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CHAPTER 1

Isometries in 2 dimensions

1. Some 2-dimensional vector geometry

We will denote a point in the plane by a letter such as P . The distance between points P
and Q will be denoted |PQ| = |QP |. The (undirected) line segment joining P and Q will be
denoted PQ, while the directed line segment joining P and Q will be denoted

−−→
PQ (this is a

vector). Of course, −−→
QP = −−−→PQ.

The origin O will be taken as the centre of a coordinate system based on the x and y-axes
in the usual way. Given a point P , the position vector of P is the vector p =

−−→
OP which we

think of as joining O to P . If the position vector of Q is q =
−−→
OQ, then we have the diagram

(1.1)

p =
−−→
OP

44hhhhhhhhhhhhhhhhhhhhh

q =
−−→
OQ

O

""DD
DD

DD
DD

DD
DD

DD −−→
PQ

P
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ªª
ªª

ªª
ªª

ªª

from which we see that p +
−−→
PQ = q. Hence we have the formula

(1.2)
−−→
PQ = q− p.

Each position vector p can be expressed in terms of its x and y coordinates p1, p2 and we
will often write p = (p1, p2) or p = (xP , yP ). Using this notation, Equation (1.2) expands to

−−→
PQ = (q1 − p1, q2 − p2) = (xQ − xP , yQ − yP ).

We will denote the set of all vectors (x, y) by R2, so

R2 = {(x, y) : x, y ∈ R}.
This set will be identified with the plane by the correspondence

(x, y) ←→ the point with position vector (x, y).

The distance between two points P and Q can be found using the formula

|PQ| = length of
−−→
PQ

= length of (q− p)

=
√

(q1 − p1)2 + (q2 − p2)2.

In particular, the length of the vector p =
−−→
OP is

(1.3) |p| = |OP | =
√

p2
1 + p2

2.

To find the angle θ between two non-zero vectors u = (u1, u2) and v = (v1, v2) we can make
use of the dot or scalar product which is defined to be

(1.4) u · v = (u1, u2) · (v1, v2) = u1v1 + u2v2.
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Notice that
|u|2 = u · u, |v|2 = v · v.

Then

θ = cos−1 u · v
|u| |v| .

u

ggOOOOOOOOOOOOO v]θ

::vvvvvvvvvv

The vectors u and v are perpendicular, normal or orthogonal if u · v = 0 or equivalently if the
angle between them is π/2.

If A,B, C are three distinct points then the angle between the lines AB and AC is given by

∠BAC = cos−1

−−→
AB · −→AC

|AB| |AC| .

The lines AB and AC are perpendicular, normal or orthogonal if ∠BAC = π/2.
A line L can be specified in several different ways. First by using an implicit equation

ax + by = c with (a, b) 6= (0, 0); this gives

(1.5a) L = {(x, y) ∈ R2 : ax + by = c}.
It is worth remarking that the vector (a, b) is perpendicular to L. An alternative way to write
the implicit equation is as (a, b) · (x, y) = c, so we also have

(1.5b) L = {x ∈ R2 : (a, b) · x = c}.
To determine c it suffices to know any point x0 on L, then c = (a, b) · x0.

Second, if we have a vector u parallel to L (and so perpendicular to (a, b)) then we can use
the parametric equation x = tu + x0, where t ∈ R and x0 is some point on L. It is usual to
take u to be a unit vector, i.e., |u| = 1. Then

(1.5c) L = {tu + x0 ∈ R2 : t ∈ R}.
It is also useful to recall the idea of projecting a non-zero vector v onto another w. To do

this, we make use of the unit vector

ŵ =
1
|w|w =

w
|w| .

Then the component of v in the w-direction, or the projection of v onto w is the vector

vw = (v · ŵ) ŵ =
(

v ·w
|w|2

)
w.

w//_______________

v
))RRRRRRRRRR vw //x

Then vw is parallel to w and
(v − vw) ·w = 0,

so the vector (v − vw) is perpendicular to w.
We can also project a point P with position vector p onto a line L which does not contain

P . To do this, we consider the line L′ passing through P and perpendicular to L,

L′ = {su′ + p : s ∈ R},
where u′ is any non-zero vector perpendicular to L (for example (a, b) or the unit vector in the
same direction). Then the projection of P onto L is the point of intersection of L and L′, whose
position vector p′ = s′u′ + p can be determined by solving the following equation for s′:

(a, b) · (s′u′ + p) = c.

2



2. Isometries of the plane

1.1. Definition. An isometry of the plane is a distance preserving function F : R2 −→ R2.

Here, distance preserving means that for points P and Q with position vectors p and q,

|F (P )F (Q)| = |PQ|, i.e., |F (p)− F (q)| = |p− q|.
Before considering examples, we note the following important fact.

1.2. Proposition. Let F : R2 −→ R2 be an isometry which fixes the origin. Then F pre-
serves scalar products and angles between vectors.

Proof. Let u,v be vectors and let U, V be the points with these as position vectors. Let
F (U) and F (V ) have position vectors u′ =

−−−−→
OF (U) and v′ =

−−−−→
OF (V ). For every pair of points

P, Q we have |F (P )F (Q)| = |PQ|, so

|u′ − v′|2 = |F (U)F (V )|2 = |UV |2 = |u− v|2,
hence

|u′|2 + |v′|2 − 2u′ · v′ = |u|2 + |v|2 − 2u · v.

Since

|u′| = |OF (U)| = |F (O)F (U)| = |OU | = |u|, |v′| = |OF (V )| = |F (O)F (V )| = |OV | = |v|,
we obtain

u′ · v′ = u · v,

which shows that the scalar product of two position vectors is unchanged by an isometry which
fixes the origin. Similarly, angles are preserved since the angle between the vectors u′,v′ is

cos−1 u′ · v′
|u′| |v′| = cos−1 u · v

|u| |v| . ¤

1.3. Corollary. An isometry F : R2 −→ R2 preserves angles between lines.

Proof. Consider the isometry F0 : R2 −→ R2 for which F0(P ) has the position vector
−−−−−→
OF0(P ) =

−−−−→
OF (P )−−−−−→OF (O).

Then F0(O) = O. For any two points A,B we have
−−−−−−−→
F (A)F (B) =

−−−−−−−−→
F0(A)F0(B)

and the result follows from Proposition 1.2. ¤

Types of isometries. There are three basic types of isometries of the plane, translations,
reflections, rotations. A fourth type, glide reflections, are built up as compositions of reflections
and translations.

Translations. Let t ∈ R2. Then translation by t is the function

Transt : R2 −→ R2; Transt(x) = x + t.

•

•

t

U

Transt(U) DD­­­­­­­­­­­

•

•

t

V

Transt(V )
DD­­­­­­­­­­­

•

•

t

W

Transt(W )
DD­­­­­­­­­­­

Notice that
|Transt(x)− Transt(y)| = |(x + t)− (y + t)| = |x− y|,
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so Transt is an isometry. If Transs is a second such translation function, we have

Transt ◦Transs(x) = Transt(x + s) = x + s + t = Transs+t(x),

so

(1.6) Transt ◦Transs = Transs+t .

Since s + t = t + s, we also have

(1.7) Transs ◦Transt = Transt ◦Transs .

So translations behave well with respect to composition. We also have

Trans0 = IdR2 , Trans−1
t = Trans−t .

Notice that when t 6= 0, every point in the plane is moved by Transt, so such a transforma-
tion has no fixed points.

Reflections. The next type of isometry is a reflection in a line L. Recall that a line in the
plane has the form

L = {(x, y) ∈ R2 : ax + by = c},
where a, b, c ∈ R with at least one of a and b non-zero. The reflection in L is the function

ReflL : R2 −→ R2

which sends every point on L to itself and if P lies on a line L′ perpendicular to L and intersecting
it at M say, then ReflL(P ) also lies on L′ and satisfies |M ReflL(P )| = |MP |.

L

P

p

L′

•

•ReflL(P )

M •

This is equivalent to saying that if P and M have position vectors p and m, then

ReflL(p)− p = 2(m− p)

or

(1.8) ReflL(p) = 2m− p,

where ReflL(p)− p is perpendicular to L.
In order to determine the effect of a reflection, recall that the vector (a, b) is perpendicular

to L. Consider the unit vector
u =

1√
a2 + b2

(a, b).

Then we can find the point M as follows. L′ is the line given in parametric form by

x = tu + p (t ∈ R),

and M is point on both L and L′. So m = su + p, say, satisfies the linear equation in the
unknown s,

u ·m =
c√

a2 + b2
.

This expands to give
s + u · p =

c√
a2 + b2

.
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Thus we have

(1.9) m =
(

c√
a2 + b2

− u · p
)

u + p.

Substituting into Equation (1.8) we obtain

(1.10) ReflL(p) = 2
(

c√
a2 + b2

− u · p
)

u + p.

Performing a reflection twice gives the identity transformation,

(1.11) (ReflL)2 = ReflL ◦ReflL = IdR2 .

Notice that points on the line L are fixed by ReflL, while all other points are moved.

1.4. Example. Determine the effect of the reflection ReflL, on the points P (1, 0), where

L = {(x, y) : x− y = 0}.

Solution. First notice that the unit vector u =
1√
2
(1,−1) is perpendicular to L. Using

this, we resolve p = (1, 0) into its components perpendicular and parallel to L. These are the
vectors

p′ = ((1, 0) · u)u =
1√
2
u,

p′′ = (1, 0)− 1√
2
u = (1, 0)− 1

2
(1,−1) =

1
2
(1, 1).

Then we have
ReflL(p) = −p′ + p′′ =

1
2
(−1, 1) +

1
2
(1, 1) = (0, 1). ¤

1.5. Example. If θ ∈ [0, π) and

Lθ = {(t cos θ, t sin θ) : t ∈ R},
find a formula for the effect of ReflLθ

on P (x, y) 6= (0, 0).

Solution. The line Lθ contains the origin O and the point U(cos θ, sin θ). Also if X(1, 0) is
the point on the x-axis, then ∠XOU = θ. If ∠XOP = α, then on setting r = |OP | =

√
x2 + y2

we have
x = r cosα, y = r sinα.

If P ′ = ReflLθ
(P ), with position vector (x′, y′), we have

∠XOP ′ = θ − (α− θ) = 2θ − α,

hence
x′ = r cos(2θ − α), y′ = r sin(2θ − α).

Recall that

cos(α + θ) = cosα cos θ − sinα sin θ, sin(α + θ) = cos α sin θ + sin α cos θ.

Using these we obtain

x′ = r(cos 2θ cosα + sin 2θ sinα), y′ = r(sin 2θ cosα− cos 2θ sinα),

which yield

x′ = cos 2θ x + sin 2θ y,(1.12a)

y′ = sin 2θ x− cos 2θ y.(1.12b)

So applying ReflLθ
to P we obtain the point

X ′(cos 2θ x + sin 2θ y, sin 2θ x− cos 2θ y). ¤
We can also describe the composition of two reflections in two distinct parallel lines.
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1.6. Proposition. Let L1 and L2 be distinct parallel lines. Then the two compositions
ReflL1 ◦ReflL2 and ReflL2 ◦ReflL1 are translations.

Proof. Let p be the position vector of a point on L1 and let v be a vector perpendicular
to L1 and chosen so that q = p + v is the position vector of a point Q on L2. Clearly v is
independent of which point P on L1 we start with.

•

L1

•P

L2

Q
v //

ReflL2 ◦ReflL1(P )
•

ReflL1 ◦ReflL2(P )
•

Then for any t ∈ R,

ReflL1 ◦ReflL2(p + tv) = ReflL1 ◦ReflL2(q + (t− 1)v)

= ReflL1(q + (1− t)v)

= ReflL1(p + (2− t)v)

= p + (t− 2)v

= (p + tv)− 2v.

So

ReflL1 ◦ReflL2 = Trans−2v .

Similarly we obtain

ReflL2 ◦ReflL1 = Trans2v . ¤

Rotations. Let C be a point with position vector c. Then RotC,θ : R2 −→ R2 is the rotation
of the plane around C anti-clockwise through the angle θ (measured in radians and taking the
anti-clockwise direction to be positive).

•C

P
•̧
¸¸¸¸¸¸¸¸¸¸¸

RotC,θ(P )
•vvvvvvvvvvvv

]θ

··

Notice that C is fixed by RotC,θ but unless θ = 2πk for some k ∈ Z, no other point is fixed.
For k ∈ Z,

RotC,2πk = IdR2 , RotC,θ+2πk = RotC,θ .

1.7. Example. Find a formula for the effect of the RotO,θ on the point P (x, y).

Solution. We assume that P 6= O since the origin is fixed by this rotation. Recall that if
X(1, 0) is the point on the x-axis and ∠XOP = α, then setting r = |OP | =

√
x2 + y2 we have

x = r cosα, y = r sinα.

If P ′ = RotO,θ(P ), with position vector (x′, y′), we have

x′ = r cos(α + θ), y′ = r sin(α + θ).
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Using the equations of (1.12) we obtain

¤(1.13) RotO,θ(x, y) = (cos θ x− sin θ y, sin θ x + cos θ y).

Glide reflections. The composition of a reflection ReflL and a translation Transt parallel
to the line of reflection L (in either possible order) is called a glide reflection. We will study
these in detail later. If the translation is not by 0 then such a glide reflection has no fixed
points.

L

P

p

•

•ReflL(P )

•

t //

•
Transt ◦ReflL(P )

•··

Composing isometries. We now record a useful fact about isometries that we have al-
ready seen for translations.

1.8. Proposition. Let F, G : R2 −→ R2 be two isometries. Then the two compositions
F ◦G,G ◦ F : R2 −→ R2 are isometries which are not necessarily equal.

Proof. For any two points P, Q we have

|F ◦G(P )F ◦G(Q)| = |F (G(P ))F (G(Q))| = |G(P )G(Q)| = |PQ|,
|G ◦ F (P )G ◦ F (Q)| = |G(F (P ))G(F (Q))| = |F (P )F (Q)| = |PQ|,

hence F ◦G and G◦F are isometries. The non-commutativity will be illustrated in examples. ¤

We also record a somewhat less obvious fact that will be proved in the next section.

1.9. Proposition. Let F : R2 −→ R2 be an isometry. Then F has an inverse which is also
an isometry.

Proof. See Corollary 1.12 below for a proof that an isometry is invertible. Assuming that
F−1 exists, notice that for x ∈ R2,

|F−1(x)| = |F (F−1(x))| = |x)|,

hence F−1 is also an isometry. ¤

3. Matrices and isometries

Consider an isometry T : R2 −→ R2 which fixes the origin O, i.e., T (O) = O.
Suppose that X(1, 0) is sent to X ′(cos θ, sin θ) by T . Then Y (0, 1) must be sent to one of

the two points Y ′(cos(θ + π/2), sin(θ + π/2)) and Y ′′(cos(θ− π/2), sin(θ− π/2)) since these are
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the only ones at unit distance from O making the angle π/2 with OX ′.

O

X]θ //

Y
OO

X ′ CC

Y ′
cc

Y ′′ ##

If P (x, y), then writing
x = r cosα, y = r sinα,

where r =
√

x2 + y2 = |OP |, we find that the point P ′(x′, y′) with P ′ = T (P ) has

x′ = r cosα′, y′ = r sinα′,

for some α′ since |OP ′| = |OP | = r.
If T (Y ) = Y ′, then we must have α′ = α + θ, while if T (Y ) = Y ′′, we must have α′ = θ−α.

