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Chapter 1

Preliminaries on C∗-Algebras

1.1 Basic definitions

1.1.1 Definitions C∗-algebra, ∗-algebra

Definition 1.1.1. A C∗-algebra A is an algebra over C with involution a 7→ a∗ (*-
algebra), equipped with a norm a 7→ ‖a‖, such that A is a Banach space, and the norm
satisfies ‖ab‖ 5 ‖a‖‖b‖ and ‖a∗a‖ = ‖a‖2 (C∗-property).

Immediate consequence: ‖a∗‖ = ‖a‖. a∗ is called adjoint of a.
A C∗-algebra A is called unital if it has a multiplicative unit 1A = 1. Immediate

consequence: 1∗ = 1, ‖1‖ = 1 (‖1‖ = ‖12‖ = ‖1‖2). If A and B are C∗-algebras, a ∗-
homomorphism ϕ : A→ B is a linear multiplicative map commuting with the involution.
If A and B are unital, ϕ is called unital if ϕ(1A) = 1B. A surjective ϕ is always unital.

A C∗-algebra A is called separable, if it contains a countable dense subset.

1.1.2 Sub-C∗ and sub-∗-algebras

A subset B of a C∗-algebra A is called sub-∗-algebra, if it closed under all algebraic
operations (including the involution). It is called sub-C∗-algebra, if it is also norm-closed.
The norm closure of a sub-∗-algebra is a sub-C∗-algebra (from continuity of the algebraic
operations).

If F is a subset of a C∗-algebra A, the sub-C∗-algebra generated by F , denoted by
C∗(F ), is the smallest sub-C∗-algebra containing F . It coincides with the norm closure of
the linear span of all monomials in elements of F and their adjoints. A subset F is called
self-adjoint, if F ∗ := {a∗ | a ∈ F} = F .

1.1.3 Ideals and quotients

An ideal in a C∗-algebra is a norm-closed two-sided ideal. Such an ideal is always self-
adjoint, hence a sub-C∗-algebra. ([D-J77, 1.8.2], [M-GJ90, 3.1.3]) If I is an ideal in a
C∗-algebra A, the quotient A/I = {a + I | a ∈ A} is a ∗-algebra, and also a C∗-algebra
with respect to the norm ‖a+ I‖ := inf{‖a+ x‖ | x ∈ I}. I is obviously the kernel of the
quotient map π : A→ A/I. ([M-GJ90, 3.1.4], [D-J77, 1.8.2])

A ∗-homomorphism ϕ : A → B of C∗-algebras is always norm-decreasing, ‖ϕ(a)‖ 5

‖a‖. It is injective if and only if it is isometric. ([M-GJ90, 3.1.5]). Kerϕ is an ideal in A,
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6 CHAPTER 1. PRELIMINARIES ON C∗-ALGEBRAS

Imϕ a sub-C∗-algebra of B. ([M-GJ90, 3.1.6]). ϕ always factorizes as ϕ = ϕ0 ◦ π, with
injective ϕ0 : A/Kerϕ→ B.

A C∗-algebra is called simple if its only ideals are {0} and A (trivial ideals).

1.1.4 The main examples

Example 1. Let X be a locally compact Hausdorff space, and let C0(X) be the vector
space of complex-valued continuous functions that vanish at infinity, i.e., for all ε > 0
exists a compact subset Kε⊆ X such that |f(x)| < ε for x /∈ Kε. Equipped with the
pointwise multiplication and the complex conjugation as involution, C0(X) is a ∗-algebra.
With the norm ‖f‖ := supx∈X{|f(x)|}, C0(X) is a (in general non-unital) commutative
C∗-algebra.

Theorem 1.1.2. (Gelfand-Naimark) Every commutative C∗-algebra is isometrically iso-
morphic to an algebra C0(X) for some locally compact Hausdorff space X.

Idea of proof: X is the set of multiplicative linear functionals (characters (every char-
acter is automatically *-preserving, [D-J77, 1.4.1(i)], equivalently, the set of maximal
ideals), with the weak-∗-topology (i.e., the weakest topology such that all the functionals
χ 7→ χ(a), a ∈ A, are continuous.

Additions:

(i) C0(X) is unital iff X is compact.

(ii) C0(X) is separable iff X is separable.

(iii) X and Y are homeomorphic iff C0(X) and C0(Y ) are isomorphic.

(iv) Each proper continuous map η : Y → X induces a ∗-homomorphism η∗ : C0(X) →
C0(Y ) (η∗(f) = f ◦ η). Conversely, each ∗-homomorphism ϕ : C0(X) → C0(Y )
induces a proper continuous map η : Y → X (map a character χ of C0(Y ) to the
character χ ◦ ϕ of C0(X)).

(v) There is a bijective correspondence between open subsets of X and ideals in C0(X)
(the ideal to an open subset is the set of functions vanishing on the complement
of the subset, to an ideal always corresponds the set of characters vanishing on the
ideal, its complement in the set of all characters is the desired open set). If U ⊆ X
is open, then there is a short exact sequence

0 −→ C0(U) −→ C0(X) −→ C0(X \ U) −→ 0, (1.1.1)

where C0(U) → C0(X) is given by extending a function on U as 0 to all of X, and
C0(X) → C0(X \ U) is the restriction, being surjective due to Stone-Weierstras̈.

Example 2. Let H be a complex Hilbert space, and let B(H) denote the set of all
continuous linear operators on H. Then B(H) is an algebra with respect to addition,
multiplication with scalars, and composition of operators, it is a ∗-algebra with the usual
operator adjoint, and it is a C∗-algebra with respect to the operator norm.
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Theorem 1.1.3. (Gelfand-Naimark) Every C∗-algebra A is isometrically isomorphic to
a closed C∗-subalgebra of some B(H).

Idea of proof: Consider the set of positive linear functionals (ϕ(a∗a) ≥ 0) on A. Every
such functional allows to turn the algebra into a Hilbert space on which the algebra is
represented by its left action. Take as Hilbert space the direct sum of all these Hilbert
spaces. Then the direct sum of these representations gives the desired injection.

1.1.5 Short exact sequences

A sequence of C∗-algebras and ∗-homomorphisms

. . . −→ Ak
ϕk−→ Ak+1

ϕk+1−→ Ak+2 −→ . . . (1.1.2)

is said to be exact, if Imϕk = Kerϕk+1 for all k. An exact sequence of the form

0 −→ I
ϕ−→ A

ψ−→ B −→ 0 (1.1.3)

is called short exact. Example: If I ⊆ A is an ideal, then

0 −→ I
ι−→ A

π−→ A/I −→ 0 (1.1.4)

is short exact (ι the natural embedding I → A). If a short exact sequence (1.1.3) is given,
then ϕ(I) is an ideal in A, there is an isomorphism ψ/ : B → A/ϕ(I), and the diagram

0 - I
ϕ - A

ψ - B - 0

0 - ϕ(I)

ϕ

? ι - A

id

? π- A/ϕ(I)

ψ/
?

- 0

(1.1.5)

is commutative. If for a short exact sequence (1.1.3) exists λ : B → A with ψ ◦ λ = idB,
then the sequence is called split exact, and λ is called lift of ψ. Diagrammatic:

0 −→ I
ϕ−→ A

ψ
−→
←−

λ B −→ 0. (1.1.6)

Not all short exact sequences are split exact.
Example:

0 −→ C0((0, 1))
ι−→ C([0, 1])

ψ−→ C ⊕ C −→ 0 (1.1.7)

with ψ(f) = (f(0), f(1)) is an exact sequence. It does not split: Every linear map
λ : C ⊕ C → C([0, 1]) is determined by its values on the basis elements, λ((1, 0)) =
f1, λ((0, 1)) = f2. The split condition means f1(0) = 1, f1(1) = 0 and f2(0) = 0, f2(1) =
1. If λ is to be a homomorphism, because of (1, 0)2 = (1, 0), we should have f 2

1 =
λ((1, 0))2 = λ((1, 0)2) = λ((1, 0)) = f1, and analogously f 2

2 = f2. However, a continuous
function on a connected space is equal to its square if and only if it is either the constant
function 1 or the constant function 0. Both is not the case for f1 and f2.
Geometric interpretation: ψ corresponds to the embedding of two points as end points of
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the interval [0, 1]. However, it is not possible to map this interval continuously onto the
set {0, 1}.

The direct sum A ⊕ B of two C∗-algebras is the direct sum of the underlying vector
spaces, with component-wise defined multiplication and involution, and with the norm
‖(a, b)‖ = max(‖a‖, ‖b‖). It is again a C∗-algebra. There are natural homomorphisms
ιA : A→ A⊕B, a 7→ (a, 0), πA : A⊕ B → A, (a, b) 7→ a, analogously ιB, πB. Then

0 −→ A
ιA−→ A⊕ B

πB−→
←−
ιB B −→ 0. (1.1.8)

is a split exact sequence with lift ιB. Not all split exact sequences come in this manner
from direct sums.
Example (not presented in lecture).
Let

0 −→ A
ϕ−→ E

ψ−→ B −→ 0 (1.1.9)

be an exact sequence. Then there exists an isomorphism θ : E → A ⊕ B making the
diagram

0 - A
ϕ - E

ψ - B - 0

0 - A

id

? ιA- A⊕ B

θ

? πB - B

id

?
- 0

(1.1.10)

commutative if and only there exists a homomorphism ν : E → A such that ν ◦ ϕ = idA.
Proof: If θ : E → A⊕B makes the diagram commutative, then θ

|Imϕ
is an injective map

whose image is ιA(A). ν := πA ◦ θ|Imϕ : E → A fulfills ν ◦ ϕ = idA. If ν : E → A with

this property is given, put θ(e) = (ιA ◦ ν(e), ψ(e)). θ is an isomorphism:
surjective: Let a ∈ A. Then ϕ(a) ∈ Kerψ, hence ψ(ϕ(a)) = 0. But, ν(ϕ(a)) = a, i.e.,
θ(ϕ(a)) = (a, 0). On the other hand, as πB ◦ θ = ψ and ψ is surjective, for any b ∈ B
exists a′ ∈ A such that (a′, b) ∈ Imθ. Since (a′, 0) ∈ Imθ, also (0, b) ∈ Imθ for any b ∈ B,
thus finally all (a, b) ∈ Imθ.
injective: If ψ(e) = 0 with e 6= 0 then e = ϕ(a) with a 6= 0, and ν(e) = ν ◦ ϕ(a) = a 6= 0,
thus ιA ◦ ν(e) 6= 0 by injectivity of ιA. Otherwise, ψ(e) 6= 0 already means θ(e) 6= 0. �

If this condition is satisfied, the upper sequence is isomorphic to the lower one, and
thus also split. Counterexample (where the condition is not fulfilled)?

1.1.6 Adjoining a unit

Definition 1.1.4. Let A be a ∗-algebra. Put Ã = A ⊕ C (direct sum of vector spaces)
and

(a, α)(b, β) := (ab + βa+ αb, αβ), (a, α)∗ := (a∗, ᾱ). (1.1.11)

Define ι : A → Ã and π : Ã → C by ι(a) = (a, 0), π(a, α) = α (i.e., ι = ιA, π = πC in
the direct sum terminology used above).

Proposition 1.1.5. With the operations just introduced, Ã is a unital ∗-algebra with unit
1Ã = (0, 1). ι is an injective, π a surjective ∗-homomorphism.
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Proof. Straightforward. �

Sometimes ι is suppressed, and we write also Ã = {a+ α1 | a ∈ A, α ∈ C}.
Let now A be a C∗-algebra, and let ‖.‖A be the norm on A.

Note that the direct sum norm ‖(a, α)‖ = max(‖a‖, |α|) does in general not have
the C∗-property (because A ⊕ C does not have the direct sum product). Example: A
unital, put α = 1, a = 1A, then ‖(a, α)(a∗, ᾱ)‖ = max(‖aa∗ + ᾱa∗ + αa∗‖, |α|2) = 3,
‖(a, α)‖2 = max(‖a‖2, |α|2) = 1.
Recall that the algebra B(E) of linear operators on a Banach space E is a Banach space
(algebra) with norm ‖b‖ = sup‖x‖51 ‖b(x)‖ (see [RS72, Theorem III.2], [D-J73, 5.7]). Note

that (a, α) 7→ La + αidA, where La(b) = ab for a, b ∈ A, defines a homomorphism ϕ of Ã
onto the subspace of all continuous linear operators of the form La + αidA in B(A). This
homomorphism is injective iff A is not unital. (exercise) Indeed, let A be not unital, and
assume La(b) + αb = 0 for all b ∈ A. If α would be 6= 0 then − a

α would be a left unit for
A, thus also a right unit, hence a unit, contradicting the assumed non-unitality. Thus we
have α = 0, i.e. ab = 0 for all b ∈ A. In particular, aa∗ = 0, hence ‖a∗‖2 = ‖aa∗‖ = 0,
i.e., ‖a‖ = ‖a∗‖ = 0, i.e., a = 0. On the other hand, if A is unital, (1A,−1) is in the
kernel of ϕ.

We have ‖a‖ = ‖La‖ for a ∈ A: ‖La‖ 5 ‖a‖ is clear by the definition of the operator
norm (‖La‖ = sup‖b‖51 ‖ab‖ 5 sup‖b‖51 ‖a‖‖b‖ = ‖a‖), and ‖a‖2 = ‖aa∗‖ = ‖La(a∗)‖ 5

‖La‖‖a∗‖, hence also ‖a‖ 5 ‖La‖. Thus it makes sense to define for non-unital A a norm
on Ã by transporting the norm of B(A), i.e., we put ‖(a, α)‖Ã := ‖La +αidA‖. For unital
A, we note that Ã is as a ∗-algebra isomorphic to A ⊕ C (direct sum of C∗-algebras).
The isomorphism is given by (a, α) 7→ (a + α1A, α) (easy exercise). As before, we define
the norm on Ã by transport with the isomorphism. Note that (−1A, 1) is a projector in
A⊕ C.

Proposition 1.1.6. Ã is a unital C∗-algebra with norm ‖.‖Ã. ι(A) is a closed ideal in
Ã.

Proof. The additive and multiplicative triangle inequality come from these properties
for the norm in B(A) and A⊕C. Since {La|a ∈ A} is closed and thus complete in B(A),
and {La|a ∈ A} has codimension 1 in ϕ(Ã), the latter is also complete in the nonunital
case, and it is obviously complete in the unital case. Also, it is obvious in the unital case
that the norm has the C∗-property. To prove the latter for the nonunital case, we define
the involution on ϕ(Ã) by transport with ϕ, i.e.,

(La + αidA)∗ := La∗ + ᾱidA. (1.1.12)

Hence, by this definition ϕ(Ã) is a complete normed ∗-algebra. It remains to show that
the C∗-property is satisfied. Let ε > 0 and let x = La + αidA ∈ ϕ(Ã). By the definition
of the operator norm, there exists b ∈ A with ‖b‖ 5 1 such that

‖x‖2 = ‖La + αidA‖2 5 ‖(La + αidA)(b)‖2 + ε. (1.1.13)
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The right hand side can be continued as follows:

= ‖ab + αb‖2 + ε

= ‖(ab + αb)∗(ab+ αb)‖ + ε

= ‖(b∗a∗ + ᾱb∗)(ab + αb)‖ + ε

= ‖b∗(La∗ + ᾱidA)(La + αidA)(b)‖ + ε

5 ‖b∗‖‖(La∗ + ᾱidA)(La + αidA)(b)‖ + ε

5 ‖b∗‖‖((La∗ + ᾱidA)(La + αidA)‖‖b‖ + ε

5 ‖x∗x‖ + ε.

Thus we have ‖x‖2 5 ‖x∗x‖ + ε for any ε, hence ‖x‖2 5 ‖x∗x‖. However, also ‖x∗x‖ 5

‖x∗‖‖x‖ (B(A) is a normed algebra). Exchanging the roles of x and x∗, we also obtain
‖x∗‖2 5 ‖x‖‖x∗‖, together ‖x‖ = ‖x∗‖. Going back to the inequalities, this also gives the
C∗-property. �

For both the unital and nonunital case, we have Ã/ι(A) ∼= C, and the sequence

0 −→ A −→ Ã

π
−→
←−

λ C −→ 0, (1.1.14)

with π : Ã→ C the quotient map and λ : C → Ã given by α 7→ (0, α), is split exact. Note
also that adjoining a unit is functorial: If ϕ : A→ B is a homomorphism of C∗-algebras,
there is a unique homorphism ϕ̃ : Ã→ B̃ making the diagram

0 - A
ιA - Ã

πA - C - 0

0 - B

ϕ

? ιB - B̃

ϕ̃
?

πB - C

id

?
- 0

(1.1.15)

commutative. It is given by ϕ̃(a, α) = (ϕ(a), α). ϕ̃ is unit-preserving, ϕ̃(0, 1) = (0, 1).
If A is a sub-C∗-algebra of a unital C∗-algebra B whose unit 1B is not in A, then Ã is
isomorphic to the sub-C∗-algebra A+ C1B of B (exercise).

1.2 Spectral theory

1.2.1 Spectrum

Let A be a unital C∗-algebra. Then the spectrum (with respect to A) of a ∈ A is defined
as

sp(a)(= spA(a)) := {λ ∈ C | a− λ1A is not invertible in A}. (1.2.16)

Elementary statements about the spectrum, true already for a unital algebra, are:

(i) If A = {0} then sp(0) = ∅.

(ii) sp(λ1A) = {λ} for λ ∈ C.

(iii) a ∈ A is invertible iff 0 /∈ sp(a).
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(iv) If P ∈ C[X] (polynomial in one variable with complex coefficients), then sp(P (a)) =
P (sp(a)).

(v) If a ∈ A is nilpotent, then sp(a) = {0} (if A 6= {0}).

(vi) If ϕ : A→ B is a morphism of unital algebras over C, then spB(ϕ(a))⊆ spA(a).

(vii) If (a, b) ∈ A ⊕ B (direct sum of algebras), then spA⊕B((a, b)) = spA(a) ∪ spB(b).
(Can be generalized to direct products.)

If A is the algebra of continuous complex-valued functions on a topological space, then
the spectrum of any element is the set of values of the function. If A is the algebra
of endomorphisms of a finite dimensional vector space over C then the spectrum of an
element is the set of eigenvalues.

For a Banach algebra, the spectrum of an element is always a compact subset of C
contained in the ball of radius ‖a‖,

r(a) = sup{|λ| | λ ∈ sp(a)} 5 ‖a‖. (1.2.17)

Idea of proof: If |λ| > ‖a‖, then ‖λ−1a‖ < 1, hence 1 − λ−1a is invertible (This uses: if
‖a‖ < 1 then 1 − a is invertible, with (1 − a)−1 = 1 + a + a2 + . . . – Neumann series.)
Thus λ /∈ sp(a). The spectrum is closed because the set of invertible elements is open
(use again the fact stated in parentheses).

The number r(a) is called spectral radius of a. Using complex analysis, one can
show that the spectrum is non-empty. The sequence (‖an‖1/n) is convergent, and r(a) =
limn→∞ ‖an‖1/n. If A is not unital, the spectrum of an element a ∈ A is defined as the
spectrum of ι(a) ∈ Ã. In this case always 0 ∈ sp(a) ((a, 0)(b, β) = (ab + βa, 0) 6= (0, 1) =
1Ã).

Definition 1.2.1. An element a of a C∗-algebra A is called

• normal if aa∗ = a∗a,

• self-adjoint if a = a∗,

• positive if it is normal and sp(a)⊆ R+(= [0,∞[),

• unitary if A is unital and aa∗ = a∗a = 1A.

• a projector if a = a∗ = a2.

The set of positive elements is denoted by A+.

The spectrum of a self-adjoint element is contained in R, that of a unitary element is
contained in T1 = S1 (the unit circle, considered as a subset of C), that of a projector is
contained in {0, 1} (exercises). An element a of a C∗-algebra A is positive if and only if
it is of the form a = x∗x, for some x ∈ A. For normal elements, the above formula for the
spectral radius reduces to r(a) = ‖a‖. This allows to conclude

Proposition 1.2.2. The C∗-norm of a C∗-algebra is unique.
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Proof. ‖a‖′2 = ‖a∗a‖′ = r(a∗a) = ‖a∗a‖ = ‖a‖2. �

Let us also note that every element is a linear combination of two self-adjoint elements,
a = 1

2
(a + a∗) + i 1

2i
(a − a∗) (this is the unique decomposition a = h1 + ih2, with h1 and

h2 self-adjoint), and also a linear combination of four unitary elements.

The spectrum a priori depends on the ambient C∗-algebra. However, if B is a unital
C∗-subalgebra of a unital C∗-algebra A, whose unit coincides with the unit of A, then the
spectrum of an element of B with respect to B coincides with its spectrum with respect
to A (exercise, use that the inverse of an element belongs to the smallest C∗-algebra
containing that element, i.e., the C∗-subalgebra generated by that element). If A is not
unital, or if the unit of A does not belong to B, then spA(b)∪{0} = spB(b)∪{0} (exercise).

1.2.2 Continuous functional calculus

Let A be a unital C∗-algebra, and let a ∈ A be normal. Then there is a unique C∗-
isomorphism j : C(sp(a)) → C∗(a, 1) mapping the identity map of sp(a) into a. Moreover,
this isomorphism maps a polynomial P into P (a) and the complex conjugation z 7→ z̄
into a∗. Therefore one writes j(f) = f(a). One knows that sp(f(a)) = f(sp(a)) (spectral
mapping theorem).

If ϕ : A → B is ∗-homomorphism of unital C∗-algebras, then sp(ϕ(a))⊆ sp(a) and
ϕ(f(a)) = f(ϕ(a)) for f ∈ C(sp(a)).

If a C∗-algebra is realized as a subalgebra of B(H), the functional calculus is realized
for self-adjoint elements in terms of their spectral decompositions: If a =

∫
λdEλ then

f(a) =
∫
f(λ)dEλ, where Eλ is the family of spectral measures belonging to a.

If a is a normal element of a non-unital C∗-algebra A, then f(a) is a priori in Ã. We
have f(a) ∈ ι(A) ' A iff f(0) = 0: When π : Ã → C is the quotient mapping, we have
π(f(a)) = f(π(a)) = f(0).

Lemma 1.2.3. Let K ⊆ R be compact and non-empty, and let f ∈ C(K). Let A be
a unital C∗-algebra, and let ΩK be the set of self-adjoint elments of A with spectrum
contained in K. Then the induced function

f : ΩK −→ A, a 7→ f(a), (1.2.18)

is continuous.

Proof. The map a 7→ an, A → A is continuous (continuity of multiplication). Thus
every complex polynomial f induces a continuous map A→ A, a 7→ f(a).

Now, let f ∈ C(K), let a ∈ ΩK , and let ε > 0. Then there is a complex polynomial g
such that |f(z) − g(z)| < ε

3
for every z ∈ K. By continuity discussed above, for every ε

we find δ < 0 such that ‖g(a) − g(b)‖ 5 ε
3

for b ∈ A with ‖a− b‖ 5 δ. Since, moreover,

‖f(c) − g(c)‖ = ‖(f − g)(c)‖ = sup{|(f − g)(z)| | z ∈ sp(c)} 5
ε

3
(1.2.19)

for c ∈ ΩK , we conclude ‖f(a) − f(b)‖ = ‖f(a) − g(a) + g(a) − g(b) + g(b) − f(b)‖ 5

‖f(a− g(a)‖ + ‖g(a) − g(b)‖ + ‖g(b) − f(b)‖ 5 ε for b ∈ ΩK with ‖a− b‖ 5 δ. �
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1.3 Matrix algebras and tensor products

Let A1, A2 be C∗-algebras. The algebraic tensor product A1 ⊗ A2 is a ∗-algebra with
multiplication and adjoint given by

(a1 ⊗ a2)(b1 ⊗ b2) = a1b1 ⊗ a2b2, (1.3.20)

(a1 ⊗ a2)
∗ = a∗1 ⊗ a∗2. (1.3.21)

Problem: There may exist different norms with the C∗-property on this ∗-algebra, leading
to different C∗-algebras under completion (though one can show that all norms with the
C∗-property are cross norms, ‖a1 ⊗ a2‖ = ‖a1‖‖a2‖). We will restrict to the case where
this problem is not there by definition: A C∗-algebra is called nuclear if for any C∗-algebra
B there is only one C∗-norm on the algebraic tensor product A ⊗ B. Examples: finite
dimensional, commutative, type I (every non-zero irreducible representation in a Hilbert
space contains the compact operators). If one of the tensor factors is nuclear, the unique
C∗-norm on the algebraic tensor product coincides with the norm in B(H) under a faithful
representation of the completed tensor product.

We will mainly need the following very special situation. Let A be a C∗-algebra,
and let Mn(C) (n ∈ N) be the algebra of complex n × n-matrices. Then A ⊗ Mn(C)
can be identified with Mn(A), the ∗-algebra of n× n-matrices with entries from A, with
product and adjoint given according to the matrix structure. The unique C∗-norm on
A⊗Mn(C) = Mn(A) is defined using any injective ∗-homomorphism ϕ : A→ B(H), and
the canonical injective ∗-homomorphism Mn(C) → B(Cn), i.e., ‖a ⊗m‖ = ‖ϕ(a) ⊗m‖,
where on the right stands the norm in B(H)⊗B(Cn) = B(H⊗Cn). One has the inequality
(exercise):

max ‖aij‖ 5

∥∥∥∥∥∥∥∥∥




a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

an1 an2 . . . ann




∥∥∥∥∥∥∥∥∥
5
∑

‖aij‖. (1.3.22)

The following lemma will be needed later. It involves the C∗-algebra C0(X,A), see
Exercice 6.

Lemma 1.3.1. Let X be a locally compact Hausdorff space and let A be a C∗-algebra.
Define for f ∈ C0(X), a ∈ A an element fa ∈ C0(X,A) by

(fa)(x) = f(x)a. (1.3.23)

Then span{fa | f ∈ C0(X), a ∈ A} is dense in C0(X,A).

Proof. Let X+ = X ∪ {∞} be the one-point compactification of X. Then

C0(X,A) = {f ∈ C(X+, A) | f(∞) = 0}. (1.3.24)

Let f ∈ C0(X,A), ε > 0. There is an open covering U1, . . . , Un of X+ such that ‖f(x) −
f(y)‖ < ε if x, y ∈ Uk. (Compactness of X+, continuity of f .) Choose xk ∈ Uk, with
xk = ∞ if ∞ ∈ Uk. Let (hk)

n
k=1 be a partition of unity subordinate to the covering

(Uk), i.e., hk ∈ C(X+), supp hk⊆ Uk,
∑n

k=1 hk = 1, 0 5 hk 5 1. (Note that every
compact Hausdorff space is paracompact.) Then ‖f(x)hk(x) − fk(xk)hk(x)‖ 5 εhk(x)
for x ∈ X, k = 1, . . . , n. It follows that ‖f(x) − ∑n

k=1 f(xk)hk(x)‖ 5 ε, for x ∈ X.
Put ak = f(xk) ∈ A. Then

∑n
k=1 hkak ∈ span{fa | f ∈ C0(X), a ∈ A}, because

ak = f(xk) = 0 if ∞ ∈ Uk, and ‖f −∑n
k=1 hkak‖ 5 ε. �
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1.4 Examples and Exercises

Exercise 1.4.1. If A is a sub-C∗-algebra of a unital C∗-algebra B whose unit 1B is not
in A, then Ã is isomorphic to the sub-C∗-algebra A + C1B of B.

The map (a, α) 7→ a+ α1B is the desired isomorphism: It is obviously surjective, and
injectivity follows as injectivity of ϕ in the proof of Proposition 1.1.6: Let a + α1B = 0.
If α 6= 0, then 1B = − a

α
∈ A, contradicting the assumption. Thus α = 0 = a. That the

mapping is a ∗-homomorphism is straightforward.

Exercise 1.4.2. Let A be a unital C∗-algebra. Show the following.

(i) Let u be unitary. Then sp(u)⊆ T.

(ii) Let u be normal, and sp(u)⊆ T. Then u is unitary.

(iii) Let a be self-adjoint. Then sp(a)⊆ R.

(iv) Let p be a projection. Then sp(p)⊆ {0, 1}.

(v) Let p be normal with sp(p)⊆ {0, 1}. Then p is a projector.

(i): ‖u‖ = 1, due to ‖u‖2 = ‖u∗u‖ = ‖1A‖ = 1. Hence |λ| 5 1 for λ ∈ sp(u). By
the spectral mapping theorem, λ−1 ∈ sp(u−1) = sp(u∗). But also ‖u∗‖ = 1, and thus
|λ−1| 5 1, so |λ| = 1.

(ii): Due to normality, there is a C∗-isomorphism C(sp(u)) → C∗(u, 1), mapping
idsp(u) 7→ u and īdsp(u) 7→ u∗. Hence 1sp(u) 7→ u∗u = uu∗ = 1(= 1A).

(iii): a ∈ A is invertible iff a∗ is invertible, thus a − λ1A is invertible iff a∗ − λ̄ is
invertible. Thus λ ∈ sp(a) iff λ̄ ∈ sp(a∗), and for a = a∗ the spectrum is invariant

under complex conjugation. The series exp (ia) :=
∑∞

n=0
(ia)n

n!
is absolutely convergent,

its adjoint is (due to continuity of the star operation) exp (−ia) =
∑∞

n=0
(−ia)n

n!
and fulfills

exp (ia) exp (−ia) = 1A = exp (−ia) exp (ia), so it is a unitary element in C∗(a, 1), which
means that exp (iλ) ∈ T for λ ∈ sp(a), i.e., λ ∈ R.

