
Front. Phys. 12(2), 121201 (2017)
DOI 10.1007/s11467-016-0583-4

Review article

A survey of dark matter and related topics in cosmology
Bing-Lin Young

Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
Email: young@iastate.edu

Received April 14, 2016; accepted May 2, 2016

This article presents an extensive review of the status of the search of the dark matter. The first eight
sections are devoted to topics in dark matter and its experimental searches, and the rest to selected
topics in astrophysics and cosmology, which are intended to supply some of the needed background for
students in particle physics. Sections 9 and 13 are introductory cosmology. The three astrophysical
topics, Big Bang nucleosynthesis Section 10, Boltzmann transport equation and freeze out of massive
particles Section 11, and CMB anisotropy Section 12 can all be studied in analytical approaches when
reasonable approximations are made. Their original analytically forms, to which this article follows
very closely, were given by particle physicists. Dark matter is an evolving subject requiring timely
update to stay current. Hence a review of such a subject matter would undoubtedly have something
wanting when it appears in print. It is hoped that this review can form a humble basis for those
graduate students who would like to pursue the subject of dark matter. The reader can use the
extensive table of contents to see in some details the materials covered in the article.
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Part I
A survey of dark matter

1 Introduction

“Physics thrives on crisis. We all recall the great
progress made while finding a way out of the various
crises of the past.” – Steven Weinberg [1]

“The natural world does not recognize the artificial
separation of academia into traditional disciplines.”

– David Gross [2]
“The studies of the very large (cosmology) and the very

small (elementary particles) are coming together.” 1)

– David Schramm

1)I was not able to find the original source of this quotation
although I have known it for a long time. The closest to a formal
source that I can find is a press release on Dec. 2, 2005, on the inau-
guration symposium of the Kavli Institute for Cosmological Physics
at the University of Chicago, which was also an event in honor of
the memory of the late David Schramm. The news release can
be found in http://www-news.uchicago.edu/releases/05/051202.
newviews.shtml But quotations of this sentence appeared before
this news release. I read it in the literature and then quote this
sentence in my talk given in July 2004 at the International Wor-
shop/School on Frontiers on High Energy Physics, which can be
found at the ITP download website at “Download/HEP_2004_
7_2-10/yangbl/Underground2.ppt”.
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“Nowhere is the inherent unity of science better illus-
trated than in the interplay between cosmology, the study
of the largest things in the Universe, and particle physics,
the study of the smallest things.” – E. W. Kolb [3]

One of the extraordinary intellectual achievements
in human history is the establishment of the standard
model of quarks and leptons which took place during
the second half of the 20th century. It is an answer to a
question as old as civilization itself: What are the fun-
damental elements of matter of the physical world? The
standard model (SM) gives clear description of the fun-
damental elements of all matter that are observed in ter-
restrial laboratories, and is an exact theory formulated
in a precise mathematical framework to prescribe how
fundamental particles behave. The last critical missing
piece, i.e., the Higgs boson, has been observed in two
LHC experiments [4–7] in 2012.

However, the SM is not perfect. With experimental
inputs required to fix 19 parameters appearing in the
theory, it is designed to represent physics down to 10−17

cm in the length scale or up to several hundreds of GeV
in the energy scale. Both theoretical arguments and ex-
perimental observations indicate that the SM is not the
end of the story line in the description of the microscopic
world. There are problems concerning the theoretical
structure of the SM: the gauge hierarchy problem; the
flavor problem; the mass problem; and the strong CP
problem. It is not clear whether or not all these prob-
lems are originated from a structural problem of the stan-
dard model. Near the end of the last century, the mass
problem is specifically manifested by the discovery of
massive neutrinos. Although finite neutrino mass terms
can be introduced conventionally, in the form of Higgs
terms without a significant modification of the theory,
it makes the SM to appear rather contrived.2) In ad-
dition to this direct manifestation due to massive neu-
trinos, compelling evidences which ascertain that there
are more beyond the SM can be found when one gazes
beyond the microscopic world to look into the very large
scale of the cosmos: The presence of the dark matter and
dark energy. The dark matter and dark energy are now
integral parts of the matter-energy mix that make up the
universe,3) yet they are not required in the successful SM
as we know it.

The SM has been extensively tested in terrestrial lab-
oratories. If our understanding of the fundamental con-

2)In spite of this assertion, the introduction of a set of right-
handed neutrinos and neutrino mass terms in the SM is a viable
phenomenological approach and has been worked out in the liter-
ature.

3)In this work we take the mainstream cosmological view ac-
cepting the existence of dark matter and dark energy. A brief re-
mark will be made at the end of the next chapter on the alternate
paradigm of the modified newtonian dynamics (MOND).

stituents of all matter is complete, then quarks and lep-
tons albeit massive neutrinos, together with other nec-
essary components of the theory, should be all that are
needed for the construction of a theory to study cosmic
phenomena. But it is not the case. Once we go out-
side the terrestrial confinement to study phenomena of
cosmic sizes, like galaxies clusters, we found that quarks,
leptons, gauge bosons, and Higgs boson, the complete list
of the standard model components, are woefully inade-
quate in counting the basic ingredients of the universe.

Another equally consequential milestone has also been
established in the 20th century, based on the study of
the opposite end of the natural world, i.e., the very large
scale universe. The concordance model, or the ΛCDM
Big Bang model, provides the best description of the
universe and its evolution.4) It is the answer to another
set of fundamental questions: What is the essence of
the universe to which we owed our existence, how is it
formed, and what is its eventual fate? This standard
model of cosmology is based on the Einstein field equa-
tion of general relativity in the FLRW metric (see Sec-
tion 9.1), together with the inflationary scenario right
after the Big Bang to give a flat geometry, augmented,
in addition to quarks and leptons, etc., with cold dark
matter and a cosmological constant-like component as
the dark energy. The dark components of the universe
dominates the energy-matter budget of the universe to-
day and even more so in the future, and they are not
contained in the SM of quarks and leptons. Includ-
ing the dark components the ΛCDM model can provide
a satisfactory description of high statistics astrophysics
observations, such as the cosmic microwave background
radiation (CMB), its temperature anisotropy that are
imprinted by the dark components of the universe, etc.
[9]. Assuming the primordial temperature fluctuations
to be adiabatic with a power law spectrum, data on the
temperature alone require a significant amount of non-
baryonic cold dark matter. So the composition of the
universe contains a lot more than what we have been
able to fathom from the study of the microscopic scale
physics by experiments performed on Earth.

Figure 1.1 shows the composition of the universe in
the present epoch and at the last scattering surface when
the universe is 380 000 years old, when the photon was
decoupled from other components of the universe and
able to propagate freely. The composition at the present
epoch shown in the graph on the right comes from obser-
vation, and that of the last scattering surface, shown in
the left, is from theoretical calculation. The difference in
the compositions of the two epoches is due the different
rate of changes of the various matter-energy densities as

4)To maintain a proper perspective, one should keep in mind
the presently known theoretical and observational paradoxes of the
standard cosmological model. See, for example, [8].
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Fig. 1.1 The composition of the universe: The graph on
the right is for today and that on the left is for the last scat-
tering surface where the universe is at the age of 380 000 years
when matter and radiation began to decouple. For more ex-
planation of the figure see the relevant text. The unmodified
graphs, which is based on older data set, is originated from
the 2010 Encyclopedia Britannica which is the last printed
edition of this authoritative English general reference books
after 244 years of printing.

the universe undergoes Hubble expansion. This will be
discussed in Section 9.

Two sets of data of the present epoch, and conse-
quently two sets of results for the last scattering surface,
are presented in Fig. 1.1 to show the rapid progress made
in the observational cosmology. The numbers of smaller
fonts which are also shown to be crossed out by short
light blue lines are the WMAP 5-year data [10], which
is the WMAP third data release made in March, 2008,
incorporated in the 2012 Review of Particle Physics [11]
are: age of the universe 13.75 ± 0.13 Gyr, dark energy
(73± 3)%, dark matter (11.1± 0.6)h−2%, baryonic mat-
ter (4.5±0.3)%, and h = 0.710±0.025 which is the scale
factor for the Hubble expansion rate. They have been su-
perseded by the most recent WMAP 9-year results (4th
data release, January, 2010) [10] and the Planck 2013 re-
sults [12]. The more recent data are given by numbers of
larger fonts. As reflected in the current (2015) Review of
Particle Physics 2014 [13], the updated numbers are: age
of the universe 13.81±0.05 Gyr, dark energy (68.5+1.7−
1.6)%, cold dark matter (11.98±0.261.1)h−2%, ordinary
baryonic matter5) (4.99±0.22)%, and h = 0.673±0.012.

5)The baryonic matter, or ordinary matter, refers to atoms and
their constituents, including the leptons. However, the observed
baryon matter in the forms of luminous galaxies and diffused gas
is less than 1%. Where lying the rest, which is the majority of the
baryon matter, has long been a mystery. However, recent X-ray
observations have found the evidence of this part of the ordinary
matter to be in the form of rarified inter-galaxy hydrogen atoms,
about six per cubic meter. In comparison, in the interstellar space
there are a million atoms per cubic meter. See the Chandra X-ray
Observatory press release on May 11, 2010, [14]. More details can
be found in [15].

Another 0.44% consists of photons and neutrinos.6) The
two data sets are different but agree within 1σ.

From the discussion above we see that about 95% of
the universe consists of energy-matter fields unknown to
the SM. The right panel of Fig. 1.1 shows the composi-
tion of the universe at the time when the radiation and
matter fields are decoupled about thirteen billion years
ago when the universe was 380 000 years after the big
bang. The universe became transparent to photons after
380 000 years. The dark matter, then, was the dominant
component of this early universe and hence should play
an important role already in the evolution of the early
universe, such as the formation of galaxies, etc. To sum-
marize the current status of this fundamental theory, we
quote the WMAP 7-year results released on January 26,
2010 [16]: “WMAP now places 50% tighter limits on the
standard model of cosmology (Cold Dark Matter and a
Cosmological Constant in a flat universe), and there is
no compelling sign of deviations from this model.” And
“WMAP has detected a key signature of inflation.” 7)

Evidences of the existence of dark matter come from
the behavior of galaxies and clusters due to the gravi-
tational effect, as revealed in a variety of astrophysical
observations. The accumulation of evidences show more
and more clearly that a large part of the matter of the
universe is in a nonluminous form which may also be
very weakly interacting with elements of the SM, so as
to be able to escape terrestrial laboratory identification
[17]. Today, more than five sixth of the matter in the
universe is dark, while less than one sixth of the mat-
ter is made of quarks, leptons, photons, and neutrinos.
This conclusion is consistent with the result comes from
the Big Bang nucleosynthesis which constrains the bary-
onic matter to lie between 13.3% to 17% of the matter
component of the universe.

But what is dark matter? To find out the properties
of the dark matter we need appropriate laboratory tools,
and the tools available have all been developed in the
terrestrial environment for the study of ordinary parti-
cles. So, does it make sense to study dark matter using
the reductionist’s tools of particle physics?

The approaches in astrophysics studies have always
been the usage of the laws and tools of physics, including

6)The vast majority of cosmic neutrinos can be found in the
cosmic microwave background radiation (CMBR). Although the
cosmic neutrino background has not been directly observed, the
theory of the light elements production such as deuterium, helium,
etc., i.e., the big bang nucleosynthesis, has provided a strong ev-
idence for its existence with properties consistent with what we
known about neutrinos in particle physics.

7)WMAP data place tight constraints on the hypothesized burst
of growth in the first trillionth of a second of the universe, known
as inflation, when ripples in the fabric of space may have been
created. The 7-year data provide evidences that the large-scale
fluctuations are slightly more intense than the small-scale ones,
which is a prediction common to many inflation models.
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microscopic physics [18]: to make observations of galax-
ies, to study the birth and evolution and death of stars,
even collisions of galaxy clusters, etc. On the approach
to study the dark matter let us first look at the relations
between elementary particles and cosmology. These two
successful fundamental theories operate on very different
length and time scales. Particle physics is on the scale
of 10−17 cm and cosmology on the order of maximally
1028 cm. Their difference is as large as 45 orders of mag-
nitude. On the time scale reactions among fundamental
particles lasts less than a zeptosecond (10−21 s), while
astrophysical processes last for many millions of years.
The difference of the two time scales is the order of 1035.
Can they possibly be related? In an inclusive paradigm,
the Big Bang theory suggests that they should be [19].
Let us trace the universe backward in time to the begin-
ning close to the Big Bang. Our present reachable world
must be started from a very tiny spacial point where the
law of particle physics should rule if it can be extended
to near the Planck energy scale in the form of a the-
oretical framework beyond the standard model (BSM).
Then the dark matter must be a part of BSM. Follow-
ing the argument of cosmology, at some time during the
evolution of the universe, if massive enough, the dark
component of the matter fields would be decoupled from
the rest of the regular particles before the epoch during
which the radiation and the normal matter are decou-
pled. But dark matter continues to exert deciding influ-
ence due to the gravitational effect. Such a unified view
of particle physics and cosmology provides the motiva-
tion to look for dark matter in the framework of particle
physics. And, at the same time, a refined theory in the
next step of particle physics in synergy with cosmology
may emerge, ideally, without the need to construct a
much higher energy accelerator than LHC to guide us.

The story of the dark matter, as it usually told, be-
gan in the early 1930s by the assertion of the Swiss as-
tronomer Fritz Zwicky in 1933 [20] that there exits in
the universe extra mass beyond the luminous ones, as
indicated by the observed orbital velocities of galaxies in
galaxy clusters8) The extra mass is not in any form of

8)The actual storyline, not as cut-and-dries as this descrip-
tion would imply, is apparently more complicated. It has been
recognized that in 1932 Jan Oort had made similar observa-
tions on rotation curves of stars in galaxies. Zwicky’s 1933 re-
sults were based on observations made in the larger setting of
galaxy clusters. There are reports on the existence of possi-
ble dark matter even earlier by Knut Lundmark in 1930 and by
Jacobus Kapteyn in as early as 1922. A description of Lund-
mark’s work can be found in the listing of the “Physics Fo-
rums Insights”: https://www.physicsforums.com/insights/. Ref-
erence to Kapteyn can be found in lecture notes on dark mat-
ter given in the Helsinki university, for instance, by a search
on “∼xfiles/cosmology/12/cosmo2012_07.pdf”, and in [21]. A de-
scription of the history of dark matter searches can be found in
[22]. See also brief but clear descriptions, on dark matter in gen-
eral as well, in “www.eclipse.net/∼cmmiller/DM/”.

the known matter found in terrestrial laboratories. In
the last two decades significant progress has been made
in understanding properties of the dark matter, mostly
by learning what it is not:

• They are not baryonic and carry no electric or color
charges.

• They are not composed of known particles of the
standard model.

• They do not interact electromagnetically and thus
neither emit nor absorb light.

• They should be mostly cold and/or warm, i.e., non-
relativistic or at least not ultra-relativistic.

• They do interact via gravity. The gravitational ef-
fect of the dark matter is ubiquitous in various as-
pects of the structure of the universe.

In spite of our ignorance as stated, the dark matter
may be studied in some of the existing framework of par-
ticle physics and there are theoretical models that con-
tain possible candidates of the dark matter. Presently,
we are in the experimentally driven stage and a plethora
of experiments have been performed, in progress, or un-
der construction in search for dark matter particles, from
which we can also learn its properties. In responding
to experimental findings, theoretical frameworks of dark
matter are modified and new ideas proposed. Ultimately
the challenge is to find out where in a theoretical frame-
work that the dark matter may fit.