This means that

(x′, y′) =

{
r(cos(α + θ), sin(α + θ)) if T (Y ) = Y ′,
r(cos(θ − α), sin(θ − α)) if T (Y ) = Y ′′,

=

{
(cos θ x− sin θ y, sin θ x + cos θ y) if T (Y ) = Y ′,
(cos θ x + sin θ y, sin θ x− cos θ y) if T (Y ) = Y ′′.

The first case corresponds a rotation about the origin O through angle θ, while the second
corresponds to a reflection in the line

sin(θ/2)x− cos(θ/2)y = 0.

through the origin. Notice that in either case, T is a linear transformation or linear mapping
in that

T ((x1, y1) + (x2, y2)) = T (x1, y1) + T (x2, y2),(1.14a)

T (t(x, y)) = T (tx, ty) = tT (x, y).(1.14b)

From now on, we will identify (x, y) with the column vector
[
x
y

]
. This allows us to represent

T by a matrix. Notice that

[
x′
y′

]
=





[
cos θ − sin θ

sin θ cos θ

][
x

y

]
if T (Y ) = Y ′,

[
cos θ sin θ

sin θ − cos θ

][
x

y

]
if T (Y ) = Y ′′.

So in each case we have T (x) = Ax for a suitable matrix A provided that we interpret a vector
(x, y) as a 2× 1 matrix. These matrices satisfy

[
cos θ − sin θ
sin θ cos θ

]T [
cos θ − sin θ
sin θ cos θ

]
=

[
cos θ sin θ

− sin θ cos θ

] [
cos θ − sin θ
sin θ cos θ

]
= I2,

[
cos θ sin θ
sin θ − cos θ

]T [
cos θ sin θ
sin θ − cos θ

]
=

[
cos θ sin θ
sin θ − cos θ

] [
cos θ sin θ
sin θ − cos θ

]
= I2,

so they are both orthogonal matrices in the sense of the following definition.
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1.10. Definition. An n × n matrix A is orthogonal if AT A = In or equivalently if A is
invertible with inverse A−1 = AT .

It is easy to see that every n × n orthogonal matrix A has detA = ±1. For the above
matrices we have

det
[
cos θ − sin θ
sin θ cos θ

]
= 1, det

[
cos θ sin θ
sin θ − cos θ

]
= −1.

It is also true that every 2× 2 orthogonal matrix is of one or other of these two forms.
For a general isometry F : R2 −→ R2, on setting t = F (0) we can form the isometry

F0 = Trans−t ◦F : R2 −→ R2 which fixes the origin and satisfies

F = Transt ◦F0.

Combining all of these ingredients we obtain

1.11. Theorem. Every isometry F : R2 −→ R2 can be expressed as a composition

F = Transt ◦F0,

where F0 : R2 −→ R2 is an isometry that fixes O, hence there is an orthogonal matrix [F0] for
which

F (x) = [F0]x + t (x ∈ R2).

1.12. Corollary. Every isometry F : R2 −→ R2 is invertible.

Proof. Express F in matrix form,

F (x) = [F0]x + t,

where [F0] is orthogonal and so has an inverse given by [F0]−1 = [F0]T . Then the function
G : R2 −→ R2 given by

G(x) = [F0]−1(x− t) = [F0]−1x− [F0]−1t

satisfies
G ◦ F = IdR2 = F ◦G,

and so is the inverse of F . Therefore it is also an isometry (see the ‘proof’ of Proposition 1.9). ¤
Given an isometry F : R2 −→ R2, we can express it in the form

F (x) = Ax + t,

for some orthogonal matrix A, and then use the Seitz symbol (A | t) to describe it. We will use
this notation freely from now on and often write

(A | t)x = Ax + t = F (x).

For the composition we will write

(A1 | t1)(A2 | t2) = (A1 | t1) ◦ (A2 | t2).

1.13. Proposition. Suppose (A | s) and (B | t) represent the same isometry R2 −→ R2.
Then B = A and t = s.

Proof. Since the functions (A | s) and (B | t) agree on every point, evaluating at any
x ∈ R2 gives

Ax + s = Bx + t.
In particular, taking x = 0 we obtain s = t. In general this gives

Ax = Bx.

Now choosing x = e1, e2, the standard basis vectors, we obtain A = B since Aei, Bei are the
i-th columns of A,B. ¤

What happens when we compose two Seitz symbols or find the symbol of inverse function?

9



1.14. Proposition. We have the following algebraic rules for Seitz symbols of isometries.

(A1 | t1)(A2 | t2) = (A1A2 | t1 + A1t2),

(A | t)−1 = (A−1 | −A−1t) = (AT | −AT t).

Proof. The formula for the inverse was demonstrated earlier. For any x ∈ R2,

(A1 | t1)(A2 | t2)x = (A1 | t1)(A2x + t2)

= A1(A2x + t2) + t1

= A1A2x + A1t2 + t1

= (A1A2 | t1 + A1t2)x. ¤

We can now classify isometries of the plane in terms of their Seitz symbols. We will denote
the 2× 2 identity matrix by I = I2.

Translations. These have the form (I | t). To compose two of them, we have the formula

(I | t1)(I | t2) = (I | t1 + t2).

Rotations. Consider a Seitz symbol (A | t) where A is orthogonal with detA = 1, hence
it has the form

A =
[
cos θ − sin θ
sin θ cos θ

]
.

The equation Ax + t = x is solvable if and only if (I −A)x = t can be solved. Now

det(I −A) = det
[
1− cos θ sin θ
− sin θ 1− cos θ

]

= (1− cos θ)2 + sin2 θ

= 1− 2 cos θ + cos2 θ + sin2 θ

= 2− 2 cos θ = 2(1− cos θ),

so provided that cos θ 6= 1, (I −A) is invertible. But cos θ = 1 if and only if A 6= I, so (I −A)
is invertible if and only if A 6= I.

So as long as A 6= I, we can find a vector c = (I − A)−1t for which (A | t)c = c. Then
(A | t) represents rotation about c through the angle θ. Notice that once we know A and c we
can recover t using the formula t = (I −A)c.

If A = I, (I | 0) is a rotation through angle 0, while if t 6= 0, (I | t) is not a rotation.

1.15. Remark. When working with rotations it is useful to recall the following formula for
finding the inverse of a 2× 2 matrix which is valid provided ad− bc 6= 0:

(1.15)
[
a b
c d

]−1

=
1

ad− bc

[
d −b

−c a

]
=

[
d/(ad− bc) −b/(ad− bc)

−c/(ad− bc) a/(ad− bc)

]
.

In particular, provided cos θ 6= 1,

[
1− cos θ sin θ
− sin θ 1− cos θ

]−1

=
1

2(1− cos θ)

[
1− cos θ − sin θ

sin θ 1− cos θ

]
=




1
2

− sin θ

2(1− cos θ)
sin θ

2(1− cos θ)
1
2


 .

(1.16a)
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Using standard trigonmetric identities we also have

[
1− cos θ sin θ
− sin θ 1− cos θ

]−1

=




1
2

− cos(θ/2)
2 sin(θ/2))

cos(θ/2)
2 sin(θ/2)

1
2


 =

1
2

[
1 − cot(θ/2)

cot(θ/2) 1

]
.

(1.16b)

Glide reflections. Consider a Seitz symbol (A | t) where A is orthogonal with detA = −1,
hence it has the form

A =
[
cos θ sin θ
sin θ − cos θ

]
.

Recall that this matrix represents ReflLθ/2
, reflection in the line through the origin

Lθ/2 = {(x, y) ∈ R2 : sin(θ/2)x− cos(θ/2)y = 0}.

We will see that (A | t) represents a glide reflection, i.e., the composition of a reflection in a
line parallel to Lθ/2 and a translation by a vector parallel to Lθ/2.

Express t in the form t = u+2v, where v is perpendicular to the line Lθ/2 and u is parallel
to it. To do this we may take the unit vectors

w‖ = (cos(θ/2), sin(θ/2)), w⊥ = (sin(θ/2),− cos(θ/2))

which are parallel and perpendicular respectively to Lθ/2 and find the projections of t onto
these unit vectors; then we have

u = tw‖ , v =
1
2
tw⊥ .

From the proof of Proposition 1.6 we know that if L is the line parallel to Lθ/2 containing
v, then

ReflL = Trans2v ◦ReflLθ/2
,

and so

Transu ◦ReflL = Transu ◦Trans2v ◦ReflLθ/2

= Transu+2v ◦ReflLθ/2

= Transt ◦ReflLθ/2

= (A | t).

This shows that (A | t) represents reflection in L followed by translation by u parallel to L; if
we allow u = 0 here, then a reflection can be interpreted as a special kind of glide reflection.

1.16. Remark. Here is another way to find the vectors u and v in the above situation.
Notice that since u is parallel to Lθ/2 and v is perpendicular to it,

(A | 0)t = A(u + 2v) = Au + 2Av = u− 2v.

Hence we have

u =
1
2

(t + At) , v =
1
4

(t−At) .
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Summary of basic facts on Seitz symbols

Translations: Transt = (I | t).
Rotations: RotC,θ = (A | t), where

A =
[
cos θ − sin θ
sin θ cos θ

]
6= I, t = (I −A)c, c = (I −A)−1t.

Glide reflections: Transu ◦Trans2v ◦ReflLθ/2
= (A | t), where

A =
[
cos θ sin θ
sin θ − cos θ

]
,

v is perpendicular to the line

Lθ/2 = {(x, y) ∈ R2 : sin(θ/2)x− cos(θ/2)y = 0},
and u is parallel to it. This represents a glide reflection in the line parallel to Lθ/2

and containing the point with position vector v; the translation is by u. When
u = 0, this is a reflection.

Some examples. Using Seitz symbols and matrix algebra, compositions of isometries can
be calculated effectively as illustrated in the following examples.

1.17. Example. Compose the rotation through 2π/3 about (1/2,
√

3/6) with reflection in
the line x = y in the two possible orders and give geometric interpretations of the results.

Solution. Let the Seitz symbols of these isometries be (A | t) and (B | 0) (note that the
line x = y contains the origin). Then

A =
[
cos 2π/3 − sin 2π/3
sin 2π/3 cos 2π/3

]
=

[−1/2 −√3/2√
3/2 −1/2

]
,

t = (I −A)
[

1/2√
3/6

]
=

[
3/2

√
3/2

−√3/2 3/2

] [
1/2√
3/6

]
=

[
1
0

]
,

B =
[
cosπ/2 sinπ/2
sinπ/2 − cosπ/2

]
=

[
0 1
1 0

]
.

On composing we obtain

(A | t)(B | 0) = (AB | t), (B | 0)(A | t) = (BA | Bt), Bt =
[
0
1

]
.

Evaluating the matrix products we obtain

AB =
[−1/2 −√3/2√

3/2 −1/2

] [
0 1
1 0

]
=

[−√3/2 −1/2
−1/2

√
3/2

]
=

[
cos(−5π/6) sin(−5π/6)
sin(−5π/6) − cos(−5π/6)

]
,

BA =
[
0 1
1 0

] [−1/2 −√3/2√
3/2 −1/2

]
=

[√
3/2 −1/2

−1/2 −√3/2

]
=

[
cos(−π/6) sin(−π/6)
sin(−π/6) − cos(−π/6)

]
.

These matrices represent reflections in the lines

L1 : x sin(−5π/12)− y cos(−5π/12) = 0, L2 : x sin(π/12) + y cos(π/12) = 0.
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Now we need to resolve t = (1, 0) in parallel and normal directions with respect to the line
L1. The vector (sin(−5π/12),− cos(−5π/12)) is a unit vector normal to L1, so we can take

v1 =
1
2
((sin(−5π/12),− cos(−5π/12)) · (1, 0))(sin(−5π/12),− cos(−5π/12))

=
sin(−5π/12)

2
(sin(−5π/12),− cos(−5π/12))

=
1
2
(sin2(−5π/12),− sin(−5π/12) cos(−5π/12))

=
1
4
(2 sin2(−5π/12),−2 sin(−5π/12) cos(−5π/12))

=
1
4
(1− cos(−5π/6),− sin(−5π/6))

=
1
4
(1 +

√
3/2, 1/2) =

1
8
(2 +

√
3, 1),

which also gives

u1 = (1, 0)− 2v1 =
1
4
(4− 2−

√
3,−1) =

1
4
(2−

√
3,−1).

Hence (AB | t) represents reflection in the line

x sin(−5π/12)− y cos(−5π/12) =
sin(−5π/12)

2
,

followed by translation by the vector u1 =
1
4
(2−√3,−1) parallel to it.

We need to resolve Bt = (0, 1) in directions parallel and perpedicular to the line L2. The
vector (sin(π/12), cos(π/12)) is a unit vector perpedicular to L2, so we can take

v2 =
1
2
((sin(π/12), cos(π/12)) · (0, 1))(sin(π/12), cos(π/12))

=
cos(π/12)

2
(sin(π/12), cos(π/12))

=
1
2
(cos(π/12) sin(π/12), cos2(π/12))

=
1
4
(2 cos(π/12) sin(π/12), 2 cos2(π/12))

=
1
4
(sin(π/6), 1 + cos(π/6))

=
1
4
(1/2, 1 +

√
3/2) =

1
8
(1, 2 +

√
3),

which also gives

u2 = (0, 1)− 2v2 =
1
4
(−1, 4− 2−

√
3) =

1
4
(−1, 2−

√
3).

So (BA | Bt) represents reflection in the line

x sin(π/12) + y cos(π/12) =
cos(π/12)

2
,

followed by translation by the vector u2 =
1
4
(−1, 2−√3) parallel to it. ¤

1.18. Example. If (A1 | t1) and (A2 | t2) are glide reflections, show that their composition
(A1 | t1)(A2 | t2) is a rotation or a translation.
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Solution. We have

detA1 = −1 = detA2,

det(A1A2) = detA1 detA2 = 1,

(A1 | t1)(A2 | t2) = (A1A2 | t1 + A1t2).

When A1A2 = I, the composition (A1 | t1)(A2 | t2) is a translation (or a trivial rotation if
t1 + A1t2 = 0). When A1A2 6= I, (A1 | t1)(A2 | t2) is a rotation. ¤

1.19. Example. For the matrices

A =
[
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
, B =

[
0 −1

−1 0

]
, t =

[
1
0

]
,

describe the geometric effect of the isometry represented by each of the Seitz symbols (A | t)
and (B | 0). Determine the composition (A | t)(B | 0).

Solution. Since

A =
[
cos(π/4) sin(π/4)
sin(π/4) − cos(π/4)

]
=

[
cos(2π/8) sin(2π/8)
sin(2π/8) − cos(2π/8)

]
, detA = −1,

we see that (A | 0) represents reflection in the line

L = {(x, y) : sin(π/8)x− cos(π/8) y = 0}.
Write t = u + 2v where u is parallel to L and v is perpendicular to L. The vectors

w‖ = (cos(π/8), sin(π/8)), w⊥ = (sin(π/8),− cos(π/8))

are unit vectors in these directions and

w⊥ · t = (sin(π/8),− cos(π/8)) · t = sin(π/8),

so we have

v =
sin(π/8)

2
(sin(π/8),− cos(π/8))

=
1
2
(sin2(π/8),− sin(π/8) cos(π/8))

=
1
4
(2 sin2(π/8),−2 sin(π/8) cos(π/8))

=
1
4
(1− cosπ/4,− sinπ/4)

=
1
4
(1− 1/

√
2,−1/

√
2) =

1
4
√

2
(
√

2− 1,−1).