(iv): Let p = p∗ = p2. By (iii), sp(p) is real, and by the spectral mapping theorem we
have sp(p) = sp(p)2. This means that sp(p)⊆ [0, 1]. Using the isomorphism C(sp(p)) →
C∗(p, 1), we have idsp(p) = id2

sp(p), thus sp(p)⊆ {0, 1}.
(v): Let p be normal, sp(p)⊆ {0, 1}. Then idsp(p) = īdsp(p) = id2

sp(p), and the same is
true for p (using the isomorphism C(sp(p)) → C∗(p, 1)).

Exercise 1.4.3. Let A be a unital C∗-algebra, a ∈ A.

(i) a is invertible iff aa∗ and a∗a are invertible. In that case, a−1 = (a∗a)−1a∗ = a∗(aa∗)−1.

(ii) Let a be normal and invertible in A. Then there exists f ∈ C(sp(a)) such that
a−1 = f(a), i.e., a−1 belongs to C∗(a, 1).

(iii) Let a ∈ A be invertible. Then a−1 belongs to C∗(a, 1), the smallest unital C∗-
subalgebra containing a.

(i): If a−1 exists, then also a∗−1 = a−1∗ and (aa∗)−1 = a∗−1a−1, (a∗a)−1 = a−1a∗−1.
If (aa∗)−1 and (a∗a)−1 exist, put b := a∗(aa∗)−1 and c := (a∗a)−1a∗. Then ab = 1 = ca
and, multiplying the left of these equalities by c from the left, the right one by b from the
right, cab = c, b = cab. This means b = c = a−1.
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(ii): a invertible means that 0 /∈ sp(a). Thus, the function idsp(a) corresponding to a
under the isomorphism C(sp(a)) → C∗(a, 1) is invertible, and the corresponding inverse
is in C∗(a, 1).

(iii): aa∗ and a∗a are normal (selfadjoint) and by (i) invertible in A. By (ii) their
inverses are in the C∗-subalgebras generated by {aa∗, 1} and {a∗a, 1}, thus also in C∗(a, 1).
Again using (i) (considering C∗(a, 1) instead of A), we obtain a−1 ∈ C∗(a, 1).

Exercise 1.4.4. Show the uniqueness of the decomposition a = h1 + ih2, h1,2 self-adjoint.
We have a∗ = h1 − ih2, hence h1 = 1

2
(a+ a∗) and h2 = 1

2i
(a− a∗).

Exercise 1.4.5. Let ϕ : A→ B be a morphism of unital C∗-algebras.

(i) Show that sp(ϕ(a))⊆ sp(a) for all a ∈ A, and that there is equality if ϕ is injective.

(ii) Show that ‖ϕ(a)‖ 5 ‖a‖, equality if ϕ is injective.

Let ϕ be not necessarily injective. If a−λ1A is invertible, then ϕ(a−λ1A) = ϕ(a)−λ1B
is invertible (with inverse ϕ((a−λ1A)−1)). This shows C \ sp(a)⊆ C \ sp(ϕ(a)). Thus we
also have r(ϕ(a∗a)) 5 r(a∗a), which gives ‖ϕ(a)‖2 = ‖ϕ(a∗a)‖ = r(ϕ(a∗a)) 5 r(a∗a) =
‖a∗a‖ = ‖a‖2.

Let ϕ be injective, and let a ∈ A. With the isomorphisms C(sp(a∗a)) → C∗(a∗a, 1) and
C(sp(ϕ(a∗a))) → C∗(ϕ(a∗a), 1), ϕ gives rise under to an injective C∗-homomorphism ϕa :
C(sp(a∗a)) → C(sp(ϕ(a∗a))). One shows as in [D-J77, Proof of 1.8.1] that ϕa corresponds
to a surjective continuous map ψa : sp(ϕ(a∗a)) → sp(a∗a). Now, the pull-back of any
surjective continuous map is isometric: If ψ : Y → X is a surjective map of sets, and if f :
X → C is a function such that supx∈X |f(x)| exists, then supx∈X |f(x)| = supy∈Y |f(ψ(y))|.
In our situation, each ϕa is isometric, which, using the above isomorphisms, just amounts
to saying that ϕ is isometric. This proves both desired equalities.

Exercise 1.4.6. If A is a C∗-algebra, and X is a locally compact Hausdorff space, then let
C0(X,A) denote the set of all continuous maps f : X → A such that ‖f‖ := supx∈X ‖f(x)‖
exists and f vanishes at infinity, i.e., ∀ε > 0 ∃ compact K ⊆ X : ‖f(x)‖ < ε for x ∈ X \K.
On C(X,A), introduce operations of a ∗-algebra pointwise. Show that C0(X,A) is a C∗-
algebra.

The algebraic properties, the triangle inequalities and the C∗ property are easy to
verify. The proof of completeness (convergence of Cauchy sequences) is standard (e.g.,
[D-J73, 7.1.3] or [RS72, Theorem I.23]). The idea is to show that the limit given by
pointwise Cauchy sequences is indeed an element of C0(X,A). The only thing not proven
in the above references is vanishing at infinity of the limit. This can be concluded from
the following statement: Let f ∈ C(X,A), g ∈ C0(X,A), ‖f − g‖ < ε/2. Then there
is a compact K ⊆ X such that ‖f(x)‖ < ε for x ∈ X \ K. Indeed, since g ∈ C0(X,A),
there is a compact K⊆ X such that ‖g(x)‖ < ε/2 for x ∈ X \ K. Then ‖f(x)‖ ≤
‖f(x) − g(x)‖ + ‖g(x)‖ < ε/2 + ε/2 = ε for x ∈ X \K.

Exercise 1.4.7. Let A be a unital C∗-algebra, x ∈M2(A). Show that x commutes with(
1 0
0 0

)
iff x = diag(a, b) for some a, b ∈ A. Then a, b are unitary iff x is unitary.

Exercise 1.4.8. Prove the inequalities (1.3.22).
Let a(ij) be the element of Mn(A) which has aij at the intersection of the i-th row

with the j-th column and zero at all other places. Let us first show ‖a(ij)‖ = ‖aij‖. In
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the identification Mn(A) = A ⊗Mn(C) we have a(ij) = aij ⊗ eij, where eij ∈ Mn(C) is
the ij-th matrix unit. Thus, for an injective ∗-homomorphism ϕ : A → B(H), we have
‖a(ij)‖ = ‖ϕ ⊗ id(a(ij)‖ = ‖ϕ(aij) ⊗ eij‖ = ‖ϕ(aij‖‖eij‖ = ‖aij‖. Here, we have made
use of the following facts: Every injective ∗-homomorphism of C∗-algebras is isometric
(Exercice 5 (ii)), the norm of a tensor product of operators is the product of the norms
of the factors (see e.g. [M-GJ90, p. 187]), and ‖eij‖ = 1 (easy to verify). This is enough
to prove the right inequality: ‖(aij)‖ = ‖∑i,j a

(ij)‖ 5
∑

i,j ‖a(ij)‖ =
∑

i,j ‖aij‖.
For the left inequality, we have

‖(aij)‖2 = sup
ψ∈H⊗Cn,‖ψ‖=1

‖
∑

i,j

ϕ(aij) ⊗ eij(ψ)‖2

≥ sup
ψ=ψ1⊗ψ2,‖ψ1‖=‖ψ2‖=1

‖
∑

i,j

ϕ(aij)(ψ1) ⊗ eij(ψ2)‖2. (1.4.25)

Now, choose ψ2 = ek, ek an element of the canonical basis of Cn. Then eij(ek) = δjkei,
and the above inequality can be continued:

≥ sup
‖ψ‖=1

‖
∑

i

ϕ(aik)(ψ) ⊗ ei‖2 = sup
‖ψ‖=1

∑

i

‖ϕ(aik)(ψ)‖2 ≥ max
i

‖ϕ(aik)‖2 = max
i

‖aik‖2.

(1.4.26)
(Note that ‖∑i ψi ⊗ ei‖2 =

∑
i ‖ψi‖2.) Since this is true for all k, we have the desired

inequality.

Exercise 1.4.9. Let A be a unital C∗-algebra, and let a ∈ Mn(A) be upper triangular,
i.e.,

a =




a11 a12 a13 . . . a1n

0 a22 a23 . . . a2n

0 0 a33 . . . a3n
...

...
...

. . .
...

0 0 0 . . . ann



. (1.4.27)

Show that a has an inverse in the subalgebra of upper triangular elements of Mn(A) iff
all diagonal elements akk are invertible in A.

Let all akk be invertible in A. Then a0 := diag(a11, . . . , ann) is invertible in Mn(A)
(with inverse a−1

0 = diag(a−1
11 , . . . , a

−1
nn)), and a = a0 +N with nilpotent N ∈ Mn(A). We

can write a = a0 +N = a0(1+ a−1
0 N) where in our concrete case a−1

0 N is again nilpotent.
Since for nilpotent m we have (1 + m)−1 = 1 − m + m2 − m3 + . . . ± mk for a certain
k ∈ N, a is invertible.

Conversely, assume that there exists an inverse b of a that is upper triangular. Then
ab = 1 and ba = 1 give immediately that bkk = a−1

kk for k = 1, . . . , n.
Note that there are invertible upper triangular matrices, whose diagonal elements are

not invertible, and whose inverse is not upper triangular. Example: Let s be the unilateral

shift, satisfying s∗s = 1. Neither s nor s∗ is invertible. Nevertheless, the matrix

(
s 1
0 s∗

)

has the inverse

(
s∗ −1

1 − ss∗ s

)
.

Exercise 1.4.10. Let A be a C∗-algebra, a, b ∈ A. Show that

∥∥∥∥
(
a 0
0 b

)∥∥∥∥ = max{‖a‖, ‖b‖}.



Chapter 2

Projections and Unitaries

2.1 Homotopy for unitaries

Definition 2.1.1. Let X be a topological space. Then x, y ∈ X are homotopic in X,
x ∼h y in X, if there exists a continuous map f : [0, 1] → X with f(0) = x and f(1) = y.

The relation ∼h is an equivalence relation on X (exercise). f : t 7→ f(t) = ft as above
is called continuous path from x to y. In a vector space, any two elements are homotopic:
Take the path t 7→ (1 − t)x + ty.

Definition 2.1.2. Let A be a unital C∗-algebra, and let U(A) denote the group of unitary
elements of A. Then U0(A) := {u ∈ U(A) | u ∼h 1A in U(A)} (connected component of
1A in U(A)).

Remark 2.1.3. If u1, u2, v1, v2 ∈ U(A) with ui ∼h vj, j = 1, 2, then u1u2 ∼h v1v2.
Indeed, if t 7→ wj(t) are continuous paths connecting uj with vj, then t 7→ w1(t)w2(t) is a
continuous path connecting u1u2 with v1v2 (everything in U(A)). 3

Lemma 2.1.4. Let A be a unital C∗-algebra.

(i) If h ∈ A is self-adjoint, then exp (ih) ∈ U0(A).

(ii) If u ∈ U(A) and sp(u) 6= T, then u ∈ U0(A).

(iii) If u, v ∈ U(A) and ‖u− v‖ < 2, then u ∼h v.

Proof. (i) By the contiuous functional calculus, if h = h∗ and f is a continuous function
on R with values in T, then f(h)∗ = f̄(h) = f−1(h), i.e., f(h) is unitary. In particular,
exp (ih) is unitary. Now for t ∈ [0, 1] define ft : sp(h) → T by ft(x) := exp (itx). Then, by
continuity of t 7→ ft, the path t 7→ ft(h) in U(A) is continuous, thus exp (ih) = f1(h) ∼h

f0(h) = 1.
(ii) If sp(u) 6= T, there exists θ ∈ R such that exp (iθ) /∈ sp(u). Note that ϕ(exp (it)) = t
defines a continuous function ϕ on sp(u) with values in the open interval ]θ, θ + 2π[⊆ R.
We have z = exp (iϕ(z)) for z ∈ sp(u). Then h = ϕ(u) is a self-adjoint element of A with
u = exp (ih), and by (i) u ∈ U0(A).
(iii) From ‖u− v‖ < 2 it follows that ‖v∗u− 1‖ = ‖v∗(u− v)‖ < 2 (since ‖v∗‖ = 1). Thus
−2 /∈ sp(v∗u − 1), i.e., −1 /∈ sp(v∗u). Then, by (ii), v∗u ∼h 1, hence u ∼h v (remark
before the lemma). �

17
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Corollary 2.1.5. U(Mn(C) = U(Mn(C)), i.e., the unitary group in Mn(C) is connected.

Proof. Each unitary in Mn(C) has finite spectrum, therefore the assumption of (ii) of
Lemma 2.1.4 is satisfied. �

Lemma 2.1.6. (Whitehead) Let A be a unital C∗-algebra, and u, v ∈ U(A). Then

(
u 0
0 v

)
∼h

(
uv 0
0 1

)
∼h

(
vu 0
0 1

)
∼h

(
v 0
0 u

)
in U(M2(A). (2.1.1)

In particular, (
u 0
0 u∗

)
∼h

(
1 0
0 1

)
in U(M2(A)). (2.1.2)

Proof. First note that the spectrum of

(
0 1
1 0

)
is {1,−1} (direct elementary com-

putation). Thus by Lemma 2.1.4 (ii)

(
0 1
1 0

)
∼h

(
1 0
0 1

)
. Now write

(
u 0
0 v

)
=

(
u 0
0 1

)(
0 1
1 0

)(
v 0
0 1

)(
0 1
1 0

)
. (2.1.3)

Then, by Remark 2.1.3,

(
u 0
0 1

)(
0 1
1 0

)
∼h

(
u 0
0 1

)(
1 0
0 1

)
=

(
u 0
0 1

)
, (2.1.4)

analogously (
v 0
0 1

)(
0 1
1 0

)
∼h

(
v 0
0 1

)
, (2.1.5)

thus

(
u 0
0 v

)
∼h

(
uv 0
0 1

)
. In particular,

(
1 0
0 v

)
∼h

(
v 0
0 1

)
, thus

(
u 0
0 v

)
=

(
1 0
0 v

)(
u 0
0 1

)
∼h

(
v 0
0 1

)(
u 0
0 1

)
=

(
vu 0
0 1

)
. (2.1.6)

�

Proposition 2.1.7. Let A be a unital C∗-algebra.

(i) U0(A) is a normal subgroup of U(A).

(ii) U0(A) is open and closed relative to U(A).

(iii) u ∈ U0(A) iff there are finitely many self-adjoint h1, . . . , hn ∈ A such that

u = exp (ih1) · · · exp (ihn). (2.1.7)
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Proof. (i): First note that U0(A) is closed under multiplication by Remark 2.1.3. In
order to show that with u ∈ U0(A) also u−1 ∈ U0(A) and vuv∗ ∈ U0(A) (for any v ∈ U(A)),
let t 7→ wt be a continuous path from 1 to u in U(A). Then t 7→ w−1

t and t 7→ vwtv
∗ are

continuous paths from 1 to u−1 and vuv∗ in U(A).
(ii) and (iii): Let G := {exp (ih1) · · · exp (ihn) | n ∈ N, hk = h∗k ∈ A}. By (i) and Lemma
2.1.4, (i), G⊆ U0(A). Since exp(ih)−1 = exp(−ih), for h = h∗, G is a subgroup of U0(A).

G is open relative to U(A): If v ∈ G and u ∈ U(A) with ‖u − v‖ < 2, then ‖1 −
uv∗‖ = ‖(u − v)‖ < 2, and by Lemma 2.1.4 (iii) and its proof, sp(uv∗) 6= T, and, by
the proof of Lemma 2.1.4 (ii), there exists h = h∗ ∈ A such that uv∗ = exp(ih). Thus
u = exp(ih)v ∈ G.

G is closed relative to U(A): U(A)\G is a disjoint union of cosets Gu, with u ∈ U(A).
Each Gu is homeomorphic to G, therefore Gu is open relative to U(A). Thus G is closed
in U(A).

By the above, G is a nonempty subset of U0(A), it is open and closed in U(A), con-
sequently also in U0(A). The latter is connected, hence G = U0(A). This proves (ii) and
(iii). �

Lemma 2.1.8. Let A and B be unital C∗-algebras, and let ϕ : A → B be a surjective
(thus unital) ∗-homorphism.

(i) ϕ(U0(A)) = U0(B).

(ii) ∀u ∈ U(B)∃v ∈ U0(M2(A)):

ϕ2(v) =

(
u 0
0 u∗

)
(2.1.8)

with ϕ2 : M2(A) →M2(B) the extension of ϕ.

(iii) If u ∈ U(B) and there is v ∈ U(A) with u ∼h ϕ(v), then u ∈ ϕ(U(A)).

Proof. Any unital ∗-homomorphism is continuous and maps unitaries into unitaries,
hence ϕ(U0(A))⊆ U0(B). Conversely, if u ∈ U0(B), then by Proposition 2.1.7 (iii) there
are self-adjoint hj ∈ B such that

u = exp(ih1) · · · exp(ihn). (2.1.9)

By surjectivity of ϕ, there are aj ∈ A with ϕ(aj) = hj. Then kj :=
aj+a∗j

2
are self-adjoint

and satisfy ϕ(kj) = hj. Put

v = exp(ik1) · · · exp(ikn). (2.1.10)

Then ϕ(v) = u and v ∈ U0(A) by Proposition 2.1.7 (iii). This proves (i).

(ii): By Lemma 2.1.4 we have

(
u 0
0 u∗

)
∈ U0(M2(A)). On the other hand, ϕ2 :

M2(A) →M2(B) is a surjective ∗-homomorphism, so (i) proves the desired claim.
(iii): If u ∼h ϕ(v), then uϕ(v∗) ∈ U0(B), and, by (i), uϕ(v∗) = ϕ(w) with w ∈ U0(A).

Hence u = ϕ(wv), with wv ∈ U(A). �
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Definition 2.1.9. Let A be a unital C∗-algebra. The group of invertible elements in A is
denoted by GL(A). GL0(A) := {a ∈ GL(A) | a ∼h 1 in GL(A)}.

U(A) is a subgroup of GL(A).

If a ∈ A, then there is a well-defined element |a| = (a∗a)
1
2 , by the continuous functional

calculus. |a| is called absolute value of a.

Proposition 2.1.10. Let A be a unital C∗-algebra.

(i) If a ∈ GL(A), then also |a| ∈ GL(A), and a|a|−1 ∈ U(A).

(ii) Let ω : GL(A) → U(A) be defined by ω(a) = a|a|−1. Then ω is continuous, ω(u) = u
for u ∈ U(A), and ω(a) ∼h a in GL(A) for every a ∈ GL(A).

(iii) If u, v ∈ U(A) and if u ∼h v in GL(A), then u ∼h v in U(A).

Proof. (i): If a ∈ GL(A) then also a∗, a∗a ∈ GL(A). Hence also |a| = (a∗a)
1
2 ∈ GL(A),

with |a|−1 = ((a∗a)−1)
1
2 . Then a|a|−1 is invertible and unitary: |a|−1 is self-adjoint and

|a|−1a∗a|a|−1 = |a|−1|a|2|a|−1 = 1.
(ii): Multiplication in a C∗-algebra is continuous, as well as the map a 7→ a−1 in

GL(A). (see [M-GJ90, Theorem 1.2.3]) Therefore to show continuity of ω, it is sufficient
to show that a 7→ |a| is continuous. The latter is the composition of a 7→ a∗a and

h 7→ h
1
2 (for h ∈ A+). The first of these maps is continuous by continuity of ∗ and

the multiplication. Now it is sufficient to show the continuity of the square root on any
bounded Ω⊆ A+.This follows from Lemma 1.2.3, because each such Ω is contained in ΩK ,
with K = [0, R], R = sup

h∈Ω ‖h‖.
For u ∈ U(A) we have |u| = 1, hence ω(u) = u.
For a ∈ GL(A), put at := ω(a)(t|a| + (1 − t)1A), t ∈ [0, 1]. This is a continuous

path from ω(a) = a0 to a = a1. It remains to show that at ∈ GL(A), t ∈ [0, 1].
Since |a| is positive and invertible, there is λ ∈]0, 1] with |a| ≥ λ1A. Then, for each
t ∈ [0, 1], t|a| + (1 − t)1A ≥ λ1A. (Properties of positive operators, use the isomorphism
C(sp(a∗a)) → C∗(a∗a, 1).) Hence t|a| + (1 − t)1A and consequently at are invertible.

(iii) If t 7→ at is a continuous path in GL(A) from u to v (unitaries), then t 7→ ω(at)
is such a path in U(A). �

Remark 2.1.11. (ii) of the above proposition says that U(A) is a retract of GL(A).
ω : GL(A) → U(A) is the corresponding retraction. (A subspace X of a topological space
Y is called retract of Y if there is a continuous r : Y → X with x ∼h r(x) in Y ∀x ∈ Y
and r(x) = x ∀x ∈ X.) 3

Remark 2.1.12. (ii) also says that a = ω(a)|a|, with unitary ω(a), for invertible a.
This is called the (unitary) polar decomposition of a. For any a ∈ A, there is a polar
decomposition a = v|a|, with a unique partial isometry v. 3

Proposition 2.1.13. Let A be a unital C∗-algebra. Let a ∈ GL(A), and let b ∈ A with
‖a− b‖ < ‖a−1‖−1. Then b ∈ GL(A),

‖b−1‖−1 ≥ ‖a−1‖−1 − ‖a− b‖, (2.1.11)

and a ∼h b in GL(A).
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Proof. We have

‖1 − a−1b‖ = ‖a−1(a− b)‖ 5 ‖a−1‖‖a− b‖ < 1, (2.1.12)

thus (a−1b)−1 =
∑∞

k=0(1 − a−1b)k is absolutely convergent with norm ‖(a−1b)−1‖ 5∑∞
k=0 ‖1− a−1b‖k = (1−‖1− a−1b‖)−1. Thus b ∈ GL(A) with inverse b−1 = (a−1b)−1a−1,

and ‖b−1‖−1 ≥ ‖(a−1b)−1‖−1‖a−1‖−1 ≥ (1−‖1− a−1b‖)‖a−1‖−1 ≥ ‖a−1‖−1 −‖a− b‖. For
the last claim, put ct = (1 − t)a + tb for t ∈ [0, 1]. Then ‖a− ct‖ = t‖a − b‖ < ‖a−1‖−1,
therefeore ct ∈ GL(A) by the first part of the proof. �

2.2 Equivalence of projections

Definition 2.2.1. The set of projections in a C∗-algebra A is denoted by P(A). A partial
isometry is a v ∈ A such that v∗v ∈ P(A). If v is a partial isometry, then vv∗ is also a
projection (exercise). v∗v is called the support projection, vv∗ the range projection of v.

If v is a partial isometry, put p = v∗v and q = vv∗. then

v = qv = vp = qvp. (2.2.13)

(exercise).

Lemma 2.2.2. The following are equivalence relations on P(A):

• p ∼ q iff there exists v ∈ A with p = v∗v and q = vv∗ (Murray-von Neumann
equivalence),

• p ∼u q iff there exists u ∈ U(A) with q = upu∗ (unitary equivalence).

Proof. Transitivity of Murray-von Neumann: Let p ∼ q and q ∼ r, and let v, w be
partial isometries such that p = v∗v, q = vv∗ = w∗w, r = ww∗. Put z = wv. Then
z∗z = v∗w∗wv = v∗qv = v∗v = p, zz∗ = wvv∗w∗ = wqw∗ = ww∗ = r, i.e., p ∼ r. The
other claims are checked easily. �

Proposition 2.2.3. Let p, qP(A), A unital. The following are equivalent:

(i) ∃u ∈ U(Ã) : q = upu∗,

(ii) ∃u ∈ U(A) : q = upu∗,

(iii) p ∼ q and 1A − p ∼ 1A − q.

Proof. Let f = 1Ã − 1A = (−1A, 1). Then Ã = A + Cf and fa = af = 0 ∀a ∈ A.
(i) =⇒ (ii): Let q = zpz∗ for some z ∈ U(Ã). Then z = u + αf for some u ∈ A and

α ∈ C. It is straightforward to show u ∈ U(A) and q = upu∗.
(ii) =⇒ (iii): Let q = upu∗ for u ∈ U(A). Put v = up and w = u(1A − p). Then

v∗v = p, vv∗ = q, w∗w = 1A − p, ww∗ = 1A − q. (2.2.14)

(iii) =⇒ (i): Assume that there are partial isometries v, w satisfying (2.2.14). Then
(2.2.13) gives by direct calculation z := v+w+f ∈ U(Ã), and that zpz∗ = vpv∗ = vv∗ = q.
�

Note that one could prove (iii) =⇒ (ii) using the unitary u = v + w ∈ U(A).
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Lemma 2.2.4. Let A be a C∗-algebra, p ∈ P(A), and a = a∗ ∈ A. Put δ = ‖p − a‖.
Then

sp(a)⊆ [−δ, δ] ∪ [1 − δ, 1 + δ]. (2.2.15)

Proof. We know sp(a) ∈ R and sp(p) ∈ {0, 1}. It suffices to show that for t ∈ R the
assumption dist(t, {0, 1}) > δ implies t /∈ sp(a). Such a t is not in sp(p), i.e., p − t1 is
invertible in Ã, and

‖(p− t1)−1‖ = max(| − t|−1, |1 − t|−1) = d−1. (2.2.16)

(consider p− t1 as an element of C(sp(p))⊆ C2.) Consequently,

‖(p− t1)−1(a− t1) − 1‖ = ‖(p− t1)−1(a− p)‖ 5 d−1δ < 1. (2.2.17)

Thus (p− t1)−1(a− t1) is invertible, hence also a− t1 is invertible, i.e., t /∈ sp(a). �

Proposition 2.2.5. If p, q ∈ P(A), ‖p− q‖ < 1, then p ∼h q.

Proof. Put at = (1 − t)p + tq, t ∈ [0, 1]. Then at = a∗t , t 7→ at is continuous, and

min(‖at − p‖, ‖at − q‖) 5 ‖p− q‖/2 < 1/2. (2.2.18)

Thus by Lemma 2.2.4 sp(at)⊆ K := [−δ, δ] ∪ [1 − δ, 1 + δ], with δ = ‖p − q‖/2 < 1/2,
i.e., at ∈ ΩK in the notation of Lemma 1.2.3. Then f : K → C, defined to be zero on
[−δ, δ] and one on [1− δ, 1 + δ], is continuous, and f(at) is a projection for each t ∈ [0, 1]
because f = f 2 = f̄ . By Lemma 1.2.3, t 7→ f(at) is continuous, and p = f(p) = f(a0) ∼h

f(a1) = f(q) = q. �

Proposition 2.2.6. Let A be a unital C∗-algebra, a, b ∈ A selfadjoint. Suppose b = zaz−1

for some invertible z ∈ A. Then b = uau∗, where u ∈ U(A) is the unitary in the polar
decomposition z = u|z| of z (see Remark 2.1.12).

Proof. b = zaz−1 is the same as bz = za, and also z∗b = az∗. Hence

|z|2a = z∗za = z∗bz = az∗z = a|z|2, (2.2.19)

a commutes with |z|2. Thus a commutes with all elements of C∗(1, |z|2), in particular
with |z|−1. Therefore,

uau∗ = z|z|−1au∗ = za|z|−1u∗ = bz|z|−1u∗ = buu∗ = b. (2.2.20)

�

Proposition 2.2.7. Let A be a C∗-algebra, p, q ∈ P(A). Then p ∼h q in P(A) iff
∃u ∈ U0(Ã) : q = upu∗.

Proof. Assume q = upu∗ for some u ∈ U0(Ã), and let t 7→ ut be a continuous path in
U0(Ã) connecting 1(=1Ã) and u. Then t 7→ utpu

∗
t is a continuous path of projections in

A (A is an ideal in Ã).
Conversely, if p ∼h q, then there are p = p0, p1, . . . , pn ∈ P(A) such that ‖pj−pj+1‖ <

1/2 (the set {pt | t ∈ [0, 1]} is compact in the metric space P(A) and thus totally bounded,
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cf. [D-J73, 3.16]). Thus it is sufficient to consider only the case ‖p−q‖ < 1/2. The element
z := pq + (1 − p)(1 − q) ∈ Ã satisfies

pz = pq = zq (2.2.21)

and ‖z−1‖ = ‖p(q−p)+(1−p)((1− q)− (1−p))‖ 5 2‖p− q‖ < 1 (consider 2p−1 under
the isomorphism C(sp(p)) → C∗(p, 1)), thus z is invertible and z ∼h 1 by Proposition
2.1.13. If z = u|z| is the unitary polar decomposition of z (Remark 2.1.12), then from
formula (2.2.21) and Proposition 2.2.6 p = uqu∗. Eventually, it follows from Proposition
2.1.10 (ii) that u ∼h z ∼h 1 in GL(Ã), and from Proposition 2.1.10 (iii) that u ∈ U0(Ã).
�

Proposition 2.2.8. Let A be a C∗-algebra, p, q ∈ P(A).

(i) p ∼h q =⇒ p ∼u q.

(ii) p ∼u q =⇒ p ∼ q.

Proof. (i): Immediate from Proposition 2.2.7.
(ii): If upu∗ = q for u ∈ U(Ã), then v = up ∈ A, v∗v = p, and vv∗ = q. �

Proposition 2.2.9. Let A be a C∗-algebra, p, q ∈ P(A).

(i) p ∼ q =⇒
(
p 0
0 0

)
∼u

(
q 0
0 0

)
in M2(A).

