows for totally new results, including nonabelian results in
dimension 2.

The format of the above coequaliser (??) is similar to diagrams appearing in Grothendieck’s
descent theory, but which extend to the left indefinitely. That theory is a very sophisticated
local-to-global theory. This is perhaps indicative for future work.
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The examples of topological data for which these schemes are known to work are:

topological data algebraic data
spaces with base point groups

spaces with a set of base points groupoids
filtered spaces crossed complexes

n-cubes of pointed spaces catn-groups
Hausdorff spaces double groupoids with connections

In fact crossed complexes are equivalent to a bewildering array of other structures, which
are important for applications (Brown, 1999). Catn-groups are also equivalent to crossed
n-cubes of groups. The construction of the equivalences and of the functors Ξ in all these
cases is difficult conceptually and technically. The general philosophy is that one type of
category is sufficiently geometric to allow for the formulation and proof of theorems, in a
higher dimensional fashion, while another is more ‘linear’ and suitable for calculation. The
transformations between the two forms give a kind of synaethesia. The classifying space
constructions are also significant, and allow for information on the homotopy classification
of maps.

From the ontological point of view, these results indicate that it is by no means obvious
what algebraic data will be useful to obtain precise local-to-global results, and indeed new
forms of this data may have to be constructed for specific situations. These results do not
give a TOE, but do give a new way of obtaining new information not obtainable by other
means, particularly when this information is in a non commutative form. The study of these
types of results is not widespread, but will surely gain attention as their power becomes
better known.

In Algebraic Topology crossed complexes have several advantages such as:

• They are good for modelling CW -complexes. Free crossed resolutions enable cal-
culations with small CW -models of K(G, 1)s and their maps (Brown and Razak,
1999).
• Also, they have an interesting relation with the Moore complex of simplicial groups

and of simplicial groupoids.
• They generalise groupoids and crossed modules to all dimensions. Moreover, the nat-

ural context for the second relative homotopy groups is crossed modules of groupoids,
rather than groups.
• They are convenient for calculation, and the functor Π is classical, involving relative

homotopy groups.
• They provide a kind of ‘linear model’ for homotopy types which includes all 2-types.

Thus, although they are not the most general model by any means (they do not con-
tain quadratic information such as Whitehead products), this simplicity makes them
easier to handle and to relate to classical tools. The new methods and results ob-
tained for crossed complexes can be used as a model for more complicated situations.
For example, this is how a general n-adic Hurewicz Theorem was found (Brown and
Loday, 1987b)
• Crossed complexes have a good homotopy theory, with a cylinder object, and homo-

topy colimits. (A homotopy classification result generalises a classical theorem of
Eilenberg-Mac Lane).
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• They are close to chain complexes with a group(oid) of operators, and related to
some classical homological algebra (e.g. chains of syzygies). In fact if SX is the
simplicial singular complex of a space, with its skeletal filtration, then the crossed
complex Π(SX) can be considered as a slightly non commutative version of the
singular chains of a space.

For more details on these points, we refer to Brown, 2004.

14.12. Construction of the Homotopy Double Groupoid of a Hausdorff Space. In
the previous section, we mentioned that higher homotopy groupoids have been constructed
for filtered spaces and for n-cubes of spaces. It is also possible to construct a homotopy
double groupoid for a Hausdorff space, and prove a higher homotopy van Kampen theorem
for this functor. This illustrates the interest and difficulty of extending this construction to
other situations, such as smooth manifolds, or for Quantum Axiomatics.

We shall begin by recalling the construction of The Homotopy Double Groupoid ρ�(X) as
adapted from Brown, Hardie, Kamps and Porter (2002), and the reader should refer to that
source for complete details.