Hence

u = t− 2v = (1, 0)− 1
2
√

2
(
√

2− 1,−1) = ((2 +
√

2)/4,
√

2/4).

Since

w⊥ · v =
sin(π/8)

2
(sin2(π/8) + cos2(π/8)) =

sin(π/8)
2

,

we see that (A | t) is a glide reflection consisting of reflection in the line

L′ = {(x, y) : sin(π/8)x− cos(π/8) y = sin(π/8)/2},
which parallel to L and contains v. Noting that

B =
[
cos 2(−π/4) sin 2(−π/4)
sin 2(−π/4) − cos 2(−π/4)

]
,
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we see that (B | 0) represents reflection in the line

{(x, y) : sin(−π/4)x− cos(−π/4) y = 0} = {(x, y) : (−1/
√

2)x− (1/
√

2) y = 0}
= {(x, y) : x + y = 0}.

Now we have
(A | t)(B | 0) = (AB | t),

where

AB =
[−1/

√
2 −1/

√
2

1/
√

2 −1/
√

2

]
=

[
cos(3π/4) − sin(3π/4)
sin(3π/4) cos(3π/4)

]
, det(AB) = 1.

Therefore this Seitz symbol represents a rotation through 3π/4 with centre (obtained using
Equation (1.16a))

c = (I −AB)−1t =
[
1 + 1/

√
2 1/

√
2

−1/
√

2 1 + 1/
√

2

]−1 [
1
0

]

=




1
2

−1/
√

2
2(1 + 1/

√
2)

1/
√

2
2(1 + 1/

√
2)

1
2




[
1
0

]

=




1
2

1/
√

2
2(1 + 1/

√
2)


 =




1
2
1

2(
√

2 + 1)


 =




1
2√

2− 1
2


 . ¤

Finally, here are some useful results on inverses, obtained by using Proposition 1.14.

1.20. Proposition. Suppose that

A =
[
cos θ − sin θ
sin θ cos θ

]
, B =

[
cosϕ sinϕ
sinϕ − cosϕ

]
.

The Seitz symbols of the inverses of the rotation (A | s) and the (glide) reflection (B | t) are

(A | s)−1 = (AT | −AT s), (B | t)−1 = (B | −Bt),

where

AT =
[
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]
.

4. Seitz matrices

For practical purposes, it is useful to encode a Seitz symbol (A | t) as a 3× 3 matrix. If

A =
[
a b
c d

]
, t =

[
u
v

]
,

we introduce the Seitz matrix [
A t
0 1

]
=




a b u
c d v
0 0 1


 ,

which is block form or partitioned matrix. Given a vector x = (x, y) =
[
x
y

]
, for the 3×1 column

vector
[
x
1

]
=




x
y
1


 we find that

(1.17)
[
A t
0 1

] [
x
1

]
=

[
Ax + t

1

]
=

[
(A | t)x

1

]
.
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We also

(1.18)
[
A1 t1

0 1

] [
A2 t2

0 1

]
=

[
A1A2 t1 + A1t2

0 1

]
.

By Proposition 1.14, this is the Seitz matrix of (A1 | t1)(A2 | t2) = (A1A2 | t1+A1t2). Similarly,
the Seitz matrix of (A | t)−1 = (A−1 | −A−1t) is

(1.19)
[
A t
0 1

]−1

=
[
A−1 −A−1t
0 1

]
.

Thus calculations with isometries can be carried out with the aid of 3 × 3 Seitz matrices
using matrix products to determine actions on vectors and compositions and inverses.

Exercises on Chapter 1

1.1. (a) Find a parametric equation for the line L1 with implicit equation 2x− 3y = 1.
(b) Find an implicit equation for the line L2 which has parametric equation x = (t− 1, 3t + 1).
(c) Find parametric and implicit equations for the line L3 which contains the point P (1,−1)
and is parallel to the vector (1, 1).
(d) Find the point of intersection of the lines L1 and L3 and the angle θ between them.

1.2. Let u = (5, 0) and v = (2,−1).
(a) Find the angle between u and v.
(b) Find the projection of the vector u onto v.
(c) Find the projection of the vector v onto u.

1.3. Consider the lines

L1 = {(x, y) : x + y = 2}, L2 = {(x, y) : x− y = 2}.
Find the effects on the point P (1, 0) of the reflections ReflL1 and ReflL2 .

1.4. Consider the lines

L1 = {(x, y) : 2x + y = 0}, L2 = {(x, y) : 2x + y = 2}.
Express each of the isometries ReflL2 ◦ReflL1 and ReflL1 ◦ReflL2 as translations, i.e., in the
form Transt for some t ∈ R2.

1.5. Recall the standard identification of the pair (x, y) with the column vector
[
x
y

]
.

(a) Give a matrix interpretation of the dot product (x1, y1) · (x2, y2).
(b) Let u ∈ R2 be a unit vector. Show that the 2× 2 matrix U = uuT satisfies

Ux =

{
0 if u · x = 0,

x if x = tu for some t ∈ R.

(c) Deduce that the matrix U ′ = I2− 2U has the same effect on vectors as reflection in the line

L = {x ∈ R2 : u · x = 0}.

1.6. For each of the following cases, describe geometrically the effect of the isometry (A | t).

(a) A =
[

1/
√

2 1/
√

2
−1/

√
2 1/

√
2

]
, t =

[
1
1

]
, (b) A =

[
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
, t =

[
1

−1

]
,

(c) A =
[
1 0
0 −1

]
, t =

[
0
1

]
.
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In each case, determine the Seitz symbol of (A | t)2 = (A | t)(A | t) and describe the effect of
the corresponding isometry.

1.7. (a) Show that an n× n orthogonal matrix A has determinant detA = ±1.

[If you don’t know about determinants for arbitrary sized square matrices, do this for n = 2, 3.]

(b) Show that a 2 × 2 real orthogonal matrix A with determinant detA = 1 has the form

A =
[
cos θ − sin θ
sin θ cos θ

]
.

[Write down a system of equations for the four entries of A, then solve it using the fact that when
a pair of real numbers x, y satisfies x2 + y2 = 1 there is a real number ϕ such that x = cosϕ,
y = sin ϕ.]
(c) Show that a 2 × 2 real orthogonal matrix B with determinant detB = −1 has the form

B =
[
cos θ sin θ
sin θ − cos θ

]
for some θ ∈ R.

[Observe that C = B

[
1 0
0 −1

]
is orthogonal and satisfies det C = 1, then apply (b).]

(d) If P,Q are n× n orthogonal matrices, show that their product PQ is also orthogonal.

1.8. Show that for the Seitz symbol (A | t) of an isometry, the Seitz symbol of the inverse
isometry is (AT | −AT t).

1.9. Let F : R2 −→ R2 be an isometry that fixes a point P with position vector p.
(a) Show that the composition

G = Trans−p ◦F ◦ Transp
fixes the origin and describe the effect this isometry geometrically in terms of that of F .
(b) If Q is a second point with position vector q show that the composition

H = Trans(q−p) ◦F ◦ Trans(p−q)

fixes Q and describe the effect of this isometry geometrically in terms of that of F .

1.10. Let (A | t) be the Seitz symbol of an isometry R2 −→ R2.
(a) If s ∈ R and x,y ∈ R2, show that

(A | t)(sx + (1− s)y) = s(A | t)x + (1− s)(A | t)y.

(b) For n > 2, show that if s1, . . . , sn ∈ R satisfy s1 + · · ·+ sn = 1 and x1, . . . ,xn ∈ R2, then

(A | t)(s1x1 + · · ·+ snxn) = s1(A | t)x1 + · · ·+ sn(A | t)xn.
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CHAPTER 2

Groups and symmetry

1. Groups and subgroups

Let G be set and ∗ a binary operation which combines each pair of elements x, y ∈ G to
give another element x ∗ y ∈ G. Then (G, ∗) is a group if it satisfies the following conditions.

Gp1: for all elements x, y, z ∈ G, (x ∗ y) ∗ z = x ∗ (y ∗ z);
Gp2: there is an element ι ∈ G such that for every x ∈ G, ι ∗ x = x = x ∗ ι;
Gp3: for every x ∈ G, there is a unique element y ∈ G such that x ∗ y = ι = y ∗ x.

Gp1 is usually called the associativity law. ι is usually called the identity element of (G, ∗). In
Gp3, the unique element y associated to x is called the inverse of x and denoted x−1.

2.1. Example. For each of the following cases, (G, ∗) is a group.
(1) G = Z, ∗ = +, ι = 0 and x−1 = −x.
(2) G = Q, ∗ = +, ι = 0 and x−1 = −x.
(3) G = R, ∗ = +, ι = 0 and x−1 = −x.

2.2. Example. Let

GL2(R) =
{[

a b
c d

]
: a, b, c, d ∈ R, ad− bc 6= 0

}
,

∗ = multiplication of matrices,

ι =
[
1 0
0 1

]
= I2,

[
a b
c d

]−1

=




d

ad− bc
− b

ad− bc

− c

ad− bc

a

ad− bc


 .

2.3. Example. Let X be a finite set and let Perm(X) be the set of all bijections f : X −→ X
(also known as permutations). Then (Perm(X), ◦) is a group where

◦ = composition of functions,
ι = IdX = the identity function on X,

f−1 = the inverse function of f.

(Perm(X), ◦) is called the permutation group of X. We will study these and other examples
in more detail.

When discussing a group (G, ∗), we will often write xy for the product x ∗ y if no confusion
seems likely to arise. For example, when dealing with a permutation group (Perm(X), ◦) we
will write αβ for α ◦ β.

2.4. Example. Let

Euc(2) = set of all isometries R2 −→ R2,

∗ = ◦,
ι = (I2 | 0).

(Euc(2), ◦) forms a group known as the Euclidean group of R2.

19



If a group (G, ∗) has a finite underlying set G, then the number of elements in the G is
called the order of G and is denoted |G|. If |G| is not finite, G is said to be infinite.

A group G is commutative or abelian if for every pair of elements x, y ∈ G, x ∗ y = y ∗ x.
Most groups are not commutative.

Let (G, ∗) be a group and H ⊆ G a subset. Then H is a subgroup of G if (H, ∗) is a group.
In detail this means

• for x, y ∈ H, x ∗ y ∈ H;
• ι ∈ H;
• if z ∈ H then z−1 ∈ H.

We don’t need to check associativity since Gp1 holds for all elements of G and so in particular
for elements of H.

We write H 6 G whenever H is a subgroup of G and H < G if H 6= G, i.e., H is a proper
subgroup of G.

If (G, ∗) is a group, then for any g ∈ G we can consider the subset

〈g〉 = {gn : n ∈ Z} ⊆ G,

where

gn =





n factors︷ ︸︸ ︷
g ∗ g ∗ · · · ∗ g if n > 0,

(g−1)−n if n < 0,

ι if n = 0.

It is easy to see that 〈g〉 6 G, and it is known as the cyclic subgroup generated by g. If for some
c ∈ G we have G = 〈c〉 then G is called a cyclic group.

For g ∈ G, if there is an n > 0 such that gn = ι then g is said to have finite order, otherwise
g has infinite order.

2.5. Proposition. Let (G, ∗) be a group and g ∈ G.
a) If g has infinite order then all the integer powers of g are distinct and so G is infinite. In
particular,

〈g〉 = {. . . , g−2, g−1, ι, g1, g2, . . .}.
b) If g has finite order then there is a smallest positive exponent n0 for which gn0 = ι and the
distinct powers of g are g, g2, . . . , gn0−1, gn0 = ι, so

〈g〉 = {g, g2, . . . , gn0−1, ι}.
If g has finite order the number n0 is called the order of g, and is denoted |g|. Sometimes

we write |g| = ∞ if g has infinite order and |g| < ∞ when it has finite order.

2. Permutation groups

We will follow the ideas of Example 2.3 and consider the standard set with n elements

n = {1, 2, . . . , n}.
If we write Sn = Perm(n), the group (Sn, ◦) is called the symmetric group on n objects or the
symmetric group of degree n or the permutation group on n objects.

2.6. Theorem. Sn has order |Sn| = n!.

Proof. Defining an element σ ∈ Sn is equivalent to specifying the list

σ(1), σ(2), . . . , σ(n)

consisting of the n numbers 1, 2, . . . , n taken in some order with no repetitions. To do this we
have

• n choices for σ(1),
• n− 1 choices for σ(2) (taken from the remaining n− 1 elements),
• and so on.
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In all, this gives n × (n − 1) × · · · × 2 × 1 = n! choices for σ, so |Sn| = n! as claimed. We will
often use the notation

σ =
(

1 2 . . . n
σ(1) σ(2) . . . σ(n)

)
. ¤

2.7. Example. The elements of S3 are the following:

ι =
(

1 2 3
1 2 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
3 2 1

) (
1 2 3
2 1 3

)
.

We can calculate the composition τ◦σ of two permutations τ, σ ∈ Sn, where τσ(k) = τ(σ(k)).
Notice that we apply σ to k first then apply τ to the result σ(k). For example,(

1 2 3
3 2 1

)(
1 2 3
3 1 2

)
=

(
1 2 3
1 3 2

)
,

(
1 2 3
2 3 1

)(
1 2 3
3 1 2

)
=

(
1 2 3
1 2 3

)
= ι.

In particular, (
1 2 3
2 3 1

)
=

(
1 2 3
3 1 2

)−1

.

Let X be a set with exactly n elements which we list in some order, x1, x2, . . . , xn. Then
there is an action of Sn on X given by

σ · xk = xσ(k) (σ ∈ Sn, k = 1, 2, . . . , n).

For example, if X = {A,B, C} we can take x1 = A, x2 = B, x3 = C and so(
1 2 3
2 3 1

)
·A = B,

(
1 2 3
2 3 1

)
·B = C,

(
1 2 3
2 3 1

)
· C = A.