(ii) p ∼u q =⇒
(
p 0
0 0

)
∼h

(
q 0
0 0

)
in M2(A).

Proof. Let v ∈ A such that p = v∗v, q = vv∗. Then (2.2.13) can be used to show that

u =

(
v 1 − q

1 − p v∗

)
, w =

(
q 1 − q

1 − q q

)
∈ U(M2(Ã)). (2.2.22)

Since

wu

(
p 0
0 0

)
u∗w∗ = w

(
q 0
0 0

)
w∗ =

(
q 0
0 0

)
, (2.2.23)

on the other hand

wu =

(
v + (1 − q)(1 − p) (1 − q)v∗

q(1 − p) 1 − q + qv∗

)
∈ M̃2(A), (2.2.24)

(i) is proved. Note that M̃2(A) is considered as a unital subalgebra of M2(Ã) via the map((
a b
c d

)
, α

)
7→
(

(a, α) (b, 0)
(c, 0) (d, α)

)
, and that one has to check that wu, being a priori

in M2(Ã), is indeed in M̃2(A).
(ii): The assumption means q = upu∗ for some u ∈ U(Ã). By Lemma 2.1.6 there is

a homotopy t 7→ wt in U(M2(Ã) connecting w0 =

(
1 0
0 1

)
with w0 =

(
u 0
0 u∗

)
. Put

et = wt diag(p, 0)w∗t . Then et ∈ P(M2(A)) (A is an ideal in Ã), t 7→ et is continuous,
e0 = diag(p, 0), and e1 = diag(q, 0). �
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Remark 2.2.10. Propositions 2.2.8 and 2.2.9 say that the three equivalence relations ∼,
∼u and ∼h are equivalent if one passes to matrix algebras. Otherwise, the implications
p ∼ q =⇒ p ∼u q and p ∼u q =⇒ p ∼h q do not hold:

Let A be a unital C∗-algebra containing a non-unitary isometry s, i.e., s∗s = 1 6= ss∗.
Example: one-sided shift. Then s∗s and ss∗ are projections, and by definition s∗s ∼ ss∗.
On the other hand, 1 − s∗s = 0 � 1 − ss∗ 6= 0, because from v∗v = 0 follows v = 0
(C∗-property and thus also vv∗ = 0. By Proposition 2.2.3 (iii), s∗s and ss∗ cannot be
unitarily equivalent.

Example of a unital C∗-algebra containing projections p, q with p ∼u q and p �h

q: There exists a unital C∗-algebra B such that M2(B) contains u ∈ U(M2(B) not

being homotopic in U(M2(B)) to any diag(v, 1), v ∈ U(B). Then p :=

(
1 0
0 0

)
∼u

u

(
1 0
0 0

)
u∗ in M2(B), but p �h q. Indeed, if one assumes p ∼h q, then by Proposition

2.2.7 there is w ∈ U(M2(B)) such that wqw∗ = p. Hence (wu)p = p(wu), and (see exercise
) wu = diag(a, b), with a, b ∈ U(B). From Lemma 2.1.6 and w ∈ U(M2(B)) we obtain
u ∼h wu = diag(a, b) ∼h diag(ab, 1), contradicting the original assumption about u. 3

2.3 Semigroups of projections

Definition 2.3.1. Let A be a C∗-algebra, n ∈ N. Put Pn(A) = P(Mn(A)) and P∞(A) =
∪∞n=1Pn(A) (disjoint union).

Let Mm,n(A) be the set of rectangular m×n-matrices with entries from A. The adjoint
of such a matrix is defined combining the matrix adjoint with the adjoint in A.

Definition 2.3.2. Let p ∈ Pn(A), q ∈ Pm(A). Then p ∼0 q iff ∃v ∈ Mm,n(A) : p =
v∗v, q = vv∗.

∼0 is an equivalence relation on P∞(A) and reduces for m = n to the Murray-von
Neumann equivalence on P(Mn(A)).

Definition 2.3.3. Define a binary operation ⊕ on P∞(A) by

p⊕ q =

(
p 0
0 q

)
. (2.3.25)

If p ∈ Pn(A), q ∈ Pm(A), then p⊕ q ∈ Pn+m(A).

Proposition 2.3.4. Let A be a C∗-algebra, p, q, r, p′, q′ ∈ P∞(A).

(i) ∀n ∈ N : p ∼0 p⊕ 0n (0n the zero of Mn(A)),

(ii) if p ∼0 p
′ and q ∼0 q

′, then p⊕ q ∼0 p
′ ⊕ q′,

(iii) p⊕ q ∼0 q ⊕ p,

(iv) if p, q ∈ Pn(A), pq = 0, then p+ q ∈ Pn(A) and p+ q ∼0 p⊕ q,

(v) (p⊕ q) ⊕ r = p⊕ (q ⊕ r).
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Proof. (i): Let m,n ∈ N, p ∈ Pm(A). Put u1 =

(
p
0

)
∈ Mm+n,m(A). Then

p = u∗1u1 ∼0 u1u
∗
1 = p⊕ 0n.

(ii): If p ∼0 p
′ and q ∼0 q

′, then ∃v, w : p = v∗v, p′ = vv∗, q = w∗w, q′ = ww∗. Put
u2 = diag(v, w). Then p⊕ q = u∗2u2 ∼0 u2u

∗
2 = p′ ⊕ q′.

(iii): Let p ∈ Pn(A), q ∈ Pm(A), and put u3 :=

(
0n,m q
p 0m,n

)
, with 0k,l the zero of

Mk,l(A). Then u3 ∈Mn+m(A), and p⊕ q = u∗3u3 ∼0 u3u
∗
3 = q ⊕ p.

(iv): If pq = 0 then p + q is a projection (exercise). Put u4 =

(
p
q

)
∈ M2n,n(A). Then

p+ q = u∗4u4 ∼0 u4u
∗
4 = p⊕ q.

(v): trivial. �

Definition 2.3.5.
D(A) := P∞(A)/ ∼0 . (2.3.26)

[p]D ∈ D(A) denotes the equivalence class of p ∈ P∞(A).

Lemma 2.3.6. The formula
[p]D + [q]D = [p⊕ q]D (2.3.27)

defines a binary operation on D(A) making it an abelian semigroup.

Proof. This is immediate from Proposition 2.3.4.

2.4 Examples and Exercises

Exercise 2.4.1. Let ϕ : A → B be a surjective ∗-homomorphism of C∗-algebras. If
ϕ(a) = b, then a is called lift of b.

(i) Any b ∈ B has a lift a ∈ A with ‖b‖ = ‖a‖.

(ii) Any selfadjoint b has a selfadjoint lift a with ‖b‖ = ‖a‖.

(iii) Any positive b has a positive lift a with ‖b‖ = ‖a‖.

(iv) A normal element does not in general have a normal lift.

(v) A projection does not in general lift to a projection.

(vi) A unitary does not in general lift to a unitary.

(ii) For a lift x of b, also a0 := x+x∗

2
= a∗0 is a lift of b. Consider the function f : R → R

given by

f(t) =





−‖b‖ t 5 ‖b‖,
t −‖b‖ 5 t 5 ‖b‖,

‖b‖ t ≥ ‖b‖.
(2.4.28)

Put a = f(a0). Then a = a∗, sp(a) = {f(t) | t ∈ sp(a0)}⊆ [−‖b‖, ‖b‖] (by definition of f),
and ‖a‖ = r(a) 5 r(b) = ‖b‖. Also, a is a lift of b, ϕ(a) = ϕ(f(a0)) = f(ϕ(a0)) = f(b) = b,
because f(t) = t for t ∈ sp(b). Finally, ϕ is norm-decreasing (as any ∗-homomorphism),
thus also ‖b‖ = ‖ϕ(a)‖ 5 ‖a‖, hence ‖b‖ = ‖a‖.
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(i) For b ∈ B, y :=

(
0 b
b∗ 0

)
is a self-adjoint element of M2(B) with ‖y‖ = ‖b‖

(‖y‖2 = ‖y∗y‖ = ‖
(
bb∗ 0
0 b∗b

)
‖ = max{‖bb∗‖, ‖b∗b‖} = ‖b‖2, using Exercice 10 of

Chapter 1). By (ii), there is a self-adjoint lift x =

(
x11 x12

x21 x22

)
of y with ‖x‖ = ‖y‖.

a = x12 is a lift of b, and by (1.3.22) ‖a‖ 5 ‖x‖ = ‖y‖ = ‖b‖. But also ‖b‖ 5 ‖a‖, thus
‖a‖ = ‖b‖.

(iii) For a lift x of b, also a0 := (x∗x)1/2 ≥ 0 is a lift: ϕ(a0) = (ϕ(x∗)ϕ(x))1/2 =
(b∗b)1/2 = b. Put a = f(a0), with f from (2.4.28). Then a is normal, ϕ(a) = b (ϕ(a) =
ϕ(f(a0)) = f(ϕ(a0)) = f(b) = b), sp(a)⊆ [0, ‖b‖]. Thus, a ≥ 0, ‖a‖ = ‖b‖.

(iv) Let s be the unilateral shift. Then s∗s = 1, s∗s − ss∗ = pre0 is compact. Let
π : B(H) → Q(H) = B(H)/K (Calkin-Algebra). Then π(s) is normal (π(pre0) = 0),
however, π(s) has no lift to a normal operator: There is no normal operator N such that
s−N is compact.

(v) Let A = C([0, 1]), B = C ⊕ C, ϕ(f) = (f(0), f(1)). Then q = (0, 1) ∈ P(C ⊕ C).
However, there are no nontrivial projections in C([0, 1]) (ϕ(p) = q would mean p(0) =
1, p(1) = 0).

Exercise 2.4.2. Let A be a unital C∗-algebra,

a =




1 a12 a13 . . . a1n

0 1 a23 . . . a2n
...

...
...

. . .
...

0 0 0 . . . an−1,n

0 0 0 . . . 1




∈Mn(A).

Show: a ∈ GLn(A), a ∼h 1 in GLn(A).
The first claim is immediate from Exercice 9 of Chapter 1. For the second claim, write

a = 1+a0. Then at = 1+ ta0 is a curve connecting a and 1 in GLn(A) (again by Exercice
9 of Chapter 1).

Exercise 2.4.3. Let A be a C∗-algebra, p, q ∈ P(A). Write p⊥q if pq = 0. The following
are equivalent:

(i) p⊥q,
(ii) p+ q ∈ P(A),

(iii) p+ q 5 1.

(i) =⇒ (ii): p+ q is self-adjoint, and (p + q)2 = p2 + pq + qp+ q2 = p+ q.
(ii) =⇒ (iii): 1 − (p+ q) = 1 − (p+ q) − (p+ q) + (p+ q)2 = (1 − (p+ q))2.
(iii) =⇒ (i): Use the general implication a 5 b =⇒ (c∗ac 5 c∗bc, ∀c ∈ A) to

conclude p + q 5 1 =⇒ p(p + q)p 5 p2 = p =⇒ p + pqp 5 p =⇒ pqp 5 0. On the
other hand, pqp = pqqp ≥ 0, thus pqqp = pqp = 0, which is equivalent to pq = qp = 0.

More generally, for p1, . . . , pn ∈ P(A), the following are equivalent:

(i) pi⊥pj, for all i 6= j,

(ii) p1 + . . .+ pn ∈ P(A),

(iii) p1 + . . .+ pn 5 1.



Chapter 3

The K0-Group for Unital
C∗-Algebras

3.1 The Grothendieck Construction

Lemma 3.1.1. Let (S,+) be an abelian semigroup. Then the binary relation ∼ on S×S
defined by

(x1, y1) ∼ (x2, y2) ⇔ ∃z ∈ S : x1 + y2 + z = x2 + y1 + z (3.1.1)

is an equivalence relation.

Proof. The relation ∼ is clearly symmetric and reflexive. Transitivity: Let (x1, y1) ∼
(x2, y2) and (x2, y2) ∼ (x3, y3), i.e., x1 +y2 + z = x2 +y1 + z, x2 +y3 +w = x3 +y2 +w for
some z, w ∈ S. Then x1 +y3 +(y2 + z+w) = x2 +y1 + z+y3 +w = x3 +y1 +(y2 + z+w),
i.e., (x1, y1) ∼ (x3, y3). �

Let G(S) := (S × S)/ ∼, and < x, y > denote the class of (x, y).

Lemma 3.1.2. The operation

< x1, y1 > + < x2, y2 >=< x1 + x2, y1 + y2 > (3.1.2)

is well-defined and yields an abelian group (G(S),+). Inverse and zero are given by

− < x, y >=< y, x >, 0 =< x, x > . (3.1.3)

Proof. Straightforward. �

The group (G(S),+) is called the Grothendieck group of S.
For y ∈ S, there is a map γ : S → G(S), x 7→< x + y, y > (Grothendieck map). It is

independent of y and a homomorphism of abelian semigroups (additive).

Definition 3.1.3. An abelian semigroup (S,+) is said to have the cancellation property
if from x + z = y + z follows x = y (x, y, z ∈ S).

Proposition 3.1.4. Let (S,+) be an abelian semigroup.

(i) If H is an abelian group, ϕ : S → H additive, then there is a unique group homor-
phism ψ : G(S) → H such that ϕ = ψ ◦ γ (universal property).

27
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(ii) If ϕ : S → T is a homomorphism (additive map) of abelian semigroups, then there
is a unique group homomorphism G(ϕ) : G(S) → G(T ) such that γT ◦ϕ = G(ϕ)◦γS
(functoriality).

(iii) G(S) = {γS(x) − γS(y) | x, y ∈ S}.

(iv) For x, y ∈ S, γS(x) = γS(y) iff ∃z ∈ S such that x+ z = y + z.

(v) Let (H,+) be an abelian group, ∅ 6= S⊆ H. If S is closed under addition, then (S,+)
is an abelian semigroup with the cancellation property, and G(S) is isomorphic to
the subgroup H0 generated by S, with H0 = {x− y | x, y ∈ S}.

(vi) The map γS : S → G(S) is injective iff S has the cancellation property.

Proof. (iii): For < x, y >∈ G(S) we have < x, y >=< x, y > + < x+y, x+y >=< x+
x+y, y+x+y >=< x+y, y > + < x, x+y >=< x+y, y > − < x+y, x >= γS(x)−γS(y).
(iv): If x + z = y + z, then by additivity of γS γS(x) + γS(z) = γS(y) + γS(z), hence,
since G(S) is a group, γS(x) = γS(y). Conversely, let γS(x) = γS(y), in particular
< x + y, y >=< y + x, x >, i.e., ∃w ∈ S : (x + y) + x + w = (y + x) + y + w. Thus
x + z = y + z, with z = x+ y + w.
(v): immediate from (iv).
(i): If ψ exists, it has to satisfy ψ(< x, y >) = ϕ(x) − ϕ(y), in order to have ψ ◦ γS = ϕ.
Then additivity of ψ follows from additivity of ϕ, and uniqueness follows from (iii). To
see that ψ exists, assume < x1, y1 >=< x2, y2 >, i.e., ∃z ∈ S : x1 + y2 + z = x2 + y1 + z.
Then ϕ(x1) + ϕ(y2) + ϕ(z) = ϕ(x2) + ϕ(y1) + ϕ(z) in H, by addivity of ϕ. Since H is
a group, we have ϕ(x1) − ϕ(y1) = ϕ(x2) − ϕ(y2), which shows that ψ is well-defined by
ψ(< x, y >) = ϕ(x) − ϕ(y).
(ii): γT ◦ ϕ : S → G(T ) is an additive map into the group G(T ), thus by (i) there is a
unique group homomorphism G(ϕ) : G(S) → G(T ) such that γT ◦ ϕ = G(ϕ) ◦ γS.
(vi): Any non-empty subset of an abelian group that is closed under addition is an abelian
semigroup with cancellation property. The inclusion ι : S → H is additive and gives by
(i) rise to a group homomorphism ψ : G(S) → H such that ψ ◦ γS = ι, i.e., ψ(γS(x)) = x
for x ∈ S. By (iii), ψ(G(S)) = {x − y | x, y ∈ S} = H0. If ψ(γS(x) − γS(y)) = 0, then
x = y and so γS(x) − γS(y) = 0, i.e., ψ is injective. �

Examples:

• (N,+) is an abelian semigroup with cancellation property, whose Grothendieck
group is isomorphic to (Z,+).

• Let (N ∪ {∞},+) be the abelian semigroup whose addition is defined by the usual
addition in N and by x+∞ = ∞ = ∞+∞. Then (N∪ {∞},+) does not have the
cancellation property, and the corresponding Grothendieck group is {0}. Indeed,
from x + ∞ = ∞ + ∞ it does not follow that x = ∞, and < x, y >=< x, x > for
any x, y ∈ N ∪ {∞}, because x+ x + ∞ = y + x + ∞ = ∞ ∀x, y ∈ N ∪ {∞}.
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3.2 Definition of the K0-group of a unital C∗-algebra

Definition 3.2.1. Let A be a unital C∗-algebra. The K0(A) group is defined as the
Grothendieck group of the semigroup D(A):

K0(A)
def
= G(D(A)).

We also define a map [·]0 : P∞(A) → K0(A) by [p]0 = γD(A)([p]D) for p ∈ P∞(A).

Remark 3.2.2. Formally, this definition could be made for non-unital C∗-algebras as well,
but it would not be appropriate, since the resulting K0-functor would not be half-exact.

3.2.1 Portrait of K0 — the unital case

We define a binary relation ∼s on P∞(A) as follows: p ∼s q iff there exists an r ∈ P∞(A)
such that p ⊕ r ∼0 q ⊕ r. The relation ∼s is called stable equivalence and it is easy to
verify that it is indeed an equivalence relation. Furthermore, the relation can be defined
equivalently as p ∼s q iff p⊕1n ∼0 q⊕1n for some positive integer n. Indeed, if p⊕r ∼0 q⊕r
for r ∈ Pn(A), then p⊕ 1n ∼0 p⊕ r ⊕ (1n − r) ∼0 q ⊕ r ⊕ (1n − r) ∼0 q ⊕ 1n.

Proposition 3.2.3. Let A be a unital C∗-algebra. Then

(i) K0(A) = {[p]0 − [q]0 : p, q ∈ Pn(A), n ∈ N},

(ii) [p]0 +[q]0 = [p⊕ q]0 for p, q ∈ P∞(A), and if p and q are orthogonal then [p]0 +[q]0 =
[p+ q]0,

(iii) [0A]0 = 0,

(iv) if p, q ∈ Pn(A) and p ∼h q in Pn(A) then [p]0 = [q]0,

(v) [p]0 = [q]0 iff p ∼s q for p, q ∈ P∞(A).

Proof. Straightforward. As an example, we only verify (v). If [p]0 = [q]0 then by part (iv)
of Proposition [3.1.4] there is an r ∈ P∞(A) such that [p]D + [r]D = [q]D + [r]D. Hence
[p ⊕ r]D = [q ⊕ r]D. Thus p⊕ r ∼0 q ⊕ r and consequently p ∼s r. Conversely, if p ∼s q
then there is r ∈ P∞(A) such that p ⊕ r ∼0 q ⊕ r. Then [p]0 + [r]0 = [q]0 + [r]0 by part
(ii) above and hence [p]0 = [q]0 since K0(A) is a group.

3.2.2 The universal property of K0

Proposition 3.2.4. Let A be a unital C∗-algebra, let G be an abelian group, and let
nu : P∞(A) → G be a map satisfying the following conditions:

(i) ν(p⊕ q) = ν(p) + ν(q),

(ii) ν(0A) = 0,

(iii) if p ∼h q in Pn(A) then ν(p) = ν(q).
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Then there exists a unique homomorphism K0(A) → G such that the diagram

P∞(A)

K0(A)

[·]0
?

- G

-
(3.2.4)

is commutative.

Proof. At first we observe that if p, q ∈ P∞(A) and p ∼0 q then ν(p) = ν(q). Indeed, let
p ∈ Pk(A), q ∈ Pl(A). Take n ≥ max{k, l} and put p′ = p ⊕ 0n−k and q′ = q ⊕ 0n−l.
We have p′ ∼0 p ∼0 q ∼0 q

′ and hence p′ ∼ q′. Thus p′ ⊕ 03n ∼h q
′ ⊕ 03n in P4n(A) by

Proposition 2.2.9. Hence

ν(p) = ν(p) + (4n− k)ν(0) = ν(p′ ⊕ 03n) = ν(q′ ⊕ 03n) = ν(q),

as required. Consequently, the map D(A) → G, [p]D 7→ ν(p) is well-defined. Clearly,
this map is additive. The rest follows from the univesal property of the Grothendieck
construction (part (i) of Proposition 3.1.4).

3.2.3 Functoriality

Now we observe that K0 is a covariant functor from the category of unital C∗-algebras
with (not necessarily unital) ∗-homomorphisms to the category of abelian groups.

Let ϕ : A → B be a (not necessarily unital) ∗-homomorphism between unital C∗-
algebras. For each n it extends to a ∗-homomorphism ϕn : Mn(A) → Mn(B), and this
yields a map ϕ : P∞(A) → P∞(B). Define ν : P∞(A) → K0(B) by ν(p) = [ϕ(p)]0.
Then ν satisfies the conditions of Proposition 3.2.4. Thus, there is a homomorphsm
K0(ϕ) : K0(A) → K0(B) such that K0(ϕ)([p]0) = [ϕ(p)]0. That is, we have a commutative
diagram

P∞(A)
ϕ - P∞(B)

K0(A)

[·]0
? K0(ϕ)- K0(B)

[·]0
?

(3.2.5)

Proposition 3.2.5. Let ϕ : A → B, ψ : B → C be ∗-homomorphisms between unital
C∗-algebras. Then

(i) K0(idA) = idK0(A),

(ii) K0(ψ ◦ ϕ) = K0(ψ) ◦K0(ϕ).

Proof. By definition, (i) and (ii) hold when applied to [p]0, p ∈ P∞(A). Then use part (i)
of Proposition 3.2.3.
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3.2.4 Homotopy invariance

Let A,B be C∗-algebras. Two ∗-homomorphisms ϕ, ψ : A → B are homotopic ϕ ∼h ψ if
there exist ∗-homomorphisms ϕt : A→ B for t ∈ [0, 1] such that ϕ0 = ϕ, ϕ1 = ψ, and the
map [0, 1] 3 t 7→ ϕt(a) ∈ B is norm contnuous for each a ∈ A.

C∗-algebras A and B are homotopy equivalent if there exist ∗-homomorphisms ϕ :
A→ B and ψ : B → A such that ψ ◦ϕ ∼h idA and ϕ ◦ψ ∼h idB. In such a case we write

A
ϕ→ B

ψ→ A.

Proposition 3.2.6. Let A,B be unital C∗-algebras.

(i) If ϕ, ψ : A→ B are homotopic ∗-homomorphisms then K0(ϕ) = K0(ψ).

(ii) If A is homotopy equivalent via A
ϕ→ B

ψ→ A then K0(ϕ) : K0(A) → K0(ψ) is an
isomorphism with K0(ϕ)−1 = K0(ψ).

Proof. Part (i) follows from Proposition 3.2.3. Part (ii) follows from part (i) and functo-
riality of K0 (Proposition 3.2.5).

3.3 Examples and Exercises

Example 3.3.1. K0(C) ∼= Z. Indeed, D(C) ∼= (Z+,+) and the Grothendieck group of Z+

is Z.

Example 3.3.2. If H is an infinite dimensional Hilbert space then K0(B(H)) = 0. Indeed,
if H is separable then D(B(H)) ∼= Z+∪{∞} with the addition in Z+ extended by m+∞ =
∞+m = ∞+∞ = ∞. The Grothendieck group of this semigroup is 0. The non-separable
case is handled similarly.

Exercise 3.3.3. If X is a contractible compact, Hausdorff space then K0(C(X)) ∼= Z.
Hint: recall that X is contractible if there exists a point x0 ∈ X and a continuous map
α : [0, 1] × X → X such that α(0, x) = x and α(1, x) = x0 for all x ∈ X, and use
Proposition 3.2.6 and Example 3.3.1.

Example 3.3.4 (Traces). Let A be a unital C∗-algebra. A bounded linear functional
τ : A → C is a trace if τ(ab) = τ(ba) for all a, b ∈ A. Hence τ(p) = τ(q) if p, q are
Murray-von Neumann equivalent projections. A trace τ is positive if τ(a) ≥ 0 for all
a ≥ 0. It is a tracial state if it is positive of norm 1.

A trace τ extends to a trace τn on Mn(C) by τn([ai,j]) =
∑n

i=1 τ(ai). Thus τ gives
rise to a function τ : P∞(A) → C. By the universal property of K0 this yields a group
homomorphism K0(τ) : K0(A) → C such that K0(τ)([p]0) = τ(p). If τ is positive then
K0(τ) : K0(A) → R and K0([p]0) ∈ R+ for p ∈ P∞(A).

Exercise 3.3.5. If n ∈ Z+ then K0(Mn(C)) ∼= Z, and the class of a minimal projection is
a generator. In fact, let Tr be the standard matrix trace. Then K0(Tr) : K0(Mn(C)) → Z
is an isomorphism.

Exercise 3.3.6. Let X be a connected, compact Hausdorff space. Show that there exists
a surjective homomorphism

dim : K0(C(X)) → Z
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such that dim([p]0) = Tr(p(x)).
To this end, identify Mn(C(X)) with C(X,Mn(C)). For each x ∈ X the evaluation

at x is a positive trace and hence, by Example 3.3.4 gives rise to a homomorphism from
K0(C(X)) to R. If p ∈ P∞(C(X)) then the function x 7→ Tr(p(x)) ∈ Z is continuous
and locally constant, hence constant since X is connected. Finally, the homomorhism is
surjective since dim([1]0) = 1.

Exercise 3.3.7. Let X be a compact Hausdorff space.

(1) By generalizing Exercise 3.3.6, show that there exists a surjective group homomor-
phism

dim : K0(C(X)) → C(X,Z)

such that dim([p]0)(x) = Tr(p(x)).

(2) Given p ∈ Pn(C(X)) and q ∈ Pm(C(X)) show that dim([p]0) = dim([q]0) iff for each
x ∈ X there exists vx ∈ Mm,n(C(X)) such that v∗xvx = p(x) and vxv

∗
x = q(x). Note that

in general one cannot choose vx so that the map x 7→ vx be continuous.

(3) Show that if X is totally disconnected then the map dim is an isomorphism.
Recall that a space is totally disconnected if it has a basis for topology consisting of sets

which are simultaneously open and closed. To prove the claim it sufficies (in view of part
(1)) to show that dim is injective. To this end use part (ii) and total disconnectedness of X
to find a partition ofX into open and closed subsets X = X1∪X2∪. . .∪Xk and rectangular
matrices v1, v2, . . . , vk over C(X) such that ||v∗i vi − p(x)|| < 1 and ||viv∗i − q(x)|| < 1 for
all x ∈ Xi. From this deduce that p ∼0 q.

Exercise 3.3.8. Let A be a unital C∗-algebra and let τ : A → C be a bounded linear
functional. Show that the following conditions are equivalent:

(i) τ(ab) = τ(ba) for all a, b ∈ A,

(ii) τ(x∗x) = τ(xx∗) for all x ∈ A,

(iii) τ(uyu∗) = τ(y) for all y ∈ A and all unitary u ∈ A.

(ii)⇒(iii) Suppose (ii) holds. At first consider a ≥ 0 and set x = u|a|1/2. Then τ(uau∗) =
τ(xx∗) = τ(x∗x) = τ(a). Then use the fact that every element of a C∗-algebra can be
written as a linear combination of four positive elements.

(iii)⇒(i) Suppose (iii) holds. If b ∈ A and u is a unitary in A then τ(ub) = τ(u(bu)u∗) =
τ(bu). Then use the fact that every element of a unital C∗-algebra may be written as a
linear combination of four untaries.

Example 3.3.9. Let Γ be a countable discrete group with infinite conjugacy classes (an
ICC group). Let λ : Γ → B(`2(Γ)) be its left regular representation. Let W ∗(Γ) be the
closure of the linear span of λ(Γ) in the strong operator topology (that is, in the topology
of pointwise convergence). It can be shown that there exists a unique tracial state τ on
W ∗(Γ), and that this trace has the following properties:

(i) Two projections p, q are Murray-von Neumann equivalent in W ∗(Γ) iff τ(p) = τ(q).

(ii) {τ(p) : p ∈ P(W ∗(Γ))} = [0, 1].
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Deduce that K0(W
∗(Γ) ∼= (R,+). The conslusion of this example remains valid if W ∗(Γ)

is replaced by any factor von Neumann algebra of type II1.

Example 3.3.10 (Matrix stability of K0). Let A be a unital C∗-algebra and let n
be a positive integer. Then

K0(A) ∼= K0(Mn(A)).

More specifically, the ∗-homomorphism ϕ : A → Mn(A), a 7→ diag(a, 0n−1) induces an
isomorphism K0(ϕ) : K0(A) → K0(Mn(A)).

Indeed, we construct inverse to K0(ϕ), as follows. For each k let γk : Mk(Mn(A)) →
Mkn(A) be the isomorphism which ”erases parentheses”. Define γ : P∞(Mn(A)) → K0(A)
by γ(p) = [γk(p)]0 for p ∈ Pk(Mn(A)). The universal property of K0 applied to γ yields
a homomorphism α : K0(Mn(A)) → K0(A) such that α([p]0) = [γ(p)]0.We claim that
α = K0(ϕ)−1. To this end it sufficies to show that

(i) ϕkn(γk(p)) ∼0 p in P∞(Mn(A)) for p ∈ Pk(Mn(A)), and

(i) γk(ϕk(p)) ∼0 p in P(A) for p ∈ Pk(A).