14.13. The singular cubical set of a topological space. We shall be concerned with
the low dimensional part (up to dimension 3) of the singular cubical set

R�(X) = (R�n (X), ∂−i , ∂
+
i , εi)

of a topological space X. We recall the definition (cf. Brown and Hardie, 1976). For n > 0
let

R�n (X) = Top(In, X)

denote the set of singular n–cubes in X, i.e. continuous maps In −→ X, where I = [0, 1] is
the unit interval of real numbers. We shall identify R�0 (X) with the set of points of X. For
n = 1, 2, 3 a singular n–cube will be called a path, resp. square, resp. cube, in X. The face
maps

∂−i , ∂
+
i : R�n (X) −→ R�n−1(X) (i = 1, . . . , n)

are given by inserting 0 resp. 1 at the ith coordinate whereas the degeneracy maps

εi : R�n−1(x) −→ R�n (X) (i = 1, . . . , n)

are given by omitting the ith coordinate. The face and degeneracy maps satisfy the usual
cubical relations (cf Brown and Higgins (1981); Kamps and Porter (1997), § 1.1; § 5.1).
A path a ∈ R�1 (X) has initial point a(0) and endpoint a(1). We will use the notation
a : a(0) ' a(1). If a, b are paths such that a(1) = b(0), then we denote by a+ b : a(0) ' b(1)
their concatenation, i.e.

(a+ b)(s) =

{
a(2s) 0 6 s 6 1

2
b(2s− 1) 1

2
6 s 6 1

If x is a point of X, then ε1(x) ∈ R�1 (X), denoted ex, is the constant path at x, i.e.

ex(s) = x for all s ∈ I.
If a : x ' y is a path in X, we denote by −a : y ' x the path reverse to a, i.e.

(−a)(s) = a(1− s) for s ∈ I. In the set of squares R�2 (X) we have two partial compositions
+1 (vertical composition) and +2 ( horizontal composition) given by concatenation in the
first resp. second variable. Similarly, in the set of cubes R�3 (X) we have three partial
compositions +1,+2,+3.
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The standard properties of vertical and horizontal composition of squares are listed in
Brown and Hardie (1976) §1. In particular we have the following interchange law. Let
u, u′, w, w′ ∈ R�2 (X) be squares, then

(u+2 w) +1 (u′ +2 w
′) = (u+1 u

′) +2 (w +1 w
′)

whenever both sides are defined. More generally, we have an interchange law for rectangular
decomposition of squares. In more detail, for positive integers m,n let ϕm,n : I2 −→ [0,m]×
[0, n] be the homeomorphism (s, t) 7−→ (ms, nt). An m×n subdivision of a square u : I2 −→
X is a factorization u = u′, ϕm,n; its parts are the squares uij : I2 −→ X defined by

uij(s, t) = u′(s+ i− 1, t+ j − 1) .

We then say that u is the composite of the array of squares (uij), and we use matrix notation
u = [uij]. Note that as in §1, u +1 u

′, u +2 w and the two sides of the interchange law can
be written respectively as [

u
u′

]
, [u w],

[
u w u′ w′

]
Finally, connections :

Γ−,Γ+ : R�1 (X) −→ R�2 (X)

are defined as follows. If a ∈ R�1 (X) is a path, a : x ' y, then let

Γ−(a)(s, t) = a(max(s, t)); Γ+(a)(s, t) = a(min(s, t)).

The full structure of R�(X) as a cubical complex with connections and compositions has
been exhibited in (Al-Agl, Brown and Steiner, 2002).

14.13.1. Thin squares. In the setting of a geometrically defined double groupoid with con-
nection, as in Brown and Hardy (1976), (resp. Brown, Hardie, Kamps and Porter, 2002),
there is an appropriate notion of geometrically thin square. It is proved in Brown and Hardy
(1976) as Theorem 5.2 (resp. Brown, Hardie, Kamps and Porter, 2002, Proposition 4), that
in the cases given there, geometrically and algebraically thin squares coincide. In our context
the explicit definition is as follows:

Definition 14.3. A square u : I2 −→ X in a topological space X is thin if there is a
factorisation of u:

u : I2 Φu−→ Ju
pu−→ X,

where Ju is a tree and Φu is piecewise linear (PWL, see below) on the boundary ∂I2 of I2.

Here, by a tree, we mean the underlying space |K| of a finite 1-connected 1-dimensional
simplicial complex K.

A map Φ : |K| −→ |L| where K and L are (finite) simplicial complexes is PWL (piecewise
linear) if there exist subdivisions of K and L relative to which Φ is simplicial.