Often it is useful to display the effect of a permutation σ : X −→ X by indicating where
each element is sent by σ with the aid of arrows. To do this we display the elements of X in
two similar rows with an arrow joining xi in the first row to σ(xi) in the second. For example,

the action of the permutation σ =
(

A B C
B C A

)
on X = {A, B,C} can be displayed as

A

ÂÂ@
@@

@@
@@

B

ÃÃ@
@@

@@
@@

C

wwooooooooooooooo

A B C

We can compose permutations by composing the arrows. Thus(
A B C
C A B

)(
A B C
B C A

)

can be determined from the diagram

A

ÂÂ@
@@

@@
@@

²²Â
Â
Â
Â
Â
Â
Â B

ÃÃ@
@@

@@
@@

²²Â
Â
Â
Â
Â
Â
Â C

wwooooooooooooooo

²²Â
Â
Â
Â
Â
Â
Â

A

''OOOOOOOOOOOOOOO B

ÄÄ~~
~~

~~
~

C

~~~~
~~

~~
~

A B C

which gives the identity function whose diagram is

A

²²

B

²²

C

²²
A B C
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Let σ ∈ Sn and consider the arrow diagram of σ as above. Let cσ be the number of crossings
of arrows. The sign of σ is the number

sgnσ = (−1)cσ =

{
+1 if cσ is even,

−1 if cσ is odd.

Then sgn: Sn −→ {+1,−1}. Notice that {+1,−1} is a group under multiplication.

2.8. Proposition. The function sgn: Sn −→ {+1,−1} satisfies

sgn(τσ) = sgn(τ) sgn(σ) (τ, σ ∈ Sn).

Proof. By considering the arrow diagram for τσ obtained by joining the diagrams for σ
and τ , we see that the total number of crossings is cσ + cτ . If we straighten out the paths
starting at each number in the top row, so that we change the total number of crossings by 2
each time, hence (−1)cσ+cτ = (−1)cτσ . ¤

A permutation σ is called even if sgn σ = 1, otherwise it is odd. The set of all even
permutations in Sn is denoted by An. Notice that ι ∈ An and in fact the following result is true.

2.9. Proposition. The set An is a subgroup of Sn, An 6 Sn.

Proof. By Proposition 2.8, for σ, τ ∈ An,

sgn(τσ) = sgn(τ) sgn(σ) = 1.

Note also that ι ∈ An.
The arrow diagram for σ−1 is obtained from that for σ by interchanging the rows and

reversing all the arrows, so sgnσ−1 = sgnσ. Thus if σ ∈ An, we have sgnσ−1 = 1.
Hence, An is a subgroup of Sn. ¤
An is called the n-th alternating group.

2.10. Example. The elements of A3 are

ι =
(

1 2 3
1 2 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
.

2.11. Proposition. For n > 2, An has order |An| = |Sn|/2 = n!/2.

Proof. Let σ ∈ Sn and let τ ∈ Sn be the permutation which has the effect

τ(j) =





2 if j = 1,

1 if j = 2,

j otherwise.

Then either σ ∈ An or (1 2)σ ∈ An. Furthermore, if σ′ ∈ Sn and (1 2)σ′ = (1 2)σ then σ′ = σ,
so we can write σ ∈ Sn uniquely in one of the forms σ ∈ An or σ = (1 2)θ with θ ∈ An. This
shows that |Sn| = 2|An|. ¤

Suppose σ ∈ Sn. Now carry out the following steps.
• Form the sequence

1 → σ(1) → σ2(1) → · · · → σr1−1(1) → σr1(1) = 1

where σk(j) = σ(σk−1(j)) and r1 is the smallest positive power for which this is true.
• Take the smallest number k2 = 1, 2, . . . , n for which k2 6= σt(k1) for every t. Form the

sequence

k2 → σ(k2) → σ2(k2) → · · · → σr2−1(k2) → σr2(k2) = k2

where r2 is the smallest positive power for which this is true.
• Repeat this with the smallest number k3 = 1, 2, . . . , n such that k3 6= σt(k2) for every t.

• ...

22



Writing k1 = 1, we obtain a collection of disjoint cycles

k1 → σ(k1) → σ2(k1) →· · · → σr1−1(k1) → σr1(k1) = k1

k2 → σ(k2) → σ2(k2) →· · · → σr2−1(k2) → σr2(k2) = k2

...

kd → σ(kd) → σ2(kd) →· · · → σrd−1(kd) → σrd(kd) = kd

in which every number k = 1, 2, . . . , n occurs in exactly one row.
The s-th one of these cycles can be viewed as corresponding to the permutation of n which

behaves according to the action of σ on the elements that appear as σt(ks) and fix every other
element. We indicate this permutation using the cycle notation

(ks σ(ks) · · · σrs−1(ks)).

Then we have
σ = (k1 σ(k1) · · · σr1−1(k1)) · · · (kd σ(kd) · · · σrd−1(kd)),

which is the disjoint cycle decomposition of σ. It is unique apart from the order of the factors
and the order in which the numbers within each cycle occur.

For example, in S4,

(1 2)(3 4) =(2 1)(4 3) = (3 4)(1 2) = (4 3)(2 1),

(1 2 3)(4) =(3 1 2)(4) = (2 3 1)(4) = (4)(1 2 3) = (4)(3 1 2) = (4)(2 3 1).

We usually leave out cycles of length 1, so for example (1 2 3)(4) = (1 2 3) = (4)(1 2 3).
A permutation τ ∈ Sn which interchanges two elements of n and leaves the rest fixed is

called a transposition.

2.12. Proposition. For σ ∈ Sn, there are transpositions τ1, . . . , τk such that σ = τ1 · · · τk.

One way to decompose a permutation σ into transpositions is to first decompose it into
disjoint cycles then use the easily checked formula

(2.1) (i1 i2 . . . ir) = (i1 ir) · · · (i1 i3)(i1 i2).

2.13. Example. Decompose

σ =
(

1 2 3 4 5
2 5 3 1 4

)
∈ S5

into a product of transpositions.

Solution. We have

σ = (3)(1 2 5 4) = (1 2 5 4) = (1 4)(1 5)(1 2).

Some alternative decompositions are

σ = (2 1)(2 4)(2 5) = (5 2)(5 1)(5 4). ¤
2.14. Example. In S6, compose the permutations α = (1 2 3 4) and β = (1 3 5)(2 4).

Solution. We will determine αβ = (1 2 3 4)(1 3 5)(2 4) by building up its cycles.
Beginning with 1, we see that

1
(2 4)−−−→ 1

(1 3 5)−−−−→ 3
(1 2 3 4)−−−−−→ 4,

so αβ(1) = 4. Now repeat this with 4,

4
(2 4)−−−→ 2

(1 3 5)−−−−→ 2
(1 2 3 4)−−−−−→ 3,

so αβ(4) = 3. Repeating with 3 we obtain

3
(2 4)−−−→ 3

(1 3 5)−−−−→ 5
(1 2 3 4)−−−−−→ 5,
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so αβ(3) = 5. Repeating with 5 we obtain

5
(2 4)−−−→ 5

(1 3 5)−−−−→ 1
(1 2 3 4)−−−−−→ 2,

so αβ(5) = 2. Repeating with 2 we obtain

2
(2 4)−−−→ 4

(1 3 5)−−−−→ 4
(1 2 3 4)−−−−−→ 2,

so αβ(2) = 1. This shows that αβ contains the 5-cycle (1 4 3 5 2),

1 −→ 4 −→ 3 −→ 5 −→ 2 −→ 1.

Applying αβ to 6 we find that αβ(6) = 6, so αβ also contains the 1-cycle (6). Hence

αβ = (1 4 3 5 2)(6) = (6)(1 4 3 5 2) = (1 4 3 5 2).

Similarly we find that

βα = (1 3 5)(2 4)(1 2 3 4) = (1 4 3 2 5).

It is worth noting that βα 6= αβ, which shows that Sn is not a commutative group in general. ¤

3. Groups of isometries

From Example 2.4 we have the Euclidean group (Euc(2), ◦), which is clearly infinite.

2.15. Example. Consider the set of translations in Euc(2),

Trans(2) = {(I2 | t) ∈ Euc(2) : t ∈ R2}.
Then Trans(2) 6 Euc(2).

Proof. In Equation (1.6) we have seen that Trans(2) is closed under composition. We also
know that (I2 | 0) ∈ Trans(2) and for t ∈ R2,

(I2 | t)−1 = (I2 | −t) ∈ Trans(2).

So Trans(2) 6 Euc(2). ¤
Trans(2) is called the translation subgroup of Euc(2).

2.16. Example. Let

O(2) = {(A | 0) ∈ Euc(2) : A is orthogonal}.
Then O(2) 6 Euc(2).

Proof. For (A | 0), (B | 0) ∈ O(2) we have

(A | 0)(B | 0) = (AB | 0)

and
(AB)T (AB) = (BT AT )(AB) = BT (AT A)B = BT I2B = BT B = I2.

So (A | 0)(B | 0) ∈ O(2). Also, (I2 | 0) ∈ O(2) and

(A | 0)−1 = (A−1 | 0) ∈ O(2)

since A−1 = AT and
(AT )T (AT ) = AAT = AA−1 = I2,

hence A−1 is orthogonal. ¤
O(2) is the orthogonal subgroup of Euc(2). It consists of all the isometries of R2 which fix

the origin.

2.17. Example. Let

SO(2) = {(A | 0) ∈ Euc(2) : A is orthogonal and detA = 1}.
Then SO(2) 6 O(2) 6 Euc(2).
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Proof. If (A | 0), (B | 0) ∈ SO(2), then (A | 0)(B | 0) = (AB | 0) and

det(AB) = detA detB = 1,

so (A | 0)(B | 0) ∈ SO(2). Checking the remaining points is left as an exercise. ¤
SO(2) is called the special orthogonal subgroup of Euc(2) and consists of all rotations about

the origin. Elements of Euc(2) of the form (A | t) with A ∈ SO(2) are called direct isometries,
while those with A /∈ SO(2) are called indirect isometries. We denote the subset of direct
isometries by Euc+(2) and the subset of indirect isometries by Euc−(2).

2.18. Example. The direct isometries form a subgroup of Euc(2), i.e., Euc+(2) 6 Euc(2).

Proof. If (A1 | t1), (A2 | t2) ∈ Euc+(2), then

(A1 | t1)(A2 | t2) = (A1A2 | t1 + A1t2)

with A1A2 ∈ SO(2), so this product is in Euc+(2). ¤

4. Symmetry groups of plane figures

If S ⊆ R2 is a non-empty subset, we can consider the subset

Euc(2)S = {α ∈ Euc(2) : αS = S} ⊆ Euc(2).

2.19. Proposition. Euc(2)S is a subgroup of Euc(2), Euc(2)S 6 Euc(2)

Proof. By definition, for α ∈ Euc(2),

αS = {α(s) : s ∈ S}.
So αS = S if and only if

• for every s ∈ S, α(s) ∈ S;
• every s ∈ S has the form s = α(s′) for some s′ ∈ S.

Since an isometry is injective, this really says that each α ∈ Euc(2)S acts by permuting the
elements of S and preserving distances between them.

If α, β ∈ Euc(2)S then for s ∈ S,

αβ(s) = α(β(s)) ∈ αS = S.

Also, there is an s′ ∈ S such that s = α(s′) and similarly an s′′ ∈ S such that s′ = β(s′′); hence

s = α(s′) = α(β(s′′)) = αβ(s′′).

It is easy to see that IdR2 ∈ Euc(2)S . Finally, if α ∈ Euc(2)S then α−1 ∈ Euc(2)S since

α−1S = α−1(αS) = (α−1α)S = S. ¤
Euc(2)S is called the symmetry subgroup of S and is often referred to as the symmetry group

of S as a subset of R2.

2.20. Example. Let S ⊆ R2 be the following pattern.

· · · · · ·

CC̈
¨̈

¨̈
¨̈

¨̈
¨̈

¨̈
¨̈

DD©©©©©©©©©©©©©©©

DD­­­­­­­­­­­­­­­

DD­­­­­­­­­­­­­­­

DD­­­­­­­­­­­­­­­

DD­­­­­­­­­­­­­­­

A−2 A−1 A0 A1 A2 A3

Find the symmetry subgroup of S.
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Solution. It is clear that there are translations which move each arrow a fixed number
of steps right or left by distance equal to the horizontal distance between these arrows. If the
translation sending An to An+1 is Transt then each of the translations Transkt with k ∈ Z is in
Euc(2)S . So

Euc(2)S = {Transkt : k ∈ Z},
since it is also clear that there are no further isometries of R2 that map S into itself.

Note that this pattern is essentially the same as Frieze Pattern 1 in Figure 2.1. ¤

In this case we see that all symmetries of S are translations and indeed all powers of a fixed
one, since if k 6 1,

Transkt = (Transt)k = Transt ◦ · · · ◦ Transt︸ ︷︷ ︸
k factors

,

while if k 6 −1,

Transkt = (Trans−t)−k = Trans−t ◦ · · · ◦ Trans−t︸ ︷︷ ︸
−k factors

where (Transt)−1 = Trans−t. So the symmetry subgroup of this plane figure is cyclic with
generator Transt.

For any subset S ⊆ R2 we can consider the set of translational symmetries of S,

Trans(2)S = Trans(2) ∩ Euc(2)S ⊆ Euc(2)S .

The following is easy to prove.

2.21. Lemma. Trans(2)S 6 Euc(2)S.

A frieze pattern in the plane is a subset S ⊆ R2 for which the subset of translational
symmetries Trans(2)S is an infinite cyclic group. This means that there is a translation vector
t for which

Trans(2)S = 〈Transt〉 = {Transkt : k ∈ Z}.
The examples in Figure 2.1 illustrate all the possible symmetry groups for frieze patterns

that can occur. Notice that Pattern 1 is essentially equivalent to that of Example 2.20 since it
only has translational symmetries.

2.22. Example. Find the symmetry subgroup of Pattern 2.

Solution. Let S ⊆ R2 be this pattern. Suppose that this lies along the x-axis with the
origin midway up an edge. Then if t is the vector pointing in the positive x-direction with length
equal to the width of a block, Euc(2)S contains the cyclic subgroup generated by Trans2t,

〈Trans2t〉 = {Trans2kt : k ∈ Z} 6 Euc(2)S .

The glide reflection that reflects in the x-axis then moves each block by t has Seitz symbol
(Rx | t) where

Rx =
[
1 0
0 −1

]
.

Clearly every symmetry is either a translation Trans2kt = (I | 2kt) for some k ∈ Z, or a glide
reflection of the form (Rx | (2k + 1)t) for some k ∈ Z, where

(Rx | (2k + 1)t) = (I | 2kt)(Rx | t).
So we have

Euc(2)S = 〈Trans2t〉 ∪ {(Rx | (2k + 1)t) : k ∈ Z}. ¤
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Frieze patterns

Pattern 1: Translation

Pattern 2: Glide reflection

Pattern 3: Two parallel vertical reflections

Pattern 4: Two half turns

Pattern 5: A reflection and a half turn

Pattern 6: Horizontal reflection

Pattern 7: Three reflections (two vertical, one horizontal)

Figure 2.1. Frieze Patterns

27



2.23. Example. Let 4 ⊆ R2 be an equilateral triangle with vertices A,B, C.

°°
°°
°°
°°
°°
°°
°°
°°
°11111111111111111

A

B C

·O

A symmetry of 4 is defined once we know where the vertices go, hence there are as many
symmetries as permutations of the set {A, B,C}. Each symmetry can be described using
permutation notation and we obtain the six distinct symmetries

(
A B C
A B C

)
= ι,

(
A B C
B C A

)
= (A B C),

(
A B C
C A B

)
= (A C B),

(
A B C
A C B

)
= (B C),

(
A B C
C B A

)
= (A C),

(
A B C
B A C

)
= (A B).

Therefore we have |Euc(2)4| = 6. Notice that the identity and the two 3-cycles represent
rotations about O, while each of the three transpositions represents a reflection in lines through
O and a vertex.

2.24. Example. Let ¤ ⊆ R2 be the square centred at the origin O and whose vertices are
at the points A(1, 1), B(−1, 1), C(−1,−1), D(1,−1).

AB

C D

·O

Then a symmetry is defined by sending A to any one of the 4 vertices then choosing how to send
B to one of the 2 adjacent vertices. This gives a total of 4× 2 = 8 such symmetries, therefore
|Euc(2)¤| = 8.

Again we can describe symmetries in terms of their effect on the vertices. Here are the eight