This lecture notes claim very little original work
although some detailed calculations have been per-
formed and demonstrated. The detailed calculations
are carried out mostly in Part II in topics of cosmol-
ogy/astrophysics. They are for the purpose of provid-
ing a better understanding, or checking some of the re-
sults given in the literature, or for my own benefit in
trying to gain more insights, to a specific topic. This
is the reason why part II is lengthy. Almost all figures
in Part I of the dark matter survey chapters are bor-
rowed from the cosmology/astrophysics literature and
from webpages I was able to access. For some of them, the
sources are given. I apologize for the ones to which the
sources are silent. I made the majority of the figures in
Part II.

I would like to say briefly how the numerical works
are performed. Numerical calculations are performed
and most of the figures in Part II drawn using the com-
mercial program called Mathcad which does not use any
particular programmatic language. Numerical works are
performed directly from the input mathematic formulae
in the regular form as one usually writes them. The pro-
gram runs fast on a modern desk top or laptop PC. The
program can also plot graphs quickly in various ways,
but unfortunately, not quite in the publication quality
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by themselves.9)

Materials presented in Part I on the dark matter will
very likely be replaced by updates, better results, in both
theory and experiment. Although it is often said that the
goal of physics is to understand nature at the most fun-
damental level, during the exploration stage of a topic
many aspects are transitory in nature. This should not
discourage students from vigorously pursue them. Con-
sider the following statement that attributed to Niels
Bohr: Science aims not to understand nature but what
we can meaningfully say about it.10) All efforts in search
for dark matter are trying to say meaningfully what it is
or what it is not.

A few words about the bibliography. The literature
on dark matter and cosmology is huge and quickly en-
larging, including many excellent review works. Hence,
there is no way to claim inclusive. But I would like to
mention two articles on dark matter [24] and [25]. The
first one gives a good treatment of particle dark matter
which is the attention of the majority of experimental
searches of dark matter and the article has been highly
cited. The second is one of the most recent review on
dark matter which is concise and targeted to graduate
students. I would like to recommend to readers who are
interested in the present notes to also read this TASI
lecture notes.

In addition, the 2014 SLAC Summer Institute lectures
[26] is also a good source of current materials on the
subject targeted at advanced students. Since only trans-
parencies of the lectures are available, they are challeng-
ing learning tools for beginners. However they may serve
as a guiding measure as to what students are expected
to know in eyes of experts.

Before we plunge into the details we make the follow-
ing remark to conclude this introduction. The plethora
of particles in many different models proposed over the
years exhibit the highly active state of the field. But this
robustness also indicates the lack of experimental con-
straints on new particles beyond the standard model. So
particle physics and astrophysics are facing the challenge
together.

2 Observational evidence

Although dark matter has not yet been observed in any
laboratories, either in terrestrial settings or in satellites,

9)Here a disclaimer is in order. This comment is not an ad-
vertisement for Mathcad, but just wants to reveal how numerical
calculations are performed here. In the author’s opinion Mathcad
is a convenient tool to do quick calculations. It is very easy to
debug for not using an arcane programming language. I am sure
readers have their own favorable tools to do numerical calculations,
such as the Mathmatica.

10)Both statements in italic can be found in [23].

there exits a string of strong evidence of its existence
which are entirely astronomical in nature. Cold non-
baryonic dark matter came out as a common answer to
a number of diverse astrophysical and cosmological phe-
nomena which cannot be explained by the existing cos-
mological theory without the presence of such a matter
component. The observations include galaxy rotation
curves, behaviors of X-ray gases in galaxy clusters, lens-
ing images involving galaxies and clusters, galaxy red-
shift surveys, cosmic microwave background anisotropy,
etc. We discuss briefly each type of observations in the
sections below.

The earliest evidence of dark matter was discovered in
the 1930s. With continuous corroborating observations
in various astronomical systems, in the early 1980s the
astrophysical community was convinced that the gravita-
tional force needed to hold together galaxies and clusters
of galaxies are due to invisible masses. It has been gen-
erally postulated that the dark matter is located in a
massive spherical halo enshrouding each galaxy.

Briefly, the observational evidence in the various sys-
tems are the followings: In spiral galaxies, stars and
clouds of gas in the disk move in approximate circular
orbits. Radial variation of the orbit speed can be read-
ily measured through Doppler shifts and are found to be
nearly constant out to large radial distance, in apparent
violation of the law of Newtonian gravity. In our own
galaxy, the Milky Way, because we are located in the
galaxy disk it is difficult to measure the rotation curve
at large radius, but other approaches can be used to esti-
mate the mass it contains. For elliptical galaxies, as they
are not supported by rotation, other dynamical mass in-
dicators, not the rotation curve, are needed to measure
their total masses. For instance some of the largest el-
liptical galaxies have an envelope of hot X-ray emitting
gas. From the radial temperature distribution of the hot
gas, the total mass of the parent elliptical galaxy can be
calculated. For clusters of galaxies Doppler effect of in-
dividual galaxies, can also be used to infer the existence
of dark matter on a much large scale. Zwicky, for ex-
ample, found in 1933 that about 10 times as much mass
as observed in the form of visible light was necessary in
order to keep the individual galaxies within the cluster
gravitationally bound. Dynamically, in the interactions
of galaxies, dark matter is manifested in gravitational
lensing.

The early history of the discovery of dark matter, in
varying detail and emphasis, can be readily found on
internet. For an example we refer to [27],11) which gives
the following list of historical events, to which we refer
for more details and references.

11)This is a talk given by Primack in 2009. It highlights some
of the key publications in the early stage of the evidence of dark
matter.
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Early history of dark matter
1922 - Kapteyn: “dark matter” in Milky Way disk
1933, 1937 - Zwicky: “dunkle (kalte) materie” in Coma

cluster
1937 - Smith: “great mass of internebular material” in

Virgo cluster
1937 - Holmberg: galaxy mass 5 × 1011 Msun from

handful of pairs
1939 - Babcock observes rising rotation curve for

M3112)

1940s - large cluster σV confirmed by many observers
1957 - van de Hulst: high HI rotation curve for M31
1959 - Kahn & Woltjer: MWy-M31 infall ⇒

MLocalGroup = 1.8× 1012 Msun

1970 - Rubin & Ford: M31 flat optical rotation curve
1973 - Ostriker & Peebles: halos stabilize galactic disks
1974 - Einasto, Kaasik & Saar; Ostriker, Peebles &

Yahil: summarize evidence that galaxy M/L increases
with radius

1975, 78 - Roberts; Bosma: extended flat HI rotation
curves1978 - Mathews: X-rays reveal enormous mass of
Virgo cluster

1979 - Faber & Gallagher: convincing evidence for
dark matter

1980 - Most astronomers are convinced that dark mat-
ter exists around galaxies and clusters.

2.1 Galactic rotation curve

The general pattern of motions of stars in a galaxy, as
well as galaxies in a cluster, provide the bulk of the early
evidence of this non-baryonic matter. A cartoon sketch
of the pattern is given in Fig. 2.1. This figure shows the
stars’ rotation velocity-vs-distance relationship, known
as the rotation curve, of a typical spiral galaxy, in which
the individual stars move around the center of the galaxy
in a circular orbit. The horizontal axis is the distance
from the center of the galaxy and the vertical axis is
the velocity of individual stars. The dashed line A is the
predicted rotation curve based on the observed mass dis-
tribution of the galaxy. The solid line B is the observed
rotation curve. Note that the observed rotation curve
becomes flattened when the distance of a star from the
center increases, and the flatting out of the rotation ve-
locity extends to a large distance where very little visible
matter can be found. Hence there is either non-luminous
matter, i.e., the dark matter, presenting in the halo of the
galaxy, or the Newtonian law of gravitation is no longer
valid in the cosmic scale. The existence of dark matter
with a certain required property is the favored explana-
tion. It is required in some cases, that the dark matter

12)M31 refers to the spiral galaxy Andromeda which is the near-
est major galaxy to the Milky Way. Andromeda is the largest
galaxy of the local group, which includes also the Milky Way, the
Triangulum Galaxy, and about 44 other smaller galaxies.

Fig. 2.1 The typical rotation of stars in a spiral galaxy.
The vertical axis is the velocity of the stars and horizontal
distance to the center of the galaxy.

exits beyond the visible limit of a galaxy by as far as 10
times further.

The feature of the curves A and B of Fig. 2.1 can be re-
produced crudely by the following simple mass distribu-
tions, using freshman mechanics. Let MA(r) and MB(r)
be two spherical symmetric mass distributions which give
rise to total masses contained within a sphere of radius
r of the forms,

MA(r)=MT

( r
R

)3
θ(R− r)+MTθ(r −R),

MB(r)=MT

( r
R

)3
θ(R− r)+MT

( r
R

)
θ(r −R), (2.1)

where R is a fixed radius. For MA(r), within the spheres
of radius R the mass density is constant with a total mass
MT. Outside the sphere of radius R the mass density
vanishes and the total mass is constant for any sphere of
r > R. The mass density in this case is given by

ρA(r) =

(
MT
4π
3 R

3

)
θ(R− r). (2.2)

This represents the case of a galaxy consists of baryon
matter confined in a sphere of radius R. For MB(r),
the mass distribution is the same as MA(r) for r ≤ R.
Outside the sphere of radius R the mass density in MB(r)
is non-vanishing but decrease like r−2. The mass density
is

ρB(r) = ρA(r) +

(
MT

4πR

)
1

r2
θ(r −R). (2.3)

So the total mass in case B in a sphere of radius r in-
creases with r, even for r > R.

Now we can compute the rotational curves for the two
galaxies. An object of a certain mass at a distance r from
the center moving in a circular orbit with a velocity v(r)
satisfies the equation

v(r)2

r
= GN

M(r)

r2
, (2.4)
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Then the velocities of the two mass distributions are
given by

vA(r) =

√
GNMT
R

[
r

R
θ(R− r) +

√
R

r
θ(r −R)

]

∼ 1√
r

for r > R,

vB(r) =

√
GNMT
R

[ r
R
θ(R− r) + θ(r −R)

]
∼ const for r > R. (2.5)

vA(r) and vB(r) characterize respectively the two veloc-
ity curves of Fig. 2.1. For r < R, both velocity curves
raise linearly with r. For r > R, curve A decreases like√
r, while Curve B stays constant. Note that the mass

distribution MB can be cut off at some radius Rc > R
in order to have a finite total mass for the system. But
the rotation curve of an object inside the sphere of ra-
dius Rc is not affected. So the dark matter puzzlement is
that the observed mass distribution is given by ρA while
the observed rotation curve is given by vB. The dark
matter makes up the difference between the two mass
distributions.13)

Another feature we should note is that if we only take
into account of the mass distribution ρA(r), i.e., the mass
distribution is confined within a sphere of radius R, but
take the rotation curve vB(r). Then something pecu-
liar will happen: all objects outside the sphere of radius
2R will have velocities greater than the escape velocity.
This confined mass distribution does not have enough
gravitational force to hold on the objects of constant ro-
tation velocity too far out. In a physical galaxy this is to
say that these stars cannot be bound to the galaxy. For
the mass distribution ρA(r), the escape velocity vesc can
be calculated straightforwardly. Let the escape velocity
happens at a radius re, where the total energy of the
start vanishes:
1

2
mv2esc −GN

mMT

re
= 0,

v2esc =
2GNMT

re
. (2.6)

Comparing vesc with vB given in Eq. (2.5), we have

re = 2R. (2.7)

In observation, however, stars in a typical spiral galaxy
are found to exist at radius of many times of R where
the rotation curve flattens out.

The features discussed above can also be applied to
clusters of galaxies. Galaxy clusters are gravitationally

13)Our example as given is artificial as the difference of the two
mass distributions happens in the region r > R. We can take MT

in mass distribution B larger than that in mass distribution A so
that there can have dark matter inside the sphere of radius R.

Fig. 2.2 The fitted total velocity curve is given by vc =√
v2halo + v2disk + v2gas.

bound; i.e., galaxies within a cluster orbit one another.
For example, the Milky Way is a member of a small clus-
ter of more than 50 members, dominated by the Milky
Way and the Andromeda galaxy (designated as M31 or
NGC224). This cluster is called the Local Group.14) Fig-
ure 2.2 is a plot of the observed rotation curve of the
spiral galaxy cluster NGC 6503.15),16) The dashed line,
labeled by “disk”, is the rotation curve based on the vis-
ible mass of the galaxy disk. The gas distributed in the
galaxy gives a rotation curve as show by the light solid
line labeled as “gas”. The two together are far short of
the observed curve which consists of the data points fit-
ted by a solid line, especially at large radius. The dash-
dotted curve labeled as “halo” is the velocity contribu-
tion from the expected dark matter. The dark matter
dominates the halo.

From their rotation curves, some of the galaxies, such
as Low Surface Brightness (LSB) galaxies, are dominated
by dark matter which makes 95% of these galaxies. They
are diffused galaxies with surface brightness an order of
magnitude lower than the ambient night sky viewed from

14)The Andromeda galaxy is the nearest spiral galaxy to the
Milky way, about 1.5 million light-years from Earth. Andromeda
and the Milky Way, together with the Triangulum galaxy and
about 50 other smaller (dwarf) galaxies form the Local Group.
Andromeda and the Milky Way dominant the Local Group. An-
dromeda is the largest galaxy in the Local group, containing about
1012 stars more than those in the Milky way which has about 200-
400 billion (1011) stars.

15)NGC 6503 is a dwarf spiral galaxy which spans about 3× 104

light-years and is approximately 17 million light-year away from
us. A dwarf galaxy has a fewer number of stars than the Milky
Way, less than a few tens of billions, and therefore a fraction of the
mass.

16)NGC stands for “New General Catalogue” of deep sky objects.
Astronomic objects are designated with letters and numbers. NGC
together with numerals is one of the designations. The others are
IC (Index Catalogue) and M (Messier). The Andromeda galaxy
mentioned above is denoted as NGC 224 or M31.
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Earth. They are mostly dwarf galaxies with baryonic
matter in the form of neutral gaseous hydrogen rather
than stars. See Fn. 2.1. The Milky Way consists of many
satellite dwarf galaxies many are discovered in the past
decade.

2.2 Large scale structures, hot and cold dark matter

The large structure of the universe has been investi-
gated in galaxy surveys and theoretical studies. Galaxy
surveys, also known as redshift surveys, measure the
number of galaxies per unit of solid angle in redshift
bins, resulting in a 3D map of the distribution of mat-
ter within a field of the sky for the study of statistical
properties of large scale structure of the universe. To-
gether with cosmic microwave background (CMB) mea-
surements, strong constraints on cosmological parame-
ters, such as the average matter density and the Hub-
ble constant can be obtained. There are a number of
galaxy surveys completed or in progress: the CfA Red-
shift Survey, 2dF Galaxy Redshift Survey, Sloan Digital
Sky Survey, DEEP2 Redshift Survey, and VIMOS-VLT
DEEP Survey. Theoretical studies use large numerical
simulations based on theoretical models to predict the
structure of the universe. Below is a brief sketch of the
results.

Let us first start at the very large scale of the universe.
In the very large structure the universe looks uniform.
But galaxies, which have various sizes and different num-
bers of stars, do not have a uniform distribution like dots
on a gride. The main feature of the large structure of the
universe is that of walls and voids:

• Walls: Walls are cosmic regions which contain a typ-
ical cosmic mean density matter abundance.17) Fur-
thermore, the wall possesses two sub-features;

– Clusters: These are highly matter concentrated
zones where walls meet and where one finds
galaxy clusters, which in turn consist of many
galaxies.