Let u be as above, then the homotopy class of u relative to the boundary ∂I2 of I is called
a double track. A double track is thin if it has a thin representative.
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14.14. The Homotopy Double Groupoid of a Hausdorff space. The full data for the
homotopy double groupoid, ρ�(X), will be denoted by

(ρ�2 (X),ρ�1 (X), ∂−1 , ∂
+
1 ,+1, ε1), (ρ�2 (X),ρ�1 (X), ∂−2 , ∂

+
2 ,+2, ε2)

(ρ�1 (X), X, ∂−, ∂+,+, ε).

Here ρ1(X) denotes the path groupoid of X. We recall the definition. The objects of ρ1(X)
are the points of X. The morphisms of ρ�1 (X) are the equivalence classes of paths in X with
respect to the following relation ∼T .

Definition 14.4. Let a, a′ : x ' y be paths in X. Then a is thinly equivalent to a′, denoted
a ∼T a′, if there is a thin relative homotopy between a and a′.

We note that ∼T is an equivalence relation, see Brown, Hardie, Kamps and Porter (2002).
We use 〈a〉 : x ' y to denote the ∼T class of a path a : x ' y and call 〈a〉 the semitrack
of a. The groupoid structure of ρ�1 (X) is induced by concatenation, +, of paths. Here one
makes use of the fact that if a : x ' x′, a′ : x′ ' x′′, a′′ : x′′ ' x′′′ are paths then there are
canonical thin relative homotopies

(a+ a′) + a′′ ' a+ (a′ + a′′) : x ' x′′′ (rescale)
a+ ex′ ' a : x ' x′; ex + a ' a : x ' x′ (dilation)

a+ (−a) ' ex : x ' x (cancellation).

The source and target maps of ρ�1 (X) are given by

∂−1 〈a〉 = x, ∂+
1 〈a〉 = y,

if 〈a〉 : x ' y is a semitrack. Identities and inverses are given by

ε(x) = 〈ex〉 resp.− 〈a〉 = 〈−a〉.
In order to construct ρ�2 (X), we define a relation of cubically thin homotopy on the set
R�2 (X) of squares.

Let u, u′ be squares in X with common vertices. (1) A cubically thin homotopy U : u ≡�T u′
between u and u′ is a cube U ∈ R�3 (X) such that

(i) U is a homotopy between u and u′,

i.e. ∂−1 (U) = u, ∂+
1 (U) = u′,

(ii) U is rel. vertices of I2,

i.e. ∂−2 ∂
−
2 (U), ∂−2 ∂

+
2 (U), ∂+

2 ∂
−
2 (U), ∂+

2 ∂
+
2 (U) are constant,

(iii) the faces ∂αi (U) are thin for α = ±1, i = 1, 2.
(2) The square u is cubically T -equivalent to u′, denoted u ≡�T u′ if there is a cubically

thin homotopy between u and u′.

The relation ≡�T can be seen to be an equivalence relation on R�2 (X). For the proof of
this result, the reader is referred to (Brown, Hardie, Kamps and Porter, 2002).

If u ∈ R�2 (X) we write {u}�T , or simply {u}T , for the equivalence class of u with respect
to ≡�T . We denote the set of equivalence classes R�2 (X) ≡�T by ρ�2 (X). This inherits the
operations and the geometrically defined connections from R�2 (X) and so becomes a double
groupoid with connections. A proof of the final fine detail of the structure is given in (Brown,
Hardie, Kamps and Porter, 2002).
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An element of ρ�2 (X) is thin if it has a thin representative (in the sense of Definition in
Brown (2004a). From the remark at the beginning of this subsection we infer:

Lemma 14.2. Let f : ρ�(X) → D be a morphism of double groupoids with connection. If
α ∈ ρ�2 (X) is thin, then f(α) is thin.

Lemma 14.3. The Homotopy Addition Lemma. Let u : I3 → X be a singular cube in
a Hausdorff space X. Then by restricting u to the faces of I3 and taking the corresponding
elements in ρ�2 (X), we obtain a cube in ρ�(X) which is commutative by the homotopy
addition lemma for ρ�(X) (Brown, Hardie, Kamps and Porter, 2002, Proposition 5.5).
Consequently, if f : ρ�(X) → D is a morphism of double groupoids with connections, then
any singular cube in X determines a commutative 3-shell in D.