elements of Euc(2)¤ described in permutation notation.

(
A B C D
A B C D

)
= ι,

(
A B C D
B C D A

)
= (A B C D),

(
A B C D
C D A B

)
= (A C)(B D),

(
A B C D
D A B C

)
= (A D C B),

(
A B C D
A D C B

)
= (B D),

(
A B C D
D C B A

)
= (A D)(B C),

(
A B C D
C B A D

)
= (A C),

(
A B C D
B A D C

)
= (A B)(C D).

Each of the two 4-cycles represents a rotation through a quarter turn about O, while (A C)(B D)
represents a half turn. The transpositions (B D) and (A C) represent reflections in the diagonals
while (A D)(B C) and (A B)(C D) represent reflections in the lines joining opposite midpoints
of edges.
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2.25. Example. Let R ⊆ R2 be the rectangle centred at the origin O with vertices at
A(2, 1), B(−2, 1), C(−2,−1), D(2,−1).

B A

O·

C D

A symmetry can send A to any of the vertices, and then the long edge AB must go to the longer
of the adjacent edges. This gives a total of 4 such symmetries, thus |Euc(2)R| = 4.

Again we can describe symmetries in terms of their effect on the vertices. Here are the four
elements of Euc(2)R described using permutation notation.

(
A B C D
A B C D

)
= ι,

(
A B C D
B A D C

)
= (A B)(C D),

(
A B C D
C D A B

)
= (A C)(B D),

(
A B C D
D C B A

)
= (A D)(B C).

(A C)(B D) represents a half turn about O while (A B)(C D) and (A D)(B C) represent
reflections in lines joining opposite midpoints of edges.

2.26. Example. Given a regular n-gon (i.e., a regular polygon with n sides all of the same
length and n vertices V1, V2, . . . , Vn), the symmetry group is a dihedral group of order 2n, with
elements

ι, α, α2, . . . , αn−1, β, αβ, α2β, . . . , αn−1β,

where αk is an anticlockwise rotation through 2πk/n about the centre and β is a reflection in
the line through V1 and the centre. In fact each of the elements α2β is a reflection in a line
through the centre. Moreover we have

|α| = n, |β| = 2, βαβ = αn−1 = α−1.

In permutation notation this becomes the n-cycle

α = (V1 V2 · · · Vn),

but β is more complicated to describe since it depends on whether n is even or odd.

For example, if n = 6 we have

α = (V1 V2 V3 V4 V5 V6), β = (V2 V6)(V3 V5),

while if n = 7
α = (V1 V2 V3 V4 V5 V6 V7), β = (V2 V7)(V3 V6)(V4 V5).

We have seen that when n = 3, Euc(2)4 is the permutation group of the vertices and so D6 is
essentially the same group as S6.

If we take the regular n-gon centred at the origin with the first vertex V1 at (1, 0), the
generators α and β can be represented as (A | 0) and (B | 0) using the matrices

A =
[
cos 2π/n − sin 2π/n
sin 2π/n cos 2π/n

]
, B =

[
1 0
0 −1

]

In this case the symmetry group is the dihedral group of order 2n,

D2n = {ι, α, α2, . . . , αn−1, β, αβ, α2β, . . . , αn−1β} 6 O(2).

Notice that the subgroup of direct symmetries is

D+
2n = {ι, α, α2, . . . , αn−1} 6 SO(2).
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More generally we have the following Theorem. A convex region of is a subset S ⊆ R2 in
which for each pair of points x,y ∈ S, the line segment joining them lies in S, i.e.,

{tx + (1− t)y : 0 6 t 6 1} ⊆ S.

Convex Non-convex

2.27. Theorem. If V1, . . . , Vn are the vertices in order of a polygon which bounds a convex
region P of R2 containing a point not on the boundary, then Euc(2)P can be identified with a
subgroup of the permutation group Perm{V1,...,Vn} of the vertices.

5. Similarity of isometries and subgroups of the Euclidean group

It is often the case that two subsets of the plane have the ‘same’ symmetry subgroups. For
example, any two frieze patterns which only have translational symmetries are the same in this
sense. We need to make this notion more precise.

A dilation or scaling of the plane is a function H : R2 −→ R2 which has the form

H(x) = δ(x− c) + c,

where δ > 0 is the dilation factor and c is the centre of the dilation. It is easy to see that
H(c) = c and

|H(x)− c| = δ|x− c|,
so the effect of H is the expand or contract the plane radially from the point c. We can rewrite
the above formula to give

H(x) = δx + (1− δ)c,
so we can express H as the Seitz symbol (δI | (1− δ)c). Of course, if δ = 1 then this is just the
identity function, otherwise it is not an isometry.

We can compose a dilation (δI | (1 − δ)c) with an isometry (A | t) to give a new function
R2 −→ R2 with Seitz symbol

(δI | (1− δ)c)(A | t) = (δA | δt + (1− δ)c).

This has the form (δA | s) for some vector s and orthogonal matrix A. Provided that δ 6= 1,
the matrix (I− δA) is invertible (this uses knowledge of the eigenvalues of A) and so the vector
s0 = (I − δA)−1s is the unique fixed point of this transformation. Indeed, this transformation
amounts to a rotation or reflection about s0 followed by a dilation by δ centred at this point.
We will call such a transformation a similarity transformation of the plane centred at s0.

Now suppose that F1, F2 : R2 −→ R2 are two isometries of the plane. If H : R2 −→ R2 is a
similarity transformation, then F2 is H-similar to F1 if

F2 = H ◦ F1 ◦H−1.

We will sometimes use the notation

H∗F = H ◦ F ◦H−1.

We also say that F2 is similar to F1 if there is some similarity transformation H for which F2

is H-similar to F1.
If Γ ⊆ Euc(2) then we set

H∗Γ = {H∗F : F ∈ Γ} ⊆ Euc(2).

2.28. Lemma. If Γ 6 Euc(2) then H∗Γ 6 Euc(2).
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Proof. For example, if F1, F2 ∈ Γ then

(H∗F1) ◦ (H∗F2) = H ◦ F1 ◦H−1 ◦H ◦ F2 ◦H−1 = H ◦ (F1 ◦ F2) ◦H−1 = H∗(F1 ◦ F2). ¤
For two subgroups Γ1 6 Euc(2) and Γ2 6 Euc(2), Γ2 is H-similar to Γ1 if

Γ2 = H∗Γ1.

We also say that Γ2 is similar to Γ1 if there is some similarity transformation H for which Γ2

is H-similar to Γ1.

2.29. Example. Consider any two rotations RotP,θ and RotQ,θ through the same angle θ.
Then RotQ,θ is similar to RotP,θ.

Proof. Let t =
−−→
PQ = q − p. Then Transt ◦RotP,θ ◦Trans−t is a rotation through the

angle θ which has the following effect on the point Q,

Transt ◦RotP,θ ◦Trans−t(q) = (q− p) + RotP,θ(q− (q− p))

= (q− p) + RotP,θ(p)

= (q− p) + p = q.

Hence this rotation fixes Q, which must be its centre. Therefore

Transt ◦RotP,θ ◦Trans−t = RotQ,θ,

and RotQ,θ is similar to RotP,θ. ¤
2.30. Example. Let u and v be any two non-zero vectors. Then Transv is similar to Transu.

Solution. Let δ = |v|/|u|. If the angle between u and v is θ, then

v = δ RotO,θ(u).

Now consider the similarity transformation obtained by composing a rotation with a dilation,

H = δ RotO,θ,

and with inverse
H−1 = (1/δ)RotO,−θ .

Then we have

H ◦ Transu ◦H−1(x) = H(u + (1/δ)RotO,−θ x)

= δ RotO,θ(u + (1/δ)RotO,−θ x)

= δ RotO,θ(u) + δ RotO,θ((1/δ)RotO,−θ x)

= v + RotO,θ ◦RotO,−θ(x)

= v + x = Transv(x).

This show that
Transv = H ◦ Transu ◦H−1,

so Transv is similar to Transu. ¤
Using this result it is easy to deduce that 〈Transv〉 is similar to 〈Transu〉.
2.31. Example. Let ∆1 and ∆2 be two equilateral triangles. Show that the symmetry

subgroups Γ1 = Euc(2)∆1 and Γ2 = Euc(2)∆2 are similar.

Solution. Let the centres be at C1c1 and C2c2 and let the sides be of lengths `1 and `2.
Let the vertices of the triangles be U1, U2, U3 and V1, V2, V3 taken in order in the anti-clockwise
direction.

Setting δ = `2/`1, we construct the following sequence of transformations R2 −→ R2.
• H1 is the translation which moves C1 to C2.
• H2 is the dilation by δ centred at C1.
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• H3 is the rotation about C1 which sends each Ui to H−1
1 ◦H−1

2 (Vi).
Now take H = H3 ◦H2 ◦H1.

Now let F ∈ Γ1. Then for each vertex Vi, F (Vi) is a vertex and the effect of F on the
vertices determines F . Then for each Vi,

H∗F (Vi) = H ◦ F ◦H−1(Vi) = H3 ◦H2 ◦H1 ◦ F (Ui),

which is a vertex of ∆2, so H∗F is indeed a symmetry of ∆2. It is easy to see that every
symmetry of ∆2 arises as H∗F for some F . Hence Γ2 = H∗Γ1 and so Γ2 is similar to Γ1. ¤

6. Finite subgroups of the Euclidean group of the plane

In this section we will describe all finite subgroups of Euc(2), up to similarity transforma-
tions. First we will show that every finite subgroup has a fixed point, i.e., a point fixed by every
element of Γ.

2.32. Theorem. Let Γ 6 Euc(2) be a finite subgroup. Then there is a point of R2 which is
fixed by every element of Γ.

Proof. Let the distinct elements of Γ be F1, . . . , Fn, where n = |Γ|. Let p ∈ R2 be (the
position vector of) any point. Define

p0 =
1
n

F1(p) + · · ·+ 1
n

Fn(p).

For any k = 1, . . . , n, by a result contained in Exercise 1.10, we have

Fk(p0) =
1
n

FkF1(p) + · · ·+ 1
n

FkFn(p).

Now if FkFi = FkFj , then F−1
k FkFi = F−1

k FkFj and so Fi = Fj . Also, every Fr can be written
as Fr = Fk(F−1

k Fr) where F−1
k Fr ∈ Γ has the form F−1

k Fr = Fs for some s and therefore
Fr = FkFs. So in the above expression for Fk(p0), the terms are the same as those in the
formula for p0 apart from the order in which they appear. This shows that Fk(p0) = p0. ¤

2.33. Remark. In the proof we can of course take p = 0, but any initial value will do. Also,
if Γ contains a non-trivial rotation then it has exactly one fixed point, so it doesn’t matter what
we choose for p since p0 will be this unique fixed point.

2.34. Corollary. Let Γ 6 Euc(2) be a finite subgroup. Then Γ is similar to a finite
subgroup of the orthogonal group O(2).

Proof. Let q be any fixed point of Γ. Setting H = Trans−q, for F ∈ Γ we have

H∗F (0) = Trans−q F Transq(0) = Trans−q F (q + 0) = F (q)− q = q− q = 0.

Thus H∗Γ 6 O(2). ¤
Let us now consider finite subgroups of O(2). First we describe all commutative subgroups,

beginning with finite groups of rotations. Recall that

SO(2) = {(A | 0) ∈ O(2) : detA = 1} 6 O(2) 6 Euc(2).

Furthermore, if (A | 0) ∈ SO(2) then

A =
[
cos θ − sin θ
sin θ cos θ

]

for some angle θ ∈ R. Notice that for all θ, ϕ ∈ R,[
cos θ − sin θ
sin θ cos θ

] [
cosϕ − sinϕ
sinϕ cosϕ

]
=

[
cos(θ + ϕ) − sin(θ + ϕ)
sin(θ + ϕ) cos(θ + ϕ)

]

=
[
cosϕ − sinϕ
sinϕ cosϕ

] [
cos θ − sin θ
sin θ cos θ

]
,

which shows that SO(2) is in fact commutative.
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2.35. Proposition. Let Γ 6 SO(2) be a finite subgroup. Then Γ is cyclic with a generator
of the form 〈(A | 0)〉 for some matrix

A =
[
cos 2π/d − sin 2π/d
sin 2π/d cos 2π/d

]

where d = 1, 2, . . ..

Proof. We won’t prove this here, but note that proofs can be found in many textbooks or
in 3H Algebra.

The element (A | 0) ∈ Γ can be chosen so that

A =
[
cos θ − sin θ
sin θ cos θ

]
,

where the angle θ ∈ [0, 2π) is as small as possible. Since Γ is a finite group, every element has
finite order, and so θ = 2kπ/d for some d = 1, 2, . . . and k = 0, 1, . . . , (d − 1). It is always
possible to arrange things so that k = 1. Notice that 〈(A | 0)〉 represents rotation about the
origin through the angle 2π/d. ¤

2.36. Proposition. Let Γ 6 O(2) be a finite subgroup. Then either Γ 6 SO(2) or Γ is
similar to a dihedral group D2n for some n > 1.

Proof. Again we will not give a proof. ¤

7. Frieze patterns and their symmetry groups

In this section we will see how frieze patterns can be understood by classifying their symme-
try groups up to similarity. Recall that the group of translational symmetries of a frieze pattern
is infinite and cyclic. We will discuss in detail the seven distinct patterns shown in the handout
on Frieze Patterns.

Pattern 1. This only has translational symmetries. There is a smallest translation vector
t1 say, with

Euc(2)Pattern 1 = 〈Transt1〉 .
Notice that there are no points simultaneously fixed by all the elements of this symmetry group,
hence there can be no non-trivial finite subgroups.

· · · L L
t1 // L L · · ·

Pattern 2. This has a glide reflection γ2 whose square is a translation by t2, say. The
symmetry group is infinite and cyclic,

Euc(2)Pattern 2 = 〈γ2〉 .
Again there are no points simultaneously fixed by all the elements of this symmetry group, so
there are no non-trivial finite subgroups.

d
γ2

½½

d
γ2

½½

d
γ2

½½

d
γ2

½½

· · · t2 // · · ·

b
γ2

KK

b
γ2

KK

b
γ2

KK

b
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Pattern 3. This has a smallest translation vector t3 say, but also some reflections in lines
perpendicular to t3. If we choose such a reflection σ3 in a line L, say, then any other such
reflection is either in a parallel line Lkt3 obtained by translating L by some integer multiple
kt3, or reflection in a line L(`+1/2)t3 obtained by translating by some multiple (` + 1/2)t3 for
some ` ∈ Z. However, from the proof of Proposition 1.6, we know that

ReflLkt3
= Trans2kt3 ◦ReflL = Trans2kt3 ◦σ3,

ReflL(`+1/2)t3
= Trans(2`+1)t3 ◦ReflL = Trans(2`+1)t3 ◦σ3.

This group is not commutative, e.g., σ3 ◦ Transt3 = Trans−t3 ◦σ3. Writing

α = Transt3 , β = σ3,

then we see that abstractly this group has the following form,

{αr : r ∈ Z} ∪ {αrβ : r ∈ Z},

where α, β satisfy the following relations:

β2 = ι, βαβ = α−1.

It is easy to see that for r ∈ Z,

βαrβ = α−r.

This is an infinite version of the dihedral groups D2n, and it is often referred to as D∞. We will
use the notation