– Filaments: They are branching arms of walls.
These arms can greatly stretched for tens of
megaparsecs (3.262 × 106 lyrs or 3.086 × 1022

m).
• Voids: Voids are vast regions which have very low

cosmic mean density, less than one tenth of the av-
erage density of the universe. They are commonly
10 megaparsecs stretched in a given directions.

The walls and filaments can be broken down further
into superclusters, clusters, galaxy groups, galaxies, and
stars. A numerical simulation of the large structure of the

17)The Cosmic mean density is usually defined as number of
galaxies, not the total matter mass, in a unit volume.

Fig. 2.3 A numerical simulation of the large structure of
the universe. Notice the presence of walls, filaments, and
voids. The red spots where walls intersect are expected to
contain clusters and superclusters. The simulation contains
both cold and hot dark matter. See later discussions of the
current section.

universe is shown in Fig. 2.318), which shows the features
mentioned above.

If we start looking from the smaller scale to ever larger
ones, we see that stars tend to congregated into galaxies,
galaxies to groups, to clusters, etc. In general clusters
are made of 50 to 1000 galaxies, having a diameter up
to 10 megaparsecs. A well-known super-structure is the
Sloan Great Wall observed by the Sloan Digital Sky Sur-
vey (SDSS). This hierarchical structure resembles that
of the very small scale of physics, starting from quarks
to go on to hadrons, in particular, the stable protons
and neutron, atoms and molecules, then to visible larger
classical objects. Here we see the necessity of dynamics
in the case of the cosmos. This is of course the gravity
with proper mass distributions.

In an expanding universe, the space is constantly
stretched and the distance between any two points fixed
on the fibre of the space will be ever increasing. Without
some force to hold them up they will be forever sepa-
rated. Individual ordinary objects made of protons, neu-
trinos, and electron, or a group of atoms, are bound up
by electromagnetic force, while a group of stars are held
together by their gravity if sufficient mass are contained
in them. There are different scenarios within the frame-
work of the theory of gravitational instability for the
formation of structures from small matter density fluc-
tuations. Typical scenarios are the clustering bottom-up
called the hierarchical clustering theory, the fragmenta-
tion top-down called the pancake theory, and the hybrid
scenarios somewhere between the two extremes.

The pancake scenario ascertains that in the early uni-
verse radiation smooths out matter fluctuations to damp
out small-scale fluctuations so as to form supergalactic
pancakes. The pancakes accrete matter to grow and

18)This figure is adopted from the website: http://www.astro.
virginia.edu/jh8h/Foundations/chapter14.html
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eventually collapse to fragment into galaxies. This types
of theories predicts the existence of large sheet of galax-
ies with low matter density voids between galaxy sheets,
while clusters of galaxies will form at the intersection of
the sheets. In the hierarchical clustering theory, the or-
der of the formation of the cosmic structure is reversed.
Fluctuations survived on all relevant scales. Small-scale
system, i.e., star-cluster sized objects of small galaxies,
are formed first. Then by clustering due to gravitational
attraction, they merge into systems of larger and larger
sizes, e.g., galaxies, galaxy clusters, filaments, and walls.
Voids also appear.

All theoretical scenarios require the presence of a sig-
nificant amount of dark matter, up to 90% of the to-
tal mass, of different kinematic type for different scenar-
ios. Crudely one can argue for the existence of the dark
matter in the following way: In a cluster, for instance,
each galaxy is moving at some velocity relative to others.
However, generally kinetic energies of the galaxies in the
cluster appear to be large enough that the visible matter
in the cluster is not sufficient to provide enough grav-
itational potential to prevent individual galaxies from
escaping so as to hold the cluster together. Aside from
revising general relativity, a natural way to explain why
large galaxy clusters can exist is that there is a large
quantity of non-luminous matter present in the cluster
to make up the apparent deficiency of the baryonic mass.
Furthermore, ordinary baryonic matter had too high a
temperature, and hence too much pressure, left over from
the Big Bang. Therefore, with baryonic matter alone it
is difficulty for the aggravated mass to collapse to form
smaller structures.

The bottom-up scenario requires that dark matter,
when made of particles, consists of heavy, slow moving,
non-relativistic particles, which are known as the cold
dark matter (CDM). The CDM would encourage mat-
ter to clump into small regions. Hence smaller, dwarf
galaxies are predicated to permeated cosmically. The
top-down scenario requires dark matter to composed
of weakly interacting relativistic particles known as hot
dark matter. Because of their high velocity small struc-
tures can be smooth out to form large pancake struc-
tures to start structure formation. The cold and hot
dark matter models predict different large structure of
the universe as depicted in Fig. 2.419).

Observation shows that stars in galaxies are of 10 to
14 billion year old, and many clusters are still in the
process of formation. This gives evidence that the uni-
verse proceeds hierarchically, galaxies are formed before
clusters and hence favors the bottom-up scenario. This
bottom up scenario of structure formation requires cold
dark matter to make it to work. Baryonic matter had

19)The image is adopted from http://burro.astr.cwru.edu/
Academics/Astr222/Cosmo/Structure/darkmatter.html

Fig. 2.4 Numerical simulations of the large structure of
the universe. The upper panel is the cold dark matter model,
the lower panel is the hot dark matter model.

too high a temperature, and therefore too much pressure,
left over from the Big Bang, to collapse to form smaller
structures. The dark matter serves as the compactor,
enabling the collapse of matter to form structures.

Large computer simulations, involving billions of dark
matter particles, have been carried out [28]. They con-
firm that the cold dark matter model of structure forma-
tion is consistent with the large-scale structures observed
through galaxy surveys, such as the Sloan Digital Sky
Survey, 2dF Galaxy Redshift Survey, and Lyman-alpha
forest. These studies have been crucial in constructing
the ΛCDM model.

Although the cold dark model is successful with large-
scale structures of the universe, it faces a number of diffi-
culties of small-scale problems related to the galaxy for-
mation, such as missing satellites, too-big-to-fail, cusp-
core, etc. In general the cold dark matter model predicts
too many dwarf galaxies contradicting to the observa-
tion. But there are resolutions to all or some of these
problems from the inclusion baryonic physics of feed-
back or dynamical fraction; or the inclusion of some hot
component in the dark matter, such as the warm dark
matter.

2.3 Gravitational lensing, collisions of galaxy clusters

Gravity lensing refers to the phenomenon of light bend-
ing around a massive object, such as a cluster of galaxies,
as a consequence of general relativity. It is a geometric
effect sensitive to all types of matter, independent of any
astrophysical assumptions. It is a measurement of mass
not resorting to dynamics. Gravitational lensing distorts
the image of a background objects, such as a galaxy, in
two ways, called convergence and shear. The conver-
gence magnifies the background object by increasing its
size and the shear stretches the image of an object tan-
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Fig. 2.5 Artists’ rendition of the gravity lensing effect. The right panel shows the possibility of different lensing images
depending on the mass distribution of the foreground that give rise to the lensing images.

gentially around the foreground mass.
Normally, the gravitational lensing effect is used to re-

veal the existence of galaxies in the background eclipsed
by objects in the foreground, such as a galaxy or a clus-
ter of galaxies. In the probe of dark matter, the roles of
the foreground and background matter distributions are
switched. The appearance of lensing images of back-
ground galaxies reveals the existence of a foreground
mass distribution which is otherwise invisible. The fore-
ground mass distribution is generally referred to as the
lensing mass. In summary: For the dark matter search,
the gravitational lensing

• provides a unique probe to the distribution of mat-
ter, luminous or dark;

• serves as a calibrator for the relation between lumi-
nous and dark matter.

In general, a galaxy or cluster of galaxies is composed
of three components of material: solid stars, diffused gas,
and dark matter. Each can be studies in a unique way:
Stars are visible optically, gas by x-rays, and dark matter
by gravity. The gravity effect can be studied, besides the
rotation curve, by gravitational lensing after the gravity
effect of stars and gas is separated out. Gravitational
lensing is proved to be an effective, robust tool for prob-
ing dark matter and investigating some of the properties
of dark matter. It provides many of the more recent new
discoveries on behaviors of dark matter as revealed in
collisions of galaxy clusters.

2.3.1 Gravitational Lensing and dark matter

Figure 2.520) depicts the gravity lensing effect that a
background star, which lies behind a visible foreground
galaxy or galaxy cluster, can reveal itself as mirage im-
ages together with the visible foreground objects. The

20)The figure on the left is adopted from http://stevenasimpson.
com/illo9.html.

left panel shows the lensing of a star which forms two
images. Viewed from a suitable angle, multiple images
more than two can also be seen when the lensing mass
is sufficiently large. The right panel shows the lensing
of a galaxy in the background of a cluster of galaxies.
The cluster with its huge mass of invisible dark matter
makes easily identifiable lensing images. As the fore-
ground is so massive, it bends light rays emitted from a
background galaxy significantly by about half a degree,
producing a strong warp in the images. In this example
the lensing image forms a (blue) ring, called the Einstein
ring which is formed by the multiple images of the same
distant background galaxy. This is an example of the
strong gravitational lensing, in which multiple images,
arcs, or Einstein rings can be formed when the lensing
mass density greater than a critical value.

As an example of the strong lensing effect an imagine
observed by of the Hubble Space Telescope is shown in
left panel of Fig. 2.6.21) The foreground is the galaxy
cluster CL0024+1654 which is about 4 billion light years
away and shows as yellow bright spots. Also shown are
multiple blue images of a single background galaxy. The
huge mass of the invisible dark matter in the foreground
cluster bents the light of a background galaxy to form five
images shown in blue, one in the center and four arrayed
around as the Einstein ring [29]. The image shown on
the right panel is the so-called smiley face of the Hubble
image of the galaxy cluster SDSS J1038+4849.

From Earth, along most lines of sight, the deflection
of the star light from a single background source is often
too week to be detected. A technique called Weak grav-
itational lensing [30] has been developed. The technique
applies statistical analysis in vast galaxy surveys. By a
systematic alignment of background sources, the lensing

21)The figure on the right was discovered among Hubble’s data
by the armature astronomer Judy Schmidt and was submitted to
the Hubble hidden treasure competition. It first appeared in the
Washington Post on March 9, 2025.
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Fig. 2.6 Left: NASA images of galaxy cluster CL0024+1654 from Large Synoptic Survey Telescope (LSST): http://www.
lsst.org/lsst/public. Right: Hubble image of galaxy cluster SDSS J1038+4849. The “eyes” are two galaxies.

mass’ minute distortions of images of the background
galaxy can be analyzed. In examining the apparent im-
age deformation of the background galaxies, the mean
distribution of dark matter can be characterized sta-
tistically, and the mass-to-light ratios that correspond
to dark matter densities predicted by other large-scale
structure measurements can be determined.

A strong evidence of dark matter is the Hubble Space
Telescope image of the galaxy cluster CL0024+17, also
known as Zw CL0024+1652, as shown in Fig. 2.7. The
left panel shows the Hubble images of the foreground
clusters and the lensing. The most visible part of the
images is many spectacular galaxies that are part of
CL0024+17, typically appearing tan in color. Almost
all small brown spots are a galaxy. Next, around the
center of the cluster shows several unusual and repeated
galaxy shapes, typically shown in blue. These are the
multiple images of distant background galaxies, resulted
from the lensing of the foreground cluster. In addition to
these prominent features, there are also many distorted
faint images of the distant background galaxies, shown
all over in blue, which indicate the presence of the dark
matter.

The right panel of Fig. 2.7 shows the imposition of
the dark matter image together with the Hubble im-
age. The dark matter distribution is shown as diffused
blue images around the center region and as a ring-Like
band. Because of their mutual gravitational attraction,
dark matter and visible material are generally expected
to be together. In most regions of the universe this is
found to be the case [31]. The dark matter distributions
shown in the right panel of Fig. 2.7, however, does not
match with that of the stars and hot gas. This is the
first time that dark matter has been found to be in a
distribution that is substantially different from that of
the ordinary matter. The ring is about 2.6 million light

years across and located about 5 billion years away from
Earth, when the universe is only 2/3 of its present age.
This discovery, announced in May 2007, is considered to
be among the strongest evidence of the existence of dark
matter.22) An interpretation of the formation of the huge
dark matter ring is that it is a transient feature formed
when CL0024+17 collided with another cluster of galax-
ies about one billion years ago with the collision axis
happened to line up with the line of sight of the earth
today. Due to the gravitational effect, a ring distribution
of dark matter is left as a result. A publication five year
prior [32] has already discussed the collision of clusters
during their history. This kind of dark matter distribu-
tion is very difficult to explain in terms of a modified
theory of gravity [33], which offers an alternative inter-
pretation of the observed behavior of the galaxy rotation
curve.

2.3.2 Collisions of clusters and galaxies

Studies of collisions between galaxies and clusters of
galaxies are robust tools in confirming the existence of
dark matter and to learn dynamic properties of dark
matter self-interactions, giving the fact that dark mat-
ter have very weak interaction with ordinary matter.
Furthermore, collision studies are also excellent testing
ground for ideas about dark matter.

When two groups of dark matter pass through each
other, say the dark matter halo of a galaxy moves
through a background dark matter particles, self inter-
action of the dark matter can lead to the deceleration
and evaporation of the halo. In both occurrences the
centroid of the galaxy can be shifted post-collision. To

22)See, the Hubble news release made on May 15, 2007 (#STSci-
2007-17) http://hubblesite.org/newscenter/archiev/releases/2007/
17/.
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Fig. 2.7 Left: The Hubble image of the CL0024+17 (ZwCL0024+1652) galaxy cluster. Right: The gravity map super-
imposed on the Hubble image which shows a dark matter distribution in the central region and a thick ring. Credit: NASA,
ESA, M. J. Jee and H. Ford, Johns Hopkins University.

be more explicit, if the dark matter self-interaction gives
rise to frequent interactions but with very small momen-
tum transfers, e.g., due to long range interactions by the
exchange of light particles in the intermediate state, dec-
laration of the dark matter halo will be resulted because
of the creation of a drag force as a result of the interac-
tion. The dark matter emerging from the collision will be
slowed down. However, in the opposite case of rare inter-
actions with large momentum transfer, e.g., the very shot
range contact interaction, due to the exchange of heavy
intermediate state particle, evaporation of dark matter
will be seen as the final state dark matter particle can
be scatter away and get lost. In both situations, the
collision can never be violent enough to completely sepa-
rate the dark halo from the original galaxy. In majority
cases, the matter components of either group, clouds of
gas, stars, and dark matter remain bound by the save
gravitational potentials pre- and post-collision. We refer
to [34] for more details.

Below we briefly describe three most fruitful studies
of collisions of clusters of galaxies to date. The first one
concerns the well-known Bullet cluster in 2004 and the
next two are new results published in early 2015.

2.3.2.1 The Bullet cluster

Another strong evidence of the dark matter from gravi-
tational lensing is the Hubble’s observation of the Bullet
cluster of galaxies (1E 0657-56) which consists of two col-
liding clusters of galaxies in the process of moving away
from each other. This is shown in Fig. 2.8. The detailed
mass distributions mapped out by lensing effect indicates
that the distribution of the baryonic matter is different
from that of the dark matter. This feature can be un-
derstood as the result of a close encounter of the two

galaxies. As they passed through each other at a speed
of 16 million km per hour, the luminous parts of the two
clusters interact and are slowed down. The dark matter
components of the two clusters do not interact signif-
icantly except for the gravitational effect, they passed
through each other without much disruption. This dif-
ference in interactions causes the dark matter parts to
move ahead of their luminous counterparts, separating
each cluster into two components: dark matter in the
lead and luminous matter lagging behind.