Proof of (i). exercise.

Proof of (ii). Let e1, . . . , ekn be the standard basis in Ckn and let u be a permutation
unitary such that uei = en(i−1)+1 for i = 1, 2, . . . , k. Then p ∼0 p⊕0(n−1)k = u∗γk(ϕk(p))u
for all projections p in Pk(A).

Exercise 3.3.11. Two ∗-homomorphisms ϕ, ψ : A → B are orthogonal if ϕ(A)ψ(B) =
{0}. Show that if ϕ and ψ are orthogonal then ϕ+ψ is a ∗-homomorphism andK0(ϕ+ψ) =
K0(ϕ) +K0(ψ).

Exercise 3.3.12 (Cuntz algebras). Let H be a Hilbert space, let n be a positive
integer bigger than 1, and let S1, . . . , Sn be isometries on H whose range projections
add up to the identity. Let C∗(S1, . . . , Sn) be the C∗-subalgebra of B(H) generated by
{S1, . . . , Sn}. It was proved by Cuntz in [C-J77] that this C∗-algebra is independent of
the choice of such isometries. That is, if T1, . . . , Tn is another family of isometries whose
range projections add up to the identity then there is a ∗-isomorphism ϕ : C∗(S1, . . . Sn) →
C∗(T1, . . . , Tn) such that ϕ(Sj) = Tj for j = 1, . . . , n. Thus defined C∗-algebra is denoted
On and called Cuntz algebra. It is a simple, unital, separable C∗-algebra. Alternatively,
On may be defined as the universal C∗-algebra generated by elements S1, . . . , Sn subject
to the relations:

(i) S∗i Si = I for i = 1, . . . , n,

(ii)
∑n

i=1 SiS
∗
i = I.

(1) Let u be a unitary in On. There exists a unique unit preserving injective ∗-homomorphism
λu : On → On (i.e. an endomorphism of On) such that λu(Sj) = uSj for j = 1, . . . , n.
Moreover, if ϕ is an endomorphism of On then ϕ = λu with u =

∑n
i=1 ϕ(Si)S

∗
i .

(2) Let σ be an endomorphism of On such that σ(x) =
∑n

i=1 sixs
∗
i (the shift endomor-

phism). Then K0(σ) : K0(On) → K0(On) is the multiplication by n, that isK0(σ)(g) = ng
for all g ∈ K0(On). Hint: Use Exercise 3.3.11 and the following fact. If v is an isometry
in a unital C∗-algebra A then the map µ : A→ A, µ(x) = vxv∗ is a ∗-homomorphism and
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K0(µ) = id. For the latter observe that µk : Mk(A) →Mk(A) is given by µk(y) = vkyv
∗
k,

where vk = diag(v, . . . , v).

(3) Let w be a unitary in On such that σ = λw. Then w ∼h 1 in U(On) and hence σ ∼h id.
Consequently, K0(σ) = idK0(On). Hint: Note that w belongs to M = span{SiSjS∗kS∗m},
and that M is a C∗-subalgebra of On isomorphic to Mn2(C).

(4) Combining (2) and (3) we get (n − 1)K0(On) = 0. Thus, in particular, K0(O2) = 0.
In fact, Cuntz showed in [C-J81] that K0(On) ∼= Zn−1 for all n = 2, 3, . . .

Exercise 3.3.13 (Properly infinite algebras). Let A be a unital C∗-algebra. A
is called properly infinite if there exist two projections e, f in A such that ef = 0 and
1 ∼ e ∼ f . For example, Cuntz algebras are properly infinite. For the reminder of this
exercise assume A is properly infinite.

(1) A contains isometries S1, S2 whose range projections are orthogonal.

(2) A contains an infinite sequence {tj} of isometries with mutually orthogonal ranges.
Hint: take Sk2S1 for k = 0, 1, 2, . . .

(3) For each natural number n let vn be an element of M1,n(A) with entries t1, . . . , tn.
Then v∗nvn = 1n and for p ∈ Pn(A) we have p ∼0 vnpv

∗
n, with vnpv

∗
n a projection in A.

(4) Let p, q be projections in A. Set

r = t1pt
∗
1 + t2(1 − q)t∗2 + t3(1 − t1t

∗
1 − t2t

∗
2)t
∗
3.

Then r is a projection in A and [r]0 = [p]0 − [q]0.

Conclude that
K0(A) = {[p]0 : p ∈ P(A)}.

Exercise 3.3.14. If A is a separable, unital C∗-algebra then K0(A) is countable.

Exercise 3.3.15. Show that condition (iii) of Proposition 3.2.4 may be replaced by any
of the following three conditions:

(i) ∀n∀p, q ∈ Pn(A) if p ∼u q then ν(p) = ν(q),

(ii) ∀p, q ∈ P∞(A) if p ∼0 q then ν(p) = ν(q),

(iii) ∀p, q ∈ P∞(A) if p ∼s q then ν(p) = ν(q).

Exercise 3.3.16. Let A be a unital C∗-algebra and let a ∈ A be such that a ≥ 0 and
||a|| 5 1.

(1) Show that

p =

(
a

√
a− a2√

a− a2 1 − a

)

is a projection in M2(A).

(2) Show that p ∼ diag(1, 0) in M2(A). Hint: consider

v =

( √
a

√
1 − a

0 0

)
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(3) Let B be another unital C∗-algebra and let ϕ : A→ B be a unit preserving, surjective
∗-homomorphism. Let q be a projection in B. Show that there is a ≥ 0 in A such that
||a|| 5 1 and ϕ(a) = q. Then use this a to define p as in (1) above and show that

ϕ(p) =

(
q 0
0 1 − q

)

Exercise 3.3.17 (Partial isometries). Show that for an element S of a C∗-algebra
the following conditions are equivalent:

(i) S∗S is a projection,

(ii) SS∗ is a projection,

(iii) SS∗S = S.

(i)⇒(iii) Show (SS∗S − S)∗(SS∗S − S) = 0.
An element S satisfying these conditions is called partial isometry.

Exercise 3.3.18. Let A be a unital C∗-algebra, a, b two elements of A, and p, q two
projections in A. Show the following.

(i) abb∗a∗ 5 ||b||2aa∗.

(ii) p 5 q iff pq = p.

(i) Since ||b||2 − bb∗ ≥ 0 there is x ∈ A such that ||b||2 − bb∗ = xx∗. Thus

||b||2aa∗ − abb∗a∗ = a(||b||2 − bb∗)a∗ = axx∗a∗ = (ax)(ax)∗ ≥ 0.

(ii) If p 5 q then pqp− p = p(q − p)p ≥ 0, and hence pqp ≥ p. But pqp 5 ||q||p = p (by
part (i)). Thus pqp = p. Hence

(pq − p)(pq − p)∗ = (pq − p)(qp− p) = pqp− pqp− pqp+ p = 0

and consequently pq − p = 0.

Exercise 3.3.19. Let A be a unital C∗-algebra. Then the exact sequence

0 −→ A
ı−→ Ã

π−→ C −→ 0

is split exact, with a splitting map λ : C −→ Ã, and induces a split exact sequence

0 −→ K0(A)
K0(ı)−→ K0(Ã)

K0(π)−→ K0(C) −→ 0,

with a splitting map K0(λ) : K0(C) −→ K0(Ã).

Hint: Let f = 1Ã − 1A, a projection such that Ã = A⊕ Cf (direct sum of C∗-algebras).
Let µ be the natural surjection from Ã onto A and let λ′ : C → Ã be defined by λ′(t) = tf .
Then we have the following identities: idA = µ◦ ı, π◦ ı = 0, π◦λ = idC, idÃ = ı◦µ+λ′ ◦π,
and the maps ı ◦ µ and λ′ ◦ π are orthogonal to one another (see Exercise 3.3.11). The
claim follows from these identities and functoriality of K0.
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Example 3.3.20 (Algebraic definition of K0). Let R be a unital ring. Recall that
e ∈ R is an idempotent if e2 = e. We define I(R) = {e ∈ R : e2 = 2}, In(R) = I(Mn(R)),
I∞(R) =

⋃∞
n=1 In(R). We define a relation ≈0 in I∞(R) as follows. If e ∈ In(R) and

f ∈ Im(R) then e ≈0 f iff there exist a ∈ Mn,m(R) and b ∈ Mm,n(R) such that e = ab
and f = ba. If this is the case then taking a′ = aba and b = bab we may assume that
a, b satisfy aba = a and bab = b (this we always assume in what follows). Claim: ≈0

is an equivalence relation. For transitivity, let e ≈0 f , f ≈0 g be idempotents and let
c, d, x, y be matrices such that e = cd, f = dc, f = xy, g = yx. Then (cx)(yd) = e and
(yd)(cx) = g, and hence e ≈0 g. Set V (R) = I∞(R)/≈0, anddenote the class of e by [e]V .

Define a binary operation ⊕ on I∞(R) by e ⊕ f = diag(e, f). This operation is
well-defined on equivalence classes of ≈0 and turns V (R) into an abelian semigroup.
DefineK0(R) as the Grothendieck group of (V (R),⊕).

Now suppose A is a unital C∗-algebra. We show hat the two definitions of K0(A)
coincide. In fact, the two semigoups D(A) and V (A) are isomorphic. The proof proceeds
in three steps.

(1) If e ∈ I∞(A) ten there exists a p ∈ P∞(A) such that e ≈0 p. Indeed, let e ∈ Mn(A),
and set h = 1n+(e− e∗)(e− e∗)∗. Then h is invertible and satisfies eh = ee∗e = he. Then
p = ee∗h−1 is a projection. Since ep = p and pe = e, e ≈0 p.

(2) If p, q ∈ P∞(A) then p ∼0 q iff p ≈0 q. Indeed, suppose (after diagonalling adding
zeros, if necessary) p, q ∈ Mn(A) and a, b ∈ Mn(A) are such that p = ab, q = ba, a = aba
(hence a = paq), b = bab (hence b = qbp). Then b∗b = (bab)∗b = (ab)∗b∗b = pb∗b.
It follows that b∗b belongs to the corner C∗-algebra pMn(A)p. Since p = (ab)∗ab =
b∗(a∗a)b 5 ||a||2b∗b, the element b∗b is invertible in pMn(A)p. Set v = bp(b∗b)−1/2. We
have p = v∗v (straightforward calculation). In particular, v is a partial isometry. In fact,
b = v|b| is the polar decomposition of b in Mn(A). Hence bb∗ = vb∗bv∗.

It now suffices to show that q = vv∗. First note that v = qv (directly follows from the
definition of v). Thus

vv∗ = qvv∗q 5 ||v||2q = q = baa∗b∗ 5 ||a||2bb∗ = ||a||2vb∗bv∗ 5 ||a||2||b||2vv∗.

That is, vv∗ and q are projections satisfying vv∗ 5 q 5 ||a||2||b||2vv∗. It follows that
vv∗ = q.

(3) The map D(A) → V (A) given by [p]D 7→ [p]V is a semigroup isomorphism. (exercise)



Chapter 4

K0-Group — the General Case

4.1 Definition of the K0-Functor

Definition 4.1.1. Let A be a non-unital C∗-algebra and let Ã be its minimal unitization.
We have a split-exact sequence

0 −→ A −→ Ã
π−→ C −→ 0.

Define K0(A) = Ker (K0(π)), where K0(π) : K0(Ã) → K0(C) is the map induced by π.

Thus, by definition, K0(A) is a subgroup of K0(Ã) and hence an abelian group. If
p ∈ P∞(A) then [p]0 ∈ K0(Ã). But [p]0 ∈ KerK0(π) and hence [p]0 ∈ K0(A). Thus, just
as in the unital case, we have a map [·]0 : P∞(A) → K0(A).

If A is unital then we can still form direct sum (of C∗-algebras) Ã = A ⊕ C. Let π
be the natural surjection from Ã onto C. As shown in Exercise 3.3.19, we have K0(A) =
Ker (K0(π)). Thus, Definition 4.1.1 works equally well in the case of a unital C∗-algebra.

4.1.1 Functoriality of K0

Let ϕ : A→ B be a ∗-homomorphism. Then the diagram

A - Ã - C

B

ϕ

?
- B̃

ϕ̃
?

- C

=

?

(4.1.1)

commutes. Functoriality of K0 for unital C∗-algebras yields a commutative diagram

K0(A) - K0(Ã) - K0(C)

K0(B) - K0(B̃)

K0(ϕ̃)
?

- K0(C)

=

?

(4.1.2)

and there exists exactly one map K0(ϕ) : K0(A) → K0(B) which completes the diagram.
Note that we have K0([p]0) = [ϕ(p)]0 for p ∈ P∞(A).

37
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Proposition 4.1.2. Let ϕ : A→ B, ψ : B → C be ∗-homomorphsms between C∗-algebras.
Then

(i) K0(idA) = idK0(A),

(ii) K0(ψ ◦ ϕ) = K0(ψ) ◦K0(ϕ).

Proof. Exercise — use functoriality of K0 for unital C∗-algebras.

Moreover, it is immediate from the definitions that K0 of the zero algebra is 0 and K0

of the zero homomorphism is the zero map.

4.1.2 Homotopy invariance of K0

Proposition 4.1.3. Let A,B be C∗-algebras.

(i) If ϕ, ψ : A→ B are homotopic ∗-homomorphisms then K0(ϕ) = K0(ψ).

(ii) If A
ϕ−→ B

ψ−→ A is a homotopy then K0(ϕ) and K0(ψ) are isomorphisms and
inverses of one another.

Proof. (i) Since ϕ and ψ are homotopic so are they unital extensions ϕ̃ and ψ̃ to Ã,
whence K0(ϕ̃) = K0(ψ̃) by Proposition 3.2.6. Then K0(ϕ) = K0(ψ) being the restrictions
of these maps to K0(A). Part (ii) follows from part (i) and functoriality of K0.

4.2 Further Properties

4.2.1 Portrait of K0

Let A be a C∗-algebra and consider the split-exact sequence

0 −→ A
ı−→ Ã

π−→ C −→ 0,

with the splitting map λ : C → Ã. Define the scalar map s = λ ◦ π : Ã → Ã, so that
s(a + t1) = t1. Let sn : Mn(Ã) → Mn(Ã) be the natural extensions of s. The image of
sn is isomorphic to Mn(C), and its elements are called scalar matrices. The scalar map is
natural in the sense that for any ∗-homomorphism ϕ : A→ B the diagram

Ã
s - Ã

B̃

ϕ̃
?

s - B̃;

ϕ̃
?

(4.2.3)

commutes.

Proposition 4.2.1. Let A be a C∗-algebra.

(i) K0(A) = {[p]0 − [s(p)]0 : p ∈ P∞(Ã)}.

(ii) If p, q ∈ P∞(Ã) then the following are equivalent:
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(a) [p]0 − [s(p)]0 = [q]0 − [s(q)]0,

(b) there are k, l such that p⊕ 1k ∼0 q ⊕ 1l in P∞(Ã),

(c) there are scalar projections r1, r2 such that p⊕r1 ∼0 q ∼0 r2 such that p⊕r1 ∼0

q ⊕ r2.

(iii) If p ∈ P∞(Ã) and [p]0 − [s(p)]0 = 0 then there is m such that p⊕ 1m ∼ s(p) ⊕ 1m.

(iv) If ϕ : A→ B is a ∗-homomorphism then K0(ϕ)([p]0 − [s(p)]0) = [ϕ̃(p)]0 − [s(ϕ̃(p))]0
for each p ∈ P∞(Ã).

Proof. (i) It is clear that [p]0− [s(p)]0 ∈ Ker (K0(π)) = K0(A). Conversely, let g ∈ K0(A),
and let e, f be projections in Mn(Ã) such that g = [e]0 − [f ]0. Put

p =

(
e 0
0 1n − f

)
, q =

(
0 0
0 1n

)
.

We have [p]0−[q]0 = [e]0+[1n−f ]0−[1n]0 = [e]0−[f ]0 = g. As q = s(q) and K0(π)(g) = 0,
we also have [s(p)]0 − [q]0 = [s(p)]0 − [s(q)]0 = K0(s)(g) = (K0(λ) ◦K0(π))(g) = 0. Hence
g = [p]0 − [s(p)]0.

(ii) (a)⇒(c) If [p]0 − [s(p)]0 = [q]0 − [s(q)]0 then [p ⊕ s(q)]0 = [q ⊕ s(p)]0 and hence
p⊕ s(q) ∼s q ⊕ s(p) in P∞(Ã). Thus there is n such that p⊕ s(q) ⊕ 1n ∼0 q ⊕ s(p) ⊕ 1n,
and it suffices to take r1 = s(q) ⊕ 1n and r2 = s(p) ⊕ 1n.

(c)⇒(b) If r1, r2 are scalar projections in P∞(Ã) of rank k and l, respectively, then r1 ∼0 1k
and r2 ∼0 1l. Thus p⊕ 1k ∼0 q ⊕ 1l.

(b)⇒(a) We have [p ⊕ 1k]0 − [s(p ⊕ 1k)]0 = [p]0 + [1k]0 − [s(p)]0 − [1k]0 = [p]0 − [s(p)]0
and likewise [q ⊕ 1l]0 − [s(q ⊕ 1l)]0 = [q]0 − [s(q)]0. Thus it suffices to show that [p]0 −
[s(p)]0 = [q]0 − [s(q)]0 whenever p ∼0 q. So let p = v∗v and q = vv∗. Then s(v) is a
scalar rectangular matrix and s(p) = s(v)∗s(v), s(q) = s(v)s(v)∗. Thus s(p) ∼0 s(q).
Consequently [p]0 = [q]0 and [s(p)]0 = [s(q)]0.

(iii) If [p]0− [s(p)]0 = 0 then p ∼s s(p) and hence there is m such that p⊕1m ∼ s(p)⊕1m.

(iv)K0(ϕ)([p]0−[s(p)]0) = K0(ϕ̃)([p]0−[s(p)]0) = [ϕ̃(p)]0−[ϕ̃(s(p))]0 = [ϕ̃(p)]0−[s(ϕ̃(p))]0.

4.2.2 (Half)exactness of K0

In this section we proof that the K0 functor is half exact — a property of crucial impor-
tence. To this end, we first proof the following technical lemma. Another lemma we need
is given in Exercise 4.4.5.

Lemma 4.2.2. Let ψ : A → B be a ∗-homomorphism between two C∗-algebras, and let
g ∈ Ker (K0(ψ)).

(i) There is n, a projection p ∈ Pn(Ã), and a unitary u ∈Mn(B̃) such that

g = [p]0 − [s(p)]0 and uψ̃(p)u∗ = s(ψ̃(p)).

(ii) If ψ is surjective then there is a projection p ∈ P∞(Ã) such that

g = [p]0 − [s(p)]0 and ψ̃(p) = s(ψ̃(p)).



40 CHAPTER 4. K0-GROUP — THE GENERAL CASE

Proof. (i) By virtue of Proposition 4.2.1, there is a projection p1 ∈ Pk(Ã) such that
g = [p1]0−[s(p1)]0, and we have [ψ̃(p1)]0−[s(ψ̃(p1))]0 = 0. Thus ψ̃(p1)⊕1m ∼ s(ψ̃(p1))⊕1m
for some m, again by Proposition 4.2.1. Put p2 = p1 ⊕ 1m. Then g = [p2]0 − [s(p2)]0 and
ψ̃(p2) = ψ̃(p1) ⊕ 1m ∼ s(ψ̃(p1)) ⊕ 1m = s(ψ̃(p2)). Put n = 2(k +m) and p = p2 ⊕ 0k+m ∈
Pn(Ã). Clearly, [p]0 − [s(p)]0 = g. By Proposition 2.2.9, there is a unitary u in Mn(Ã)
such that uψ̃(p)u∗ = s(ψ̃(p)).

(ii) By virtue of part (i), there is n, a projection p1 ∈ Pn(Ã), and a unitary u ∈ Mn(Ã)
such that g = [p]0 − [s(p)]0 and uψ̃(p1)u

∗ = s(ψ̃(p1)). By Lemma 2.1.8, there exists a
unitary v ∈M2n(Ã) such that ψ̃(v) = diag(u, u∗). Put p = v diag(p1, 0n)v

∗. Then

ψ̃(p) =

(
u 0
0 u∗

)(
ψ̃(p1) 0

0 0

)(
u∗ 0
0 u

)
=

(
s(ψ̃(p1)) 0

0 0

)

is a scalar matrix. Thus s(ψ̃(p)) = ψ̃(p). Finally, g = [p]0 − [s(p)]0 since p ∼0 p1.

Theorem 4.2.3. A short exact sequence of C∗-algebras

0 −→ J
ϕ−→ A

ψ−→ B −→ 0 (4.2.4)

induces an exact sequence

K0(J)
K0(ϕ)−→ K0(A)

K0(ψ)−→ K0(B).

If the sequence (4.2.4) splits with a splitting map λ : B → A, then there is a split-exact
sequence

0 −→ K0(J)
K0(ϕ)−→ K0(A)

K0(ψ)−→ K0(B) −→ 0 (4.2.5)

with a splitting map K0(λ) : K0(B) → K0(A).

Proof. Since the sequence (4.2.4) is exact, functoriality of K0 yields K0(ψ) ◦ K0(ϕ) =
K0(ψ ◦ ϕ) = K0(0) = 0. Thus the image of K0(ϕ) is contained in the kernel of K0(ψ).
Conversely, let g ∈ Ker (K0(ψ)). Then there is a projection p in P∞(Ã) such that g =
[p]0 − [s(p)]0 and ψ̃(p) = s(ψ̃(p)) by part (ii) of Lemma 4.2.2. By part (ii) of Exercise
4.4.5, there is an element e in M∞(J̃) such that ϕ̃(e) = p. Since ϕ̃ is injective (by
part (i) of Exercise 4.4.5), e must be a projection. Hence g = [ϕ̃(e)]0 − [s(ϕ̃(e))]0 =
K0(ϕ)([e]0 − [s(e)]0) belongs to the image of K0(ϕ).

Now suppose the sequence (4.2.4) is split-exact. The sequence (4.2.5) is exact at K0(A)
by part (i) above. Functoriality of K0 yields idK0(B) = K0(idB) = K0(ψ) ◦ K0(λ) and
hence the sequence is exact at K0(B). It remains to show that K0(ϕ) is injective. Let g ∈
Ker (K0(ϕ)). By part (i) of Lemma 4.2.2 there is n, a projection p ∈ Pn(J̃), and a unitary
u ∈ Mn(Ã) such that g = [p]0 − [s(p)]0 and uϕ̃(p)u∗ = s(ϕ̃(p)). Put v = (λ̃ ◦ ψ̃)(u∗)u, a
unitary in Mn(Ã) such that ψ̃(v) = 1n. By Exercise 4.4.5, there is an element w ∈Mn(J̃)
such that ϕ̃(w) = v. Since ϕ̃ is injective w must be unitary. We have

ϕ̃(wpw∗) = vϕ̃(p)v∗ = (λ̃ ◦ ψ̃)(u∗)s(ϕ̃(p))(λ̃ ◦ ψ̃)(u) = (λ̃ ◦ ψ̃)(u∗s(ϕ̃(p))u)

= (λ̃ ◦ ψ̃)(ϕ̃(p)) = s(ϕ̃(p)) = ϕ̃(s(p)).

Since ϕ̃ is injective, we conclude that wpw∗ = s(p). Thus p ∼u s(p) in Mn(J̃) and hence
g = 0.
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4.3 Inductive Limits. Continuity and Stability of K0

4.3.1 Increasing limits of C∗-algebras

Let {Ai}∞i=1 be a sequence of C∗-algebras such that Ai ⊆ Ai+1. Then A∞ =
⋃∞
i=1An is a

normed ∗-algebra satisfying all the axioms of a C∗-algebra except perhaps of completeness.
Let A be the completion of A∞. Then A is a C∗-algebra, called the increasing limit of
An.

4.3.2 Direct limits of ∗-algebras

Let Ai be an infinite sequence of ∗-algebras. Suppose that for each pair j 5 i there is
given a ∗-homomorphism Φij : Aj → Ai, and that the following coherence condition holds:
Φij = Φik ◦ Φkj whenever j 5 k 5 i, and Φii = id. Let

∏
iAi be the product ∗-algebra,

with coordinate-wise operations inherited from Ai’s. Let
∑

iAi be the ∗-ideal of
∏

iAi
consisting of sequences whose all but finitely many terms are 0, and let π :

∏
iAi →∏

iAi/
∑

iAi be the canonical surjection. Set

A∞ = π

(
{(ai) ∈

∏

i

Ai : ∃i0∀i : i ≥ i0 ⇒ ai = Φii0(ai0)}
)
. (4.3.6)

A∞ is called direct limit of the directed system {Ai,Φij} and denoted lim
−→

{Ai,Φij}. By

definition, A∞ is a ∗-algebra, and there exist canonical morphisms Φi : Ai → A∞ such
that A∞ =

⋃
i Φi(Ai) and for all j 5 i the following diagram commutes:

Aj
Φj - A∞

Ai

Φij

?
Φ i

-

(4.3.7)

Indeed, for x ∈ Aj define Φj(x) = π((ai)), where ai = 0 if i < j and ai = Φij(x) if i ≥ j.
The direct limit A∞ = lim

−→
{Ai,Φij} has the following universal property. If B is a

∗-algebra and for each i there is a ∗-homomorphism Ψi : Ai → B such that Ψi ◦Φij = Ψj

for every j 5 i, then there exists a unique ∗-homomorphism Λ : A∞ → B such that the
diagram

Aj
Φj - A∞

Ai

Φij

?

Ψi

-

-

B

Λ

?-
(4.3.8)

commutes.
Everything from this section may be generalized to the case of directed systems of

∗-algebras over directed sets rather than merely sequences. Furthermore, the same con-
struction works for abelian groups (or even monoids) and their homomorphisms rather
than ∗-algebras and ∗-homomorphisms.
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4.3.3 C∗-algebraic inductive limits

Now suppose that each Ai is a C∗-algebra rater than just a ∗algebra. By definition, the
product

∏
iAi consists of sequences (ai) for which ||(ai)|| = sup{||ai||} is finite. With

this norm
∏

iAi is a C∗-alebra. Let
∑

iAi be the closure of the ideal of sequences whose
all but finitely many terms are 0, and let π :

∏
iAi →

∏
iAi/

∑
iAi be the canonical

surjection. We define

lim
−→

{Ai,Φij} = the closure of π

(
{(ai) ∈

∏

i

Ai : ∃i0∀i : i ≥ i0 ⇒ ai = Φii0(ai0)}
)
.

(4.3.9)
This definition is correct since ∗-homomorphisms between C∗-algebras are norm-decreasing.
As before, there exist ∗-homomorphisms Φi : Ai → A∞ satisfing (4.3.7), and the universal
property (4.3.8) holds.

4.3.4 Continuity of K0

Theorem 4.3.1. Let {Ai,Φij} be an inductive sequence of C∗-algebras and let A =
lim
−→

{Ai,Φij}. Then {K0(Ai), K0(Φij)} is a direct sequence of abelian groups and

K0(A) = K0(lim
−→

{Ai,Φij}) ∼= lim
−→

{K0(Ai), K0(Φij)}.

Proof. W denote by Φi : Ai → A = limAi the canonical maps. Functoriality of K0

implies that {K0(Ai), K0(Φij)} is a direct sequence of abelian groups. Let ϕi : K0(Ai) →
limK0(Ai) be the canonical maps. Since for j 5 i we have K0(Φj) = K0(Φi) ◦K0(Φij) by
functoriality of K0, the universal property of limK0(Ai) yields a unique homomorphism
ϕ : limK0(Ai) → K0(A) such that ϕi = ϕ ◦ ϕj for all j 5 i.

K0(Aj)
ϕj - limK0(Ai)

K0(Ai)

K0(Φij)

?

K0(Φi)
-

-

K0(limAi)

ϕ

?-
(4.3.10)

We must show that ϕ is injective and surjective.

Injectivity of ϕ. Since limK0(Ai) =
⋃
i ϕi(K0(Ai)), it suffices to show that ϕ|ϕj(K0(Aj)) is

injective for all j. That is we must show that if g ∈ K0(Aj) and K0(Φj)(g) = (ϕ◦ϕj)(g) =
0 in K0(A) then ϕj(g) = 0 in limK0(Ai). So let g = [p]0 − [s(p)]0 for some p ∈ Pn(Ãj).
Then 0 = K0(Φj)(g) = [Φ̃j(p)]0 − [s(Φ̃j(p))]0 in K0(A). Hence there is m and a partial
isometry w ∈Mn+m(Ã) such that

ww∗ = Φ̃j(p) ⊕ 1m and w∗w = s(Φ̃j(p)) ⊕ 1m.

By Exercise 4.4.12, there is i ≥ j and xi ∈ Mn+m(Ãi) with Φ̃i(xi) close enough to w to
ensure that

||Φ̃i(xi)Φ̃i(xi)
∗ − Φ̃j(p) ⊕ 1m|| < 1/2 and ||Φ̃i(xi)

∗Φ̃i(xi) − s(Φ̃j(p)) ⊕ 1m|| < 1/2.
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Since Φj = Φi ◦ Φij, Exercise 4.4.17 implies that there is k ≥ i such that

||xkx∗k − Φ̃kj(p) ⊕ 1m|| < 1/2 and ||x∗kxk − s(Φ̃kj(p)) ⊕ 1m|| < 1/2,

where xk = Φ̃ki(xi). By part (ii) of Exercise 4.4.18, Φ̃kj(p)⊕1m is equivalent to s(Φ̃j(p))⊕
1m in Mn+m(Ãm). Thus

K0(Φkj)(g) = [Φ̃kj(p) ⊕ 1m]0 − [s(Φ̃j(p)) ⊕ 1m]0 = 0

in K0(Ak). Consequently, ϕj(g) = (ϕk ◦K0(Φkj))(g) = 0, as required.