Euc(2)Pattern 3 = D∞,3.

Notice that every such symmetry for this frieze is obtained by combining a power of Transt3
with the zeroth or first power of σ3.

There are points fixed simultaneously by all the elements of this symmetry group, and indeed
there are some non-trivial finite subgroups of Euc(2)Pattern 3. These are obtained by taking one
of the vertical reflections ReflLkt3

, ReflL(`+1/2)t3
and considering the cyclic subgroups (each with

two elements)
〈
ReflLkt3

〉
,

〈
ReflL(`+1/2)t3

〉
.

Each of these subgroups fixes all the points on the corresponding line of reflection and no others.

∨

Â
Â
Â
Â
Â
Â
Â
Â

L(−1/2)t3

Â
Â
Â
Â
Â
Â
Â
Â

∨

L

Â
Â
Â
Â
Â
Â
Â
Â

L(1/2)t3

Â
Â
Â
Â
Â
Â
Â
Â

∨

Lt3

Â
Â
Â
Â
Â
Â
Â
Â

Â
Â
Â
Â
Â
Â
Â
Â

∨

· · · ss
σ3

++ t3 // · · ·

∨ ∨ ∨
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Pattern 4. This time there is a shortest translation vector t4 say. There are also two types
of rotations, namely half rotations about points marked • and ×. If we choose one of these to
be ρ4 centred at c say, then one of the other type is obtained by composing it with translation
by t4, to give a half rotation about the point c + (1/2)t4, i.e.,

ρ′4 = Transt4 ◦ρ4.

More generally, the half rotation symmetries are of the form

Trans2kt4 ◦ρ4, Trans(2k+1)t4 ◦ρ4 (k ∈ Z).

Each of these generates a cyclic subgroup of order 2,

〈Trans2kt4 ◦ρ4〉 ,
〈
Trans(2k+1)t4 ◦ρ4

〉
.

We also have

ρ4 ◦ Transt4 ◦ρ4 = Trans−t4 ,

so the symmetry group here is again a dihedral group with generators

α = Transt4 , β = ρ4.

d d d d

· · · • ×
x
•
ρ4

x
×
ρ′4

• t4 // · · ·

c c c c

Pattern 5. Let t5 be a smallest translation vector. There is a glide reflection γ5 whose
square is γ5 ◦ γ5 = Transt5 . There is also a reflection symmetry σ5 in the vertical line L. Let
Lv denote the line obtained by translation of L by a vector v. Then the half rotation ρ5 about
one of the points marked • at (−1/4)t5 away from L agrees with the composition

ρ5 = γ5 ◦ σ5.

The following equations also hold:

σ5 ◦ γ5 ◦ σ5 = γ5
−1, σ5 ◦ Transt5 ◦σ5 = Trans−t5 = Transt5

−1

The remaining rotations and glide reflections have the form

Transkt5 ◦ρ5, Transkt5 ◦σ5

for k ∈ Z. The symmetry group is again a dihedral group with generators

α = γ5, β = σ5.
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∨
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Pattern 6. This time there is a shortest translation vector Transt6 and a horizontal reflec-
tion τ6, where

τ6 ◦ Transt6 = Transt6 ◦τ6.

There are also glide reflections of the form

τ6 ◦ Transkt6 = Transkt6 ◦τ6

for some k ∈ Z. This group is commutative.

UU

τ6

ªª

___________________________ •

•

•

•

•

•

•

•

•

•

•

•

t6 // •

•

•

•

Pattern 7. There is a shortest translation vector Transt7 , a horizontal reflection τ7 and a
vertical reflection σ7 in lines that meet at a point marked below with •. The • points are whole
multiples kt7 apart, while the × points are translated by (k +1/2)t7 from them for k ∈ Z. The
composition

ρ7 = τ7 ◦ σ7 = σ7 ◦ τ7.

is a half rotation.
There are rotations about the points marked •,×

Transkt7 ◦ρ7 (k ∈ Z),

and reflections in vertical lines through the points •,×
Transkt7 ◦σ7 = Trans(k+1)t7 ◦ρ7 (k ∈ Z),

There are also glide reflections

τ7 ◦ Trans`t7 = Trans`t7 ◦τ7 (` ∈ Z).
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τ7 commutes with every other symmetry. However, the symmetry group here is not commuta-
tive, and indeed contains a dihedral group generated by

α = Transt7 , β = ρ7.

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

tt
σ7

**

TT

τ7

­­

• ______________________ × • × t7 //• × •

8. Wallpaper patterns and their symmetry groups

A wallpaper pattern in the plane is a subsetW ⊆ R2 whose group of translational symmetries
Trans(2)W has two linearly independent generators u,v, so

(2.2) Trans(2)W = {Transmu+nv : m,n ∈ Z} = 〈Transu, Transv〉 ,
with neither of u and v being a multiple of the other. This means that the angle between them
satisfies the pair of inequalities

0 < cos−1 u · v
|u| |v| < π

uO

))RRRRRRRRRRRRRRRR

v

77oooooooooooooooooooo

or equivalently

−1 <
u · v
|u| |v| < 1.

The set of points
spanZ(u,v) = {mu + nv : m,n ∈ Z}

is called the lattice spanned by the vectors u,v and it forms a commutative group under addition.
In the situation where Equation (2.2) holds we have

Trans(2)W = {Transt : t ∈ spanZ(u,v)}
and call spanZ(u,v) the translation lattice of W. Examples of all the basic types of lattices that
occur are shown in Figures 2.2–2.6.

We will discuss plane patterns making use of their translation lattices. First we remark that
if the symmetry group of a plane pattern W contains the group of translations

〈Transu,Transv〉 = {(mu + nv | 0) : m,n ∈ Z}.
then given any point W with position vector w ∈ W, each of the points

w + mu + nv (m,n ∈ Z)
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Figure 2.2. Square lattice
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Figure 2.3. Rectangular lattice

is in W. If Euc(2)W,w 6 Euc(2)W is the symmetry subgroup fixing the point W and if Wm,n is
the point with position vector w + mu + mv for some m,n ∈ Z, then

Euc(2)W,Wm,n = H∗ Euc(2)W,w,
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Figure 2.4. Centred rectangular lattice
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Figure 2.5. Parallelogram lattice

where H = Transmu+nv. So to understand the symmetries of W we can confine attention to a
fundamental region of form

u
W

))RRRRRRRRRRRRRRRR

v

77oooooooooooooooooooo u + v W ′
00bbbbbbbbbbbbbbbb

with W at one of the vertices where W ′ has position vector w + u + v; this is the subset

{w + su + tv : 0 6 s < 1, 0 6 t < 1} ⊆ R2.

An alternative is the fundamental region centred at W ,

{w + su + tv : −1/2 6 s < 1/2, −1/2 6 t < 1/2} ⊆ R2.
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Figure 2.6. Hexagonal lattice

(1/2)u

W

))RRRRRRRR (1/2)v
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Such a fundamental region F is useful because the position vector p every point in the plane
can be uniquely expressed in the form

p = p′ + mu + nv

for some point p′ ∈ F and m,n ∈ Z. This allows us to tile the plane with copies of a fig-
ure located within a fundamental region. The square lattice design of Figure 2.7 is obtained

by translating (using vectors mu + nv for (m,n ∈ Z)) the pattern ♣ ♦
♥ ♠ contained in the

fundamental region
{su + tv : −1/2 6 s < 1/2, −1/2 6 t < 1/2}

to tile the whole plane.
Given a wallpaper pattern W with translation lattice spanZ(u,v), associated with a point

P in the is the subgroup Euc(2)W,P 6 Euc(2)W of symmetries that fix P . In particular, when
P = O, we can consider

O(2)W = Euc(2)W,O ∩O(2) 6 O(2),
called the holohedry subgroup of W. If P ∈ W the point group of P in W is the subgroup

O(2)W,P = {(A | 0) ∈ O(2) : (A | t) ∈ Euc(2)W,P for some t ∈ R2} 6 O(2).

Note that if (A | t) ∈ Euc(2)W it is not necessarily true that (A | 0) ∈ Euc(2)W . The point
group of W is

O(2)W = {(A | 0) : (A | t) ∈ Euc(2)W for some t ∈ R2} 6 O(2).
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Figure 2.7. Square lattice pattern obtained from a fundamental region

If there is a point P for which O(2)W,P 6 Euc(2)W then W is called symmomorphic.
We now describe the seventeen distinct wallpaper patterns up to similarity of their symmetry

groups; examples of each type are shown in Figures 2.8–2.24. There is a standard notation used
to describe these and names such as ‘pm’ will be used to allow interested readers to pursue the
details in books and other sources.
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Figure 2.8. p1

Pattern p1. The symmetry group of the fundamental region here is trivial, so the holohedry
group is {I}. The full symmetry group is given by the translation lattice,

{I | mu + nv : m,n ∈ Z}.
Pattern p2. The fundamental region has a half rotation symmetry, so the holohedry group

is
{(I | 0), (−I | 0)}.

The full symmetry group is

{(I | mu + nv) : m,n ∈ Z} ∪ {(−I | mu + nv) : m,n ∈ Z}
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Figure 2.9. p2
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Figure 2.10. pm
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Figure 2.11. pg

which consists of the translations together with half rotations about the points

mu + nv, (m + 1/2)u + nv, mu + (n + 1/2)v, (m + 1/2)u + (n + 1/2)v (m,n ∈ Z).
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Figure 2.12. pmm
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Figure 2.13. pgm
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Figure 2.14. p2g

Pattern pm. The fundamental region has a reflection in the x-axis, so the holohedry group
is

{(I | 0), (Sx | 0)},
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Figure 2.16. cmm

where Sx =
[
1 0
0 −1

]
. The full symmetry group

{(I | mu + nv) : m,n ∈ Z} ∪ {(Sx | mu + nv) : m,n ∈ Z}
consists of translations and glide reflections in each of the horizontal lines

{tu + nv : t ∈ R}, {tu + (n + 1/2)v : t ∈ R} (n ∈ Z).

Pattern pg. The fundamental region has no reflections or non-trivial rotations, but there
are glide reflections in the y-axis with Seitz symbols of form (Sy | (n + (1/2))v) where Sy =[−1 0

0 1

]
and n ∈ Z. The holohedry group is trivial and the full symmetry group is

{(I | mu + nv) : m, n ∈ Z} ∪ {(Sy | mu + (n + (1/2))v) : m,n ∈ Z}
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Figure 2.17. p4
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Figure 2.18. p4m

which consists of translations together with glide reflections in the vertical lines

{mu + tv : t ∈ R}, {(m + 1/2)u + tv : t ∈ R} (m ∈ Z).

Pattern pmm. The fundamental region has reflection symmetries in the x and y-axes with
Seitz symbols (Sx | 0) and (Sy | 0). These compose to give the half rotation (−I | 0). So the
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Figure 2.20. p3

holohedry group is the dihedral group D4 and the full symmetry group is

{(I | mu + nv) : m, n ∈ Z} ∪ {(−I | mu + nv) : m,n ∈ Z}
∪ {(Sx | mu + nv) : m,n ∈ Z} ∪ {(Sy | mu + nv) : m,n ∈ Z}

which consists of translations (I | mu+nv), half rotations (−I | mu+nv) and glide reflections
(Sx | mu + nv), (Sy | mu + nv).

Pattern pgm. The fundamental region has a half rotation symmetry so the holohedry
group is

{(I | 0), (−I | 0)}.
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Figure 2.22. p31m

There is a glide reflection in the y-axis (Sy | (1/2)v) which squares to (I | v), and the reflection
(Sx | (1/2)v) in a horizontal line. The full symmetry group is

{(I | mu + nv) : m, n ∈ Z} ∪ {(−I | mu + nv) : m,n ∈ Z}
∪ {(Sy | mu + (n + (1/2))v) : m,n ∈ Z} ∪ {(Sx | mu + (n + (1/2))v) : m,n ∈ Z}.

Pattern p2g. The fundamental region has no reflections but it has a half rotation (−I | 0).
There are glide reflections (Sy | (m+(1/2))u+(n+(1/2))v), (Sx | (m+(1/2))u+(n+(1/2)v)
for m,n ∈ Z. The holohedry group is

{(I | 0), (−I | 0)}.
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Figure 2.23. p6
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Figure 2.24. p6m

The whole symmetry group is

{(I | mu + nv) : m, n ∈ Z} ∪ {(−I | mu + nv) : m,n ∈ Z}
∪ {(Sy | (m + (1/2))u + (n + (1/2))v) : m,n ∈ Z}

∪ {(Sx | (m + (1/2))u + (n + (1/2))v) : m,n ∈ Z}.
Pattern cm. The fundamental region has a reflection (Sx | 0) in the x-axis and the holo-

hedry group is
{(I | 0), (Sx | 0)}.

There are glide reflections (Sx | u) and (Sx | v) in lines parallel to the x-axis and which compose
to give the translation (I | u + v). The whole symmetry group is

{(I | mu + nu) : m,n ∈ Z} ∪ {(Sx | mu + nv) : m,n ∈ Z}.
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Pattern cmm. The fundamental region has reflections in the x and y-axes as well as the
half rotation about the origin. So the holohedry group is

{(I | 0), (−I | 0), (Sx | 0), (Sy | 0)}.
The whole symmetry group is

{(I | mu + nv) : m, n ∈ Z} ∪ {(−I | mu + nv) : m,n ∈ Z}
∪ {(Sy | mu + nv) : m,n ∈ Z} ∪ {(Sx | mu + nv) : m,n ∈ Z}.

Pattern p4. The fundamental region has rotations through ±π/2 and a half rotation but
no reflections. The holohedry group is

{(I | 0), (−I | 0), (R1/4 | 0), (−R1/4 | 0)},

where R1/4 =
[
0 −1
1 0

]
. The full symmetry group is

{(I | mu + nu) : m,n ∈ Z} ∪ {(−I | mu + nu) : m,n ∈ Z}
∪ {(R1/4 | mu + nu) : m,n ∈ Z} ∪ {(−R1/4 | mu + nu) : m,n ∈ Z}.

Pattern p4m. The fundamental region has rotations through ±π/2 and a half rotation as
well as reflections in the x and y-axes and reflections in the diagonals. The holohedry group is
a dihedral group D8,

{(I | 0), (−I | 0), (R1/4 | 0), (−R1/4 | 0)} ∪ {(Sx | 0), (Sy | 0), (R1/4Sx | 0), (R1/4Sy | 0)},

where R1/4 =
[
0 −1
1 0

]
. The full symmetry group is

{(I | mu + nu) : m,n ∈ Z} ∪ {(−I | mu + nu) : m,n ∈ Z}
∪ {(R1/4 | mu + nu) : m,n ∈ Z} ∪ {(−R1/4 | mu + nu) : m,n ∈ Z}
∪ {(Sx | mu + nu) : m,n ∈ Z} ∪ {(−Sx | mu + nu) : m, n ∈ Z}

∪ {(R1/4Sx | mu + nu) : m,n ∈ Z} ∪ {(−R1/4Sx | mu + nu) : m,n ∈ Z}