In X-ray observations, which map the gas distribution,
indeed, they show that much of the baryonic matter in
the system is concentrated in the center of the visible sys-
tem, while weak gravitational lensing observations show
that much of the total mass, mostly dark matter, resides
outside the central region of the baryonic gas. This is
shown in Fig. 2.8. The left panel of Fig. 2.8 shows the
image of the visible galaxies together with the fitted dark
matter distribution. Most of the baryonic mass is in the
hot gas detected by the Chandra X-ray Observatory and
shown in pink. The dark matter, which makes up most
of the total mass and dominates the gravitational effect,
is shown in blue. As exhibited in the figure the mass
ratios of dark matter to gas to stars is 70:10:1. The sep-
aration of the distributions of dark and baryonic matter
is a result of the collision. The right panel illustrates the
distributions of the three types of matter. In this exam-
ple, the collision axis is perpendicular to the earth line
of sight.

The observation of the mass distribution of Bullet clus-
ter was announced in August 2006, providing the best
evidence to date for the existence of dark matter. The
news release can be found in [35] and the published ar-
ticles in [36]. This spatial offset of the center of the
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Fig. 2.8 The Bullet cluster which shows the mass distribution after the collision of two galaxies. The organ color is
the baryonic matter and blue the dark matter. X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI;
Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

total mass from the center of the baryonic mass peaks is
difficult to explain by an alteration of the gravitational
force law.23) Observations of other galaxy cluster colli-
sions, such as MACS J0025.4-1222 [39], also show signif-
icant displacement between their center of visible matter
and their gravitational mass. The lack of deceleration of
the dark matter provides a constraint on the dark mat-
ter self-interaction strength which is expressed in terms
of the self-interaction cross section for long range forces
σDM/m < 1.25 cm2/g (68% confidence limit or 1σ sig-
nificance).

Since the Bullet cluster, half a dozen of galaxy clus-
ter collision have been discovered. There are inherent
restrictions in the analysis of galaxy collisions due to un-
certainties in the determination of the original mass of
the clusters and the 3D collision geometry. The latter
affect the determination of the angle of the motion in
relation with the line of sight of observation, the impact
parameter of the collision, and the impact velocity. No
tighter constraints have been obtained from the newer
studies.

2.3.2.2 Statistical analysis of multiple cluster collision
events

The situation has changed more recently. Broad range
of studies have been carried out and interesting results
extending the study of dynamic behaviors of dark matter
obtained. In [40] the authors, using data from Chandra
and Hubble Space Telescopes, have investigated 72 cases
of collisions between galaxy clusters, including both ma-
jor and minor mergers, at different angle to Earth ob-
servers and taking place at different times. Combining

23)M. Milgrom, the proposer of the modified Newtonian dynam-
ics (MOND) claimed otherwise. See his refutation in an on-line
article [37]. A detailed study of various versions of MOND in light
of the Bullet cluster can be found in [38].

these measurements statistically, the study confirms the
existence of dark matter at the statistical significance of
7.6σ.24)

Multiple views of the collisions have been studied by
tracking gas clouds by Chandra X-ray image, visible stars
by Hubble telescope, and the dark matter by gravita-
tional lensing. The distributions of the three types of
matter can thus be mapped out. It was found that the
gas clouds are greatly slowed down or even stopped by
the collision as expected due to their interactions that
produced a drag effect. The stars mostly slide pass-
ing one another unless suffering headon collisions which
is extremely rare, also as expected because stars inter-
act only gravitational among one another. The study
found that the dark passes through every thing obvi-
ously unaffected, similar to the stars. This indicates not
only very weak interactions of dark matter with ordi-
nary matter, but also that there is also very little self-
interactions among dark matter particles themselves be-
sides gravity. This allows a more stringent bound to
be set for the dark matter self-interaction cross section:
σDM/m < 0.47 cm2/g at 95% CL, which is a significant
improvement from the Bullet result. Based on this limit,
some of the dark matter model proposed in the literature
will be ruled out. We will come back to it more later. A
cartoon to show the relative positions of the three matter
components is given in Fig. 2.9 which is taken straightly
from the original article [40].

24)The percentage confidence limit and the number of σ signif-
icance are related as follows. Let the number of σ be denoted
as nσ and the corresponding confidence limit as CL(nσ). Then
CL(nσ) = erf(nσ/

√
2), where erf(z) = (2/

√
2)
∫ z
0 exp(−x2)dx is

the error function. So for 7.6σ significance the confidence limit is
CL(7.6) = (1− 2.964)× 10−14. In high energy physics a discovery
event requires no less than 5σ which corresponds to a confidence
limit (1− 5.733)× 10−7.
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Fig. 2.9 A typical post-collision positions of the three
types of matter of a galaxy cluster. This cartoon is taken
directly from [40] where detailed explanation of the cartoon
can be found.

2.3.2.3 A quartet colliding galaxies in Abell 3827

A simultaneous collision of four galaxies in the galaxy
cluster Abell 3827 has been carried out using images
from Hubble and from the European Southern Obser-
vatory’s (ESO) Very Large Telescope (VLT). The study
[41] traces out the mass lying within the system and
compare positions and distribution of the luminous stars
with that of the dark matter. The image given in the
article is reproduced in Fig. 2.10.25)

As shown in Fig. 2.10 in one of the four galaxies, i.e.,
the one on the left marked as N1, the dark matter clump
lags behind the visible part of the galaxy it surrounds
by 5000 light years, corresponding to 4.7× 1010 m. This
striking feature that the mass associated with the galaxy
N1 is offset from its stars has never been observed in
a system involving a single galaxy. The offset, in the
present case involving four galaxies, can be understood
as a result of dark matter self-interaction, in addition to
gravity, although an astrophysical interpretation cannot
be completely ruled. Astrophysical effects aside, this is
the first signal of non-gravity self-interaction among dark
matter ever being observed. The effect can be translated
into a self-interaction cross section

σDM/m = (1.7±0.7)×10−4

(
tinfall
109 yrs

)−2

cm2/g, (2.8)

where tinfall is the infall duration which must be less than
the life time of the universe at the redshift of the cluster,
z = 0.099, i.e., ∼ 1010 yrs. But likely tinfall . 109 yrs,

25)This figure is taken from the ESO news release at
http://www.eso.org/public/usa/news/eso1514/#4, while the re-
marks on the Milky Way stars and the lensing images are added
in relation to Fig. 1 of [41]. One can find a 1 minute video on the
website.

Fig. 2.10 Hubble image of galaxy cluster Abell 3827. The
dark matter distribution in the cluster is shown with blue
contour lines. The dark matter clump for the galaxy at the
left is significantly displaced from the position of the galaxy
itself, possibly implying dark matter-dark matter interactions
of an unknown nature are taking place.

a lower bound on the interaction cross section can be
obtain:

σDM/m & (1.7± 0.7)× 10−4cm2/g. (2.9)

This dark matter non-gravity self-interaction appears
to contradict the result of the recent survey of 72 galaxy
cluster collisions discussed earlier. The previous result
indicates that dark matter interacts very little, if at all,
with itself other than gravity.26) But the two studies
focused on systems of very different scales. The newer
study zooms in on individual colliding galaxies, while
the earlier paper on entire clusters which may not be so
sensitive to the small offset found in galaxy collision. It
could also be that the collision in the newer study has
lasted longer than the previous study to allow even a
tiny effect to build up and become observable. The two
studies have provided a fascinating insight to dark mat-
ter properties for their possible self-interactions over two
different cosmic scales. Taken literally, the two studies
have provided the upper and lower bounds on dark mat-
ter non-gravitational Since this is the first studies of its
kind we expect more observational studies to follow and
refined numerical simulations to be performed to clarify
the situation.

26)We note that there is a large overlap among authors of the
two articles.

Bing-Lin Young, Front. Phys. 12(2), 121201 (2017)
121201-17



Review article

2.4 Dark matter in galaxies and a cosmic map of dark
matter

2.4.1 Dark matter halo

Up to now the dark matter has been discussed qualita-
tively. The arguments for its existence based on the line
of evidence in the whole spectrum of astrophysical ob-
jects is compelling, ranging from galactic scale of dwarf
galaxies and spiral galaxies, to much a larger scale of
galaxy clusters, and to the cosmological scale. Quantita-
tively, dark matter is now part of the standard theoreti-
cal framework for the study of all relevant cosmological
behaviors, such as the critical questions of structure for-
mation. In this framework the universe’s energy-mass
budget is dominated by a cosmological constant and the
cold dark matter. Small density perturbations will then
grow, due to gravitational instability, to form the bound
structure known as the dark matter halo, which in turn
provides the platform for the detailed structure of the
universe to be developed. In a rigorous mathematical
form, this framework also serve as a test of the dark
matter paradigm of cosmology.

There are explicit halo profiles traditionally used in
numerical simulations. One commonly used is the two-
parameter NFW profile ρNFW [42, 43] and its general-
ization of three parameters ρgNFW. The two-parameter
NFW profile takes the form

ρNFW(r) =
ρcδc

r
rs

(
1 + r

rs

)2 , (2.10)

where r is the radial distance to the center of the galaxy,
ρc is the critical density, δc is a dimensionless constant,
and rs is a characteristic radius. The generalized NFW
profile is

ρgNFW(r) =
ρcδc(

r
rs

)γ (
1 + r

rs

)3−γ . (2.11)

Another profile is the Einasto profile [44, 45]

ρEinasto(r) = ρ0 exp
(
− 2

α

((
r

rs

)α

− 1

))
, (2.12)

where ρ0 and α n are constant. A comparison of the
NFW and Einasto profiles in the Planck data can be
found in [46]. A fourth profile, originally proposed for
halos of dwarf galaxies is given in [47], having the form

ρBurkert(r) =
ρ0(

1 + r
r0

)(
1 + r2

r20

) (2.13)

Plots to compare the first three profiles can be found
in [48] and are reproduced in Fig. 2.11.

Fig. 2.11 Comparison the dark matter density profiles,
NFW, gNFW, and Einasto.

2.4.2 A cosmic map of dark matter

Weak lensing enables the reconstruction of the spatial
distribution of mass density across the sky for both lu-
minous and dark matter, providing a powerful tool aid-
ing the study of cosmology. Thus it is possible to iden-
tify the dark matter halo and to study the connection
between the baryonic matter (stars and gas clouds) and
dark matter by correlating the three imaging results, i.e.,
the lensing, optical, and X-ray maps. The first data re-
lease of a comprehensive correlated mapping was made
by the Dark Energy Survey (DES) collaboration in April,
13, 2015. Details are given in [49]27) and summarized in
the accompanying map shown in Fig. 2.12. The red areas
represent the highest concentrations of dark matter, the
orange and yellow the next highest. The blue areas are
voids where low densities of dark matter and clusters of
galaxies are found. The existence of dark matter filamen-
tary structures in the red, orange, and yellow colors are
clearly manifested. The gray dots represent galaxy Clus-
ters, and the bigger the dot, the larger the cluster. It is
also evident that the clusters are preferentially found in
the reddish areas, and orange and yellow filament struc-
tures. They are scarcely found in the blue voids. So
the baryonic matter, which is concentrated in clusters of
galaxies, follows the dark matter density.

The map in Fig. 2.12 shows data in 3% of the total ar-
eas to be scanned in 5 years running time. The DES
collaboration has measured how the dark matter and
ordinary matter evolve together over the cosmic time,
with the dark matter enveloping galaxies and clusters

27)A FermiLab press release can be found in http://www.fnal.
gov/pub/presspass/press_releases/2015/Mapping-The-Cosmos-
20150413.html/. A scientific American report in the layman
language is given at http://blogs.scientificamerican.com/cocktail-
party-physics/2015/04/13/new-dark-matter-map-confirms-
current-theory
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Fig. 2.12 The Dark Energy Survey (DES) Science Verifi-
cation (SV) mass map along with foreground galaxy clusters.

of galaxies of various types. Much more data will be
available over the next few years for more stringent tests
of theoretical models and the dark matter paradigm it
self. Undoubtedly, the resultant inventory of galaxies
and clusters of galaxies will be very useful, e.g., provid-
ing more samples of galaxies and clusters collision for
study.

2.5 Cosmic microwave background anisotropy

The cosmic microwave background (CMB) is the relic ra-
diation of the early universe left at 380 000 years after the
big bang, when photons decouple from the baryon mat-
ter and redshift down to the microwave frequency range
due to the expansion of the universe over its life time
of 13.81 billion years as being observed presently. The
temperature is not entirely homogeneous and isotropic
over the universe, although the dominant feature is. Af-
ter the last-scattering, CMB photons stream freely in
the universe. The relic temperature fluctuations reflects
what happened in the early universe at the time of pho-
ton decoupling and manifest today as minute CMB tem-
perature variation across the sky, known as the CMB
anisotropy. Hence the anisotropy on a given angular
scale observed today is related to the density perturba-
tions of the early universe. The CMB anisotropy can be
understood as acoustic oscillation in the photon-baryon
plasma prior to the emission of the CMB with gravity
providing the restoring force [17]. Baryonic matter in-
teracts significantly with radiation whereas dark mat-
ter does not. But both types of matter can affect the

oscillations by their gravitational effect, and they pro-
duce different effects on the CMB anisotropy. The power
spectrum of the CMB anisotropy, displayed in Fig. 2.13,
shows clearly a large main peak and smaller successive
peaks, resolved down clearly to moment ℓ = 3000 which
shows clearly 5 peaks. A detailed discussion of the CMB
anisotropy and the newer data can be found in Section
12.

The peaks and valleys are signatures of relevant
physics. Let us describe it briefly below. A detailed dis-
cussion is given in Section 12. The temperature fluctua-
tion over the whole sky can be expressed by a multi-pole
expansion in terms of the complete set of the angular
functions of the spherical harmonics Yℓm. The expan-
sion coefficients determine the power spectral function
Cℓ which is the vertical axis of Fig. 2.13. The horizon-
tal axis ℓ which is the rank of the multiple moment is
proportional to the inverse of the angular coverage of
the sky or the angular resolution of a CMB anisotropy
measurement, we have

ℓ ≈ 180◦

θres(degrees) , (2.14)

which is treated as a continuous variable. We describe
the physics of the first few peaks below:

• The first peak centered at ℓ1 = 200 contains in-
formation about the total amount of energy-matter
in the universe: dark energy, dark matter, baryonic
matter, photons, neutrinos, and any additional stuff
which might exit but not yet known. The size and
location of the peak is related to the geometry of
the universe. It tells us how “flat” it is. The posi-
tion of the first maximum favors the total energy-
matter density ratio Ωtotal = 1. Combined the data
of CMB, supernovae, and large scale structure, den-
sities of the various energy-matter components can

Fig. 2.13 The power spectrum of the cosmic microwave
background radiation temperature anisotropy in terms of
multipole moments. The plot is taken from [50], the CMB
review of The Review of Particle Physics [13].
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be obtained which allows the calculation of the age
of the universe which be discussed in Sections 9 and
13.

• The first peak covers the ℓ-value of the order of ∆ℓ ≈
250, which corresponds to an angular size greater
than 1◦ of the sky (the Sun is 0.5◦ on the sky!). This
is much larger than the temperature fluctuations we
are seeing. Hence it is not produced by sound waves
in the early universe, but by the total energy density
of the early university that drives the expansion. We
note that the largest component dark energy acts
as a repulsive force and has the following effects:
The universe expands with an increasing speed and
freezes the cosmic web which smooths the Hubble
flow.