Surjectivity of ϕ. Consider an element [p]0 − [s(p)]0 of K0(A), for some p ∈ Pk(Ã). Take
a small ε > 0. By Exercise 4.4.12, there is n and bn ∈ Mk(Ãn) such that ||Φ̃n(bn) − p|| <
ε. Put an = (bn + b∗n)/2 and am = Φ̃mn(an) for m ≥ n. Each am is self-adjoint and
||Φ̃m(am)−p|| < ε. We have ||Φ̃n(an−a2

n)|| < ε(3+ ε) < 1/4 for sufficiently small ε. Thus,
by Exercise 4.4.17, ||am − a2

m|| < 1/4 for sufficiently large m. By Exercise 4.4.18, there is
a projection q in Mk(Ãm) such that ||am− q|| < 1/2. We have ||Φ̃m(q)− p|| < 1/2+ ε < 1
and hence Φ̃m(q) and p are equivalent. Thus

[p]0 − [s(p)]0 = [Φ̃m(q)]0 − [s(Φ̃m(q))]0 = K0(Φm)([q]0 − [s(q)]0).

Since K0(Φm) = ϕ ◦ ϕm, surjectivity of ϕ follows.

4.3.5 Stability of K0

Proposition 4.3.2. Let A be a C∗-algebra, and let p be minimal projection in K. The
map ϕ : A → A ⊗ K such that ϕ(a) = a ⊗ p induces an isomorphism K0(ϕ) : K0(A) →
K0(A⊗ K).

Proof. For n ≥ m let Φnm : Mm(A) →Mn(A) be the imbedding Φnm(a) = diag(a, 0n−m).
By Exercise 4.4.16, A⊗K is isomorphic with the limit of the inductive sequence {Mn(A),Φnm}.
We have Φn1 = Φnm ◦ Φm1 and hence K0(Φn1) = K0(Φnm) ◦ K0(Φm1). Moreover,
all the mapsare isomorphism on K0, by Exercise 4.4.7. Let ψn = K0(Φn1)

−1. Then
ψm = ψn ◦K0(Φnm) for all n ≥ m. Thus the universal property of direct limits yields a
unique homomorphism Λ : lim

−→
{Mn(A),Φnm} ∼= K0(A ⊗ K) → K0(A) which fits into the

commutative diagram

K0(Mm(A))
K0(Φm)- K0(A⊗ K)

K0(Mn(A))

K0(Φnm)

?

ψn
-

-

K0(A)

Λ

?-
(4.3.11)

where Φn : Mn(A) → A⊗K are the canonical maps. It follows that Λ is an isomorphism.
Furthermore, Λ−1 = K0(ϕ), as required.
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4.4 Examples and Exercises

Example 4.4.1. Consider the exact sequence

0 −→ C0((0, 1)) −→ C([0, 1])
ψ−→ C ⊕ C −→ 0.

We have K0(C⊕C) ∼= Z2 and K0(C([0, 1])) ∼= Z (since [0, 1] is contractible). Thus K0(ψ)
cannot be surjective.

Example 4.4.2. Let H be a separable Hilbert space,and let K be the ideal of compact
operators on H. There is an exact sequence

0 −→ K ı−→ B(H) −→ B(H)/K −→ 0.

We already know that K0(B(H)) = 0 and we will see later that K0(K) ∼= Z. Thus K0(ı)
cannot be injective.

Exercise 4.4.3. Let Q = B(H)/K be the Calkin algebra (corresponding to a separable
Hilbert space H), and let π : B(H) → Q be the natural surjection. Show the following.

(i) If p 6= 0 is a projection in Q then there is a projection p̃ in B(H) with infinite
dimensional range such that π(p̃) = p.

(ii) Any two non-zero projections in Q are Murray-von Neumann equivalent.

(iii) For each positive integer n we have B(H) ∼= Mn(B(H)), K ∼= Mn(K), and Q ∼=
Mn(Q).

(iv) The semigroup D(Q) is isomorphic to {0,∞}, with ∞ + ∞ = ∞.

(v) K0(Q) = 0.

(i) Hint: If p is a projection in Q then there exists x = x∗ in B(H) such that π(x) = p.
Thus x2−x is compact. Let x2−x =

∑
n λnen be the spectral decomposition (0 6= λn ∈ R,

λn → 0, {en} mutually orthogonal projections of finite rank, commuting with x). Correct
each xen.

Example 4.4.4. In this example we argue why Definition 3.2.1 would not be appropriate
for non-unital C∗-algebras. Nameley, let A be a C∗-alebra (unital or not) and define
K00(A) as the Grothendieck group of D(A). Thus, if A is unital the K00(A) = K0(A),
but in the non-unital case these two groups may be different. It can be shown that such
defined K00 is a covariant functor. However, this functor has a serious defect of not being
half-exact. Indeed, consider an exact sequence

0 −→ C0(R
2) −→ C(S2) −→ C −→ 0.

We have K0(C) ∼= Z, and it can be shown that K0(S
2) ∼= Z2 and K00(R2) = 0 (for the

latter see Exercise 4.3.4 below). Thus K00 cannot be half-exact.

Exercise 4.4.5. If 0 −→ J
ϕ−→ A

ψ−→ B −→ 0 is an exact sequence of C∗-algebras then:

(i) ϕ̃n : Mn(J̃) →Mn(Ã) is injective,
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(ii) a ∈ Mn(Ã) is in the image of ϕ̃n iff ψ̃n(a) = sn(ψ̃n(a)).

Exercise 4.4.6. Let X be a connected, locally compact but not compact Hausdorff space.
Then K00(C0(X)) = 0. To this end show that P∞(C0(X)) = {0}, as follows. Identify
Mn(C0(X)) with C0(X,Mn(C)), and let p be a projection in Pn(C0(X)). As usual, let
Tr be the standard trace on Mn(C). The function x 7→ Tr(p(x)) belongs to C0(X,Z) and
hence it is the zero function, since X is connected and non-compact.

Exercise 4.4.7 (Matrix stability of K0). Let A be a C∗-algebra and let n be a
positive integer. Then K0(A) ∼= K0(Mn(A)). More specifically, the map ϕA : A→Mn(A),
a 7→ diag(a, 0n−1) induces an isomorphism K0(ϕA) → K0(Mn(A)). Indeed, the diagram

0 - A - Ã - C - 0

0 - Mn(A)

ϕA
?

- Mn(Ã)

ϕÃ
?

- Mn(C)

ϕC

?
- 0

(4.4.12)

commutes and has split-exact rows. Thus the diagram

0 - K0(A) - K0(Ã) - K0(C) - 0

0 - K0(Mn(A))

K0(ϕA)

?
- K0(Mn(Ã))

K0(ϕÃ)
?

- K0(Mn(C))

K0(ϕC)

?
- 0

(4.4.13)

commutes and has split-exact rows. Hence the Five Lemma (or an easy diagram chasing)
implies that K0(ϕA) is an isomorphism if both K0(ϕÃ) and K0(ϕC) are. This reduces the
proof to the unital case (see Exercise 3.3.10).

Exercise 4.4.8. Let A be a C∗-algebra, and denote by Aut(A) the group of ∗-automorphisms
of A. If α ∈ Aut(A) then K0(α) is an automorphism of K0(A).

(i) If u is a unitary in Ã then Ad(u) : A → A, a 7→ uau∗, is an automorphism of A.
Moreover, the map U(Ã) → Aut(A), u 7→ Ad(u) is a group homomorphism, and
Inn(A) = {Ad(u) : u ∈ U(Ã)} is a normal subgroup of Aut(A).

(ii) If α ∈ Inn(A) then K0(α) = id.

(iii) An α ∈ Aut(A) is approximately inner iff for any finite subset F of A and any ε > 0
there is β ∈ Inn(A) such that ||α(x)− β(x)|| < ε for all x ∈ F . The collection of all
approximately inner automorphisms of A is denoted Inn(A).

Show that if A is separable then α is approximately inner iff there is a sequence
βn ∈ Inn(A) such that βn(a) → α(a) for each a ∈ A.

(iv) Inn(A) is a normal subgroup of Aut(A), and K0(α) = id for each α ∈ Inn(A).

(v) Give examples of automorphisms of C∗-algebras which induce non-trivial automor-
phisms on K0.
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Example 4.4.9. Let A be a C∗-algebra. We define the cone CA and the suspension SA
as follows:

CA = {f : [0, 1] → A : f continuous and f(0) = 0},
SA = {f : [0, 1] → A : f continuous and f(0) = f(1) = 0}.

There is a short exact sequence

0 −→ SA −→ CA
π−→ A −→ 0,

with π(f) = f(1). Furthermore, CA is homotopy equivalent to {0}. Indeed, with t ∈ [0, 1]
set ϕt : CA → CA as ϕt(f)(s) = f(st). Then for each f ∈ CA the map t 7→ ϕt(f) is
continuous, and ϕ0 = 0, ϕ1 = id. We conclude that

K0(CA) = 0.

Example 4.4.10 (Direct sums). For any two C∗-algebras A,B we have

K0(A⊕ B) ∼= K0(A) ⊕K0(B).

More specifically, if iA and iB are the inclusions of A and B, respectively, into A⊕B, then
K0(iA) ⊕K0(B) : K0(A) ⊕K0(B) → K0(A ⊕ B) is an isomorphism. Indeed, let πA and
πB be the surjections from A⊕B onto A and B, respectively. The following diagram has
exact rows (the bottom one by split-exactness of K0) and commutes (since πB ◦ iA = 0
and πB ◦ iB = idB):

0 - K0(A)
α - K0(A) ⊕K0(B)

β - K0(B) - 0

0 - K0(A)

=

?

K0(iA)
- K0(A⊕B)

K0(iA) ⊕K0(iB)

?

K0(πB)
- K0(B)

=

?
- 0

(4.4.14)

An easy diagram chasing (or the Five Lemma) implies that K0(iA)⊕K0(iB) is an isomor-
phism.

Exercise 4.4.11. Let {Ai} be a sequence of C∗-algebras, and let a = (ai) ∈
∏

iAi. Then

||π(a)|| = lim||ai||.
In particular, a belongs to

∑
iAi iff lim

i→∞
||ai|| = 0.

Exercise 4.4.12. Let A = lim
−→

{Ai,Φij}. To each x ∈ A and ε > 0 there is an arbitrarily

large index i and xi ∈ Ai such that

||x− Φi(xi)|| < ε.

Example 4.4.13 (UHF algebras). Let {pn}∞n=1 be a sequence of integers pn ≥ 2. For
1 5 j define Φj+1,j :

⊗j
n=1Mpn(C) → ⊗j+1

n=1Mpn(C) by Φj+1,j(x) = x ⊗ I. These are

unital, injectve ∗-homomorphisms. Then for 1 5 j 5 i define Φij :
⊗j

n=1Mpn(C) →⊗i
n=1Mpn(C) by Φij = Φi,i−1 ◦ . . . ◦ Φj+1,j. The inductive limit lim

−→
{Ai,Φij} is called the

UHF algebra corresponding to the supernatural number (p1p2 · · · ). These are simple,
unital C∗-algebras, equipped with a unique tracial state. To learn much more about
UHF algebras see [G-J60].
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Example 4.4.14 (AF -algebras). For n = 1, 2, . . . let An be a finite dimensional C∗-
algebra. Thus, An is isomorphic to a direct sum of matrix algebras

An ∼= Mkn1
(C) ⊕ . . .⊕M

k
r(n)
n

(C).

For 1 5 j let Φj+1,j : Aj → Aj+1 be a ∗-homomorphism, and define Φij = Φi,i−1◦. . .◦Φj+1,j.
The corresponding inductive limit lim

−→
{Ai,Φij} is called an AF -algebra. To learn much

more about AF -algebras and about Bratteli diagrams which describe them see [B-O72].

Exercise 4.4.15 (The compacts). Let H be a separable (infinite dimensional) Hilbert
space. Denote by F the collection of all finite rank operators in B(H), and let K be the
norm closure of F (the C∗-algebra of compact operators). Show the following.

(i) F is a two-sided ∗-ideal of B(H), but F is not norm closed in B(H).

(ii) K is a norm closed, two-sided ∗-ideal of B(H), and K 6= B(H).

(iii) Let {ξn}∞n=0 be an orthonoral basis of H. For all i, j let Eij be an operator defined by
Eij(v) = 〈v, ξj〉ξi. Then each Eij is a rank one opeator with domain Cξj and range
Cξi. In particular, {Eii} are mutually orthogonal projections of rank one whose sum
of the ranges densely spans the entire space H. Furthermore, for each i we have
EiiKEii = CEii (a projection in a C∗-algebra with this property is called minimal).
The following identities hold:

EijEkn = δjkEin, E∗ij = Eji. (4.4.15)

(A collection of elements of a C∗-algebra satisfying (4.4.15) is called a system of
matrix units.) Prove that the closed span of {Eij : i, j = 0, 1, . . .} coincides with K.

(iv) Let H′ be another Hilbert space and let π : K → H′ be a nondegenerate represen-
tation (i.e. a ∗-homomorphism such that π(K)H′ is dense in H′). Show that there
exists a Hilbert space H0 and a unitary operator U : H′ → H⊗H0 such that for all
x ∈ K we have

Uπ(x)U∗ = x⊗ IH0 .

The dimension of H0 is called the multiplicity of π. Show that π is irreducible iff
the multiplicity of π is one. Thus, in particular, the compacts admit precisely one
(up to unitary equivalence) irreducible representation.

(v) K is the universal C∗-algebra for the relations (4.4.15).

(vi) K is a simple C∗-algebra, in the sense that the only closed, two-sided ∗-ideals of K
are {0} and K. (In fact, it can be shown that every norm closed two-sided ideal of
a C∗-algebra is automatically closed under ∗).

(vii) For each j = 1, 2, . . . let Φj+1,j : Mj(C) → Mj+1(C) be an imbedding into the
upper-left corner, i.e. Φj+1,j(x) = diag(x, 0). As usual, let Φij = Φi,i−1 ◦ . . . ◦ Φj+1,j

for j 5 i. Show that

K ∼= lim
−→

{Mn(C),Φij}.
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Exercise 4.4.16. Let A be a C∗-algebra. For n ≥ m let Φnm : Mm(A) →Mn(A) be the
diagonal imbedding Φnm(a) = diag(a, 0n−m). Show that the inductive limit of the drected
sequence {Mn(A),Φnm} is isomorphic with A⊗K.

Exercise 4.4.17. Let {Ai,Φij} be an inductive sequence of C∗-algebras and let Φi : Ai →
lim
−→
Ai be the canonical maps. Then for all n and a ∈ An we have

||Φn(a)|| = lim
m→∞

||Φmn(a)||.

Exercise 4.4.18. Let A be a C∗-algebra.

(i) If a = a∗ in A and ||a−a2|| < 1/4 then there is a projection p ∈ A with ||a−p|| < 1/2.

(ii) Let p be a projection in A, and let a be a self-adjoint eleent in A. Put δ = ||a− p||.
Then

sp(a) ⊆ [−δ, δ] ∪ [1 − δ, 1 + δ].

(iii) If p, q are projections in A such that there exists an element x ∈ A with ||x∗x−p|| <
1/2 and ||xx∗ − q|| < 1/2 then p ∼ q.

(i) Use Gelfand Theorem.

(ii) Recall that the spectrum of a self-adjoint element consists of real numbers, and that
the spectrum of a non-trivial projection is {0, 1}. Let t be a real number whose distance d
to the set {0, 1} is greater than δ. It suffices to show that t− a is invertible in Ã. Indeed,
for such a t the element t− p is invertible in Ã and

||(t− p)−1|| = max{ 1

| − t| ,
1

|1 − t|} =
1

d
.

Consequently,

||(t− p)−1(t− a) − 1|| = ||(t− p)−1(p− a)|| 5
1

d
δ < 1.

Thus (t− p)−1(t− a) is invertible, and so is t− a.

(iii) Let Ω = sp(x∗x) ∪ sp(xx∗). In view of part (ii) of this exercise, Ω is a compact
subset of [0, 1/2) ∪ (1/2, 3/2). Let f : Ω → R be a continuous function which is 0 on
Ω ∩ [0, 1/2) and 1 on Ω ∩ (1/2, 3/2). Then both f(x∗x) and f(xx∗) are projections.
We have ||f(x∗x) − p|| 5 ||f(x∗x) − x∗x|| + ||x∗x − p|| < 1/2 + 1/2 = 1 and, likewise,
||f(xx∗) − q|| < 1. Thus f(x∗x) ∼ p and f(xx∗) ∼ q by Proposition 2.2.5. So it suffices
to show that f(x∗x) ∼ f(xx∗). To this end, first note that xh(x∗x) = h(xx∗)x for every
h ∈ C(Ω). Indeed, this is obviously true for polynomials, and the general case follows
from the Stone-Weierstrass Theorem. Let g ∈ C(Ω), g ≥ 0 be such that tg(t)2 = f(t) for
all t ∈ Ω. Set w = xg(x∗x). Then

w∗w = g(x∗x)x∗xg(x∗x) = f(x∗x),

ww∗ = xg(x∗x)2x∗ = g(xx∗)2xx∗ = f(xx∗),

and the claim follows.
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Example 4.4.19. Let A be a unital Banach algebra, and let a, b ∈ A. Then

sp(ab) ∪ {0} = sp(ba) ∪ {0}.

Indeed, let 0 6= λ 6∈ sp(ab) and let u = (λ − ab)−1. Then 1 − λu + uab = 0. Put
w = (1/λ)(1 + bua). We have

w(λ− ba) =
1

λ
(1 + bua)(λ− ba) = 1− 1

λ
ba+ bua− 1

λ
buaba = 1− 1

λ
b(1− λu+ uab)a = 1.

Similarly (λ− ba)w = 1 and hence w = (λ− ba)−1. Thus λ 6∈ sp(ba).

Exercise 4.4.20. In the category of abelian groups, consider a direct sequence Ai = Z
with connecting maps Φj+1,j(1) = j. Show that the corresponding limit is isomorphic to
the additive group of Q.

Exercise 4.4.21 (Irrational rotation algebras). For an irrational number θ ∈
[0, 1) define Aθ as the universal C∗-algebra generated by two elements u, v, subject to the
relations

vu = e2πiθuv, uu∗ = u∗u = 1 = vv∗ = v∗v. (4.4.16)

Aθ is called the irrational rotation algebra corresponding to the angle θ. Show the follow-
ing.

(i) Let L2(T) be the Hilbert space of square integrable functions on the circle group
(with respect to the probability Haar measure dz). Set H = L2(T) ⊗ L2(T), and
define two operators U, V ∈ B(H) by

(Uξ)(z1, z2) = z1ξ(z1, z2), (V ξ)(z1, z2) = z2ξ(e
2πiθz1, z2).

Then U, V satisfy (4.4.16). Thus, there exists a representation π : Aθ → B(H) such
that π(u) = U and π(v) = V .

(ii) Let Aθ be the dense ∗-subalgebra of Aθ generated by u, v. Then each element of Aθ

has the form ∑

n,m∈Z

λn,mu
nvm, λn,m ∈ C.

(iii) Let ξ0 be the unit vector in H such that ξ0(z1, z2) = 1, and define τ(a) = 〈π(a)ξ0, ξ0〉,
a ∈ Aθ. Then τ(

∑
n,m∈Z

λn,mu
nvm) = λ0,0 and hence τ(aa∗) = τ(a∗a) for all a ∈ Aθ.

Conclude that τ is a tracial state on Aθ.

(iv) For f, g : T → R let
p = f(u)v∗ + g(u) + vf(u)

be a self-adjoint element of Aθ. Use an approximation of f and g by Laurent
polynomials to show that

τ(p) =

∫

T

g(z)dz.

(v) Let ϕ : T → T be given by ϕ(z) = e2πiθz. Then vh(u) = (h◦ϕ)(u)v for all h ∈ C(T).
Show that p = p2 if and only if

(f ◦ ϕ)f = 0, (g + g ◦ ϕ−1)f = f, g = g2 + f 2 + (f ◦ ϕ)2. (4.4.17)
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(vi) Let ε be such that 0 < ε 5 θ < θ + ε 5 1, and set

g(e2πit) =





ε−1t, 0 5 t 5 ε,

1, ε < t 5 θ,

ε−1(θ + ε− t), θ < t 5 θ + ε,

0, θ + ε < t 5 1,

for t ∈ [0, 1]. For such g one an find f such that (4.4.17) holds, and hence p is a
projection. Then τ(p) = θ. Thus, the homomorphism K0(τ) : K0(Aθ) → R contains
Z ∪ θZ in its image.

In fact, it can be shown that K0(τ) is an isomorphism of K0(Aθ) onto Z ∪ θZ ∼= Z2.
The definition of Aθ makes sense for rational θ as well. However, the structure of the

rational rotation algebras is completely different from the irrational ones. Namely, it can
be shown that for an irrational θ the C∗-algebra Aθ is simple, while for a rational θ the
C∗-algebra Aθ contains many non-trivial ideals. In the case θ = 0 we have A0

∼= C(T2).
Thus the rotation agebras Aθ are considered noncommutative analogues of the torus.



Chapter 5

K1-Functor and the Index Map

5.1 The K1 Functor

5.1.1 Definition of the K1-group

Let A be a unital C∗-algebra. We denote

U(A) = the group of unitary elements of A,

Un(A) = U(Mn(A)),

U∞(A) =
∞⋃

n=1

Un(A).

We define a relation ∼1 in U∞(A) as follows. For u ∈ Un(A) and v ∈ Um(A) we have
u ∼1 v iff there exists k ≥ max{n,m} such that diag(u, 1k−n) ∼h diag(v, 1k−m). Then ∼1

is an equivalence relation in U∞(A) (exercise). We denote by [u]1 the equivalence class of
the unitary u ∈ U∞(A).

Lemma 5.1.1. Let A b a unital C∗-algebra. Then

(i) [u]1[v]1 = [diag(u, v)]1 is a well-defined associative binary operation on U∞(A)/∼1,

(ii) [u]1[v]1 = [v]1[u]1 for all u, v ∈ U∞(A),

(iii) [u]1[1n]1 = [1n]1[u]1 = [u]1 for all n and all u ∈ U∞(A),

(iv) if u, v ∈ Um(A) then [u]1[v]1 = [uv]1.

Proof. Exercise — use Lemma 2.1.6.

By the above lemma, U∞(A)/∼1 equipped with the multiplication [u]1[v]1 = [diag(u, v)]1
is an abelian group, with [u]−1

1 = [u∗]1.

Definition 5.1.2. If A is a C∗-algebra then we define

K1(A) = U∞(Ã)/∼1,

an abelian group with multiplication [u]1[v]1 = [diag(u, v)]1.

51
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When A is unital then K1(A) may be defined simply as U∞(A)/∼1 (see Exercise 5.3.1.
Also, instead of using equivalence classes of unitaries one could define K1 with help of
equivalence classes of invertibles (see Exercise 5.3.6). In particular, the polar decomposi-
tion w = u|w| yields a well-defined map

[·]1 : GL∞(A) → K1(A)

by [w]1 = [u]1 = [w|w|−1]1.

Proposition 5.1.3 (Universal property of K1). Let A be a C∗-algebra, G an abelian
group, and ν : U∞(Ã) → G a map such that:

(i) ν(diag(u, v)) = ν(u) + ν(v),

(ii) ν(1) = 0,

(iii) if u, v ∈ Un(Ã) and u ∼h v then ν(u) = ν(v).

Then there exists a unique homomorphism K1(A) → G making the diagram

U∞(Ã)

K1(A)

[·]1
?

- G

ν

-
(5.1.1)

commutative.

Proof. Exercise.

5.1.2 Properties of the K1-functor

Let A,B be C∗-algebras and let ϕ : A → B be a ∗-homomorphism. Then ϕ extends to
unital ∗-homomorphisms ϕ̃n : Mn(Ã) → Mn(B̃) and thus yields a map ϕ̃ : U∞(Ã) →
U∞(B̃). We define ν : U∞(Ã) → K1(B) by ν(u) = [ϕ̃(u)]1 and use the univesal property
of K1 to conclude that there exists a unique homomorphism K1(ϕ) : K1(A) → K1(B)
such that K1([u]1) = [ϕ̃(u)]1 for u ∈ U∞(Ã).

Proposition 5.1.4 (Functoriality of K1). Let A,B,C be C∗-algebras and let ϕ : A→ B
and ψ : B → C be ∗-homomorphisms. Then

(i) K1(idA) = idK1(A),

(ii) K1(ψ ◦ ϕ) = K1(ψ) ◦K1(ϕ).

Thus K1 is a covariant functor.

Proof. Exercise.

It is also clear from the definitions that K1 of the zero algebra and the zero map are
zero.

Proposition 5.1.5 (Homotopy invariance of K1). Let A,B be C∗-algebras.
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(i) If ϕ, ψ : A→ B are homotopic ∗-homomorphisms then K1(ϕ) = K1(ψ).

(ii) If A and B are homotopy equivalent then K1(A) ∼= K1(B). More specifically, if

A
ϕ−→ B

ψ−→ A is a homotopy then K1(ϕ) and K1(ψ) are isomorphisms and inverses
of one another.

Proof. Exercise.

Theorem 5.1.6 ((Half)exactness of K1). If

0 −→ J
ϕ−→ A

π−→ B −→ 0 (5.1.2)

is an exact sequence of C∗-algebras then the sequence

K1(J)
K1(ϕ)−→ K1(A)

K1(π)−→ K1(B) (5.1.3)

is exact. If the sequence (5.1.2) is split-exact with a splitting map λ : B −→ A, then the
sequence

0 −→ K1(J)
K1(ϕ)−→ K1(A)

K1(π)−→ K1(B) −→ 0 (5.1.4)

is split-exact with a splitting map K1(λ) : K1(B) −→ K1(A).

Proof. K1(π) ◦ K1(ϕ) = K1(π ◦ ϕ) = K1(0) = 0 by functoriality of K1, and hence
Im(K1(ϕ)) ⊆ Ker (K1(π)). For the reverse inclusion, let u ∈ Un(Ã) andK1(π)([u]1) = [1]1.
Then there is m such that diag(π̃(u), 1n) ∼h 1n+m. By Lemma 2.1.8, there is w ∈ Un+m(Ã)
such that w ∼h 1n+m and π̃(w) = diag(π̃(u), 1m). Thus [u]1 = [diag(u, 1n)w

∗]1 and
π̃(diag(u, 1n)w

∗) = 1n+m. By Exercise 4.4.5, there is v ∈ Un+m(J̃) such that ϕ̃(v) =
diag(u, 1n)w

∗. Thus [u]1 ∈ Im(K1(ϕ)) and consequently Ker (K1(π)) ⊆ Im(K1(ϕ)). This
shows that the sequence (5.1.3) is exact.

Now suppose that the sequence (5.1.2) is split-exact. Then the sequence (5.1.4) is exact
at K1(A) by the preceding argument. By functoriality of K1 we have K1(π) ◦ K1(λ) =
idK1(B), and hence (5.1.4) is exact at K1(B) (and K1(λ) is a splitting map). It remains to

show that K1(ϕ) is injective. So let u ∈ Un(J̃) be such that K1(ϕ)([u]1) = [1]1. Then there
is m such that diag(ϕ̃(u), 1m) ∼h 1n+m. Let t 7→ wt be a continuous path in Un+m(Ã)
connecting diag(ϕ̃(u), 1m) and 1n+m. We would like to apply ϕ̃−1 to wt to conclude that
diag(u, 1m) is homotopic to the identity. In general, this is impossible since some of wt
may lie outside the range of ϕ̃. However, in the presence of a splitting map λ we can
correct the path wt by setting vt = wt(λ̃◦π̃)(w∗t ). Then vt is a continuous path in Un+m(Ã)
connecting diag(ϕ̃(u), 1m)(λ̃ ◦ π̃)(diag(ϕ̃(u∗), 1m)) and 1n+m. Since π̃(vt) = 1n+m for all
t, Exercise 4.4.5 implies that each vt is in the image of ϕ̃. Thus ϕ̃−1(vt) is a continuous
path in Un+m(J̃) connecting diag(u, 1m)ϕ̃−1((λ̃ ◦ π̃)(diag(ϕ̃(u∗), 1m))) and 1n+m. Since
ϕ̃−1((λ̃ ◦ π̃)(diag(ϕ̃(u∗), 1m))) is a scalar matrix, it is homotopic to the identity. Thus

[u]1 = [diag(u, 1m)]1 = [diag(u, 1m)ϕ̃−1((λ̃ ◦ π̃)(diag(ϕ̃(u∗), 1m)))]1 = [1]1,

and the map K1(ϕ) is injective.

Proposition 5.1.7 (Continuity of K1). Let A = lim
−→

{Ai,Φij} be the inductive limit

of a sequence of C∗-algebras, and let Φi : Ai → A be the canonical maps. Let G =
lim
−→

{K1(Ai), K1(Φij)} be the inductive limit of the corresponding sequence of abelian groups,
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and let ϕi : K1(Ai) → G be the canonical maps. Then there exists an isomorphism
Λ : G→ K1(A) such that for all i ≥ j the diagram

K1(Aj)
ϕj - G

K1(Ai)

K1(Φij)

?