∪ {(R1/4Sx | mu + nu) : m,n ∈ Z} ∪ {(−R1/4Sx | mu + nu) : m,n ∈ Z}

∪ {(Sy | mu + nu) : m,n ∈ Z} ∪ {(−Sy | mu + nu) : m,n ∈ Z}
∪ {(R1/4Sy | mu + nu) : m,n ∈ Z} ∪ {(−R1/4Sy | mu + nu) : m,n ∈ Z}

∪ {(R1/4Sy | mu + nu) : m,n ∈ Z} ∪ {(−R1/4Sy | mu + nu) : m,n ∈ Z}.

Pattern p4g. The fundamental region has two quarter and a half rotation about the origin,
but no reflections. So the holohedry group is

{(I | 0), (−I | 0), (R1/4 | 0), (R−1/4 | 0)}.
There is also the glide reflection (Sx | (1/2)u + v) whose square is (Sx | (1/2)u + v)2 = (I | u).
The whole symmetry group is

{(I | mu + nv) : m, n ∈ Z} ∪ {(−I | mu + nv) : m,n ∈ Z}
∪ {(R1/4 | mu + nv) : m,n ∈ Z} ∪ {(−R1/4 | mu + nv) : m,n ∈ Z}

∪ {(Sx | (m + (1/2))u + nv) : m,n ∈ Z} ∪ {(Sy | (m + (1/2))u + nv) : m,n ∈ Z}
∪ {(R1/4Sx | mu + (n + (1/2))v) : m,n ∈ Z} ∪ {(R1/4Sy | mu + (n + (1/2)v) : m,n ∈ Z}.

Here the first 4 subsets consist of rotations while the last 4 consists of glide reflections.
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Pattern p3. The fundamental region has no non-trivial symmetries, but there are rota-
tional symmetries (R1/3 | 0) and (R−1/3 | 0) about the origin which is at the centre of a triangle,

where R1/3 =
[ −1/2 −√3/2√

3/2 −1/2

]
. The holohedry group is

{(I | 0), (R1/3 | 0), (R−1/3 | 0)},
while the full symmetry group consists of translations and rotations,

{(I | mu + nu) : m, n ∈ Z} ∪ {(R1/3 | mu + nu) : m,n ∈ Z} ∪ {(R−1/3 | mu + nu) : m,n ∈ Z}.

Pattern p3m1. The fundamental region has no non-trivial symmetries, but there are
rotational symmetries (R1/3 | 0) and (R−1/3 | 0) about the origin which is at the centre of a

triangle, where R1/3 =
[ −1/2 −√3/2√

3/2 −1/2

]
. There is also a reflection symmetry (Sy | 0) in the

y-axis which has the effect

(Sy | 0)u = −u, (Sy | 0)v = −u + v.

The holohedry group is the dihedral group

{(I | 0), (R1/3 | 0), (R−1/3 | 0)} ∪ {(Sy | 0), (R1/3Sy | 0), (R−1/3Sy | 0)},

where the last 3 symmetries are reflections in the 3 legs of a qqq MMM symbol. The full symmetry
group consists of translations, rotations and glide reflections,

{(I | mu+ nu) : m,n ∈ Z}∪ {(R1/3 | mu+ nu) : m,n ∈ Z}∪ {(R−1/3 | mu+ nu) : m,n ∈ Z}
∪ {(Sy | mu + nu) : m, n ∈ Z} ∪ {(SyR1/3 | mu + nu) : m,n ∈ Z}

∪ {(SyR−1/3 | mu + nu) : m,n ∈ Z}.
The centres of rotation are not on the glide reflection axes.

Pattern p31m. The fundamental region has no non-trivial symmetries, but there are
rotational symmetries (R1/3 | 0) and (R−1/3 | 0) about the origin which is at the centre of a

triangle, where R1/3 =
[ −1/2 −√3/2√

3/2 −1/2

]
. There is also a reflection symmetry (Sy | 0) in the

y-axis which has the effect

(Sy | 0)u = −v, (Sy | 0)v = −u.

The holohedry group is again the dihedral group

{(I | 0), (R1/3 | 0), (R−1/3 | 0)} ∪ {(Sy | 0), (R1/3Sy | 0), (R−1/3Sy | 0)},

where the last 3 symmetries are reflections in the 3 legs of a qqq MMM symbol. The full symmetry
group consists of translations, rotations and glide reflections,

{(I | mu+ nu) : m,n ∈ Z}∪ {(R1/3 | mu+ nu) : m,n ∈ Z}∪ {(R−1/3 | mu+ nu) : m,n ∈ Z}
∪ {(Sy | mu + nu) : m, n ∈ Z} ∪ {(SyR1/3 | mu + nu) : m,n ∈ Z}

∪ {(SyR−1/3 | mu + nu) : m,n ∈ Z}.
Some centres of rotation are on glide reflection axes.
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Pattern p6. There are rotational symmetries (R±1/6 | 0), (R±1/3 | 0) and (−I | 0) about

the origin which is at the centre of a hexagon, where R1/6 =
[

1/2 −√3/2√
3/2 1/2

]
. There are no

reflection symmetries. The holohedry group is the cyclic group

{(I | 0), (−I | 0), (R1/3 | 0), (R−1/3 | 0), (R1/6 | 0), (R−1/6 | 0)}.
The full symmetry group consists of translations and rotations,

{(I | mu+ nu) : m,n ∈ Z}∪ {(R1/3 | mu+ nu) : m,n ∈ Z}∪ {(R−1/3 | mu+ nu) : m,n ∈ Z}
∪ {(R1/6 | mu + nu) : m,n ∈ Z} ∪ {(R−1/6 | mu + nu) : m,n ∈ Z}.

Pattern p6m. There are rotational symmetries (R±1/6 | 0), (R±1/3 | 0) and (−I | 0) about

the origin which is at the centre of a hexagon, where R1/6 =
[

1/2 −√3/2√
3/2 1/2

]
. There is also a

reflection symmetry (Sy | 0) in the y-axis which has the effect

(Sy | 0)u = −u, (Sy | 0)v = −u + v.

The holohedry group is the dihedral group

{(I | 0), (−I | 0), (R1/3 | 0), (R−1/3 | 0), (R1/6 | 0), (R−1/6 | 0)}
∪ {(Sy | 0), (−Sy | 0), (SyR1/3 | 0), (SyR−1/3 | 0), (SyR1/6 | 0), (SyR−1/6 | 0)}.

The full symmetry group consists of translations, rotations and glide reflections,

{(I | mu+ nu) : m,n ∈ Z}∪ {(R1/3 | mu+ nu) : m,n ∈ Z}∪ {(R−1/3 | mu+ nu) : m,n ∈ Z}
∪ {(R1/6 | mu + nu) : m,n ∈ Z} ∪ {(R−1/6 | mu + nu) : m,n ∈ Z}
∪ {(Sy | mu + nu) : m, n ∈ Z} ∪ {(SyR1/3 | mu + nu) : m,n ∈ Z}

∪ {(SyR−1/3 | mu + nu) : m,n ∈ Z} ∪ {(SyR1/6 | mu + nu) : m,n ∈ Z}
∪ {(SyR−1/6 | mu + nu) : m,n ∈ Z}.

Exercises on Chapter 2

2.1. In this question, all permutations are elements of the symmetric group S6.
(a) Determine the following, in each case expressing the answer in a similar form:

(
1 2 3 4 5 6
2 3 1 5 6 4

) (
1 2 3 4 5 6
6 4 2 3 1 5

)
,

(
1 2 3 4 5 6
2 3 1 5 6 4

)−1

.

(b) Express the permutation
(

1 2 3 4 5 6
2 3 1 5 6 4

)
as a product of disjoint cycles.

(c) Determine sgn
(

1 2 3 4 5 6
2 3 1 5 6 4

)
.

2.2. Calculate the following products in the symmetric group S6, giving the answers as products
of disjoint cycles:

(2 3 5 6)(1 6 2 3), (2 3)(1 6 2)(5 6 2 4), (5 6 2 4)−1.

51



2.3. (a) Consider a regular pentagon P with vertices A, B,C, D,E appearing in anti-clockwise
order around its centre which is at the origin O.
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Find all ten symmetries of P, describing them geometrically and in permutation notation.
(b) Work out the effect of the two possible compositions of reflection in the line OA with
reflection in the line OC.
(c) Work out the effect of the two possible compositions of reflection in the line OA with rotation
through 3/5 of a turn anti-clockwise.

2.4. Determine the symmetry groups of each of the following plane figures.
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2.5. (a) Let S ⊆ R2 be a non-empty subset and P ∈ S any point in S. Show that

ΓS,P = {α ∈ Euc(2)S : α(P ) = P} ⊆ Euc(2)S

is a subgroup of Euc(2)S .
(b) When S is a square with vertices A,B,C, D, determine ΓS,D. [See Example 2.24.]
(c) When S is a rectangle with vertices A,B,C, D and sides |AB| = |CD| = 2|AD| = 2|BC|,
determine ΓS,D. [See Example 2.25 in the Notes.]

2.6. Let
T = {(x, y) ∈ R2 : x2 + y2 = 1} ⊆ R2

be the unit circle. Determine the symmetry subgroup Euc(2)T. Does Euc(2)T have any finite
subgroups?

2.7. If H : R2 −→ R2 is a similarity transformation, show that H preserves angles between
lines.

2.8. Show that the set of all similarity transformations R2 −→ R2 forms a group (Σ(2), ◦)
under composition and that Euc(2) 6 Σ(2). Find another interesting subgroup of Σ(2).

2.9. Let L1 and L2 be two lines in the plane. Show that the two reflections in these lines,
ReflL1 and ReflL2 , are similar.

2.10. Let RotC,θ be a non-trivial rotation through angle θ about the point C with position
vector c. If t is a non-zero vector, show that Transt ◦RotC,θ is rotation through θ about the
point C ′ with position vector

c′ = c +
1
2

[
1 − cot(θ/2)

cot(θ/2) 1

]
t.
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2.11. Consider the cyclic subgroup Γ 6 Euc(2) generated by the isometry γ = (C | w), where

C =
[ −1/2

√
3/2

−√3/2 −1/2

]
, w =

[−√3/2
3/2

]
.

(a) Show that Γ has order 3 and list its elements.
(b) Use the idea in the proof of Theorem 2.32 to find a fixed point of Γ. Is it the only one?
(c) Find a suitable similarity transformation ψ for which ψ∗Γ 6 O(2).

2.12. Consider the finite subgroup Γ 6 Euc(2) of order 8 generated by the isometries α = (A | u)
and β = (B | v), where

A =
[
0 −1
1 0

]
, u =

[
1
1

]
, B =

[
0 1
1 0

]
, v =

[−1
1

]
.

(a) By considering enough isometries of the form αrβs, find the Seitz symbols of all 8 elements
of Γ.
(b) Use the idea in the proof of Theorem 2.32 to find a fixed point of Γ. Is it the only one?
(c) Find a suitable similarity transformation ϕ for which ϕ∗Γ 6 O(2).

2.13. Let Γ 6 Euc(2) be a subgroup containing the isometries F, G : R2 −→ R2.
(a) If F and G are reflections in two distinct parallel lines, show that there is no point fixed by
all the elements of Γ. Deduce that Γ is infinite.
(b) If F is the reflection in a line L and G is a non-trivial rotation about a point p not on L,
show that Γ is infinite.

2.14. Let Γ 6 Euc(2) be a subgroup containing the isometries F,G : R2 −→ R2 and suppose
that these generate Γ in the sense that every element of Γ is obtained by repeatedly composing
powers of F and G. If a point p is fixed by both F and G, show that it is fixed by every element
of Γ.

2.15. Classify each of the frieze patterns in Figure 2.25 as one of the 7 types.
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Figure 2.25. Examples of freize patterns

2.16. Discuss the symmetry groups of the following wallpaper patterns using the indicated
vectors u and v as generators for the translation subgroup and where the dashed lines indicate
a fundamental region. Classify each pattern as one of the 17 basic types.
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CHAPTER 3

Isometries in 3 dimensions

1. Some 3-dimensional vector geometry

We will use similar notation to that of Chapter 1, denoting the position vector of a point P
in 3-space p, etc. We will also identify P with its position vector p ∈ R3 and the position vector

(x, y, z) with the column vector




x
y
z


. We will often use the standard unit vectors i = (1, 0, 0),

j = (0, 1, 0), k = (0, 0, 1).
The scalar product of the vectors u = (u1, u2, u3) and v = (v1, v2, v3) is the real number

u · v = u1v1 + v2u2 + v3u3 ∈ R.

The length of v is the non-negative real number

|v| = √
v · v =

√
v2
1 + v2

2 + v2
3.

The angle between u and v is
cos−1 u · v

|u| |v| ∈ [0, π].

In place of lines in R2 we now have planes in R3. Such a plane P is specified by an implicit
equation of the form

ax + by + cz = d,

where (a, b, c) 6= 0. Thus we have

(3.1a) P = {(x, y, z) ∈ R3 : ax + by + cz = d}.
It is worth remarking that the vector (a, b, c) is perpendicular to P. An alternative way to write
the implicit equation is

(a, b, c) · (x, y, z) = d,

so we also have

(3.1b) P = {x ∈ R3 : (a, b, c) · x = d}.
To determine d it suffices to know any point x0 on P, then d = (a, b, c) · x0.

Suppose that the vectors u and v are parallel to P and so perpendicular to (a, b, c) and also
that neither is a scalar multiple of the other (hence they are linearly independent) then we can
use the parametric equation

x = su + tv + x0,

where s, t ∈ R and x0 is some point on P. It is often useful to take u and v to be unit vectors.
Then

(3.1c) P = {su + tv + x0 ∈ R3 : s, t ∈ R}.
Given this parametric form for the plane P, it is possible to find a vector normal to it using the
vector or cross product of u = (u1, u2, u3) and v = (v1, v2, v3), which is the vector

u× v = (D1, D2, D3),

for which

D1 =
∣∣∣∣
u2 u3

v2 v3

∣∣∣∣ = u2v3 − u3v2, D2 = −
∣∣∣∣
u1 u3

v1 v3

∣∣∣∣ = u3v1 − u1v3, D3 =
∣∣∣∣
u1 u2

v1 v2

∣∣∣∣ = u1v2 − u2v1.
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A useful way of writing the cross product involves 3× 3 determinants which are defined by

det




a11 a12 a13

a21 a22 a23

a31 a32 a33


 =

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= a11

∣∣∣∣
a21 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣
a21 a23

a31 a33

∣∣∣∣ + a13

∣∣∣∣
a21 a22

a31 a32

∣∣∣∣ .

(3.2a)

In fact, we can expand along any row, using the alternative but equivalent formulæ

det




a11 a12 a13

a21 a22 a23

a31 a32 a33


 =

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= −a21

∣∣∣∣
a12 a13

a32 a33

∣∣∣∣ + a22

∣∣∣∣
a11 a13

a31 a33

∣∣∣∣− a23

∣∣∣∣
a11 a12

a21 a22

∣∣∣∣ ,

(3.2b)

det




a11 a12 a13

a21 a22 a23

a31 a32 a33


 =

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= a31

∣∣∣∣
a12 a13

a22 a23

∣∣∣∣− a32

∣∣∣∣
a11 a13

a21 a23

∣∣∣∣ + a33

∣∣∣∣
a11 a12

a21 a22

∣∣∣∣ .

(3.2c)

Note the pattern of signs appearing in front of the terms aij

∣∣∣∣
∗ ∗

∗
∣∣∣∣ which can be remembered

from 


+ − +
− + −
+ − +


 .

Then

(3.3) u× v =

∣∣∣∣∣∣

u1 u2 u3

v1 v2 v3

i j k

∣∣∣∣∣∣
=

∣∣∣∣
u2 u3

v2 v3

∣∣∣∣ i−
∣∣∣∣
u1 u3

v1 v3

∣∣∣∣ j +
∣∣∣∣
u1 u2

v1 v2

∣∣∣∣k = D1i + D2j + D3k.

3.1. Proposition. The vector product has the following properties. For u,v,w ∈ R3 and
t ∈ R,

u× (v + w) = u× v + u×w,(a)

(tu)× v = t(u× v),(b)

v × u = −u× v,(c)

u · (u× v) = 0,(d)

u× v 6= 0 if u and v are linearly independent.(e)

3.2. Corollary. u× v is normal to u and v.

Proof. This follows from (c) and (d). ¤

Thus for the above plane P, u × v is a vector normal to P and so we obtain the implicit
equation

(u× v) · x = (u× v) · x0,

where x0 is any known point on P.
Given an implicit equation for a plane of the form

w · x = d

together with a non-zero vector u parallel to P, we can use the vector product to find another
vector parallel to P, namely

v = w × u.