• The second peak around ℓ2 ≈ 500 corresponding
to an angular resolution of θres ≈ 0.36◦ is due to
sound waves, which tells us how much ordinary mat-
ter there is in the universe.

• The third peak at ℓ3 ≈ 700 with an angular resolu-
tion θres ≈ 0.24 is related to both the ordinary and
dark matter. The difference between the third and
second peaks give us the density of the dark matter
in the early universe.

As shown in Fig. 2.13, the ΛCDM model with a promi-
nent component of dark matter fits the observation very
well.

2.6 Primordial Nucleosynthesis: The baryon content of
the universe

So far all lines of evidence of the existence of dark mat-
ter come from the gravitational effect. There is a direct
evidence, coming from an entirely different line of argu-
ment that is not gravitational, for the existence of extra
matter other than the baryonic type. This is the nucle-
osynthesis which is one of the most successful calculation
in astrophysics based on well-established framework of
fundamental physics.

The primordial nucleosynthesis, or Big Bang nucle-
osynthesis (BBN), refers to the production of light nu-
clei other than the nucleon, during the early phases of
the universe. The BBN took place a short moments, the
order of a hundred seconds, after the Big Bang and is
responsible for the formation of a series of light elements
beyond hydrogen: a heavier isotope of hydrogen, i.e., the
deuterium (D), the helium isotopes 3He and 4He, the
lithium isotopes 6Li and 7Li. In addition to these stable
nuclei some other unstable isotopes were also produced
during the primordial nucleosynthesis, such as tritium
(3H), beryllium-7 (7Be), and beryllium-8 (8Be). These
unstable isotopes either decayed or were fused with other
nuclei to form stable isotopes.

The BBN calculation predicts the abundances of the
light nuclei up to the lithium, that include deuterium,
helium-3, helium-4, and lithium. As stated in the Intro-
duction, it constrains the abundance of the baryon mat-
ter to lie between 13.3% to 17% of the matter component
of the universe. The rest 86.7% to 83%, i.e., the majority
of the matter must be non-baryonic. A discussion of the
BBN calculation is given in Section 10.

2.7 Challenges to CDM and alternatives to dark matter

2.7.1 Challenges to CDM

The cold dark matter (CDM) model consisting of weakly
interacting particles has been shown to be greatly suc-
cessful in the cosmological scale where gravitational force
dominates in the formation of cosmic structures and their
growth. On smaller scales, galactic sub-galactic, how-
ever, the simplest, dissipationless or collisionless dark
matter CMD model faces challenges because some of its
predictions are in tension with observations. However,
tests at the smaller scales is critical for the confirmation
for the CDM model. An analysis of the challenges and
discussions of possible resolutions can be found in [51],28)

The major point of contention is that the CMD model
predicts dark matter overdensity around the center of
the galaxy, especially in dwarf galaxies. Below is a brief
summary of the challenges:

• The cusp-core problem. Galaxies and their clusters
are assumed being enveloped essentially with spher-
ical halos of dark matter. Cosmological simulations
suggest that the halo would assuming a cusp struc-
ture in the dark matter distribution, i.e., sharply
peaked at the center. The NFW dark matter profile
given in Eq. (2.10) takes this form, proportional to
r−1 near the center. However, the observed rota-
tional velocities does not show a high concentration
of dark matter at the galactic center. Most galaxies
have a flat constant core dark matter profile. This
cusp-core problem is mostly serious for small galax-
ies, such as low-surface-brightness (LSB) galaxies.29)

28)A summary of the article accessible to the layman can be
found in the Phys.org news at http://phys.org/news/2015-02-
small-scale-cold-dark.html

29)The LSB galaxies are diffused, mostly dwarf, galaxies with
surface brightness, view from the earth, at least an order of mag-
nitude lower than the ambient night sky. The rotation curve mea-
surements show a very large mass-to-light ratio, indicating that
stars and luminous gas contribute very little to the overall mass
budget of an LSB galaxy. No less than 95% of their mass is non-
baryonic and the baryonic matter is mostly neutral hydrogen gas
rather than stars. The fraction of the baryonic matter in these
galaxies is much lower than the average of the universe of the
baryonic matter at about 15.%. The LBS shows no large overden-
sity of stars in the center such as the bulge of stars in the case of
normal galaxies like the Milky Way. There appears no supernova
activity in LSB galaxies.
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• The missing satellite problem. The simple CDM
predicts a large amount of substructures such as
satellite or dwarf galaxies around a massive galaxy,
each with their own dark matter halo. The physics
of such a predicted feature is straightforward. The
non-relativistic nature of the CDM particle tends
to preserve primordial fluctuations of various scales,
and hence the many small fluctuations which form
subhalos and therefore substructures. So the CDM
model predicts that large galaxies, such as the Milky
Way, have a large number of satellite galaxies, of the
order of 50–200. There were 9 dwarf satellite galax-
ies known to the Milky Way before 2000. However,
the observation of satellite structures can be difficult
because of their low surface brightness, so many sub-
halos may remain dark and hence undetected. Im-
proved observations in the last decade found many
more satellite galaxies for the Milky Way. In the
2005s about 15 ultra-faint satellite structures have
been discovered by SDSS that covered only 20% of
the sky. The very recent DES found at least 3 more
dwarf satellite in 3% of their data30) So the missing
satellite problem is greatly alleviated.

• The too-big-to-fail problem. The simple CMD model
predicts the existence of massive dark matter sub-
halos, which conflicts with observations. Observed
massive satellites are hosted by halos which are
much less than those predicted. Since massive dark
matter halos are expected to host galaxies, the case
that massive dark matter halos remain to be invisi-
ble is not an viable way out of the difficulty.
This problem was first identified in the Milky way
[52]31) but later was shown to be a problem common
to other known galaxies [53].32)

Reference [51] presents a summary of possible resolu-
tions to the challenges to the simple CDM model. A
very recent concise summary can be found in [54]. We
briefly describe them below and refer the details to these
references.

30)The Cambridge University research news release on March 10,
2015 on the discovery from the DES data of 9 new substructures
associated with the Milky Way, in which at least 3 are dwarf galax-
ies. See http://www.cam.ac.uk/research/news/welcome-to-the-
neighbourhood-new-dwarf-galaxies-discovered-in-orbit-around-
the-milky-way

31)The name was given under the influence at the time relating
to the global economic crisis. The definition of TBTF given in
Investtopedia is “The idea that a business has become so large and
ingrained in the economy that a government will provide assistance
to prevent it from failure. “Too big to fail” describes the belief that
if an enormous company fails, it will have a disastrous ripple ef-
fect throughout the economy.” See http://www.investopedia.com/
terms/t/too-big-to-fail.asp

32)A nice commenting article accessible to layman, entitled
“Galaxies that are too big to fail, but fail anyway” can be found in
http://www.preposterousuniverse.com/blog/2014/07/18/galaxies-
that-are-too-big-to-fail-but-fail-anyway/

• Solutions by baryonic physics. Small scales are com-
plicated by physics of galaxy formation based on
complicated baryonic processes. When details of
galaxy formation and the supernova feedback effect
are taken into account in theoretical simulations,
the overdensity problem around the center of dwarf
galaxies are largely resolved for larger dwarf galaxies
with stellar massM∗ greater than 107M⊙. However,
further tests for smaller dwarf galaxies, especially
for stellar mass in the range of 106M⊙–107M⊙ is
needed.

• Solutions by dark matter physics-WMD. This ap-
proach is looking for solutions in relaxing the
kinematic and/or dynamic properties of the non-
relativistic and collisionless dark matter. The warm
dark matter (WDM) model refers to the scenario of
dark matter particles with a free-streaming length
comparable to the size of the region which will even-
tually evolved into a dwarf galaxy. Then these small
density perturbations tend to be erased but more
sizable perturbations are not affected. So the WDM
model is similar to the CDM model for large-scale
structures in cosmological size, galaxy clusters and
large galaxies. But WDM model predicts less abun-
dance of dwarf galaxies and may reduce the dark
matter density in the center region of large galaxies,
but the collisionless WDM can still lead to the cusp-
core problem. In solving the problems of the CDM,
different problems require different range of mass of
the WDM particle which are non-overlapping. The
overall required mass range is from 0.75 to 2 KeV.
However the recent Lyman-α forest data os SDSS
requires the mass of the WDM to be 4 KeV. At this
mass value the WDM particle is essentially a CMD.
With this constraint imposed, as concluded in [55]
that the WDM does no better than the CDM.

• Solutions by dark matter physics-SIDM. Self-
interacting dark Matter (SIDM) is a scenario in
which CMD particles has weak interactions with the
baryonic matter but can interact among themselves
with the strength of the order the nuclear interaction
[56]. The type of models are proposed to resolve the
difficulties of the CDM encountered on the galactic
and smaller scales. In the SIDM model, in the very
dense central region of a dark matter halo the elastic
scattering among CDM can be sufficiently frequent
so as to redistribute the energy among the dark mat-
ter particles to create an isothermal, approximately
constant core density. The elastic scattering cross
section required is around σSIDM/m = 1 cm2/g,
where m is the mass of the dark matter particle.
Some early numerical studies suggested that this
idea did not work. However, in recent fully cosmo-
logical simulations indicated that the SIDM model
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appears to be much more hopeful than the WDM
model. There exists a viable window in mass and
scattering cross section, in the range σSIDM/m =
0.1–0.5 cm2/g, that the SIDM model can produce
CDM halo core density files that are approximately
the size for Milky Way dwarf galaxies, spiral galax-
ies, and galaxy clusters. Further detailed theoretical
work is needed [51].

• Other solutions in dark matter physics There other
approaches to reduce the central halo dark mat-
ter density, which rely on dark matter parti-
cle properties. The models include particle de-
cay, particle-antiparticle annihilation, flavor-mixed
quantum states. See [51] for references.

2.7.2 Alternatives to dark matter

The dark matter explanation of the astrophysical phe-
nomenology presented so far is based on the strict valid-
ity of general relativity, the standard theory of gravity.
General relativity and the classical Newtonian gravity
have tested in the scale of the solar system, not in the
galactic scale and beyond. Hence in the absence of the
experimental confirmation of its existence, or the theo-
retical proof of the capability to resolve all observational
difficulties, dark matter will not be the only game in
town. Other possibilities are modifications of the theory
of gravity itself. There are two different directions in the
modification of the theory, which include the modified
Newtonian dynamics (MOND) and quantum gravity.

MOND was first proposed in [57]. It is a non-
relativistic theory and valid for the galactic dynam-
ics, not topics of cosmology. Its subsequent develop-
ment of relativistic extensions, in particular, the TeVeS
(Tensor-vector-scalar) theory [58], allow it to deal with
subjects, such as structure formation, etc. For a re-
cent exhaustive review of MOND/TeVeS in relation to
the current astrophysical observations we refer to [59].
See also [37] and [38]. More recently, a survey on con-
fronting MOND/TeVeS with strong gravitational lensing
over galactic scales has been performed in [60]. The con-
clusion is that in order to accommodate all observations,
a dark matter component is needed even in the MOND/
TeVeS framework.33),34)

33)We should mention that there are works ascertaining that
MOND is a particular case of CDM with a specific dark matter dis-
tribution function to reconcile CDM and MOND. See for instance
arXiv: 0811.3143 [astro-ph] and arXiv: 1310.6801 [astro-ph.CO].
However, arXiv: 1404.7525 [astro-ph.CO], which compares the two
approaches concludes that CDM and MOND are two incommen-
surable paradigms.

34)The debate on CMD vs MOND is interesting. The number
of MOND leaning researchers is small in comparison with those in
the CDM camp which includes a sizable number of particle physi-
cists. But there is a MOND-dedicated group severely criticizing
the failures of the CDM model, in the galactic scale which MOND
is every successful.

There are other alternatives proposed in the litera-
ture. The modified gravity (MOG) was proposed in 2006
[61] which has been tested against observations. For
more comments, see [60].

From the view point of particle physics the dark matter
scenario is very attractive. The existence of new parti-
cles, especially those in a new category, opens up a new
paradigm and points to a direction in searching for the
physics beyond the standard model. For astrophysics
and cosmology, dark matter is a huge repay to particle
physic which has been providing various tools and basic
ingredients for the study of cosmology and astrophysics.
Dark matter and also dark energy make possible for close
connections between particle physics and cosmology, as
foretelling in the third quote given at the beginning of
this notes. Below we take the dark matter as given and
focus on it entirely.

2.8 Finding a solution

The dark matter is a problem of multi-element and multi-
dimension which requires complementary approaches to
study it:

• To find out what the DM stuff is made of. This
is a particle physics problem, in conjunction with
searching for new physics. It involves both theo-
retical and experimental efforts. The search effort
includes both astrophysical and accelerator experi-
ments. This will be a focus of the present notes.

• To study in detail its effects on galaxies, groups and
clusters of galaxies, etc., assuming that it exits. The
tool for this effort is the N-body simulation, em-
ploying heavily calculational tool such as supercom-
puters. It has already yielded important informa-
tion on kinematic properties of dark particles and
provided important constraints on particle physics
search, such as ruling out the possibility of hot dark
matter, deciding on cold dark matter vs. warm dark
matter, resurrecting the interest in sterile neutrinos,
etc. For a recent summary of the N-body simulation
on DM effects, see [62].

• It is clear that another indispensable component in
this overall effort is the interface of the above ap-
proaches. To illustrate, suppose LHC found a new
neutral, weakly interacting massive particle, say, a
supersymmetric particle. One would naturally ask
if it is a dark matter particle. It may or not be
one. This particle have to be under intense study
of its properties, searched for in astrophysical ex-
periments, and goes through the test in the N-body
simulation, etc. Its detailed properties, such as the
mass, spin-parity, decay channels, and certain scat-
tering cross sections can be studied at LHC. The ac-
celerator results have to be compared and matched
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up with those obtained from the dark matter search
experiments in which we can be certain that the new
particle involved is a dark matter particle.

3 MilkyWay and galactic dark matter density
profile

There are a number of reasons, in both astrophysics and
dark matter particle searches, that it is important to map
out the dark matter the Milky Way:

• The Milky Way allows us to make a close up obser-
vation of dark matter and provides an independent
piece of information for the existence of dark matter.

• It is important for the design of experimental
searches for dark matter particles. Direct searches
probe the dark matter in the solar system. Indirect
searches depend crucially regions of high concentra-
tion of dark matter, such as centers of galaxies and
clusters.

• It enables detail comparisons of simulations and ob-
servations of distributions of dark matter subhalos
which evolve into satellite galaxies.

• It allows the study of galaxy formation and evo-
lution of large disk galaxies using Milky Way as a
concrete entity.

3.1 A blurb of the Milky Way

Galaxies, which come in various sizes and shapes, are the
building units of the cosmos and hence the windows to
the universe. Masses of galaxies range from 109 M⊙ to
1013 M⊙, known as dwarf galaxies, medium-range galax-
ies, and gigantic galaxies. Dwarf galaxies contain as low
as several billion of stars, and medium ranged galax-
ies hundreds of billion stars. Supergiant galaxies, the
IC 1101 for example, contain up to a hundred trillion
(1014) stars and have the size expanding to the order
of 200 kly. Galaxies grouping together to form clusters
which contain anywhere from 50 to thousands of galax-
ies. Groups of clusters form superclusters. The Local
Group, which comprises three major galaxies, the Milky
Way, Andromeda, and Triangulum, plus more than 50
dwarf galaxies, is an outlying member of the Virgo Local
Supercluster. The local group has the size of 10 Mly and
the local Supercluster is about 110 Mly across. The local
Supercluster centers around the Virgo Cluster which is
about 10 Mpc from the Milky Way. In between Super-
clusters are enormous voids of space where there are few
galaxies.