K1(Φi)
-

-

K1(A)

Λ

?-
(5.1.5)

is commutative.

Proof. The universal property of the direct limit G of the sequence {K1(Ai), K1(Φij)}
yields a unique homomorphism Λ : G→ K1(A) making the diagram (5.1.5) commutative.
We must show that Λ is surjective and injective.

Surjectivity. Let u ∈ Un(Ã). By part (ii) of Exercise (5.3.10), there is i and w ∈ Un(Ãi)
such that ||u− Φ̃i(w)|| < 2. Thus u and Φ̃i(w) are homotopic in Un(Ã) by Lemma 2.1.4.
Hence

[u]1 = [Φ̃i(w)]1 = K1(Φi)([w]1) = (Λ ◦ ϕi)([w]1),

and Λ is surjective.

Injectivity. It suffices to show that for each j the restriction of Λ to the image of ϕj is
injective. So let u ∈ Un(Ãj) be such that (Λ ◦ ϕj)([u]1) = K1(Φj)([u]1) = [Φ̃j(u)]1 =
[1]1 in K1(A). We must show that ϕj([u]1) = 0 in G. Indeed, there is m such that
diag(Φ̃j(u), 1m) ∼h 1n+m in Un+m(Ã). By part (iii) of Exercise (5.3.10), there is i ≥ j such
that diag(Φ̃ij(u), 1m) is homotopic to 1n+m. Thus [Φ̃ij(u)]1 = [diag(Φ̃ij(u), 1m)]1 = [1]1.
Consequently, ϕj([u]1) = (ϕi ◦K1(Φ̃ij))([u]1) = 0, and Λ is injective.

Proposition 5.1.8 (Stability of K1). Let A be a C∗-algebra.

(i) For each n ∈ N we have

K1(A) ∼= K1(Mn(A)).

More specifically, let ψ : A → Mn(A) be such that ψ(a) = diag(a, 0n−1). Then
K1(ψ) : K1(A) → K1(Mn(A)) is an isomorphism.

(ii) Let K be the C∗-algebra of compact operators. Then

K1(A) ∼= K1(A⊗ K).

More specfically, let p be a minimal projection in K and let ϕ : A → A ⊗ K be the
map such that ϕ(a) = a⊗p. Then K1(ϕ) : K1(A) → K1(A⊗K) is an isomorphism.

Proof. (i) Exercise.

(ii) Since

A⊗K ∼= A⊗ (limMn(C)) ∼= limMn(A),

the claim follows from part (i) and continuity of K1.
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5.2 The Index Map

5.2.1 Fredholm index

Let H be a separable, infinite dimensional Hilbert space. We denot by F the algebra of
finite rank operators on H (a two-sided ∗-ideal in B(H)), by K the C∗-algebra of compact
operators on H (the norm closure of F and the only non-trivial, norm closed, two-sided
ideal of B(H)), by Q = B(H)/K the Calkin algebra, and by π : B(H) → Q the natural
surjection.

Theorem 5.2.1 (Atkinson). If F ∈ B(H) then the following conditions are equivalent.

(i) Both Ker (F ) and Coker (F ) are finite dimensional.

(ii) There exists an operator G ∈ B(H) such that both FG− 1 and GF − 1 are compact.

(iii) The image π(F ) of F in the Calkin algebra Q is invertible.

Furthermore, if F satisfies the above conditions then the range of F is closed in H.

Proof. Obviously, conditions (ii) and (iii) are equivalent.

(i)⇒(ii) We first observe that the image of F is a closed subspace of H. Indeed, let H0

be a subspace of H of smallest possible dimension such that Im(F ) + H0 = H. Then
n = dim(H0) is finite, since the cokernel of F is finite dimensional. Then the restriction
of F to the orthogonal complement of its kernel is a bijection from Ker (F )⊥ onto Im(F ),
and it extends to a linear bijection F̃ : Ker (F )⊥⊕Cn −→ Im(F )+H0 = H. By the Inverse
Mapping Theorem, the inverse of F̃ is continuous. It follows that Im(F ) = F̃ (Ker (F )⊥)
is closed in H.

By the preceding argument, F yields a continuous linear bijection from Ker (F )⊥ onto
Im(F ) — a closed subspace of H. Thus, by the Inverse Mapping Theorem, it has a
continuous inverse G : Im(F ) → Ker (F )⊥. Extend G to a bounded linear operator on H
(still denoted G) by setting Gξ = 0 for ξ ∈ Im(F )⊥. Then both FG− 1 and GF − 1 are
finite dimensional and (ii) holds.

(ii)⇒(i) LetK be a compact operator such thatGF = 1+K. Then Ker (F ) ⊆ Ker (GF ) =
Ker (1+K), and Ker (1+K) is the eigenspace of K corresponding to eigenvalue −1. Since
K is compact this eigenspace is finite dimensional and so is the kernel of F . We also have
Im(F ) ⊇ Im(FG) = Im(1 +K). Since 1 +K can be written as an invertible plus a finite
rank operator, its range has finite codimenson. Thus Coker (F ) is finite dimensional.

A bounded operator satisfying the conditions of Theorem 5.2.1 is called Fredholm.
In particular, any invertible operator in B(H) is Fredholm. It follows immediately from
Theorem 5.2.1 that if F, T are Fredholm and K is compact then the operators F ∗, FT
and F +K are Fredholm.

If F,G are Fredholm operators satisfying condition (ii) of Theorem 5.2.1, then G is
called parametrix of F .

Definition 5.2.2 (Fredholm index). Let F be a Fredholm operaor. Then its Fredholm
index is an integer defined as

Index(F ) = dim(Ker (F )) − dim(Coker (F )).
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Since dim(Coker (F )) = dim(Ker (F ∗)), we have Index(F ) = −Index(F ∗). If F is
Fredholm and V is invertible then clearly Index(FV ) = Index(V F ) = Index(F ) and
Index(V ) = 0.

Let {ξn : n = 0, 1, . . .} be an orthonormal basis of H. The operator S ∈ B(H) such
that S(ξn) = ξn+1 is called unilateral shift. It is a Fredholm operator with index −1. Thus
for any positive integer k we have Index(Sk) = −k and Index((S∗)k) = k.

In a finite dimensional Hilbert space all operators are compact and hence all opera-
tors are Fredholm. The rank-nullity theorem of elementary linear algebra may then be
interpreted as saying that every Fredholm operator on a finite dimensional Hilbert space
has index 0.

Theorem 5.2.3 (Riesz). If F is Fredholm and K is compact then

Index(F +K) = Index(F ).

Proof. We first observe that if R is of finite rank then Index(1 + R) = 0. Indeed, let
H0 = Im(R) + Ker (R)⊥. Then H0 is finite dimensional, and the restriction of both R
and R∗ to H⊥0 is zero. Thus the index of 1 +R coincides with the index of its restriction
to H0 and hence is 0.

Now let K be compact. Find R of finite rank such that ||K − R|| < 1. Then V =
1 + (K − R) is invertible. Hence

Index(1 +K) = Index(V +R) = Index(V (1 + V −1R)) = 0.

Let F be a Fredholm operator of index 0. Then there is a finite rank operator R such
that R maps bijectively Ker (F ) onto Im(F )⊥ = Ker (F ∗). Let V = F + R. Then V is a
continuous linear bijection of H onto itself and hence it is an invertible operator. Thus if
K is compact then

Index(F +K) = Index(V + (K −R)) = Index(V (1 + V −1(K − R))) = 0.

Finally, let F be an arbitrary Fredholm operator and let K be compact. Then
Index(F ⊕ F ∗) = 0 and hence Index((F +K) ⊕ F ∗) = 0. Consequenty, Index(F +K) =
−Index(F ∗) = Index(F ).

We showed in the course of the proof of Theorem 5.2.3 that if F is a Fredholm operator
with index 0 then there exists a finite rank operator R such that F +R is invertible.

Corollary 5.2.4. If F, T are Fredholm operators then

Index(FT ) = Index(F ) + Index(G).

Proof. Suppose first that Index(F ) = 0, and let R be an operator of finite rank such that
F +R is invertible. Then

Index(FT ) = Index(FT +RT ) = Index((F +R)T ) = Index(T ).

Now suppose that Index(F ) = k > 0, and let S be a unilateral shift on H. Then
Index(F ⊕ Sk) = 0 and hence

Index(FT ⊕ Sk) = Index((F ⊕ Sk)(T ⊕ 1)) = Index(T ⊕ 1) = Index(T ).

Consequently, we have

Index(FT ) = −Index(Sk) + Index(T ) = Index(F ) + Index(T ),

as required.
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In particular, if G is a parametrix of F then Index(G) = −Index(F ).

Proposition 5.2.5. The index map is locally constant and continuous in norm.

Proof. Let F be a Fredholm operator and let G be its parametrix. Let K be compact
such that FG = 1 + K. It suffices to show that if T is a Fredholm operator with
||T − F || < 1/||G|| then Index(F ) = Index(T ). Indeed, the operator (T − F )G + 1 is
invertible, since its distance from the identity is less than 1. Thus

Index(T )+Index(G) = Index(TG) = Index((T−F+F )G) = Index((T−F )G+1)+K) = 0.

Thus Index(T ) = −Index(G) = Index(F ).

If F, T are two Fredholm operators then we say that they are homotopic if there exists
a norm continuos path from F to T consisting of Fredholm operators.

Proposition 5.2.6. Two Fredholm operators are homotopic iff they have the same index.

Proof. Let F and T be Fredholm operators.

Suppose that F and T are homotopic, and let t 7→ Vt be a continuous path of Fredholm
operators from F to T . Then the map t 7→ Index(Vt) is continuous and hence constant.

To show the converse we first observe that every Fredholm operator V with Index(V ) =
0 is homotopic to 1. Indeed, there is a finite rank operator such that V +R is invertible.
Then t 7→ V + tR is a path connecting V to an invertible element, and in B(H) the group
of invertibles is path-connected.

Now suppose that Index(F ) = Index(T ). Then both FT ∗ and T ∗T have index 0 and
thus are homotopic to 1. Consequently, the operators F , F (T ∗T ) = (FT ∗)T and T are
homotopic.

Let u be a unitary in Mn(Q) and let U ∈ Mn(B(H)) be such that π̃(U) = u. Then
U is a Fredholm operator on ⊕nH. Define a map µ : U∞(Q) → Z by µ(u) = Index(U).
It follows from the properties of Fredholm operators that µ satisfies conditions (i)–(iii) of
the universal property of K1. Thus, there exists a homomorphism Index : K1(Q) → Z
such that Index([u]1) = µ(U) = Index(U). It is not difficult to see that Index is an
somorphism. Thus K1(Q) ∼= Z.

Since Q is properly infinite, there is no need to go to matrices over Q and we have
K1(Q) = {[u]1 : u ∈ U(Q)} (see Exercise 5.3.8). Furthermore, every unitary u in Q
lifts to a partial isometry U in B(H) (Exercise 5.3.11). Thus dim(Ker (U)) equals the
rank of 1 − U ∗U and can be identified with the element [1 − U ∗U ]0 in K0(K). Likewise,
dim(Coker (U)) equals the rank of 1 − UU ∗ and can be identified with the element [1 −
UU∗]0 in K0(K). Consequently, we can view the index map as an isomorphism

Index : K1(Q) → K0(K),

such that if U is a partial isometry lift of u then

Index([u]1) = [1 − UU∗]0 − [1 − UU∗]0.
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5.2.2 Definition of the index map

Let
0 −→ J

ϕ−→ A
ψ−→ B −→ 0 (5.2.6)

be an exact sequence of C∗-algebras. Let u ∈ Un(B̃). Then there exists a unitary V in
U2n(Ã) such that

ψ̃(V ) = diag(u, u∗). (5.2.7)

Then ψ̃(V diag(1n, 0)V ∗) = diag(1n, 0). Thus there exists a projection P in P2n(J̃) such
that

ϕ̃(P ) = V diag(1n, 0)V ∗. (5.2.8)

Since (ψ̃ ◦ ϕ̃)(P ) = diag(1n, 0), it follows that s(P ) = diag(1n, 0), where s is the scalar
map. Then there is a well-defined map

µ : U∞(B̃) → K0(J) such that µ(u) = [P ]0 − [s(P )]0.

Indeed, suppose that W ∈ U2n(Ã) and Q ∈ P2n(J̃) are such that ψ̃(W ) = diag(u, u∗) and
ϕ̃(Q) = W diag(1n, 0)W ∗. We must show that [P ]0 − [s(P )]0 = [Q]0 − [s(Q)]0 in K0(J).
Indeed since ψ̃(VW ∗) = 12n there is Y ∈ U2n(J̃) such that ϕ̃(Y ) = VW ∗. Since

ϕ̃(P ) = VW ∗ϕ̃(Q)(VW ∗)∗ = ϕ̃(Y QY ∗),

we have P = Y QY ∗ and the claim follows. That is, µ : U∞(B̃) → K0(J) is well-defined.
This map µ satisfies conditions (i)–(iii) of Proposition 5.1.3. We only verify (iii),

leaving (i) and (ii) as exercise. So let u ∼h w ∈ Un(B̃), U,W ∈ U2n(Ã), P,Q ∈ P2n(J̃)
be such that ψ̃(U) = diag(u, u∗), ψ̃(W ) = diag(w,w∗), ϕ̃(P ) = U diag(1n, 0)U∗ and
ϕ̃(Q) = W diag(1n, 0)W ∗ (that is, {u, U, P} and {w,W,Q} satisfy conditions (5.2.7) and
(5.2.8), respectively). Then u∗w ∼h 1n ∼h uw

∗ and thus there exist X, Y ∈ Un(Ã) such
that ψ̃(X) = u∗w and ψ̃(Y ) = uw∗. Put Z = U diag(X, Y ), a unitary in U2n(Ã). We
have ψ̃(Z) = diag(w,w∗) and ϕ̃(P ) = Z diag(1n, 0)Z∗. Thus, by the definition of µ, we
have µ(w) = [P ]0 − [s(P )]0 = µ(u). The universal property of K1 now implies that there
exists a homomorphism

∂1 : K1(B) −→ K0(J),

called the index map, such that

∂1([u]1) = [P ]0 − [s(P )]0.

5.2.3 The exact sequence

Theorem 5.2.7. Let
0 −→ J

ϕ−→ A
ψ−→ B −→ 0

be an exact sequence of C∗-algebras. Then the sequence

K0(J)
K0(ϕ)- K0(A)

K0(ψ)- K0(B)

K1(B)

∂1

6

�
K1(ψ)

K1(A) �
K1(ϕ)

K1(J)

(5.2.9)

is exact everywhere.
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Proof. By virtue of half-exactness of K0 and K1, it suffices to prove that Im(K1(ψ)) =
Ker (∂1) and Im(∂1) = Ker (K0(ϕ)).

1. We show Im(K1(ψ)) ⊆ Ker (∂1). Indeed, if U ∈ Un(Ã) then diag(ψ̃(U), ψ̃(U)∗) lifts
to a diagonal unitary V = diag(U, U ∗) and ϕ̃(1n) = V diag(1n, 0)V ∗ = diag(1n, 0). Thus
∂1(K1(ψ)([U ]1)) = ∂1([ψ̃(U)]1) = [1n]0 − [s(1n)]0 = 0.

2. We show Im(K1(ψ)) ⊇ Ker (∂1). To simplify notation, we identify J with its image in
A and thus put ϕ = id. Let u ∈ Un(B̃) be such that [u]1 ∈ Ker (∂1). By Exercise 5.3.15,
there is a partial isometry U ∈ M2n(Ã) such that

ψ̃(U) =

(
u 0
0 0

)

and

0 = ∂1([u]1) = [12n − U∗U ]0 − [12n − UU∗]0 in K0(J).

Thus there is k and w ∈M2n+k(J̃) such that

w∗w = (12n − U∗U) ⊕ 1k and ww∗ = (12n − UU∗) ⊕ 1k.

Hence

ψ̃(w∗w) = ψ̃(ww∗) =

(
0 0
0 1n+k

)

and ψ̃(w) is a scalar matrix, since w ∈M2n+k(J̃). Consequently,

ψ̃(w) =

(
0 0
0 z

)
,

with z a scalar unitary matrix in Mn+k(B̃). In particular, z is homotopic to 1n+k in
Un+k(B̃). Set

V = w +

(
U 0
0 0k

)
,

an element of M2n+k(Ã). By Exercise 5.3.18, V is unitary. We have

ψ̃(V ) =

(
u 0
0 0

)
+

(
0 0
0 z

)
∼h

(
u 0
0 1n+k

)
.

Thus [u]1 − [ψ̃(V )]1 = K1(ψ)([V ]1).

3. We show Im(∂1) ⊆ Ker (K0(ϕ)). Indeed, let u ∈ Un(B̃) and let V ∈ U2n(Ã), P ∈
P2n(J̃) be such that (5.2.7) and (5.2.8) hold. Then we have

K0(ϕ)([P ]0 − [s(P )]0) = [ϕ̃(P )]0 − [1n]0 = [V diag(1n, 0)V ∗]0 − [1n]0 = 0.

4. We show Im(∂1) ⊇ Ker (K0(ϕ)). Let g ∈ Ker (K0(ϕ)). By Lemma 4.2.2, there is n, a
projection p ∈ Pn(J̃) and a unitary w ∈ Un(Ã) such that

g = [p]0 − [s(p)]0 and wϕ̃(p)w∗ = s(p).
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Set u0 = ψ̃(w(1n − ϕ̃(p))), a partial isometry in Mn(B̃). We have

u∗0u0 = 1n − ψ̃(ϕ̃(p)),

u0u
∗
0 = 1n − ψ̃(s(p)) = u∗0u0.

Thus u = u0 + (1n − u0u
∗
0) is unitary in Mn(B̃). We want to show that g = ∂1([u]1). To

this end, we frst find a lift of diag(u, 0n) to a suitable partial isometry in M2n(Ã). Take

V0 =

(
w(1n − ϕ̃(p)) 0

0 s(p)

)
,

a partial isometry in M2n(Ã) such that

ψ̃(V0) =

(
u0 0
0 s(p)

)
.

Set

Z =

(
1n − s(p) s(p)
s(p) 1n − s(p)

)
,

a self-adjoint, unitary scalar matrix, and put V = ZV0Z
∗. Then we have

ψ̃(V ) = Zψ̃(V0)Z
∗ = Z

(
u0 0
0 s(p)

)
Z∗ =

(
u 0
0 0

)
.

Hence, by Exercise 5.3.15,

∂1([u]1) = [ϕ̃−1(12n−V ∗V )]0−[ϕ̃−1(12n−V V ∗)]0 = [ϕ̃−1(12n−V ∗0 V0)]0−[ϕ̃−1(12n−V0V
∗
0 )]0 =

∣∣∣∣
(
p 0
0 1n − s(p)

)]

0

−
∣∣∣∣
(
s(p) 0
0 1n − s(p)

)]

0

= [p]0 − [s(p)]0 = g.

That is, g = ∂1([u]1), as required.

5.3 Examples and Exercises

Exercise 5.3.1. Let A be a unital C∗-algebra. We have Ã = A⊕Cf , where f = 1Ã−1A.
Define a unital ∗-homomorphism µ : Ã → A by µ(a + λf) = a. As usual, for each n
extend µ to a unital ∗-homomorphism Mn(Ã) → Mn(A) (still denoted µ). This yields a
map µ : U∞(Ã) → U∞(A). Show that there exists an isomorphism K1(A) → U∞(A)/∼1

making the diagram

U∞(Ã)
µ - U∞(A)

K1(A)

[·]1
?

- U∞(A)/∼1

?

(5.3.10)

commutative. To this end, show the following:

(i) µ(diag(u, v)) = diag(µ(u), µ(v)),
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(ii) if u, v ∈ Un(Ã) then µ(u) ∼h µ(v) iff u ∼h v,

(iii) if u, v ∈ U∞(Ã) then µ(u) ∼1 µ(v) iff u ∼1 v.

(ii) Let µ(u) ∼h µ(v). By the definition of µ, there exist unitary u0, v0 ∈ Un(Cf) such
that u = µ(u)+u0 and v = µ(v)+v0. Since the unitary group of Mn(C) is path-connected
we have u0 ∼h v0 in Un(Cf). It follows that u ∼h v in Un(Ã).

Exercise 5.3.2. Show the following.

(i) K1(C) = 0.

(ii) For any two C∗-algebras A,B we have K1(A⊕ B) ∼= K1(A) ⊕K1(B).

(iii) If A is an AF -algebra (see Example 4.4.14) then K1(A) = 0.

Example 5.3.3. If H is an infinite dimensional Hilbert space then K1(B(H)) = 0. Indeed,
since Un(B(H)) ∼= U(B(⊕nH)), it suffices to show that every unitary in B(H) is homotopic
to the identity. But this follows from the fact that for every unitary u in B(H) there is
a self-adjoint a ∈ B(H) such that u = exp(ia). Indeed, one may take a = ϕ(u), where
ϕ : T → [0, 2π) is a bounded Borel function such that ϕ(eiθ) = θ.

Exercise 5.3.4. Let X be a compact Hausdorff space.

(i) For each n identify Mn(C(X)) with C(X,Mn(C)) and define the determinant function
det : Mn(C(X)) → C(X). Show that det maps U∞(C(X)) into U(C(X)).

(ii) Let 〈v〉 denote the class of v ∈ U(C(X)) in U(C(X))/U0(C(X)). Apply the universal
property of K1 to the map U∞(C(X)) 3 u 7→ 〈det(u)〉 to show that there exists a
homomorphism D : K1(A) → U(C(X))/U0(C(X)) such that D([u]1) = 〈det(u)〉.

(iii) Show that the sequence

0 −→ Ker (D) −→ K1(C(X))
D−→ U(C(X))/U0(C(X)) −→ 0

is split-exact, with a splitting map ω : U(C(X))/U0(C(X)) → K1(C(X)) given by
ω(〈u〉) = [u]1.

(iv) Let X = T. Recall that ϕ : R → T, ϕ(x) = e2πix, is a covering map. Thus,
if u ∈ U(C(T)) then there exists a continuous function f : [0, 1] → R such that
u(e2πit) = e2πif(t). If f, g are two such functions then f − g is a constant integer.
Thus, there is a well-defined map µ : U(C(T)) → Z given by µ(u) = f(1)−f(0) (the
winding number of u). Show that µ induces an isomorphism of U(C(T))/U0(C(T))
and Z such that 〈u〉 7→ µ(u).

(v) Conclude that there exists a surjective homomorphism from K1(C(T)) onto Z. In
fact, we will see later that K1(C(T)) ∼= Z.

Exercise 5.3.5. If A is a separable C∗-algebra then K1(A) is countable.

Exercise 5.3.6. Let A be a unital C∗-algebra. Replacing unitaries U∞(A) with invertibles
GL∞(A) one can repeat the constructions from Section 5.1.1 and define an abelian group
GL∞(A)/∼1 . Show that this group is isomorphic to K1(A) = U∞(A)/∼1 (see Exercise
5.3.1). Hint: For w ∈ GL∞(A) let w = u|w| be the polar decomposition. Define a map
[·]1 : GL∞(A) → K1(A) by [w]1 = [u]1 = [w|w|−1]1 and use Proposition 2.1.10.
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Exercise 5.3.7. Let A be a non-unital C∗-algebra, and let s : Ã→ Ã be the scalar map
s(a+ t1) = t1. Define

U+(A) = {u ∈ U(Ã) : s(u) = 1},
U+
n (A) = {u ∈ U(Mn(Ã)) : sn(u) = 1n},

U+
∞(A) =

∞⋃

n=1

U+
n (A).

Proceeding as in Section 5.1.1, one can define an abelian group U+
∞(A)/∼1 . Show that

this group is isomorphic to K1(A).

Exercise 5.3.8. Let A be a unital C∗-algebra.

(i) Let u be unitary and let s be an isometry in A. Then sus∗+ (1− ss∗) is unitary and
we have

(
s 1 − ss∗

0 s∗

)(
u 0
0 1

)(
s 1 − ss∗

0 s∗

)∗
=

(
sus∗ + (1 − ss∗) 0

0 1

)
.

Thus [sus∗ + (1 − ss∗)]1 = [u]1.

(ii) Let u1, . . . , un be unitary elements of A and let s1, . . . , sn be isometries in A with
mutually orthogonal range projections. Then

u = s1u1s
∗
1 + . . .+ snuns

∗
n + (1 − s1s

∗
1 − . . .− sns

∗
n)

is unitary. Use (i) to show that [u]1 = [u1]1[u2]1 . . . [un]1.

(iii) et s1, . . . , sn be isometres as in (ii). Put

V =




s1 s2 · · · sn
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 .

hen V is an isometry in Mn(A). Show that for any unitary u ∈ Un(A) there is a
unitary w in A such that

V uV ∗ + (1n − V V ∗) = diag(w, 1n−1)

(iv) Let A be properly infinite (see Exercise 3.3.13). Show that

K1(A) = {[u]1 : u ∈ U(A)}.

Example 5.3.9. The K1-functor is not exact. Indeed, for a separable Hilbert space H
the sequence

0 −→ B(H)
π−→ B(H)/K −→ 0

of C∗-algebras is exact. But K1(B(H)) = 0 and we will see later that K1(B(H)/K) ∼= Z.
Thus K1(π) cannot be surjective. Likewise, there is an exact sequence

0 −→ C0((0, 1))
ϕ−→ C([0, 1]).

But K1(C([0, 1])) = 0 and we will see later that K1(C0((0, 1))) ∼= Z. Thus K1(ϕ) cannot
be injective.
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Exercise 5.3.10. Let A = lim
−→

{Ai,Φij} be the inductive limit of a sequence of C∗-algebras,

and let Φi : Ai → A be the canonical maps.

(i) For any invertible y ∈ Ã and any ε > 0 there is arbitrarily large i and invertible
z ∈ Ãi such that ||y − Φ̃i(z)|| < ε.

(ii) For any unitary u ∈ Ã and any ε > 0 there is arbitrarily large i and unitary w ∈ Ãi
such that ||u− Φ̃i(w)|| < ε.

(iii) If u is unitary in Ãj such that Φ̃j(u) ∼h 1 in Ã, then there is arbitrarily large i such
that Φ̃ij(u) ∼h 1 in Ãi.

(iv) Parts (i)–(iii) remain valid with Ã and Ãi replaced by Mn(Ã) and Mn(Ã), respec-
tively.

(i) First find k and x, x′ ∈ Ãk so that both ||Φ̃k(x) − y|| and ||Φ̃k(x
′) − y−1|| are small.

Thus both ||Φ̃k(xx
′−1)|| and ||Φ̃k(x

′x−1)|| are small. Then, using Exercise 4.4.17, take i
large enough so that both ||Φ̃ik(xx

′ − 1)|| and ||Φ̃ik(x
′x− 1)|| are small. Then z = Φ̃ik(x)

is both left and right invertible, hence invertible, and Φ̃i(z) approximates y.

(ii) This follows from part (i) and continuity of the polar decomposition (see Proposition
2.1.10).

(iii) Let wt, t ∈ [0, 1], be a continuous path of unitaries in Ã connecting w0 = Φ̃j(u)
and w1 = 1. By compactness, there are 0 = t0 < t1 < . . . < tk+1 = 1 such that
||wtr+1−wtr || < 2 for all r. Applying repeatedly part (ii), find m ≥ j and unitary elements

v1, . . . , vk in Ãi so close to wt1 , . . . , wtk , respectively, that all the norms: ||Φ̃j(u)−Φ̃m(v1)||,
||Φ̃m(vk) − 1||, and Φ̃m(vr+1) − Φ̃m(vr)|| for r = 1, . . . , k − 1 are less than 2. Then by
Exercise 4.4.17, there is arbitrarily large i ≥ m such that all the norms ||Φ̃ij(u)−Φ̃im(v1)||,
||Φ̃im(vk) − 1||, and Φ̃im(vr+1) − Φ̃im(vr)|| for r = 1, . . . , k − 1 are less than 2. Now the
claim follows from Lemma 2.1.4.

(iv) Exercise.

Exercise 5.3.11. Show that every unitary in the Calkin algebra Q lifts to a partial
isometry in B(H). In fact, it can be lifted to an isometry or a coisometry.

Exercise 5.3.12. Let ψ : A → B be a surjective ∗-homomorphism of C∗-alebras. Show
the following.

(i) For each b = b∗ ∈ B there is a = a∗ ∈ A such that ||a|| = ||b|| and ψ(a) = b.

(i) For each b ∈ B there is a ∈ A such that ||a|| = ||b|| and ψ(a) = b.

(i) Take any t ∈ A with ψ(t) = b and set x = 1/2(t + t∗). Then x = x∗ and ψ(x) = b.
Let f : R → R be a continuous function such that f(r) = r if |r| 5 ||b|| and |f(r)| = ||b||
if |r| ≥ ||b||. Put a = f(x). Then ψ(a) = ψ(f(x)) = f(ψ(x)) = f(b) = b, and ||a|| 5 ||b||.
But ||b|| = ||ψ(a)|| 5 ||a|| since ||ψ|| = 1. Thus ||a|| = ||b||.
(ii) Consider ψ2 : M2(A) →M2(B), and put

y =

(
0 b
b∗ 0

)
.
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Since y = y∗, there is x = x∗ ∈ M2(A) such that ψ2(x) = y and ||x|| = ||y|| = ||b||, by
part (i). Let

x =

(
x11 x12

x21 x22

)
,

and set a = x12. Then ψ(a) = b and ||a|| 5 ||x|| = ||b||. But ||b|| = ||ψ(a)|| 5 ||a|| since
||ψ|| = 1. Thus ||a|| = ||b||.