Now under the situation given earlier where the Hausdorff space X has an cover by sets
{Uλ}λ∈Λ we get a diagram as follows:

(14.30)
⊔
ζ∈Λ2 ρ�(U ζ)

a //

b
//
⊔
λ∈Λ ρ�(Uλ)

c // ρ�(X)

The following is a statement of the Higher Homotopy van Kampen Theorem (HHvKT)
expressed in terms of Double Groupoids with connections as developed and proven in (Brown,
Hardie, Kamps and Porter, 2002).

Theorem 14.5 (Brown et al, 2004a.). The van Kampen theorem for Double Groupoids.
If the interiors of the sets of U cover X, then in the above diagram (??), c is the coequaliser
of a, b in the category of double groupoids with connections.

The reader is referred to Brown, Hardie, Kamps and Porter (2002), for the proof of this
form of the Higher Homotopy van Kampen theorem.

A special case of this result is when U has two elements. In this case the coequaliser
reduces to a pushout.

An important feature of the proof is the notion of commutative cube, the relation of
these to thin cubes, and the fact that any multiple composition of commutative cubes is
commutative. All these are facts whose analogues for squares are trivial. Thus the step
from dimension to, i.e. for squares, to dimension 3, i.e. for cubes, is a large one technically
and conceptually. Corresponding results in higher dimensions involve increasing difficulties,
which are overcome for the groupoid case in Brown and Higgins, 1981a, and in the category
case in Higgins, 2005.

14.15. Potential Applications of Novel Algebraic Topology methods to the Fun-
damental Ontology Level and the problems of Quantum Spacetime. With the
advent of Quantum Groupoids, Quantum Algebra and Quantum Algebraic Topology, sev-
eral fundamental concepts and new theorems of Algebraic Topology may also acquire an
enhanced importance through their potential applications to current problems in theoretical
and mathematical physics, such as those described in an available preprint (Baianu, Brown
and Glazebrook, 2006), and also in Part I. On the Universal Ontology of SpaceTime, (Ba-
ianu, Brown and Glazebrook, 2007, in this book.) Such potential applications will be briefly
outlined at the conclusion of this section as they are based upon the following ideas, algebraic
topology concepts and constructions.
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Traditional algebraic topology works by several methods, but all involve going from a space
to some form of combinatorial or algebraic structure. The earliest of these methods was
‘triangulation’: a space was supposed resented as a simplicial complex, i.e. was subdivided
into simplices of various dimensions glued together along faces, and an algebraic structure
such as a chain complex was built out of this simplicial complex, once assigned an orientation,
or, as found convenient later, a total order on the vertices. Then in the 1940s a convenient
form of singular theory was found, which assigned to any space X a ‘singular simplicial set’
SX, using continuous mappings from ∆n → X, where ∆n is the standard n-simplex. From
this simplicial set, the whole of the weak homotopy type could in principle be determined.
An alternative approach was found by Čech, using an open covers U of X to determine a
simplicial set NU , and then refining the covers to get better ‘approximations’ to X. It was
this method which Grothendieck discovered could be extended, especially combined with
new methods of homological algebra, and the theory of sheaves, to give new applications of
algebraic topology to algebraic geometry, via his theory of schemes.

The 600-page manuscript, ‘Pursuing Stacks’ by Alexander Grothendieck (1983) was aimed
at a non-Abelian homological algebra; it did not achieve this goal but has been very influential
in the development of weak n-categories and other higher categorical structures.

Now if quantum mechanics is to reject the notion of a continuum, then it must also reject
the notion of the real line and the notion of a path. How then is one to construct a homotopy
theory?

One possibility is to take the route signalled by Čech, and which later developed in the
hands of Borsuk into ‘Shape Theory’ (see, Cordier and Porter, 1989). Thus a quite general
space is studied by means of its approximation by open covers. Yet another possible approach
is briefly pointed out in the next subsection.

14.15.1. Locally Lie Groupoids. We shall begin here with the important definition of the
concept of a locally Lie groupoid.