Our own galaxy, the Milky Way, is a medium-sized
barred spiral galaxy of total mass about the mass of a
trillion sun, 1012 M⊙, with a diameter about 100 kly or
31 kpc, containing 300 billion stars given or taken 100

billion. It has a central disc of the thickness of about 2
kly or 0.6 kpc. Our sun is about 26 kly or 8 kpc to the
galactic center.

Below we give a cartoonist’s description of some of
the relevant features of the Milky Way. Let us have
some idea on how the dark matter may be distributed in
our galaxy and what its global environment looks like.
These are shown in the cartoons of Fig. 3.1 which are
taken from Refs. [63] and [64]. The left panel depicts
the distribution of the dark matter over the galaxy. It
is extended far out in the halo. The right panel shows
some of the key features of the Milky Way galaxy. Dark
matter searches have to be conducted in such a setting.
Direct searches which are performed in terrestrial labo-
ratories are the measurement of dark matter in the solar
system. Indirect searches can have events which take
place at other parts of our galaxy or even other galax-
ies far from the earth, e.g., the centers, etc., where high
concentration of dark matter is expected.

Another feature of the galactic environment is the ex-
istence of satellite dwarf galaxies in the vicinity of the
Milky Way and within the local group. In Fig. 3.2, some
of the known satellite galaxies are shown. A number of
the satellite galaxies have been discovered quite recently
and many are dark matter-dominated with mass-to-light
ratios approaching to 1000. With improved observations,
still more satellites will become visible. Up to 9 new
satellite galaxies have been discovered in the the early
part of (2015).35)

3.2 Dark matter in the Milky Way

The local dark matter radial density around the sun is,
within a factor 2–3:

ρχ ≈ 0.39 GeV/cm3
= 6.95× 10−25 g/cm3 (3.1)

as quoted in [65], the review article on dark matter given
in [13]. As we have seen earlier in Section 2.4.1 that
the value ρχ ≈ 0.43 GeV/cm3 has also been used. In
comparison with the critical density of the university
ρc = 1.0538h2×10−5 GeV/cm3 ≈ 0.5×10−5 GeV/cm3, it
shows a high concentration of dark matter in the galaxy.
The distribution of the dark matter in the galaxy is mod-
eled in several forms. The most widely applied one is the
NFW (Navarro–Freek–White) dark matter radial profile
[42, 43] which has discussed early in Section 2.4.1. As-
suming that the motion of the dark matter is similar to
that of the ordinary matter, since the solar system moves
with a velocity of 240 km/s and the galactic escape veloc-
ity is no more than 610 km/s, we have that the galactic
dark matter particles are non-relativistic with the beta

35)A list of the 35 satellite of the Milky Way can be found in
http://en.wikipedia.org/wiki/List_of_satellite_galaxies_of_the_
Milky_Way
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Fig. 3.1 Cartoons of the our galaxy. Left: The distribution of the dark matter particles. The figure is taken from Ref. [63].
Right: Some of the features of our galaxy which is taken from Ref. [64].

Fig. 3.2 A cartoon depicting some of the recently discovered dwarf galaxies, within a radius of 500 kpc of the galactic center,
which orbit the Milky Way. The picture is taken from http://www.ualberta.ca/pogosyan/teaching/ASTRO_122/lect23/
lecture23.html.

factor

βχ ≈ vχ
c

≈ 10−3. (3.2)

This number is generally used in calculation of the dark
matter reaction rate.

There are several parametric forms of the radial profile
of the Milky Way. Early efforts in obtaining dark mat-
ter radial profile in the Milky way are based on fittings
assuming specific parametric functional forms. This ap-
proach is prone to introduce bias into the result.

Historically the extraction of dark matter distribution
in the Milky Way from astrophysical observations has
always been a challenge, especially in the core of the
galaxy, including the region of the solar system. In the

inner region of our galaxy, which is defined as the ra-
dial region of r < 20 kpc following [66], while the bulk
of the galactic stars lie within 18 kpc radius and the
sun is about 8 kpc from the galactic center, the bary-
onic contribution to the galactic mass is very significant.
This makes it difficult even to ascertain the presence of
dark matter. The difficulty in assessing the dark matter
distribution lies in the fact that the solar system, where
observations are made, lies in the galactic core and moves
with it, it is therefore difficult to determine the distance
and the rotational velocity of other stars in the region.
In addition, there is the complication that there is no
general consensus on the exact distribution of stars in
the Milky Way. The common practice in many studies
of the dark matter in the inner Milky Way is to choose a
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Fig. 3.3 The Milky Way’s dark matter radial profile is taken from [67]. The red points represent the 1σ measurement
from observation. The grey region represents all baryonic models with their 1σ uncertainties. The curves are model profiles
as indicated: The solid line is for NFW with the scale radius rs = 20 pc. The dashed line is for Einasto with rs = 20 pc and
α = 0.17. For more details, see [67].

model of the morphological distribution of the baryonic
matter, and hence the results are likely model dependent.
Hence, to date the dark matter profile of the Milky Way
remains practically unconstrained in spite of persistent
theoretical effort and progress in observations.

A model independent study was made in [66], in which
2780 measurements have been used to study the motion
of interstellar gas and stars under various different stars
morphologies to extra the baryonic part of the matter
and their rotation curves. And then compare the ro-
tational curves with the effect of the said visible mass.
The authors reached the following conclusion: The need
of extra matter other than visible star is manifested at
all radii from 2.5 kpc to 30 kpc. The significance limit
below 3 kpc is small, but it raises to 5σ for radii beyond
6–7 kpc, which includes the location where one finds the
solar system.36),37)

A convincing evidence of the presence of dark matter,
as discussed above, is an important step towards a de-
tailed description of the dark matter distribution in the
inner region of our galaxy. This will facilitate exper-
iments, terrestrial and celestial, in search for the dark
matter and, therefore, tests of the dark matter paradigm.
Based on the latest kinematic data and observed distri-
butions of gas and stars, without assuming a predefined
forms, the dark matter distribution in the inner region

36)A succinct summary of the result of [66] and a discussion of its
significance can be found in a Science Comment from PhysicsWorld
entitled “Dark matter seen in the Milky Way’s core”. See
http://physicsworld.com/cws/article/news/2015/feb/10/dark-
matter-seen-in-the-milky-ways-core

37)Two short comments refuting the result of [66] can be found in
the High-Energy Physics Literature Database: arXiv: 1503.07501
[astro-ph.GA] and arXiv: 1503.07813 [astro-ph.GA]. The response
from the authors of [66] can be found in arXiv: 1503.08784 [astro-
ph.GA].

of our galaxy has been mapped out in a recent article
[67]. At a given radial distance, ranging from 2.5 to 25
kp., the dark matter density mapped out varies within a
sizable ranges of possible values obtained from many pos-
sible baryonic models. The commonly used dark matter
density models, NFW and Einasto, fall roughly in the
middle of the allowed range. In the neighborhood of
the sun, the density is around 0.4 GeV/cm3, consistent
with Eq. (3.1). This is about 1 proton per 2.3 cm3, or
0.011M⊙ per pc3. The uncertainty of the density so de-
termined is significant. Normalized to a local density ρL
defined at the sun of RS = 8 kpc to the above mentioned
value, i.e., ρL ≡ ρNFW (RS) ≈ 0.4 GeV/cm3, the fitting
for the NFW profile of Eq. (2.10), gives the parameter
rs = 20 kpc and ρ0δ0 = 0.314 GeV/cm3. In Fig. 3.3, a
comparison of the dark matter radial density profile of
several fittings as given in [67] is shown. We give the fit
result of the NFW and Einasto dark matter radial pro-
files, (2.10) and (2.12), by normalizing the density value
0.4 GeV/cm3 as the position of the Sun for r = 8 kpc:

ρNFW(r) = ρ0N

(
r

rs

(
1 +

r

rs

)2
)−1

,

ρEinasto(r) = ρ0E exp
(
− 2

α

(
r

rs

)α)
, (3.3)

where rs = 20, ρ0N = 0.3136 GeV/cm3, α = 0.17, and
ρ0N = 9.428× 103 GeV/cm3.

Future observational data from, e.g, the Gaia Obser-
vatory38) which will produce a three dimensional map of

38)Gaia is a space observatory of the European Space Agency
(ESA). Its mission is to construct a 3D catalog of around 1 billion
astronomical objects, mainly stars, about 1% of the Milky Way
population. Details can be found in Gaia’s website, http://www.
esa.int/Our_Activities/Space_Science/Gaia_overview
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stars in Milky Way and monitor and their motions in un-
precedent detail, will help improve the accuracy in the
extraction of the dark matter profile.

4 Dark matter candidates

As types of particles in the usual sense of the word, there
is very little information on the dark matter particles
individually. We do not know how massive they are, how
they are produced, and what forces they will interact,
besides gravity. But we do have a significant amount of
knowledge about them in their collective effect through
their actions in the universe. We know they are a major
part of the matter component of the universe, where in
the universe they are likely to reside, they are mostly cold
kinematically, they have rather weak interactions with
ordinary known particles, and they may interact among
themselves. Let us first summarize the general properties
of dark matter as one of more types elementary particle.

• They carry no electric or color charges. Their lack-
ing of electric charge comes from the fact that there
is no evidence that they involve in anything to do
with the photon. They have no color charge be-
cause there is no evidence of the existence of ex-
otic isotopes. Hence if dark matter is a distribution
of congregates of elementary particles, they must
be composed of neutral particles interacting very
weakly with ordinary particles. Hence they must
be particles beyond the standard model.

• They must be produced in the early universe ther-
mally or non-thermally by decays of their parent
particles before the radiation to matter dominance
transition. They have to have the correct relic abun-
dance.

• They have to be stable against the cosmic time scale,
so that they are still around today. They can be of
multi-components, made of more than one types of
particles.

• Their clustering properties should allow explana-
tions of both the observed large and small scale
structures. Theoretically the characteristics of these
structures can be studied in astrophysical N-body
simulations. Experimentally, its overwhelming pres-
ence, i.e., nearly 27% of the whole universe today
and nearly 85% of the matter world, should not
allow it to conceal its tracks and hide its identity
without an end.

Various candidates have been proposed, in particular,
when dark matter came into the focus in astrophysics
and particle physics starting the 1970s. Historically,
many candidates have been offered as unknown astro-
physical objects and hypothetical particles in theoreti-

cal frameworks of models beyond the standard model of
quarks and leptons: massive compact halo objects (MA-
CHOs), primordial black holes, neutrinos, axions, weakly
interacting massive supersymmetric particles (WIMPs),
universal extra dimensional Kaluza Klein excitations,
strongly self-interacting particles, and other exotic ob-
jects. In these broad categories, the dark matter can
be baryonic or non-baryonic. MACHOs are the bary-
onic type, while neutrinos, WIMPs, and axions are non-
baryonic types. The masses of these possible candidates
expands a range over 80 orders of magnitude [25]. Some
more discussion on mass bounds will be given in Section
4.4. Over the years some of the proposed candidates
have been ruled out, but new possibilities are added to
the candidate list.

According to their physical properties, there are dif-
ferent classification of dark matter. We describe them
below.

4.1 Dark matter: Kinematic types and production
mechanisms, a broad characterization

The kinematic properties of the dark matter affect the
CMB anisotropy spectrum and play important roles in
the structure formation of the universe. The dark matter
can be divided into three kinematic categories [68], ac-
cording to its velocity at the time of its decoupling which
has a direct bearing on galaxy and cluster formation, and
therefore small and large structures of the universe.39)

• Hot dark matter (HDM). The HDM is composed
of abundant light particles. An obvious candidate
is the normal light neutrino. The mass of a HDM
is the order eV or less, mHDM . 1 eV. It is rel-
ativistic at the time of the decoupling and remains
relativistic when galaxy formation takes place at the
cosmic photon temperature of tens K. Since highly
relativistic particles generate a high pressure, they
will smooth out small dense knots of matter. As a
consequence, as being demonstrated in N-body sim-
ulations, HDM will hinder the formation of galaxies
by destroying small scale structure of the universe,
and hence conflicts with the observed scale struc-
ture of the universe. So HDM is disfavored. Hot
dark matter, while it certainly exists in our universe
in the form of neutrinos, can only be a small part of
the story. according to current observational data,
the contribution of the standard model neutrinos to
the mass of the universe no more than 0.25%.

• Cold dark matter (CDM). The cold dark matter is
at the other end of the dark matter mass-velocity

39)The terms hot, warm, and cold dark matter was intro-
duced in 1983 [69, 70]. See also http://ned.ipac.caltech.edu/level5/
Primack4/frames.html As already noted earlier, a brief history of
dark matter can be found in [27].
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spectrum. It is non-relativistic at decoupling. Its
mass can be in the GeV to TeV order or even larger.
There are many CMD candidates, including weakly
interacting massive particles like neutralinos, WIM-
PZILLAs, solitons, etc. Since non-relativistic parti-
cle exerts very little pressure and will diffuse a neg-
ligible distance in comparison with the size of the
universe, a rich varieties of small scale structures
of the universe is expected. Indeed, N-body simu-
lations with non-interacting cold dark matter show
that the domination of CDM can leads to the exis-
tence of many dwarf satellites in galaxies and galaxy
clusters. It also predicts the formation of cusped dis-
tributions, i.e., a sharp increase in the dark matter
concentration at the center of the galaxy, which is
known as the cuspy halo problem. Although CMD is
the favored candidate for dark matter, from existing
observations these features of small scale structures,
which are not in the universe’s portfolio, are chal-
lenges that have to be met. Let us recall that these
problems and the too-big-to-fail problem of CMD
together with the possible resolution have been dis-
cussed in Section 2.7.

• Warm dark matter (WDM). The WMD is some-
thing in between the HDM and CDM, consisting
of particles of mass of the KeV order or higher,
mWDM & 1 keV which may interact even weaker
than neutrino. It is relativistic at decoupling, but
non-relativistic at the radiation-to-matter domi-
nance transition. There are possible candidates for
WDM, including sterile neutrino, light gravitinos
and photino. Although WDM is expect to predict a
more smooth dark matter profile, allows less dwarf
satellites, and alleviates the cuspy halo problem, ac-
tual simulations indicate that WDM does not do
much better than CDM [54, 55].

It is clear that the hot dark matter has been ruled
out as a major part of the dark matter. The warm dark
matter has been vigorously pursued. There is a series of
ongoing conferences, starting from 2010, dedicated to the
study of warm dark matter [71]. But the cold dark mat-
ter scenario is robust and still preferred. Observations
have found evidence of more dwarf satellite galaxies in
the Milky Way local group and there are ways to allevi-
ate the cuspy halo and too-big-to-fail problems in more
sophistic N-body simulations with interacting cold dark
matter particles. As a historical record, a concise sum-
mary of the status of CDM vs. WDM as of 2011 is given
in [62].

The dark matter can also be classified according to
its production mechanism as relics of the early universe,
thermal vs. non-thermal. For a general discussion see
[72]. A recent review of the thermal and non-thermal
productions of dark matter, with an emphasis on the

latter, can be found in [73].