Exercise 5.3.13. Consider an exact sequence of C∗-algebras

0 −→ J −→ A
ψ−→ B −→ 0,

in which we identify J with its image in A. Let u be a unitary in Un(B̃). By part (ii) of
Exercse 5.3.12, there is a ∈ Un(Ã) such that ψ̃(a) = u and ||a|| = ||u|| = 1. Then for any
continuous function f : R → C we have af(a∗a) = f(aa∗)a. Use this to show that

V =

(
a (1n − aa∗)1/2

−(1n − a∗a)1/2 a∗

)

is a unitary in U2n(Ã). Then show that

ψ̃(V ) =

(
u 0
0 u∗

)

and

V

(
1n 0
0 0

)
V ∗ =

(
aa∗ −a(1n − a∗a)1/2

−(1n − a∗a)1/2a∗ 1n − a∗a

)
.

Then write explicitly ∂1([u]1).

Exercise 5.3.14. Consider an exact sequence of C∗-algebras

0 −→ J −→ A
ψ−→ B −→ 0,

in which we identify J with its image in A. Suppose that u ∈ Un(B̃) is such that there
exists a partial isometry U ∈Mn(Ã) with ψ̃(U) = u. Show the following.

(i) The element

V =

(
U 1n − UU∗

1n − U∗U U∗

)

is unitary in U2n(Ã) and ψ̃(V ) = diag(u, u∗).

(ii) Both 1n − U∗U and 1n − UU∗ are projections in Mn(J), and

∂1([u]1) = [1n − U∗U ]0 − [1n − UU∗]0.

Exercise 5.3.15. Consider an exact sequence of C∗-algebras

0 −→ J −→ A
ψ−→ B −→ 0,
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in which we identify J with its image in A. Let u ∈ Un(B̃), and let a ∈ Mn(Ã) be such
that ψ̃(a) = u and ||a|| = ||u|| = 1. Put

U =

(
a 0

(1n − a∗a)1/2 0

)
.

Show that U∗U = diag(1n, 0), which entails that U is a partial isometry. Then show that

ψ̃(U) =

(
u 0
0 0

)
.

Finally, show that
∂1([u]1) = [12n − U∗U ]0 − [12n − UU∗]0.

Exercise 5.3.16. Consider an exact sequence

0 −→ C0(R
2) −→ C(D) −→ C(S1) −→ 0,

with the map C(D) → C(S1) given by the restriction. In the corresponding exact sequence

K0(C0(R
2)) - K0(C(D)) - K0(C(S1))

K1(C(S1))

∂1

6

� K1(C(D)) � K1(C0(R
2))

(5.3.11)

we have K1(C(D)) = 0, since C(D) and C are homotopy equivalent. Show that the map
K0(C(D)) → K0(C(S1)) is injective, and conclude that ∂1 : K1(C(S1)) −→ K0(C0(R2))
is an isomorphism. Then calculate ∂1([z]1) and thus find a generator of K0(C0(R2)).

Exercise 5.3.17 (Naturality of the index map). Show that every commutative
diagram of C∗-algebras, with exact rows,

0 - J1
- A1

- B1
- 0

0 - J2

?
- A2

?
- B2

?
- 0

induces a commutative diagram of abelian groups, with exact rows:

K1(J1) - K1(A1) - K1(B1)
∂1- K0(J1) - K0(A1) - K0(B1)

K1(J2)
?

- K1(A2)
?

- K1(B2)
?

∂1

- K0(J2)
?

- K0(A2)
?

- K0(B2)
?

Exercise 5.3.18. Show that if partial isometries v1, . . . , vn in a unital C∗-algebra satisfy

v1v
∗
1 + . . .+ vnv

∗
n = 1 = v∗1v1 + . . .+ v∗nvn

then u = v1 + . . .+ vn is unitary. Hint: use Exercise 2.4.3.
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Chapter 6

Bott Periodicity and the Exact
Sequence of K-Theory

6.1 Higher K-Groups

6.1.1 The suspension functor

Recall that the suspension SA of a C∗-algebra A is defined as

SA = {f ∈ C([0, 1], A) : f(0) = f(1) = 0},

and is isomorphic to C0((0, 1), A) ∼= C0(R) ⊗ A (cf. Lemma 1.3.1). If ϕ : A → B is a
∗-homomorphism between two C∗-algebras, then Sϕ : SA → SB, given by (Sϕ(f))(t) =
ϕ(f(t)) is a ∗-homomorphism between their suspensions. It is not difficult to verif that
this yields a covariant functor from the category of C∗-algebras into itself.

Proposition 6.1.1. The suspension functor S is exact. That is, if

0 −→ J
ϕ−→ A

ψ−→ B −→ 0

is an exact sequence of C∗-algebras then the sequence

0 −→ SJ
Sϕ−→ SA

Sψ−→ SB −→ 0

is exact.

Proof. Exercise.

6.1.2 Isomorphism of K1(A) and K0(SA)

Let A be a C∗-algebra. We define a map

θA : K1(A) −→ K0(SA),

as follows. By Exercise 6.4.1, each element of K1(A) is represented by a unitary u ∈ Un(Ã)
(for some n) such that s(u) = 1n. For such a u we can find a continuous function

67
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v : [0, 1] → U2n(Ã) such that v(0) = 12n, v(1) = diag(u, u∗) and s(v(t)) = 12n for all
t ∈ [0, 1]. We put

p = v

(
1n 0
0 0n

)
v∗,

a projection in P2n(S̃A) with s(p) = diag(1n, 0n). We set

θA([u]1) = [p]0 − [s(p)]0.

Theorem 6.1.2. For any C∗-algebra A, the map

θA : K1(A) −→ K0(SA)

is an isomorphism. Furthermore, if B is a C∗-algebra and ϕ : A→ B is a ∗-homomorphism
then the diagram

K1(A)
K1(ϕ)- K1(B)

K0(SA)

θA
?

K0(Sϕ)
- K0(SB)

θB
?

(6.1.1)

is commutative.

Proof. Recall from Example 4.4.9 the exact sequence

0 −→ SA −→ CA
π−→ A −→ 0, (6.1.2)

where CA is the cone over A. Since CA is homotopy equivalent to {0} we have K0(CA) =
K1(CA) = 0. Let ∂1 : K1(A) → K0(SA) be the index map associated with the extension
(6.1.2). It follows from Theorem 5.2.7 that ∂1 is an isomorphism. Thus, it suffices to
identify ∂1 with θA (exercise).

6.1.3 The long exact sequence of K-theory

For each natural number n ≥ 2 we define inductively a covariant functor from the category
of C∗-algebras t the category of abelian groups as follows. Kn(A) = Kn−1(SA), and if
ϕ : A → B is a ∗-homomorphism then Kn(ϕ) = Kn−1(Sϕ). It is clear that such defined
functor is half-exact.

Now suppose that

0 −→ J
ϕ−→ A

ψ−→ B −→ 0 (6.1.3)

is an exact sequence of C∗-algebras. Then ∂1 : K1(B) → K0(J) is the index map. We
define higher index maps

∂n : Kn(B) → Kn−1(J),

as follows. Applying n − 1 times the suspension functor to sequence (6.1.3), we get an
exact sequence

0 −→ Sn−1J
Sn−1ϕ−→ Sn−1A

Sn−1ψ−→ Sn−1B −→ 0. (6.1.4)
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Let ∂1 : K1(S
n−1B) → K0(S

n−1J) be the index map associated with (6.1.4). By the
definition of higher K-functors, we have Kn(B) = K1(S

n−1B) and Kn−1(J) = K1(S
n−2J).

By Theorem 6.1.2, there is an isomorphism θSn−2J : K1(S
n−2J) → K0(S

n−1J). We define

∂n = θ−1
Sn−2J ◦ ∂1.

Such defined higher index maps have naturality analogous to the one enjoyed by the
usual index (cf. Exercise 5.3.17).

Proposition 6.1.3. Every short exact sequence

0 −→ J
ϕ−→ A

ψ−→ B −→ 0

of C∗-algebras induces a long exact sequence on K-theory:

. . .
∂n+1−→ Kn(J)

Kn(ϕ)−→ Kn(A)
Kn(ψ)−→ Kn(B)

∂n−→ . . .
∂1−→ K0(J)

K0(ϕ)−→ K0(A)
K0(ψ)−→ K0(B).

Proof. Exercise.

This Proposition serves only as an intermediate step towards the fundamental 6-term
exact sequence of K-theory. The point is that Kn+2

∼= Kn (as we will see in the next
section), and the apparently infinite sequence from Proposition 6.1.3 shrinks to a much
more useful finite one, which contains only K0 and K1.

6.2 Bott Periodicity

In this section, we prove the fundamental result of Bott that K0(A) ∼= K1(SA) for any
C∗-algebra A. Combined with Theorem 6.1.2, it says Kn+2(A) ∼= Kn(A) — the Bott
periodicity.

6.2.1 Definition of the Bott map

We begin by defining a Bott map

βA : K0(A) −→ K1(SA)

for unital C∗-algebras A, and then reduce the general case to the unital one. So let A be
a unital C∗-algebra. We use the obvious identification

SA = {f : T → A : f continuous, f(1) = 0}.

Thus, elements of Mn(SA) may be identified with continuous loops f : T → Mn(A)

such that f(1) = 0. It follows that Mn(S̃A) may be identified with continuous functions
f : T →Mn(A) such that f(1) ∈Mn(C1A).

For any natural n and any projection p ∈ Pn(A) we define a projection loop fp : T →
Un(A) by

fp(z) = zp + (1n − p), z ∈ T.

Clearly, we have fp ∈ Un(S̃A). By the universal property of K0 we get a homomorphism
βA : K0(A) −→ K1(SA) such that

βA([p]0) = [fp]1,
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called the Bott map.

Now if ϕ : A→ B is a unital ∗-homomorphism, then S̃ϕ(fp)(z) = ϕ(fp(z)) = fϕ(p)(z)
for all z ∈ T. Hence the diagram

K0(A)
K0(ϕ)- K0(B)

K1(SA)

βA
?

K1(Sϕ)
- K1(SB)

βB
?

(6.2.5)

is commutative. This is the naturality of the Bott map.

Finally, suppose that A does not have a unit. Then we have a commutative diagram

0 - K0(A) - K0(Ã) - K0(C) - 0

0 - K1(SA) - K1(SÃ)

βÃ
?

- K1(C)

βC

?
- 0

(6.2.6)

with split-exact rows. It follows that there is exactly one map βA : K0(A) → K1(SA)
which completes the diagram. By Exercise 6.4.2, we have

βA([p]0 − [s(p)]0) = [fpf
∗
s(p)]1.

6.2.2 The periodicity theorem

The following teorem is considered a central result of K-theory.

Theorem 6.2.1. For any C∗-algebra A, the Bott map

βA : K0(A) −→ K1(SA)

is an isomorphism.

Proof. It suffices to prove the theorem for unital C∗-algebras. Indeed, the general
case follows from the unital one and (6.2.6) through a diagram chase. Thus assume A
is unital. It will be convenient for us to use the description of K1(SA) as the collection

of suitable equivalence classes in GL∞(S̃A) (see Exercise 5.3.6). We must show that the
Bott map βA : K0(A) −→ K1(SA) is both surjective and injective.

Surjectivity. We consider the following subsets of GL∞(S̃A):

GLn = {f : T → GLn(A) : f continuous and f(1) ∈ Mn(C1A)},
LLnm = {f ∈ GLn : f a Laurent polynomial in z with coefficients in

Mn(A) and deg(f) 5 m},
PLnm = {f ∈ LLnm : f a polynomial},
PRLn = {fp : p ∈ Pn(A)}.
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Elements of GLn, LLnm, PLnm and PLn1 are called invertible loops, Laurent loops, polyno-
mial loops and linear loops, respectively. We have

PRLn ⊆ PLn1 ⊆
⋃

m

PLnm ⊆
⋃

m

LLnm ⊆ GLn

and K1(SA) = {[f ]1 : f ∈ GLn, n ∈ N}.
Step 1.

⋃
m LL

n
m is dense in GLn. Indeed, span{zk : k ∈ Z} is dense in C(T) by the

Stone-Weierstrass theorem. Hence span{zk : k ∈ Z} ⊗ A is dense in C(T) ⊗ A, and this
easily implies that Laurent loops are a dense subset of invertible loops.

Step 2. By virtue of Step 1, it suffices to show that the range of βA contains the
equivalence classes of all Laurent loops. But each Laurent loop is a quotient of two
polynomal loops. Thus, it suffices to show that the range of βA contains the classes of all
polynomial loops. To this end, we show that for each n,m ∈ N there is a continuous map

µnm : PLnm −→ PLmn+n
1

such that µnm(f) ∼h diag(f, 1mn) within PLmn+n
k for all f ∈ PLnk , k 5 m. Indeed, let

f(z) =

m∑

j=0

ajz
j , with aj ∈Mn(A) for all j = 0, . . . , m. For each z, we define

µ̃nm(f)(z) =




a0 a1 a2 . . . am−1 am
−z 1 0 . . . 0 0
0 −z 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . −z 1



,

an element of Mm+1(Mn(A)). (In the above matrix we wrote 1 for 1n and z for z1n.)
Cleary, µ̃nm(f)(z) = T0 + T1z for some T0, T1 ∈ Mmn+n(A), and the map f 7→ µ̃nm(f) is
continuous. We claim the following:

(i) µ̃nm(f)(z) is invertible for all z,

(ii) µ̃nm(f)(1) ∼h 1mn+n,

(iii) µ̃nm(f) ∼h diag(f, 1mn).

Once the properties (i)–(iii) are established, we obtain the desired map µnm by setting
µnm(f) = (µ̃nm(f)(1))−1µ̃nm(f).

In order to prove properties (i)–(iii), we consider matrices

Am =




1 0 0 . . . −am
0 1 0 . . . 0
...

...
...

...
0 0 0 . . . 1


 , Am−1 =




1 0 . . . −(am−1 + amz) 0
0 1 . . . 0 0
...

...
...

...
0 0 . . . 0 1


 , . . . ,

A1 =




1 −(a1 + a2z + . . .+ amz
m−1) 0 . . . 0

0 1 0 . . . 0
...

...
...

...
0 0 0 . . . 1


 ,



72CHAPTER 6. BOTT PERIODICITY AND THE EXACT SEQUENCE OFK-THEORY

and matrices Bk having 1’s on the main diagonal, z in the entry in column k and row
k + 1, and 0’s elsewhere. Then we have

A1A2 · · ·Amµ̃nm(f)(z) =




f(z) 0 . . . 0 0
−z 1 . . . 0 0
...

...
...

...
0 0 . . . −z 1




and
A1A2 · · ·Amµ̃nm(f)(z)BmBm−1 · · ·B1 = diag(f(z), 1mn). (6.2.7)

Since f(z) and all of the matrices A1, . . . , Am, B1, . . . , Bm are invertible for all z, (6.2.7)
implies (i). Furthermore, each of the Aj and Bj matrices may be continuously deformed
to the identity within the set polynomial loops by multiplying the sole off-diagonal entry
with a parameter t ∈ [0, 1]. Thus (6.2.7) implies (ii) and (iii).

Step 3. By virtue of Step 2, it suffices to show that the range of βA contains the
equivalence classes of all linear loops. This will follow if we show that there exists a
continuous retraction

ν : PLn1 −→ PRLn

such that ν(f) ∼h f within PLn1 for all f ∈ PLn1 . Indeed, let f(z) = a0 + a1z. Then
f(1) = a0 + a1 is an invertible element of Mn(C1A), and we can put g = f(1)−1f . Then

g(z) = 1n + b(z − 1),

with b = (a0 + a1)
−1a1. When z 6= 1 we can write

g(z) = (1 − z)

(
1

1 − z
1n − b

)
,

and since g(z) is invertible for all z ∈ T we see that 1/(1− z) 6∈ sp(b) if z ∈ T \ {1}. Since
the function z 7→ 1/(1− z) maps T \ {1} onto the line {λ ∈ C : <(λ) = 1/2}, we see that

sp(b) ⊆ C \ {λ ∈ C : <(λ) = 1/2}.

For t ∈ [0, 1] consider a function

gt(z) =

{
tz if <(z) < 1/2,
tz + (1 − t) if <(z) > 1/2.

Each function gt is holomorphic on an open neighbourhood of sp(b) and thus the holomor-
phic function calculus (see Exercise 6.4.3) yields elements gt(b) ∈ Mn(A), which depend
continuously on the parameter t. Since the image of gt(z) does not intersect the line
{λ ∈ C : <(λ) = 1/2}, the elements

ht(z) = 1n + gt(b)(z − 1) = (1 − z)

(
1

1 − z
1n − gt(b)

)

are invertible. We have g1(z) = z and thus g1(b) = b. On the other hand, g0(z)
2 = g0(z)

and thus e = g0(b) is an idempotent. Consequently, t 7→ ht is a homotopy within PLn1
between g and the idempotent loop 1n + e(z − 1). Now we can deform the idempotent e
to a projection, as follows (cf. Exercise 3.3.20).
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Lemma 6.2.2. Let B be a unital C∗-algebra. Recall that I(B) denotes the set of idem-
potents in B and P(B) denotes the set of projections (i.e. self-adjoint idempotents) in B.
Then we have the following.

(i) For every idempotent e ∈ B the element

ρ(e) = ee∗(1 + (e− e∗)(e∗ − e))−1

is a projection.

(ii) The map ρ : I(B) → P(B), defined in (i), is a continuous retraction. In particular,
ρ(e) ∼h e in I(B) for every idempotent e.

(iii) If p, q ∈ P(B) and p ∼h q in I(B), then p ∼h q in P(B).

Proof. (i) Put w = 1+(e−e∗)(e∗−e). Then w is positive and invertible, thus ρ(e) = ee∗w−1

is well-defined. A straightforward calculation yields ew = ee∗e = we and e∗w = e∗ee∗ =
we∗. Thus ee∗w = (ee∗)2 = wee∗ and ee∗w−1 = w−1ee∗. This implies that ee∗w−1 is
self-adjoint and that

ρ(e)2 = ee∗w−1ee∗w−1 = (ee∗)2w−2 = ee∗w−1 = ρ(e).

Whence ρ(e) is a projection.

(ii) Clearly, ρ is a continuous map and ρ(p) = p if p is a projection.
To see that ρ(e) ∼h e in I(B), set ut = 1 − t(e − ρ(e)) for t ∈ [0, 1]. Since ρ(e)e = e

an eρ(e) = ρ(e), we have (e − ρ(e))2 = 0. Therefore ut is invertible with the inverse
u−1
t = 1 + t(e− ρ(e)). Thus u−1

t eut is an idempotent for all t ∈ [0, 1], and we have

e = u−1
0 eu0 ∼h u

−1
1 eu1 = (1 + (e− ρ(e)))e(1 − (e− ρ(e))) = ρ(e).

(iii) If t 7→ et is a continuous path in I(B) from e0 = p to e1 = q, then t 7→ ρ(et) is a
continuous path in P(B) from ρ(e0) = p to ρ(e1) = q.

Let ρ : In(A) → Pn(A) be the map defined in Lemma 6.2.2 (with B = Mn(A)). Then
ν(f) = 1n + ρ(e)(z − 1) yields the desired map ν : PLn1 −→ PRLn.

Injectivity. Let p, q ∈ Pn(A) and assume that βA([p]0− [q]0) = [fpf
∗
q ]1 = [1]1 in K1(SA).

Then, after increasing n if necessary, we have fp ∼h fq in GLn. It suffices to show that
there exists m ∈ N such that diag(p, 1m) ∼h diag(q, 1m) in Pn+m(A).

As a first step, we observe that there exists a polygonal (i.e. piece-wise linear) homo-
topy t 7→ ht from fp to fq such that all ht are Laurent loops with a uniform bound on both
positive and negative degrees. (This follows from the density of Laurent loops in invertible
loops via a routine compactness argument — exercise.) Thus there are m, k ∈ N such that
zmht ∈ PLnk for all k. Since zmfp ∼h fdiag(p,1m) in PLm+n

m (exercise), we see that fdiag(p,1m)

and fdiag(q,1m) are homotopic in PLm+n
m+k . Let t 7→ et be such a homotopy. Then applying

the maps µm+n
m+k and ν, constructed in steps 2 and 3, respectively, of the proof of surjectiv-

ity, we get a homotopy t 7→ ν(µm+n
m+k(et)) = fpt from fdiag(p,1m) to fdiag(q,1m) in projection

loops. Since the map fpt 7→ pt is continuous (exercise), we finally see that diag(p, 1m) and
diag(g, 1m) are homotopic via a path of projections. Consequently, [p]0 = [q]0 in K0(A),
as required. �

Combining Theorems 6.1.2 and 6.2.1 we get

Kj(SA) ∼= K1−j(A)
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for any C∗-algebra A and j = 0, 1. Thus, for any natural n we have

Kn+2(A) ∼= Kn(A).

Furthermore, naturality of the maps θ∗ and β∗ easily implies that the functors Kn+2 and
Kn are isomorphic.

6.3 The 6-Term Exact Sequence

6.3.1 The 6-term exact sequence of K-theory

With the Bott periodicity theorem at hand, we are now ready to present the 6-term exact
sequence of K-theory — a tool of paramount importance in applications. Let

0 −→ J
ϕ−→ A

ψ−→ B −→ 0

be an exact sequence of C∗-algebras. Applying the suspension functor, we obtain the
exact sequence

0 −→ SJ
Sϕ−→ SA

Sψ−→ SB −→ 0.

Denote by ∂ : K1(SB) → K0(SJ) the corresponding index map. Let θJ : K1(J) →
K0(SJ) and βB : K0(B) → K1(SB) be the isomorphisms from Therems 6.1.2 and 6.2.1,
respectively. Then the exponential map

∂0 : K0(B) −→ K1(J)

is defined as the unique homomorphism making the diagram

K0(B)
∂0- K1(J)

K1(SB)

βB
?

∂
- K0(SJ)

θJ
?

(6.3.8)

commutative.

Theorem 6.3.1. Let
0 −→ J

ϕ−→ A
ψ−→ B −→ 0

be an exact sequence of C∗-algebras. Then the sequence

K0(J)
K0(ϕ)- K0(A)

K0(ψ)- K0(B)

K1(B)

∂1

6

�
K1(ψ)

K1(A) �
K1(ϕ)

K1(J)

∂0

?

(6.3.9)

is exact everywhere.
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Proof. By virtue of Theorem 5.2.7, it suffices to show exactness at K0(B) and K1(J). It
turns out that at this stage this requires nothing more but a diagram chase.

To prove exactness of (6.3.9) at K0(B), consider the commutative (due to naturality
of the Bott map) diagram

K0(A)
K0(ψ)- K0(B)

∂0- K1(J)

K1(SA)

βA
?

K0(Sψ)
- K1(SB)

βB
?

∂
- K0(SJ)

θJ
?

(6.3.10)

All the vertical arrows are isomorphisms, and the bottom row is exact by Theorem 5.2.7.
Thus the top row is exact.

To prove exactness of (6.3.9) at K1(J), consider the commutative (due to naturality
of the θ∗ map) diagram

K0(B)
∂0- K1(J)

K1(ϕ)- K1(A)

K1(SB)

βB
?

∂
- K0(SJ)

θJ
?

K0(Sϕ)
- K0(SA)

θA
?

(6.3.11)

All the vertical arrows are isomorphisms, and the bottom row is exact by Theorem 5.2.7.
Thus the top row is exact.

6.3.2 The exponential map

6.3.3 An explicit form of the exponential map

Proposition 6.3.2. Let 0 → J
ϕ→ A

ψ→ B → 0 be exact and let ∂0 : K0(B) → K1(J) be
the associated exponential map. Then

(i) If p ∈ Pn(B̃) and x = x∗ ∈ Mn(Ã) such that ψ̃(x) = p then ∃!u ∈ Un(J̃) such that
ϕ̃(u) = exp(2πix), and we have

∂0([p]0 − [s(p)]0) = −[u]1. (6.3.12)

(ii) Suppose that A is unital. If p ∈ Pn(B) and x = x∗ ∈ Mn(A) such that ψ(x) = p,
then ∃!u ∈ Un(J̃) such that ϕ̃(u) = exp(2πix), and we have

∂0([p]0) = −[u]1. (6.3.13)

Proof. Part (i) follows from (ii) by a diagram chase. So we prove (ii). For simplicity,
assume J ⊆ A and ϕ = id. Suppose A unital then and let p ∈ Pn(B). There is x = x∗ ∈
Mn(A) such that ψ(x) = p. Then ψ(exp(2πix)) = exp(2πiψ(x)) = exp(2πip) = 1n, hence
exp(2πix) ∈ Un(J̃). We must show that

θJ([exp(−2πix)]1) = (∂1 ◦ βB)([p]0), (6.3.14)
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where ∂1 : K1(SB) → K0(SJ) is the index map corresponding to 0 → SJ → SA →
SB → 0. We identify SB with {f ∈ C([0, 1], B)|f(0) = f(1) = 0}. Thus Mk(S̃B) = {f ∈
C([0, 1],Mk(B))|f(0) = f(1) ∈Mk(C1B)}, and fp ∈ U(S̃B) is fp(t) = e2πitp+1n−p, t ∈
[0, 1]. Let v ∈ U2n(S̃A) be such that S̃ψ(v) =

(
fp 0
0 f ∗p

)
. Then v : [0, 1] → U2n(A) is

a continuous map such that v(0) = v(1) ∈ M2n(C1A), and ψ(v(t)) =

(
fp(t) 0

0 f ∗p (t)

)
.

As fp(0) = fp(1) = 1, we have v(0) = v(1) = 12n. With x = x∗ ∈ Mn(A) a lift of p,
put z(t) = exp(2πitx) for t ∈ [0, 1]. t 7→ z(t) ∈ Un(A) is continuous and ψ(z(t)) = f0(t).
Hence

ψ

(
v(t)

(
z(t)∗ 0

0 z(t)

))
= 12n, s

(
v(t)

(
z(t)∗ 0

0 z(t)

))
= 12n. (6.3.15)

Thus w(t) = v(t)

(
z(t)∗ 0

0 z(t)

)
is a unitary element in U2n(J̃). We have w(0) = 12n

and w(1) =

(
exp(−2πix) 0

0 exp(2πix)

)
. Thus, by the definition of θJ , we have

θJ([exp(−2πix)]1) =

[
w

(
1n 0
0 0

)
w∗
]

0

−
[(

1n 0
0 0

)]

0

. (6.3.16)

We also have

w(t)

(
1n 0
0 0

)
w(t)∗ = v(t)

(
1n 0
0 0

)
v(t)∗, (6.3.17)

and the unitary v was chosen so that

S̃ψ(v) =

(
fp 0
0 f ∗p

)
. (6.3.18)

So, by the definition of the index map, we get

∂1([fp]1) = θJ([exp(−2πix]1). (6.3.19)

�

6.4 Examples and Exercises

Exercise 6.4.1. Let A be a C∗-algebra. Show that every class in K1(A) contains a
unitary u ∈ Un(Ã) normalized so that s(u) = 1n, where s is the scalar map.

Exercise 6.4.2. Show that if A is a non-unital C∗-algebra then for any p ∈ Pn(Ã) we
have

βA([p]0 − [s(p)]0) = [fpf
∗
s(p)]1.

Exercise 6.4.3 (Holomorphic function calculus). Let γ1, . . . , γn be a finite col-
lection of continuous and piece-wise continuously differentialble paths γk : [ak, bk] → C.
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We assume that each γk is closed, i.e. γk(ak) = γk(bk). A contour is a finite collec-
tion Γ = {γ1, . . . , γn}. If f is a piece-wise continuous, complex function defined on
Im(Γ) =

⋃
k γk([ak, bk]), then there is a well-defined integral

∫

Γ

f(z)dz =

∫

γ1

f(z)dz + . . .+

∫

γn

f(z)dz.

If z0 6∈ Im(Γ) then the index of z0 with respect to Γ is the integer defined as

IndΓ(z0) =
1

2πi

∫

Γ

dz

z − z0
.

Let K be a compact subset of an open set Ω ⊆ C. Then we say that Γ surrounds K in Ω
if Im(Γ) ⊆ Ω \K and

IndΓ(z) =

{
1, z ∈ K,
0, z ∈ C \ Ω.

Let A be a unital C∗-algebra. If a ∈ A and Γ is a contour surrounding sp(a) in an open
set Ω, then for every holomorphic function f : Ω → C there is a well-defined Riemann
integral

f(a) =
1

2πi

∫

Γ

f(z)(z1A − a)−1dz.

This integral yields a unique element f(a) of A such that for every continuous functional
ϕ : A→ C we have

ϕ(f(a)) =
1

2πi

∫

Γ

f(z)ϕ((z1A − a)−1)dz.

The mapping f 7→ f(a) is called the holomorphic function calculus for a. It has the
following properties (see [T-M79, M-GJ90, P-GK79]).

(i) The map f 7→ f(a) is a unital algebra homomorphism.

(ii) If g is a holomorphic function on f(Ω) then (g ◦ f)(a) = g(f(a)).

(iii) sp(f(a)) = f(sp(a)).

(iv) If fn is a sequence of holomorphic functions on Ω converging almost uniformly to a
function g, then g is holomorphic on Ω and

||fn(a) − g(a)|| −→ 0.

Note that the holomorphic function calculus applies to an arbitrary element a of a C∗-
algebra, not just a self-adjoint one. If a is self-adjoint then the holomorphic function
calculus is compatible with the continuous function calculus via the Gelfand transform.