A locally Lie groupoid (Pradines, 1966; Aof and Brown, 1992) is a pair (G,W ) consisting
of a groupoid G with range and source maps denoted α, β respectively, (in keeping with the
last quoted literature) together with a smooth manifold W , such that :

(1) Ob(G) ⊆W ⊆ G .
(2) W = W−1 .
(2) The set Wδ = {W ×αW} ∩ δ−1(W ) is open in W ×αW and the restriction to Wδ of the

difference map δ : G×α G−→G given by (g, h) 7→ gh−1, is smooth.
(3) The restriction to W of the maps α, β are smooth and (α, β,W ) admits enough smooth

admissible local sections.
(4) W generates G as a groupoid.

We have to explain more of these terms. A smooth local admissible section of (α, β,W )
is a smooth function s from an open subset of U of X = Ob(G) to W such that αs = 1U
and βs maps U diffeomorphically to its image which is open in X. It is such a smooth local
admissible section which is thought of as a local procedure (in the situation defined by the
locally Lie groupoid (G,W )).

There is a composition due to Charles Ehresmann of these local procedures given by
s ∗ t(x) = s(βt(x)) ◦ t(x) where ◦ is the composition in the groupoid G. The domain of s ∗ t
is usually smaller than that of t and may even be empty. Further the codomain of s ∗ t may
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not be a subset of W : thus the notion of smoothness of s ∗ t may not make sense. In other
words, the composition of local procedures may not be a local procedure. Nonetheless, the
set Γω(G,W ) of all compositions of local procedures with its composition ∗ has the structure
of an inverse semigroup, and it is from this that the Holonomy Groupoid, Hol(G,W ) is
constructed as a Lie groupoid in Aof-Brown (1992), following details given personally by J.
Pradines to Brown in 1981.

The motivation for this construction, due to Pradines, was to construct the monodromy
groupoid M(G) of a Lie groupoid G. The details are given in Brown and Mucuk (1994). The
monodromy groupoid has this name because of the monodromy principle on the extendability
of local morphisms. It is a local-to-global construction. It has a kind of left adjoint property
given in detail in Brown and Mucuk (1994). So it has certain properties that are analogous
to a van Kampen theorem.

The holonomy construction is applied to give a Lie structure to M(G). When G is the
pair groupoid X ×X of a manifold X, then M(G) is the fundamental groupoid π1X. It is
crucial that this construction of M(X) is independent of paths in X, but is defined by a
suitable neighbourhood of the diagonal in X×X, which is in the spirit of synthetic differential
geometry, and so has the possibility of being applicable in wider situations. What is unknown
is how to extend this construction to define higher homotopy groupoids with useful properties.

In a real quantum system, a unique holonomy groupoid may represent parallel transport
processes and the ‘phase-memorizing’ properties of such remarkable quantum systems. This
theme could be then further pursued by employing locally Lie groupoids in local-to-global
procedures (cf. Aof and Brown, 1993) for the construction in Quantum Spacetime of the
Holonomy Groupoid (which is unique, according to the Globalization Theorem).

An alternative approach might involve the application of the more recently found fun-
damental theorems of Algebraic Topology –such as the Higher Homotopy generalization of
the van Kampen theorem– to charactrize the topological invariants of a higher-dimensional
topological space, for example in the context of AQFT, in terms of known invariants of its
simpler subspaces. We also mention here the recent work of Brown and Janelidze (1997)
which extends the van Kampen theorem to a purely categorical construction, thereby facili-
tating novel applications such as the development of a non-Abelian Categorical Ontology of
spacetimes of higher dimensions.

Thus, the generalized notion of a van Kampen theorem has many suggestive possibilities for
both extensions and applications, and it should provide a basis for higher dimensional, non-
Abelian methods in local-to-global questions in theoretical physics and Categorical Ontology,
and therefore open up completely new fields.

References

Albertazzi, L.: 2005, Immanent Realism–Introduction to Franz Brentano, Springer, Dor-
drecht.

Al-Agl, F.A., Brown, R. and Steiner, R.: 2002. Multiple categories: the equivalence of a
globular and cubical approach, Adv. in Math, 170: 711-118.

Alfsen, E. M. and F. W. Schultz: 2003 Geometry of State Spaces of Operator Algebras,
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