• Thermal relics. These are particles in thermal equi-
librium in the early universe, due to scattering, cre-
ation, and annihilation processes involving the par-
ticle under consideration. They have the equilib-
rium thermal distribution, i.e, the number densities
is proportional T 3, n ∼ T 3.40) As the universe ex-
pands, the cosmic temperature drops and the den-
sity of the particle decreases so does the annihilation
rate of the particle. When the particle annihilation
rate drops below the expansion rate of the universe,
the particle annihilation becomes ineffective and the
particle freezes in to decouple from the cosmic heat
bath, and the particle number density tracks the
Hubble expansion, i.e., the density is proportional to
∼ a−3 ∼ T 3. The resultant freeze out particle forms
the dark matter. The decoupling can happen either
when the particle is relativistic or non-relativistic.

An example of the relativistic decoupling is the
freeze out of the neutrino which decouples at around
the cosmic temperature of T ∼ 1 MeV, much larger
than the mass of the neutrino. As for the abundance
of the neutrino is concerned, it’s number density be-
haves as T 3 before or after the freeze out. So it is
as if the neutrino is always in equilibrium. But the
freeze out neutrino has a lower temperature than
the cosmic heat bath, because the neutrino dumps
its entropy into the cosmic heat bath, the photon
temperature, which defined the cosmic temperature,
is increased relative to the neutrino. A more sys-
tematic discussion can be found in Section 9.4 and
Section 9.5.

The case of non-relativistic freeze out produces
the cold dark matter. Prior to freeze out, being
non-relativistic, the particle density function has an
exponentially suppressed density distribution, i.e.,
n ∼ exp(−mDM/T ), where mDM is the mass of the
particle. After the freeze out, similar to the rela-
tivistic case, the density function follows the Hubble
flow and it reverses back to the T 3 behavior. The
final dark matter density distribution depends on
the particle annihilation cross section, the smaller
the annihilation rate the larger the density function.
Decoupling is an important mechanism for the sur-
vival of the relic of a massive particle.41) If the par-
ticle were allowed to maintain equilibrium to main-
tain the exponentially suppressed density distribu-
tion form, it would eventually be depleted entirely.
We will come back to this topic later in more details

40)A discussion of thermal distribution functions is given in Sec-
tion 9.3.

41)In the discussion of decoupling, Section 5.2 of [74] is entitled
Freeze Out: Origin of Species, which we borrow as part of the title
of the present subsection.
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in Section 5.3 and 11.
This simple and elegant mechanism of thermal

production and freeze out give rise to the WIMP
miracle. It is widely accepted and forms the theoret-
ical basis of most dark matter search experiments.
The WIMP miracle depends on two assumptions,
one in cosmology and the other in particle physics.
In cosmological, it assumes, as in the standard cos-
mology, that the universe is radiation dominated
prior to the freeze out, and in the particle physics,
it requires that the dark matter annihilation into
standard particles has the order or a weak interac-
tion cross section. More discussions will be given
later in Section 5.3 and 11.

According to unitarity, the mass of a thermal relic
is bound above by 340 TeV. For some more details
see Section 4.4.

• Non-thermal relics. These are dark matter particles
that have a non-thermal history. They are produced
non-thermally and have never been in equilibrium
with other particles in the universe so that their en-
ergy distributions are different from a normal ther-
mal distribution.

Seeking for a non-thermal production of dark mat-
ter is motivated by both theoretical and experimen-
tal considerations. The two assumptions needed
for the WIMP miracle are not done deals. In the
cosmological side, while radiation dominance is es-
tablished in the period of the BBN to the matter-
radiation equality, i.e., in the cosmic temperature
range of 1 MeV to 1eV, radiation dominance not
been probed. In the particle physics side, large re-
gions of the parameter space for the WIMP have
already been ruled out by various direct and indi-
rect WIMP searches. So new possibilities should be
considered.

There are a number of possible candidates for
non-thermal relics, including axions emitted by cos-
mic strings; very heavy aggregates of particles by the
name of WIMPZILLAs which are superheavy, of the
order of 1012 to 1016 GeV. There also a class of mod-
els consist of scalar fields which are called moduli
which can decay into, e.g., winos which are the dark
matter. A systematical discussion of a large class
of non-thermal dark matter can be found in a re-
cent article [75] To illustrate the motivation and the
physical reason for such model, we parallel phrase a
paragraph of the Introduction section of the paper:

A well-motivated alternative to the stan-
dard thermal cosmological history men-
tioned above is that of a non-thermal cos-
mological history, in which BBN is pre-
ceeded by a phase of pressureless mat-
ter domination. Such a situation is pre-

dicted in many top-down theories for new
physics, e.g., low-energy limits of super-
gravity and string/M-theory compactifica-
tions. These theories, under some very
mild assumptions, contain gravitation-
ally coupled scalars called moduli. When
the Hubble parameter drops below moduli
masses, moduli begin coherent oscillations
and behave as pressure-less matter, dom-
inating the energy density of the universe
until the longest-lived one (ϕ) decays to
reheat the universe. In these cosmologi-
cal histories, an electroweak-scale Wino
provides a natural candidate for super-
symmetric (SUSY) DM, provided that the
modulus dominated phase ends at temper-
atures below a GeV or so [1, 2].

Since they are produced non-thermally, they do not
obey the unitarity limit mentioned above.

4.2 Dark matter: Particle types

A more detailed category of the dark matter is by indi-
vidual particle types, appearing in well-motivated theo-
retical ideas. Most dark matter candidate particles are
also known for their own reasons, as they have been pro-
posed as solutions of some existing problems other than
the dark matter. There is also the possibility that dark
matter is something not yet on the radar screen of our
present theory, not yet being discussed by anyone. The
known particle type include prominently the neutrino.

To be a candidate of the dark matter, a particle has
to satisfy some generic constraints:

• It has to be stable on the cosmic time scale so that
it is still around today.

• It has to have no strong or electromagnetic interac-
tions.

• Taken together, one of more candidates, they have
to have the required relic density.

• Based on what are known to us, the baryonic type
cannot be a very significant part of the mix of the
dark matter.

Well-qualified candidates of non-baryonic dark matter
are all from theories beyond the standard models. They
include a wide class of weakly interacting massive parti-
cles (WIMPs)42), which include neutrinos, neutralinos,

42)The acronym WIMP has entered the domain of common vo-
cabulary and can be found in the electronic dictionary/Thesaurus
The Free Dictionary by Farlax. See also the NASA web site
entitled Imagine the Universe http://imagine.gsfc.nasa.gov/docs/
teachers/galaxies/imagine/dark_matter.html which is intended
for laymen and school teachers.
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the axion, etc. Another class of particle are the su-
perWIMPs (Superweakly interacting massive particles)
which have annihilation cross sections much smaller than
that of the weak interaction reactions. The particles in-
cludes sterile (right-handed) neutrinos, gravitino, extra
dimensions, etc. Below we briefly describe particle can-
didates of the dark matter, together with comments on
them.

• Neutralinos (χ̃). For R-parity conserving SUSY,
in the minimal supersymmetric standard model
(MSSM), neutral superpartners consist of four neu-
tral fields: the gaugino Z̃, photino γ̃, and Higgsi-
nos H̃0

1 and H̃0
2 . Their mixtures form 4 Majorana

fermionic mass eigenstates. The neutralino refers to
the lightest of the four mass eigenstates. And in
most SUSY models, it is the lightest superparticle,
which is stable due to R-parity conservation. The
desirable parameter of the neutralino are: mass of
the order of mχ̃ ∼ MSUSY ∼ 0.1 − 1 TeV and sub-
weak interaction strength ∼ 10−4σweak.

• Ordinary neutrinos (ν). Neutrinos, including those
in the standard model, have been proposed early
on as a possible candidate of dark matter. Since
the standard model neutrinos are relativistic ob-
jects, they are the hot type, hence disfavored from
the large scale structure formation and the analy-
sis of CMB anisotropy. Furthermore, the present
oscillation experiments and astrophysical observa-
tion show that conventional neutrinos have very
small masses and, with their known number den-
sity, can contribute no more than a small percent
to the total matter of the universe. The present ob-
servation gives the fraction of light neutrinos to be
Ων < 0.0055 [13].

• Sneutrinos (ν̃). Sneutrinos have large scattering and
annihilation cross sections and therefore should be
readily produced in a hadron collider if the available
energy is over their production threshold. However,
the search for them at the Tevatron has been nega-
tive and this implies that they are heavy, likely to
be hundreds of GeV. This high mass makes it awk-
ward to be the lightest sparticles. There is yet no
news of sparticles sighting from LHC either.

• Heavy neutrinos (N). Any fourth generation SU(2)
neutrinos will have a mass greater than mZ/2 as re-
quired by LEP data. Such a heavy neutrino will not
be stable if it has any mixing with the light leptons.
The decay of the heavy neutrino can be highly sup-
pressed if it mix only with a sterile neutrino. But
such models are rather contrived.

• Sterile neutrinos (νR). In the construction of mass
terms for neutrinos, right-handed neutrino fields can
be introduced to extend the standard models. Since

the right-handed neutrinos are in the singlet rep-
resentations of all the standard model symmetry
groups, their standard model quantum numbers are
all vanishing. So they do not directly interact with
standard model particles, and hence they are ster-
ile. Right-handed neutrinos can be either the Dirac
or Majorana type. To be Majorana, because they
have null quantum numbers so there is nothing to
prevent them to be their own antiparticles. Masses
of Majorana particles are obtained from the see-saw
mechanism which gives naturally very small mass
to the left-handed neutrino and much larger mass
to the right-handed ones. Another consequence
of this model is the presence of more Higgs fields
than that of the minimal standard model. Sterile
neutrinos are generally considered in the class of
WDM.

• Axion. The axion is a pseu-Nambu-Goldstone bo-
son, a hypothetic particle arising from the breaking
of the Peccei-Quinn U(1) symmetry. It was pro-
posed in 1977 as a solution to the strong CP prob-
lem. In the early universe axions can be produced
non-thermally from QCD phase transition. A boson
condensate formed by axions which works naturally
as a cold dark matter. For a review we refer to [76]
and [77].

• Axino or saxion (ã) and gravitino (G̃). They can be
warm (∼ KeV) or cold. They are interesting and
viable candidates of the dark matter. They are not
directly testable, but LHC may be able to provide
some hint of their existence.

• Universal extra dimensions (UED). This is associ-
ated with theories beyond the standard model by
the extension of the space to a higher dimension-
ality. This class of models, which can happen in
string theory and theory of extra dimension, pro-
vide another interesting possibility for the dark mat-
ter. They are generally known as the Kaluza–Klein
states (KKS). The lightest of such states, referred to
as LKP, may be stable to be a candidate of the dark
matter. Mass of LKP are in the range of 400 GeV
– 1.2 TeV, comparable to the neutralino, but well
above the current experimental constraint. They
are likely to be testable. There are many works on
Kaluza-Klein dark matter, a review of LKP as a
dark matter candidate can be found, e.g., in [78].

• More exotic particles. There are other candidates
which happen in beyond the standard model theo-
ries such as the little Higgs and Technicolor.

• WIMPZILLA (supermassive dark matter). The dark
matter candidates discussed above are thermal relics
of the early universe, except the axion. There is an
upper limit imposed by unitarity on how massive a
thermal relic dark matter particle can be [79]. The
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limit is 340 TeV. However, in addition to the ther-
mal produced dark matter, there is also the possibil-
ity of non-thermal dark matter which is composed
of supermassive states produced non-thermally in
the early universe. These are called WIMPZILLA
[80, 81]. They have masses which are many orders
of magnitude higher than the scale of the standard
model, in the range of 1012 to 1016 GeV. There are
several production mechanisms for WIMPZILLA.
They can be accreted and accumulated in the cen-
ter of the sun. Their signal is the very high energy
neutrinos produced by their annihilations. But their
required cross sections seem to have been ruled out
by limit imposed by direct searches experiments.

• Solitons. This includes Q-balls and F-balls, both
non-topological solitons. They are considered to be
exotic dark matter candidates. A Q-ball can arise in
theories with scalar field carrying a conserving U(1)
charge. The Q-ball is the ground state of the theory
in the sector of fixed charge. Loosely speaking it is a
finite sized stable blob which contains a large num-
ber of particles due to the attractive force among
them. The proposal of the Q-ball as a component
of the dark matter can be found in [82].
The F-ball arises from the breakdown of an approxi-
mate Z2 symmetry. The simplest type is a bubble of
false vacuum surround by a domain wall with many
zero-mode fermions attached. The earliest sugges-
tion of the F-ball to be a dark matter can be found
in [83].

In addition to individual particles, large astronomical
objects have been proposed as dark matter candidates
during early dark matter searches. They are baryonic
in nature and most are no longer viable because of the
bound on baryonic matter by BBN and CMB anisotropy.
But they should be and have been searched for to assure
that there is no surprises. For completeness we mentioned
them below:

• Massive compact halo objects (MACHOs). This is a
possibility that dark matter involves normal bary-
onic matter include very dim stars, brown dwarfs
which have small masses less than 10% of that of
the sun; or perhaps small, dense chunks of heavy ele-
ments, which are known collectively as “MACHOs”.
Gravitational lensing is a way to search for them.
However, studies of big bang nucleosynthesis have
shown convincingly that baryonic matter such as
MACHOs cannot be more than a small fraction of
the total dark matter.

• Massive compact objects (MCOs). Similar to
MACHOs, these are clumps of dense ordinary mat-
ter which do not emit a measurable amount of radia-

tion. Such objects, if distributed in the universe,
can very likely be revealed by lensing effect in the
study of supernovae. The light from many super-
novae studied have traveled 5 billion years to reach
Earth. Encountering a MCO, the light will be
dispersed. Observations of 300 distant supernovae
show no sign of MCOs with a mass greater than 1%
of the mass of the sun [84]. It is hence concluded
in [84] that MCOs of mass no smaller than 10% of
that of Earth can be ruled out. So MCOs cannot be
a significant part of the dark matter.

• Black holes and primordial black holes. Galaxy-
sized, very massive black holes as dark matter are
ruled out by gravitation lensing data. But tiny black
holes are still a possibility [85]. In general, however,
black holes, irrespective of their sizes, cannot con-
stitute a significant part of the dark matter, unless
they are formed in the very early universe before the
era of nucleosynthesis. The reason is similar to that
against MACHOs as given above. If they are cre-
ated after the era of nucleosynthesis, the black holes
have to be included in the baryon density, while cre-
ated before they will be counted in the density of the
dark matter.
In the early universe very small black holes less
than the solar mass, called the primordial black hole
(PBH) can be produced. They would gravitate,
float through the cosmos and form clusters. PBH
are non-relativistic and collisionless, so they would
be an interesting candidate of the CMD. A small
PBH could have the size of an atom but the mass of
an asteroid which is the order of 1017 Kg or more.
When a PBH pass through a star, such as the sun, it
gravitational effect can set the star to oscillate and
therefore observable [86].

4.2.1 Broaden the scope: Dark sectors – a brief
description

Adding to the list of dark matter candidate is the rela-
tively new development call Dark Sectors. Since all evi-
dence for dark matter comes from its gravitational effect,
so the dark matter particle or particles may come from
a hidden sector that does not interact with the known
standard model forces. The dark matter particles have
interactions among themselves. Different kinds of mod-
els can be constructed. A simple example is that the dark
sector is a pure supersymmetric SU(N) gauge theory. In
such model the WIMPless miracle can happen so that
the result of the WIMP miracle, which be discussed in
some detail later, will be obtained. In addition, the dark
sector particles can have strong self interactions which is
suggested by recent cosmological observation in galaxy
collisions. We refer to [87, 88].
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Another focus of the dark sector refers generally
to physics sectors that contains dark matter particles
but not the WIMP type [89]. They include the well-
motivated axion and axion like particles (ALPs), and
broad hidden sectors which are not related to standard
model physics but motivated by the fact that the dark
components, dark energy and dark matter are the ma-
jor constituents of the universe and therefore likely (why
not) to have their own full structures. This opens up
a completely new world and can have myriad possibili-
ties, including new particles and interactions. But they
are assumed to have similar theoretical framework of or-
dinary particles, such as the gauge principle and field-
theoretical structure, which will serve as portals to this
new world. The following are some of the possibilities.
For more details and references, see [89].