The vectors u,v,w (taken in that order) form a right handed system in that they have the
same orientation as the first finger, second finger and thumb of a right hand, or equivalently
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are oriented like the standard basis vectors i, j,k or the positive x, y and z-axes. We also have
the formulæ

w = u× v, u = v ×w.

Each of the sequences v,w,u and w,u,v is a right handed system, while the sequences u,w,v,
v,u,w and w,v,u are all left handed. If the vectors u,v,w are mutually normal unit vectors
they are said to form a right or left handed orthonormal system. Here is a useful result for
checking whether a system of mutually normal unit vectors is right or left handed.

3.3. Proposition. A sequence of mutually normal unit vectors u,v,w is a right handed
orthonormal system if and only if ∣∣∣∣∣∣

u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣
= 1.

Proof. This follows from the fact that

(3.4) (u× v) ·w =

∣∣∣∣∣∣

u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣
.

This quantity is often called the vector triple product of u,v,w and written [u,v,w]. ¤

3.4. Example. Find implicit and parametric equations for the plane P containing the points
with position vectors p = (1, 0, 1), q = (1, 1, 1) and r = (0, 1, 0).

Solution. Let us begin with a parametric equation. Notice that the vectors

u = q− p = (0, 1, 0), v = r− p = (−1, 1,−1)

are parallel to P and linearly independent since neither is a scalar multiple of the other. Thus
a parametric equation is

x = s(0, 1, 0) + t(−1, 1,−1) + (1, 0, 1) = (1− t, s + t, 1− t) (s, t ∈ R).

To obtain an implicit equation we need a vector normal to P. For this we can use

w = u× v = (−1, 0, 1).

This gives the equation
(−1, 0, 1) · x = (−1, 0, 1) · (1, 0, 1) = 0

since p = (1, 0, 1) is in P. On writing x = (x, y, z) this becomes

−x + z = 0.

In this example we could start with w = (−1, 0, 1) and u = (0, 1, 0) then produce a second
vector parallel to P, namely

w × u = (−1, 0, 1)× (0, 1, 0) = (1, 0,−1).

These three vectors are mutually perpendicular. ¤

2. Isometries of 3-dimensional space

3.5. Definition. An isometry of R3 is a distance preserving function F : R3 −→ R3.

Here, the phrase distance preserving means that for points P and Q with position vectors
p and q,

|F (P )F (Q)| = |PQ|, i.e., |F (p)− F (q)| = |p− q|.
3.6. Proposition. An isometry F : R3 −→ R3 preserves angles between lines and vectors.

We have a similar result to a familiar one for R2.
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3.7. Theorem. Every isometry F : R3 −→ R3 has the form

F (x) = Ax + t,

where A is a 3 × 3 real orthogonal matrix and t ∈ R3. Furthemore, A and t are uniquely
detrmined by F .

We will use the Seitz symbol (A | t) to denote the isometry R3 −→ R3 defined by

x 7−→ Ax + t.

As in the 2-dimensional situation, a 3×3 real orthogonal matrix A has determinant detA = ±1.
There are several types of isometries in R3, some very different from those occurring in R2.

Translations. These have Seitz symbols of form (I3 | t) and behave in similar ways to
translations of R2.

Reflections. In R3, the reflection in a plane P has Seitz symbol of the form (S | 2w) where
w is the position vector of a point on P and is perpendicular to this plane, while the orthogonal
matrix S has the effect

Sw = −w, Su = u for u a vector parallel to P.

Such an orthogonal matrix has determinant detS = −1.

Glide reflections. The Seitz symbol of a glide reflection in a plane P has the form

(S | 2w + u) = (I3 | u)(S | 2w),

where (S | 2w) is reflection in the plane P containing the point with position vector w which
is also perpendicular to P, while u is parallel to P. This is very similar to the situation with a
glide reflection in a line in R2. We will usually think of reflections as glide reflections.

Rotations. The Seitz symbol of a rotation about a line has Seitz symbol of the form (R | t)
where R is orthogonal and detR = 1. Using ideas about eigenvalues and eigenvectors it can
be shown that for such a matrix, either R = I3 or (R | 0) represents a rotation about the line
through the origin

L1 = {x ∈ R3 : Rx = x}.
We usually refer to L1 as the axis of rotation of (R | 0) or even of R.

If we choose a unit vector v1 ∈ L1 and any non-zero vector v2 perpendicular to L1, then
v3 = v1 × v2 is perpendicular to L1 and in fact

v3 · v2 = 0 = v3 · v1, |v3| = |v2|.
In practise we usually take |v3| = |v2| = 1. These three vectors form a right handed orthonormal
basis of R3 and every vector x ∈ R3 can be uniquely expressed as

x = x′1v1 + x′2v2 + x′3v3

where
x′1 = v1 · x, x′2 = v2 · x, x′3 = v3 · x.

The effect of the rotation (R | 0) on an arbitrary vector is given by

(R | 0)(x′1v1 + x′2v2 + x′3v3) = x′1v1 + x′2(cos θv2 + sin θv3) + x′3(− sin θv2 + cos θv3)(3.5)

= x′1v1 + (x′2 cos θ − x′3 sin θ)v2 + (x′2 sin θ + x′3 cos θ)v3

for some angle θ ∈ R. A convenient way to denote this expressions is by

(3.6) (R | 0)(x′1v1 + x′2v2 + x′3v3) =
[
v1 v2 v3

]



1 0 0
0 cos θ − sin θ
0 sin θ cos θ







x′1
x′2
x′3


 ,
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where
[
v1 v2 v3

]
is really an example of a block form matrix that some students may have

met in a course on Linear Algebra. The matrix in the middle on the right hand side contains
the familiar 2× 2 block [

cos θ − sin θ
sin θ cos θ

]

which represents a rotation through θ in the plane spanned by v2 and v3, so θ is the angle of
rotation about L1.

The more general type of rotation is about a line L′ parallel to a line L1 through the origin.
In this situation, the Seitz symbol (R | t) has translation vector t perpendicular to L1 and L′.
This means that t is in the plane P and so it can be expressed as

t = t2v2 + t3v3.

Then the point in P with position vector c = c2v2 + c3v3 satisfying

(R | t)c = c

is found by solving the equation
Rc + t = c,

or equivalently
(I3 −R)c = t.

In matrix form this becomes

[
v1 v2 v3

]



0 0 0
0 1− cos θ sin θ
0 − sin θ 1− cos θ







0
c2

c3


 =

[
v1 v2 v3

]



0
t2
t3


 ,

or equivalently, [
1− cos θ sin θ
− sin θ 1− cos θ

] [
c2

c3

]
=

[
t2
t3

]
.

Since

det
[
1− cos θ sin θ
− sin θ 1− cos θ

]
= (1− cos θ)2 + sin2 θ = 2(1− cos θ),

this determinant is non-zero if R 6= I3, and the equation then has the unique solution
[
c2

c3

]
=

[
1− cos θ sin θ
− sin θ 1− cos θ

]−1 [
t2
t3

]
,

using essentially the same algebra in the 2-dimensional situation of rotation about a point. The
vector c is the position vector of a point on the axis of rotation L′.

Screw rotations. There are some new types of isometry in R3 which have no analogues
in R2. The first of these is screw rotation. Such an isometry has Seitz symbol (R | t) where
detR = 1 and we will write

t = t′ + w,

with t′ normal to the axis of rotation L of R and w parallel to it. Then

(R | t) = (R | t′ + w) = (I3 | w)(R | t′),
which represents a rotation about a line parallel to L followed by a translation parallel to L.

If w 6= 0, we usually think of the direction of w as that of a forward pointing screw and
measure the angle of rotation as positive if the plane turns like a right handed screw driver.
This means that if we assume that the unit vector ŵ together with a pair of normal unit vectors
û, v̂ perpendicular to L form a right handed system û, v̂, ŵ, then the angle of rotation θ is given
by

Rû = cos θû + sin θv̂, Rv̂ = − sin θû + cos θv̂.
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3.8. Example. Describe the screw rotation whose Seitz symbol is (R | t) where

R =



√

3/2 0 1/2
0 1 0

−1/2 0
√

3/2


 , t = (0, 7, 0),

giving its angle and axis of rotation and the translation parallel to the latter.

Solution. Notice that

R =




cosπ/6 0 sinπ/6
0 1 0

− sinπ/6 0 cosπ/6


 , detR = 1,

so this matrix represents a rotation. First we find the axis of rotation of the matrix R. Clearly
this is the y-axis, so let us take the unit vector j = (0, 1, 0) parallel to it. Now the unit vectors
i = (1, 0, 0) and k = (0, 0, 1) are normal and also normal to j. We have to take a right handed
system made up from ±i,±j,±k. The system i,k, j is left handed, but since i × (−k) = j, we
can replace k by −k to get the right handed orthonormal system i,−k, j. For this we have

Ri = cosπ/6i + sin π/6(−k), R(−k) = − sinπ/6i + cos π/6(−k).

Hence R represents a rotation through π/6 about the y-axis where we measure positive angles
so that i turns towards −k. The translation vector t = (0, 7, 0) = 7j points in the same direction
as j. ¤

Screw reflections. A screw reflection has Seitz symbol of the form (A | t) where A is
orthogonal and detA = −1. Then there is a unit vector v1 for which

Av1 = −v1,

and a unit vector v2 normal to v1 together with the unit vector v3 = v1 × v2 for which

Av2 = cos θv2 + sin θv3, Av3 = − sin θv2 + cos θv3.

information can be rewritten in the form

[
Av1 Av2 Av3

]
=

[
v1 v2 v3

]


−1 0 0

0 cos θ − sin θ
0 sin θ cos θ




Geometrically this represents the composition of reflection in the plane perpendicular to v1

composed with rotation about the line through the origin parallel to v1.
If we now write

t = u + 2w

where w is parallel to v1 and u is perpendicular to v1, then (A | t) represents the composition
of reflection in the plane

v1 · x = v1 ·w
and rotation about the axis parallel to v1 and passing through the point with position vector c
and satisfying the two conditions

v1 · c = 0, (I −A)c = u.

3.9. Definition. Suppose we are considering a Seitz symbol (A | 0) or equivalently the
orthogonal matrix A 6= I3. If detA = 1, then the line L through the origin whose vectors are
fixed by A is called the line of rotation of A. On the other hand, if detA = −1, then the plane
P through the origin for which points not in it are reflected through it by A is called the plane
of reflection of A. We can find this by first determining a vector perpendicular to P by solving
the equation Av = −v, then taking the equation v · x = 0 to define P.
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3. The Euclidean group of R3

The set of all isometries R3 −→ R3 is denoted Euc(3) and forms the 3-dimensional Eucli-
dean group (Euc(3), ◦) under composition of functions. Much of the general theory for Euc(2)
discussed in Chapter 1 carries over to Euc(3) with obvious minor modifications. In particular,
the following generalization of Theorem 2.32 is true.

3.10. Theorem. Let Γ 6 Euc(3) be a finite subgroup. Then there is a point of R2 fixed by
every element of Γ.

There are obvious notions of similarity generalizing those for Euc(2) to Euc(3).
We define the 3× 3 orthogonal group to be

O(3) = {(A | 0) : AT A = I3} 6 Euc(3)

and the 3× 3 special orthogonal group to be

SO(3) = {(A | 0) : AT A = I3, detA = 1} 6 O(3) 6 Euc(3).

Notice that we can view Euc(2) as a subgroup of Euc(3), i.e., Euc(2) 6 Euc(3), by thinking
of Euc(2) as consisting of isometries of R3 that fix all the points on the z-axis. Thus

Euc(2) =



(A | (t1, t2, 0)) : A =




a11 a12 0
a21 a22 0
0 0 1






 6 Euc(3).

In particular we have O(2) 6 O(3) and SO(2) 6 SO(3).
As far as the finite subgroups of Euc(3) are concerned, the following result classifies them

up to similarity.

3.11. Proposition. Let Γ 6 Euc(3) be a finite subgroup. Then Γ is similar to either a
subgroup of O(2) or to the symmetry group of one of the Platonic solids.

The Platonic solids are the five regular solids, i.e., the tetrahedron, the cube, the octahedron,
the icosahedron and the dodecahedron. These have the following numbers of vertices, edges and
faces.

vertices edges faces edges on each face
Tetrahedron 4 6 4 3

Cube 8 12 6 4
Octahedron 6 12 8 3
Icosahedron 12 30 20 3

Dodecahedron 20 30 12 5

For an interactive introduction to these see the Mathworld web page

http://mathworld.wolfram.com/topics/PlatonicSolids.html

and also

http://www.venuemedia.com/mediaband/collins/cube.html
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Exercises on Chapter 3

3.1. In R3, find implicit and parametric forms for the plane P which contains the three points
A(1, 1,−2), B(0, 2, 1), C(1,−1, 2).

3.2. For each of the following matrices, show that it represents an isometry of R3 which fixes
the origin and decide whether it represents a rotation about a line or a reflection in a plane. In
each case, find the line of rotation or plane of reflection.

(a)




1/
√

3 1/
√

3 1/
√

3
1/
√

6 1/
√

6 −2/
√

6
1/
√

2 −1/
√

2 0


 , (b)




1/
√

3 1/
√

3 −1/
√

3
1/
√

6 1/
√

6 2/
√

6
1/
√

2 −1/
√

2 0


 .

3.3. If S =




0 1 0
0 0 −1
1 0 0


 and t = (1, 0, 1), show that the isometry of R3 whose Seitz symbol is

(S | t) represents a glide reflection. Find the reflecting plane and the translation parallel to it.

3.4. Show that the isometry of R3 whose Seitz symbol is (R | t) represents a screw rotation,
where

R =



−1/2 0 −√3/2

0 1 0√
3/2 0 −1/2


 , t = (1, 1, 0).

Find the angle and axis of rotation and the translation parallel to it.
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