Exercise 6.4.4. By virtue of Theorems 6.1.2 and 6.2.1, we have

K0(C0(R
2n)) ∼= K1(C0(R

2n+1)) ∼= K0(C) ∼= Z,

K1(C0(R
2n)) ∼= K0(C0(R

2n+1)) ∼= K1(C) = 0,

for all n ∈ N.
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Exercise 6.4.5. For each natural number n ≥ 1, find a split-exact sequence

0 −→ C0(R
n) −→ C(Sn) −→ C −→ 0.

Then use Exercise 6.4.4 and split-exactness of K∗ to determine the K-groups of C(Sn)
for all spheres Sn.

Exercise 6.4.6. By Exercise 6.4.5, we have K0(C(T)) ∼= K1(C(T)) ∼= Z. Use the
isomorphism C(Tn+1) ∼= C(T) ⊗ C(Tn) to find a split-exact sequence

0 −→ SC(Tn) −→ C(Tn+1) −→ C(Tn) −→ 0.

Then use split-exactness of K∗ to determine the K-groups of C(Tn) for all tori Tn.

Exercise 6.4.7. Let
0 −→ J

ϕ−→ A
ψ−→ B −→ 0

be an exact sequence of C∗-algebras. Show that if every projection in P∞(B̃) lifts to a
projection in P∞(Ã) then ∂0 : K0(B) → K1(J) is the zero map.

Exercise 6.4.8 (Toeplitz algebra). Let H be a separable Hilbert space with an
orthonormal basis {ξn : n = 0, 1, 2, . . .}. Let S ∈ B(H), S(ξn) = ξn+1 be the unilateral
shift. We define the Toeplitz algebra T as the C∗-algebra generated by S. It can be shown
[C-L67] that T is the universal C∗-algebra for the relation S∗S = 1, and that if T is a
proper isometry on a Hilbert space then there exists a ∗-isomorphism T = C∗(S) → C∗(T )
such that T 7→ S.

(i) Show that the closed two-sided ideal of T generated by 1 − SS∗ coincides with the
algebra K(H).

(ii) Let π : T → T /K be the natural surjection. Show that T /K is isomorphic to C(S1)
and π(S) may be identified with the generator z. There is an exact sequence

0 −→ K −→ T π−→ C(S1) −→ 0.

(iii) By Exercise 6.4.5, K0(C(S1)) ∼= Z (with a generator [1]0) and K1(C(S1)) ∼= Z (with
a generator [z]1, the class of the identity map z 7→ z). Calculate ∂1([z]1) and show
that the index map

∂1 : Z ∼= K1(C(S1)) −→ K0(K) ∼= Z

is an isomorphism.

(iv) Use (iii) and the exact sequence from Theorem 6.3.1 to show that

K0(T ) ∼= Z, K1(T ) = 0.

Find the generator of K0(T ).

Exercise 6.4.9. Let H be a separable Hilbert space, K = K(H) be the compact operators
on H, and let Sn ∈ B(H) be an isometry with cokernel of dimension n, for some natural
number n. Let C∗(Sn,K) be the C∗-subalgebra of B(H) generated by Sn and K. Show
that there exists an exact sequence

0 −→ K −→ C∗(Sn,K) −→ C(S1) −→ 0

and determine the K-theory of C∗(Sn,K).
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Exercise 6.4.10. Let RP 2 be the real projective plane. Find an exact sequence

0 −→ C0(R
2) −→ C(RP 2) −→ C(S1) −→ 0

and determine the K-theory of C(RP 2).

Exercise 6.4.11. Find an exact sequence

0 −→ C(S1) ⊗ C0(R
2) −→ C(S3) −→ C(S1) −→ 0.

Then apply to it the 6-term exact sequence ofK-theory and thus calculate in an alternative
way the K-groups of the 3-sphere (cf. Exercise 6.4.5).

Exercise 6.4.12. Let H be a separable Hilbert space. Consider two operators T, U ∈
B(H) such that T is a proper isometry (i.e. T ∗T = 1 6= TT ∗) and U is a partial unitary
on 1 − TT ∗ with full spectrum (i.e. U ∗U = UU∗ = 1 − TT ∗ and sp(U) = S1 ∪ {0}). Let
A be a C∗-subalgebra of B(H) generated by T and S.

(i) Let J be the closed two-sided ideal of A generated by U . Show that J is isomorphic
to C(S1) ⊗K, with K the C∗-algebra of compact operators.

(ii) Let π : A → A/J be the natural surjection. Show that A/J is generated (as a
C∗-algebra) by the unitary element π(T ). Show that sp(π(T )) contains the entire
unit circle, and thus A/J is isomorphic to C(S1).

(iii) By (i) and (ii) above, there is an exact sequence

0 −→ C(S1) ⊗K −→ A −→ C(S1) −→ 0.

Apply the 6-term exact sequence and calculate the K-theory of A.

Example 6.4.13. (Mirror-disc-type quantum two-spheres)
Consider, for p ∈]0, 1[, the ∗-algebra

O(Dp) := C〈x, x∗〉/J, (6.4.20)

where J is the ∗-ideal generated by x∗x − pxx∗ − (1 − p). This is called ∗-algebra of
the quantum disc (see [KL93], where a two-parameter family of such quantum discs is
considered). It is not hard to see that ‖ρ(x)‖ = 1 in any bounded representation ρ,
so that one can form the C∗-closure C(Dp) of O(Dp). Moreover O(Dp) is faithfully
imbedded in C(Dp). (There is exactly one faithful irreducible representation, up to unitary
equivalence.) It is known that C(Dp) is isomorphic to the Toeplitz algebra T , so all the
C∗-algebras C(Dp) are isomorphic. There is a ∗-homomorphism ϕ : C(Dp) → C(S1),
sending the generator x to the unitary generator u of C(S1). Consider for any q ∈]0, 1[ a
second copy O(Dq), with generator y.

Definition 6.4.14. Let α : O(S1) → O(S1) denote the ∗-automorphism defined by
u 7→ u∗. Define

O(S2
pq) := {(f, g) ∈ O(Dp) ⊕O(Dq) | ϕ(f) = α ◦ ϕ(g)}. (6.4.21)

This is called the ∗-algebra of the mirror-disc-type quantum two-sphere.



80CHAPTER 6. BOTT PERIODICITY AND THE EXACT SEQUENCE OFK-THEORY

Proposition 6.4.15.
O(S2

pq)
∼= C〈C,C∗, D,D∗, E, E∗〉/J, (6.4.22)

where the ∗-ideal J is generated by the relations

C∗C = 1 − pD − E,

CC∗ = 1 −D − qE,

DC = pCD,

EC = q−1CE,

DE = 0,

D = D∗,

E = E∗.

The isomorphism is given by (x, y∗) 7→ C, (1 − xx∗, 0) 7→ D, (0, 1 − yy∗) 7→ E.

Proposition 6.4.16. The following is a complete list (up to unitary equivalence) of
irreducible ∗-representations of O(S2

pq) in some Hilbert space:

(i) ρ+, acting on a separable Hilbert space H with orthonormal basis e0, e1, . . . according
to

ρ+(C)ek =
√

1 − pk+1ek+1,

ρ+(D)ek = pkek,

ρ+(E) = 0.

(ii) ρ−, acting on H by

ρ−(C)ek =
√

1 − qkek−1,

ρ−(D)ek = 0,

ρ−(E)ek = qkek.

(iii) An S1-family ρµ, acting on C by

ρµ(C) = µ,

ρµ(D) = 0,

ρµ(E) = 0.

One can again show that there is a uniform bound on the norm of the generators for
all bounded ∗-representations, so that one can form a C∗-closure C(S2

pq) of O(S2
pq) using

bounded ∗-representations. ρ+ ⊕ ρ− is a faithful representation of O(S2
pq) as well as of

C(S2
pq), so that O(S2

pq) is faithfully imbedded in C(S2
pq). Moreover, the closed ideals JD,

JE generated by D, E are isomorphic to K (ρ+(JD) = K = ρ−(JE)), they have zero
intersection, and (ρ+ ⊕ ρ−)(JD + JE) = K ⊕ K. Finally, there is an exact sequence

0 → K⊕K → C(S2
pq)

ψ→ C(S1) → 0, (6.4.23)

where ψ is defined by C 7→ u, D 7→ 0, E 7→ 0. This exact sequence can be used to
compute the K-theory of C(S2

pq):
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Proposition 6.4.17. K0(C(S2
pq)

∼= Z ⊕ Z, K1(C(S2
pq)) = 0.

Proof. With K0(C(S1)) ∼= Z ∼= K1(C(S1)), K0(K) ∼= Z, K1(K) = 0, we obtain from
the standard six-term exact sequence corresponding to (6.4.23)

0 → K1(C(S2
pq) → Z

∂→ Z ⊕ Z → K0(C(S2
pq))

K0(ψ)→ Z → 0. (6.4.24)

Let us compute the index map ∂. It is determined by its value on the generator [u]1 ∈
K1(C(S1)),

∂([u]1) = [1 − b∗b]0 − [1 − bb∗]0, (6.4.25)

where b ∈ C(S2
pq) is any partial isometry with ψ(b) = u. Identify C(S2

pq)
∼= (ρ+ ⊕

ρ−)(C(S2
pq). Then b = (s, s∗), s the one-sided shift, is a continuous function of (ρ+ ⊕

ρ−)(C) such that b− (ρ+ ⊕ ρ−)(C) ∈ K⊕K: b = (ρ+(C)|ρ+(C)|−1, ρ−(C)|ρ−(C)|−) with

|ρ−(C)|−ek :=

{
0 k = 0

1√
1−qk

ek k > 0. Then b∗b = (s∗s, ss∗) = 1 − p2, bb
∗ = (ss∗, s∗s) =

1 − p1, where p2 = (pe0, 0), p1 = (0, pe0) can be considered as the generators (0, 1), (1, 0)
of Z⊕Z ∼= K0(K⊕K). Then ∂([u]1) = [p2]0 − [p1]0 = (0, 1)− (1, 0), so that ∂ is injective,
and we can conclude that K1(C(S2

pq)) = 0. We are left with the exact sequence

0 → Z
∂→ Z ⊕ Z

K0(j)→ K0(C(S2
pq)

K0(ψ)→ Z → 0. (6.4.26)

As Z is a free module over itself, this sequence splits, and K0(C(S2
pq))

∼= ImK0(j) ⊕ Z.
There remains the exact sequence

0 → Z
∂→ Z ⊕ Z

K0(j)→ ImK0(j) → 0. (6.4.27)

Here, K0(j) is determined by its values on (1, 0) and (0, 1), however, (1, 0) − (0, 1) ∈
KerK0(j) = Im∂, i.e., K0(j)(1, 0) = K0(j)(0, 1), consequently ImK0(j) = {nK0(j)(1, 0)|n ∈
Z} ∼= Z. It follows that K0(C(S2

pq))
∼= Z ⊕ Z. �
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Chapter 7

Tools for the computation of
K-groups

7.1 Crossed products, the Thom-Connes isomorphism

and the Pimsner-Voiculescu sequence

7.1.1 Crossed products

Let G be a locally compact abelian group. Then Cc(G) = {f ∈ C(G)|supp(f) compact}
is a ∗-algebra with respect to

(f ∗ g)(s) =

∫

G

f(t)g(t− s)dt, (7.1.1)

f ∗(s) = f(s−1), (7.1.2)

where the integration is with respect to the Haar measure. The universal norm on Cc(G),

‖f‖ = sup{‖π(f)‖|π : Cc(G) → B(H) a ∗-representation}, (7.1.3)

is well-defined since (one can show that)

‖f‖ ≤ ‖f‖1 =

∫

G

|f(t)|dt. (7.1.4)

The completion of Cc(G) with respect to ‖.‖ is the group C∗-algebra C∗(G) of G. By
Gelfand’s theorem, since C∗(G) is abelian, there is a locally compact Hausdorff space Ω
such that C∗(G) ∼= C0(Ω). Ω may be identified with Ĝ = {χ : G→ T|χ continuous , χ(s+
t) = χ(s)χ(t)}, the dual group of G. Ĝ is equipped with the topology of almost uniform
convergence. Every χ ∈ Ĝ yields a multiplicative functional of C∗(G) by

ωχ(f) =

∫

G

χ(t)f(t)dt. (7.1.5)

Thus we have C∗(G) ∼= C0(Ĝ) via the Gelfand transform. Now suppose that A is a
C∗-algebra and α : G → Aut(A) is a homomorphism such that G 3 t 7→ αt(x) ∈ A is

83
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continuous ∀x ∈ A. Then (A,G, α) is called a C∗-dynmaical system. The vector space
{f ∈ C(G,A)|supp(f) compact} becomes a ∗-algebra with

(f ∗ g)(s) =

∫

G

f(t)αt(g(s− t))dt, (7.1.6)

f ∗(s) = αs(f(s−1)∗). (7.1.7)

Note that even if both G and A are abelian, this algebra may be noncommutative if the
action α is nontrivial. The universal norm ‖.‖ on this ∗-algebra is defined as the supremum
over the norms in all ∗-representations. Aoα G is by definition the C∗-algebraic closure
of A⊗Cc(G) with respect to ‖.‖. If α : G→ Aut(A) is trivial, i.e., αt(x) = x, ∀x, then we
have Aoα G ∼= A⊗ C∗(G) ∼= A ⊗ C0(Ĝ) (C∗-algebra isomorphisms). For a given action
α : G→ Aut(A) there exists a canonical dual action α̂ : Ĝ→ Aut(Aoα G) such that

α̂χ(f)(t) = 〈χ, t〉f(t) (7.1.8)

for f ∈ C(G,A) with compact support.

Theorem 7.1.1. (Takesaki-Takai duality)

(Aoα G) oα̂ Ĝ ∼= A⊗K, (7.1.9)

if G is infinite.

The dual acion is functorial in the follwoing sense: If α : G → Aut(A) and β : G →
Aut(B) are actions and ρ : A→ B is a G-equivariant ∗-homomorphism, then there exists
a ∗-homomorphism ρ̂ : Aoα G→ B oβ G such that

(ρ̂f)(s) = ρ(f(s)) (7.1.10)

for f : G→ A, and ρ is equivariant with respect to α̂ and β̂.

7.1.2 Crossed products by R and by Z

Theorem 7.1.2. (Connes) For any action α : R → Aut(A), we have

Kj(A) ∼= K1−j(Aoα R). (7.1.11)

In the special case of a trivial action, we have Kj(A) ∼= K1−j(A ⊗ C0(R)) (Bott
periodicity). Intuitively, the Connes-Thom isomorphism can be explained as follows:
“Any action of R may be continuously deformed to a trivial one. Then the result follows
from the Bott periodicity since K-theory is insensitive to continuous deformations”. This
can be made precise with the help of KK-equivalence.

Theorem 7.1.3. (Pimsner-Voiculescu) If α ∈ Aut(A), then there is an exact sequence

K0(A)
id −K0(α

−1)- K0(A)
i0 - K0(Aoα)

K1(Aoα)

6

�
i1

K1(A) �
id −K1(α

−1)
K1(A)

?

(7.1.12)

where i0, i1 are the natural imbeddings.
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Proof. (idea, Connes) Define Mα = {f ∈ C(R,M)|f(1) = α(f(0)} (mapping torus of
α). R acts on Mα by (βtf)(s) = f(s− t). By a result of Green,

Aoα Z 'Morita Mα oβ R. (7.1.13)

Hence, by the Connes-Thom isomorphism,

Kj(Aoα Z) ∼= Kj(Mα oβ R) ∼= K1−j(Mα). (7.1.14)

Now, there is an exact sequence

0 → SA→Mα → A→ 0, (7.1.15)

and the 6-term exact sequence yields

K1(A) ∼= K0(SA) - K1(Aoα Z) ∼= K0(Mα) - K0(A)

K1(A)

∂0

6

� K0(Aoα Z) ∼= K1(Mα) � K1(sA) ∼= K0(A).

∂1

?

(7.1.16)

One can calculate the connecting maps as

∂∗ = id −K∗(α
−1). (7.1.17)

7.1.3 Irrational rotation algebras

Let us recall that, for θ ∈ R, the rotation algebra Aθ is defined to be the universal
C∗-algebra C∗(u, v) generated by two unitaries u, v such that

vu = e2πiθuv. (7.1.18)

We have seen that there is a trace τ : Aθ → R, and that the image of K0(τ) contains
Z ∪ θZ. Notice that C∗(v) ∼= C(S1) and that αθ := Adv is an automorphism of C(S1)
such that

αθv = e2πiθv. (7.1.19)

It can be shown that
Aθ ∼= C(S1) oαθ Z. (7.1.20)

The Pimsner-Voiculescu sequence is

K0(C(S1))
id −K0(α

−1
θ )

- K0(C(S1)) - K0(Aθ)

K1(Aθ)

6

� K1(C(S1)) �
id −K1(α

−
θ 1)

K1(C(S1)).
?

(7.1.21)

K0(C(S1)) is generated by [1]0, hence id−K0(α
−1
θ ) is the zero map. Likewise, e2πiθu ∼h u,

hence id −K1(α
−1
θ ) is also the zero map. Consequently, since Kj(C(S1)) ∼= Z, we get

K0(Aθ) ∼= Z2 ∼= K1(Aθ). (7.1.22)

Furthermore, [u]1, [v]1 are generators of K1(Aθ) and K0(τ) : K0(Aθ) ∼= Z2 → Z∪ θZ is an
isomorphism.
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7.2 The Mayer-Vietoris sequence

The Mayer-Vietoris sequence in the classical case of topological spaces concerns relat-
ing the (co)homologies of a space that is glued from two (or more) subspaces to the
(co)homologies of the subspaces and the way they are glued together. In the context of
differential forms and De Rham cohomologies, it is natural (due to differentiability) to
consider open subspaces. In the purely topological setting and in the realm of Gelfand
theory for compact spaces, it seems to be more natural (also easier) to consider closed
subsets. Thus we are trying to generalize the following situation to a noncommutative set-
ting: There is a compact Hausdorff space X that is the union of two compact subspaces,
which have a certain intersection. Diagrammatically:

X � X1

X2

6

� X1 ∩X2,

6
(7.2.23)

where the maps are injections of sets.

Dually, by Gelfand theory there is the following diagram:

C(X) - C(X1)

C(X2)
?

- C(X1 ∩X2),
?

(7.2.24)

where the maps are the natural restriction maps. In fact, it is almost obvious that
C(X) ∼= {(f1, f2) ∈ C(X1) ⊕ C(X2) | f1|X1 ∩X2 = f2|X1 ∩X2}. Thus we are led to
consider the following commutative diagram of unital C∗-algebras:

A
pr1 - B1

B2

pr2

?

π2

- D,

π1

?

(7.2.25)

where A = {(b1, b2) ∈ B1⊕B2 | π1(b1) = π2(b2)}, with π1, π2 surjective ∗-homomorphisms,
pr1 and pr2 the restrictions of the natural projections B1 ⊕ B2 → B1 and B1 ⊕ B2 → B2

to the subspace A⊆ B1 ⊕B2. A is called the pullback of B1 and B2 (over D), or the fiber
product of B1 and B2 (over D), and the diagram (7.2.25) is called a pull-back diagram.
We have
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Theorem 7.2.1. Corresponding to (7.2.25), there is a six-term exact sequence

K0(A)
(K0(pr1), K0(pr2))- K0(B1) ⊕K0(B2)

K0(π2) −K0(π1)- K0(D)

K1(D)

6

�
K1(π2) −K1(π1)

K1(B1) ⊕K1(B2) �
(K1(pr1), K1(pr2))

K1(A)).
?

(7.2.26)

Proof. (partial, based on [BHMS], which is in turn based on ideas of Atiyah and
Hirzebruch, see [?]) Define Â⊆ B1 ⊕B2 ⊕ C([0, 1], D) by

Â = {(b1, b2, ω | b1 ∈ B1, b2 ∈ B2, ω(0) = π1(b1), ω(1) = π2(b2)} (7.2.27)

Put
C0(]0, 1[, D) = {ω ∈ C((0, 1), D | ω(0) = ω(1) = 0}. (7.2.28)

Then the sequence
0 → C0(]0, 1[, D) → Â→ B1 ⊕B2 → 0 (7.2.29)

is exact, where the map C0(]0, 1[, D) → Â is ω 7→ (0, 0, ω), and the map Â → B1 ⊕ B2

is (b1, b2, ω) 7→ (b1, b2). Exactness of this sequence at C0(]0, 1[, D) and Â is obvious, at
B1 ⊕ B2 it is due to the fact that ω ∈ C([0, 1], D) can have any independent values
ω(0), ω(1) ∈ D (any two elements in a vector space are homotopic). As C0(]0, 1[, D) is
just the suspension of D, we have

Kj(C0(]0, 1[, D) ∼= K1−j(D), j = 0, 1. (7.2.30)

We will show that
Kj(Â) ∼= Kj(A), j = 0, 1. (7.2.31)

Then (7.2.30) and (7.2.31) together allow to conclude that the 6-term exact sequence
corresponding to the exact sequence (7.2.29) has the form

K1(D) - K0(A) - K0(B1 ⊕ B2))

K1(B1 ⊕B2)

6

� K1(A) � K0(D).
?

(7.2.32)

which after a counter-clockwise rotation about one position gives just the claim of the the-
orem. It remains to prove (7.2.31). Our goal is to show that the map i : A→ Â, (b1, b2) 7→
(b1, b2, π1(b1)), where π1(b1) is the constant path at π1(b1), is a K-isomorphism. Consider
the ideal I1 := Ker (pr1 : A→ B1) = {(0, b2) ∈ A} = {(0, b2) ∈ B1⊕B2 | π2(b2) = 0}⊆ A,
being also isomorphic to Ker π2 (I1 3 (0, b2) 7→ b2 ∈ Ker π2 being the isomorphism). The
image of I1 under i in A is Î1 = {(0, b2, 0) | π2(b2) = 0}. Î1 is isomorphic to I1, and is also
an ideal in Â. Thus we have a commutative diagram

0 - I1 - A - A/I1 - 0

0 - Î1

j1
?

- Â

j
?

- Â/Î1

k
?

- 0.

(7.2.33)



88 CHAPTER 7. TOOLS FOR THE COMPUTATION OF K-GROUPS

Here, j1 is an isomorphism, and both j and k are injective. Let us show that k is a
homotopy equivalence: First let us note that

Â/Î1 = {(b1, b2, ω) | ω = π1(b1), ω(1) = π2(b2)}/{(0, b2, 0) | π2(b2) = 0}
∼= {(b1, ω) | b1 ∈ B1, ω(0) = π1(b1)} =: B̂1.

The isomorphism is given by factorizing the map (b1, b2, ω) 7→ (b1, ω), Â → B̂1, whose
kernel is {(0, b2, 0) | π2(b2) = 0}, and which is obviously surjective. Define

ϕ : B̂1 → B1
∼= A/I1, ψ : b1 → B̂1, (7.2.34)

by
ϕ(b1, ω) = b1, ϕ(b1) = (b1, π1(b1)). (7.2.35)

Then ϕ ◦ψ = idB1 , ψ ◦ϕ(b1, ω) = (b1, π1(b1)), and the homomorphisms ϕt : B̂1 = Â/Î1 →
B̂1 defined by ϕt(b1, ω) = (b1, (1− t)ω+ tπ1(b1)) satisfies ϕ0 = id, ϕ1 = ψ ◦ϕ. This proves

that A/I1 and Â/Î1 are homotopy equivalent and that Kj(k) are isomorphisms. Thus
from the above commutative diagram (7.2.33) we obtain another commutative diagram
by combining two 6-term exact sequences:

K0(I1) - K0(A) - K0(A/I1)

K0(Î1) -

K
0 (j

1 )
-

K0(Â)

K0(j)
?

- K0(Â/Î1)
�
K 0

(k
)

K1(Â/Î1)

6

� K1(Â) � K1(Î1)

?

K1(A/I1)

6

�
K 1

(k
)

-

K1(A)

K1(j)
6

� K1(I1).
?

�

K
1 (j

1 )

(7.2.36)

The diagram has two exact circles, and since Ki(j1) and Ki(k) are isomorphisms, we
obtain from the Five Lemma that also Ki(j) are isomorphisms. Thus we have proved the
desired isomorphy Ki(A) ∼= Ki(Â). �

Let us describe the connecting morphisms. For the morphism K0(D) → K1(A), let
P ∈ Mn(D) be an idempotent. Choose P1 ∈ Mn(B1) and P2 ∈ Mn(B2) such that
π1(P1) = P = π2(P2). (Here, π1 and π2 are the obvious extensions to matrices, which
are also surjective.) Then (e2πiP1, e2πiP2) ∈ B1 ⊕ B2 is in fact in B1 ⊕D B2, because
e2πiP1 7→ e2πiP = In + (1 − e2πi)P = In, e

−2πiP2 7→ e−2πiP = In + (1 − e−2πi)P = In. Thus
we have constructed the invertible element (e2πiP1 , e−2πiP2) ∈Mn(A). The so-constructed
map P 7→ (e2πiP1, e−2πiP2) defines the desired morphism K0(D) → K1(A). If P is assumed
to be selfadjoint, then P1 and P2 can be chosen to be selfadjoint (by Exercice 2.4.1 (ii)).
Then the construction gives a unitary in Mn(A). Note that without the minus sign on one
side the resulting element (e2πiP1 , e2πiP2) = e2πi(P1,P2) ∈Mn(A) is homotopic to the identity
(by the homotopy [0, 1] 3 t 7→ e2πi(tP1 ,tP2)) and leads to a trivial map K0(D) → K1(A).
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In order to construct the connecting morphism K1(D) → K0(A), let θ be an invert-
ible in Mn(D). Think of θ as acting on the right on D ⊕ D . . . ⊕ D. Consider the set
Mθ := {((v1, . . . , vn), (w1, . . . , wn)) ∈ B1⊕· · ·⊕B1⊕B2⊕· · ·⊕B2 | (π1(v1), . . . , π1(v1))θ =
(π2(w1), . . . , π2(wn))}. Mθ is a finitely generated projective module over A. The connect-
ing morphism we are looking for is now [θ] 7→ [Mθ] − [n] : K1(D) → K0(A), where [n]
denotes the class of the free module of rank n over A. (We make use of the correspondence
between idempotents and finitely generated projective modules.)

Example 7.2.2. Consider the circle S1 as a union of two closed intervals, S1 = I ∪ I.
Then we have a pull-back diagram

C(S1) - C(I)

C(I)
?

- C ⊕ C,
?

(7.2.37)

and a corresponding Mayer-Vietoris six-term exact sequence

K0(C(S1)) - K0(C(I)) ⊕K0(C(I)) - K0(C ⊕ C))

K1(C ⊕ C)

6

� K1(C(I) ⊕ C(I)) � K1(C(S1)).
?

(7.2.38)

Let us take for granted that K0(C) = Z = K0(C(I)) and K1(C) = 0 = K1(C(I)). Then
the above diagram is reduced to

0 → K0(C(S1)) → Z ⊕ Z → Z ⊕ Z → K1(C(S1)) → 0. (7.2.39)

We have to determine K0(π2) − K0(π1) : Z ⊕ Z → Z ⊕ Z. π1 = π2 : C(I) → C ⊕ C
is the map f 7→ (f(0), f(1)). The generator of K0(C(I)) is [1]0, so K0(π1) is deter-
mined by K0(π1)([1]0) = ([1]0, [1]0) (where the 1 on the right is 1 ∈ C). It follows that
K0(π2)−K0(π1) has on the generators ([1]0, 0) and (0, [1]0) of K0(C(I)⊕C(I)) the values
−([1]0, [1]0) and ([1]0, [1]0). Thus Im(K0(π2) − K0(π1)) is the diagonal ∆⊆ Z ⊕ Z, and
K1(C(S1)) ∼= Z⊕Z/∆ ∼= Z. On the other hand, also Ker (K0(π2)−K0(π1)) = ∆, because
([1]0, [1]0) 7→ −([1]0, [1]0) + ([1]0, [1]0) = 0 and (n[1]0, m[1]0) 7→ (m − n)([1]0, [1]0) 6= 0 for
m 6= n. So ∆ is the image of the injective map K0(C(S1)) → Z ⊕ Z, i.e., K0(C(S1)) ∼=
∆ ∼= Z.

7.3 The Künneth formula

In classical cohomology theory, say for differential forms, the Künneth formula states
that the cohomology of a product of two manifolds is the (graded) tensor product of the
cohomologies of the two factors,

H∗(M ×N) ∼= H∗(M)⊗̂H∗(N). (7.3.40)

For C∗-algebras, the product of noncommutative spaces corresponds to the tensor product
of the algebras, and the following theorem generalizes the classical Künneth formula:



90 CHAPTER 7. TOOLS FOR THE COMPUTATION OF K-GROUPS

Theorem 7.3.1. Let A,B be C∗-algebras, and assume that K∗(B) is torsion-free and
that A is separable and type I. Then

K∗(A⊗ B) ∼= K∗(A)⊗̂K∗(B). (7.3.41)

Note that the formula (7.3.41) explicitly means

K0(A⊗ B) ∼= (K0(A) ⊗K0(B)) ⊕ (K1(A) ⊗K1(B)),

K1(A⊗ B) ∼= (K0(A) ⊗K1(B)) ⊕ (K1(A) ⊗K0(B)).

Note also that there is no question about the kind of tensor product A⊗B, because every
separable type I C∗-algebra is nuclear. Also, there are more general statements without
assumptions about torsion, but still assuming nuclearity of at least one of the factors (see
[B-B98] and [S-C6]).
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