• Dark photon. This is to assume the existence of a
new U(1) gauge bosonic field, denoted as A′, which
couples very weakly to (electrically) charged parti-
cles through kinetic mixing with the normal photon,
producing an effective interaction with the normal
sector, e.g., ∼ A′

µJ
µ
EM, where Jµ

EM is the electromag-
netic current of charged normal particles.

• New, light, weakly-coupled particles that have no
conventional strong or electroweak interactions.
This is motivated by the null result of the various
searches, including dark matter and accelerator, of
the popular WIMP scenario which contains weak-
scale (hundreds of GeV) weakly interacting parti-
cles WIMPs. In addition, there are also hints of
possible problems with the cold dark matter model
ΛCDM in astrophysics and cosmology considera-
tions. Lighter dark matter of the MeV-GeV (Sub-
GeV) range, made of scalar particles, is allowed the-
oretically. This light particle sector can be quite
complicated involving many different species of par-
ticles and they can also be thermal relics.

4.3 Remarks on viable dark matter candidates

Dark matter candidates, such as the neutralino in su-
persymmetry, the lightest Kaluza–Klein particle in the
superstring theory and theories of extra dimensions,
and other particles from beyond the standard model
are generally quite massive and weakly interacting with
particles of visible sector. So they are referred to as
weakly interacting massive particles (WIMPs). They are
well-motivated by independent considerations of parti-
cle physics [90]. Since mostly of them are imbedded in
a well-defined theoretical framework, for solving particle
physics problems, such as the neutralino, their effects can
be worked out theoretically and their laboratory tests
can be systematically carried out. Their astrophysical
behavior is roughly the following: In the every early uni-

verse they are in thermal and chemical equilibrium with
the ordinary particles until the cosmic temperature drops
below the mass of the WIMP, they then decouple and
their density freezes out. It turns out that WIMPs have
naturally the right density required for the cold dark
matter. This we will see in some detail later. Hence
this is the class of dark matter candidates which have
received the most attention and been most thoroughly
studied. The mass of a WIMP is estimated to lie in a
wide range of 10 GeV to 1 TeV.

Not all particle physics motivated dark matter can-
didates are WIMPs. The axion is an example of non-
WIMP particle dark matter candidate. WIMP together
with axion are generally considered as mainstream can-
didates of the cold dark matter. Others types of particles
are non-WIMPs, which can be cold or warm and can be
thermal, such as WIMPZILLA, gravitinos, superWIMP,
etc. are referred to as exotics. There are also candi-
dates produced non-thermally. Because the attention
has mostly been the search of the dark matter, effects
of the dynamics among the dark matter particles them-
selves are largely neglected.

Recent developments further enlarge the possibility of
dark matter candidates, motivated by both experimen-
tal and theoretical reasons. On the experimental side is
the failure of uncovering any signals of dark matter from
the myriad experimental searches using diverse technolo-
gies, resulting in ruling out significant parts of the WIMP
parameter space. Astrophysical observations have sug-
gested the possibility of significant interactions among
dark matter particles themselves. On the theoretical side
is the opening up of new possibilities in producing dark
matter relics. In addition to WIMP, the early SIMPs
(Strongly Interacting Massive Particles) system [91] and
SIDM [56], meaning Self-Interacting Dark Matter, are
more actively studied. We only cite the most recent arti-
cles of the two schemes and more references can be found
in them. Recently a new mechanism have been proposed
to produced thermalized dark matter that takes place
in the hidden sector of higher dimensional theories. The
hidden sector particles involved, which have strongly self-
interaction, is called SIMP (strongly interacting massive
particles) [92] and models realizing the scheme have been
proposed, see, e.g., [93].43)

Following [94] we summarize in Table 4.1 the most at-
tractive dark matter candidates, both WIMP and non-
WIMP. Several other relevant informational items are
also given: the motivation of their existence, some of
their general properties, and the methods of their detec-
tion.

43)Note the difference between SIMPs and SIMP. However, it
should be noted that in some SIMPs articles the name SIMP has
been used.
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Table 4.1 Summary of dark matter candidates and their related physics. The table is adopted from [94]. GHP stands
for gauge hierarchy problem and NPFP for new physics flavor problem. XX means generic detection signals, and X means
signal possible.

WIMPs Super WIMPs Light Ĝ Hidden DM Sterile ν Axions

Motivation GHP GHP GHP NPFP GHP NPFP ν Mass Strong CP
Naturally Correct Ω Yes Yes No Possible No No
Production Mechanism Freeze Out Decay Thermal Various Various Various
Mass Range GeV–TeV GeV–TeV eV–keV eV–keV kev µev–meV
Temperature Cold Cold/Warm Cold/Warm Cold/Warm Cold Warm
Collisional X
Early Universe XX X
Direct Detection XX X XX
Indirect Detection XX X X XX
Particle Colliders XX XX XX X

4.4 Ranges and bounds of masses of dark matter
candidates

In spite of the clear conditions on what the dark mat-
ter cannot be, the number of allowed candidates is huge
with limited restrictions on their properties, such as their
mass and reaction cross sections. A summary of the mass
ranges of the various dark matter candidate particles vs
their interaction cross sections is given in Fig. 4.1 which
is a updated version given originally in [95].

Taking the plot shown in the lower panel of Fig. 4.1,
we see the mass varies about 30 orders of magnitude.,
from 10−15 to 1015 GeV. The reaction cross sections of
the majority of candidate particle cover a comparable
range of 32 orders of magnitude, from 10−31 to 10 pb.
Note that the WIMP includes several different kinds of
particles: Kaluza-Klein particles, little Higgs, as well as
SUSY particles. The SUSY Neutralinos which are in-
cluded in WIMP have a more restrictive mass and cross
section range than general WIMP particle.

Interestingly, there exist Upper and lower bounds on
the mass of certain categories of dark matter particle,
based on general argument, largely model independent.
The upper bound is the unitarity bound which is appli-
cable to the thermal relics of WIMPs. The lower bound
is known as the Tremaine–Gunn bound which applies to
particle such as axions. We briefly discuss them below.
We should emphasize that the unitarity bound is not
applicable to non-thermal dark matter particles.

Unitarity bound

For the thermal dark matter particle, the unitary re-
lation places an upper bound on its mass bound is given
in [79]. It is derived for particles which are once in
thermal equilibrium during their time evolution in the
early universe. The partial-wave unitarity of the S-matrix

limits the annihilation cross section, which bounds the
relic abundance of the dark matter particle and hence
its mass. Two bounds can be obtained. It excludes (a)
stable elementary, point particles of mass greater than
Mmax and (b) composite extended objects of the radii
smaller than rmin. [79] gives Mmax and rmin = 7.5×10−7

fm. In particular, the mass upper bound of a thermalized
dark matter is given by44)

mTDM(in TeV) ≤ 103 ·

√
ΩTDMh

2

1.7
√
Xf

,

Xf =
mTDM
Tf

, (4.1)

where Tf is the freezing out temperature of the dark mat-
ter and it is estimated X ≈ 28. In the case that the dark
matter saturates the mass density and the reduce Hub-
ble constant is unity, i.e., ΩTDMh

2 = 1, we obtain the
bound of [79]. If we take the most recent observational
value Ωcdmh

2 = 0.12 [13], we have mTDM ≤ 115 TeV.
A discussion on the maximum masses of possible dark
matter particle can be found in the 2014 SLAC Summer
Institute [26] where a much smaller bound of 30 TeV was
stated.45) Although the upper bound is rather large, in
the tens or hundred TeV value which makes it not very
restrictive, it is interesting that such a bound exits. In
case of multi-component cold dark matter which consists
of more than one species of massive particles, Eq. (4.1) is
satisfied by each individual species, then each Ωh2 is re-
duced and the corresponding mass bound decreases too.
Since the mass bound goes like

√
Ωh2, the decrease in

the individual mass bound is mild.

44)Equation (12), [79]. The mass bound given is for a Majorana
fermion. See [79] for details.

45)It is a Project Presentation entitled Maximum mass of DM
particles given in the afternoon of August 14, 2014.

121201-32
Bing-Lin Young, Front. Phys. 12(2), 121201 (2017)



Review article

Fig. 4.1 Mass vs. interaction cross section of dark matter candidates. The upper left panel is an updated version of a
similar plot given in [95]. The upper right panel is given by Park quoted in [96]. The lower panel is a further updated as
given in [73] for several well-motivated dark matter candidates. We note that the time span of the three plots is over a
decade and the established parameter space have not changed much. But new candidates have been added. In the bottom
panel SIMP stands for Strongly Interacting Massive Particles (Section 4.3) and ADM for Asymmetric Dark Matter (Section
8.3.3). Fuzzy CDM is a very light hypothetic scalar particle of 10−22 eV, proposed to solve the cusp halo problem.

We should note that the unitarity bound does not ap-
ply to dark matter particles which are non-thermal.

Tremaine–Gunn bound
The Tremaine–Gunn bound [97] refers to the lower

mass bound of dark matter particles. It is first derived
for fermionic dark matter particles, based on the phase-
space density evolution argument which, in the simple
robust form, is a consideration of the average phase-space
density of the dark matter particle in a given astronom-
ical object in relation to the phase-space density of de-
generate Fermi gas. The argument has been generalized
to bosons [98]. The Tremaine–Gunn bound has been

used widely to put a lower limit of sterile neutrinos as
dark matter particles. More discussion can be found in
Section 7.2.

5 WIMPs

5.1 Weakly interacting massive particles (WIMPs)

On broad theoretical considerations of particle physics,
WIMPs are the most desirable candidates of the dark
matter. First, the comparable densities of the baryon
and dark components, ΩDM/ΩB ≈ 5.4 [13], i.e., densities
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of the dark matter and ordinary matter being compara-
ble, suggests that the baryonic matter and the dark mat-
ter are related. Second, as WIMPs are mostly particles
which appear in theories beyond the SM, establishing
such a relation would provide solutions to some of the
outstanding fundamental problems of particle physics
today. With the dominant component of DM being
WIMPs, one can establish a deeper connection between
microscopic fundamental particles and the large scale
universe.46)

5.2 Supersymmetric particles as WIMPs

Supersymmetry, which is motivated by the gauge hierar-
chy problem, the unification of coupling constants, and
string theory, provides a concrete framework to extend
the SM through an encompassing symmetry principle.
The minimal supersymmetric standard model (MSSM),
which, with the discrete symmetry of the R-parity con-
servation, has all the desirable features to give us a well-
motivated WIMP candidate in the form of the lightest
stable super particle such as the neutralino. The R-
parity of a particle is defined by its baryon number B,
lepton number L, and spin s,

R = (−1)3(B−L)+2s. (5.1)

It is straightforward to see that all SM particles have
positive R-parity and their super patterns negative R-
party. If the R-parity is conserved the lightest super
particle (LSP) will be absolutely stable. The LSP, called
the neutralino and denoted by χ̃0, is a mixture of the
super partners of the photon, Z-boson (mixture of W̃ 0

and B̃0), and super partners of the Higgs particle (H̃0
1and

and H̃0
2 ),

χ̃0 = a1W̃
0 + a2B̃

0 + a3H̃
0
1 + a4H̃

0
2 . (5.2)

A very attractive feature of the MSSM is the gauge
unification which unifies the three coupling strengths of
the SM, for the strong and electroweak interactions, at
high energies and, therefore, has the possibility of achiev-
ing grand unification. Figure 5.1, a frequently shown
graph, describes the coupling unification of the MSSM at
high energies. The left panel shows that in the absence
of supersymmetry the three running coupling constants
of the SM do not intersect at the same energy, while the
right panel shows that in MSSM the three running cou-
plings do intersect at around 1016 GeV, a three orders of
magnitudes below the Planck energy.

46)We have tried to emphasize the connection between particle
physics and cosmology. This connection has been well recognized
by now. For instance, note the Ph.D. thesis by M. E. C. Swanson
by the title: Particle Physics in the Sky and Astrophysics Under-
ground: Connection the Universe’s Largest and Smallest Scales,
arXiv: 0808.0002 [astro-ph].

Aesthetically satisfying, WIMPs as the dark matter
provide a common solution to problems arising from the
high energy and low energy connections facing particle
physics and cosmology. In particle physics, supersym-
metry shields the low energy region, i.e., the standard
model of a few hundreds of GeV, from the strong influ-
ence of the higher energy scale of grand unification. And
thus resolves the hierarchy problem. For cosmology, su-
persymmetry becomes the dark side of the universe. The
super partners together with the ordinary particles form
the universe as we know it.

Here a brief general comment on SUSY is in order.
SUSY contains a large class of specific models or sce-
narios, all involve a large number of free parameter.
Even the MSSM has a large parameter space. The num-
ber of parameters can be greatly reduced in some of
the specific model subject to particular conditions. The
most popular and widely studied are the minimal super-
gravity (mSUGRA) model and the constrained MSSM
(CMSSM). We refer to [100] for a detailed discussion of
dark matter candidates in these two models.

5.3 WIMP physics and cosmology

Following the conventional practice, let us denote generi-
cally the dark matter particle by χ and its antiparticle χ̄.
χ and χ̄ are the same if the dark matter consists of Ma-
jorana particles. In discussions of the general nature, χ
denotes both dark matter particle and its anti-particle.
Participating in the evolution of the universe, χ is as-
sumed to be thermally produced and therefore, at high
temperatures T ≫ mχ, in thermal equilibrium with the
thermal bath of the universe.

In the early universe χ maintains its equilibrium with
ordinary particles through high rates of annihilation and
production processes, which take the form

χ+ χ̄↔ ℘+ ℘̄, (5.3)

together with the cross channel elastic scattering pro-
cesses, where ℘ and ℘̄ denote an ordinary, standard
model, particle and its antiparticle, such as leptons,
quarks, the photon, etc. All particles in equilibrium are
at the same temperature. The number density of χ in
equilibrium at a given temperature is given by

n(eq)χ =
g

(2π)3

∫
f(p)d3p, (5.4)

where g is the number of internal degrees of freedom,
i.e., the spin states 2S+1, of χ. The function f(p) is the
Dirac-Fermi or Bose-Einstein distribution,47). depending
on the statistical property of χ, as a function of the mag-
nitude of the three-momentum p of χ. For massive χ, at

47)See a discussion in Section 9, in particular, related to
Eq. (9.98).
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Fig. 5.1 High energy behavior of the SU(3), SU(2), and U(1) couplings constant. The left panel is for the standard model
in which the couplings are not unified, while, as shown in the right panel, in the minimal supersymmetric model the couplings
are unified around 1016 GeV. These figures are from Ref. [99] but rearranged.

high temperatures, T ≫ mχ, we have n(eq)χ ∝ T 3. At
lower temperature T ≪ mχ, because of the suppression
of the production of χ χ̄ pair from ℘ ℘̄ pair, while the
annihilation rate maintains, the number density is ex-
ponentially suppressed n

(eq)
χ ∝ exp(−mχ/T ). When the

temperature of the universe drops sufficiently low, the
density of χ would be exponentially small if the equilib-
rium maintains. Fortunately, the cosmological dynamics
intervenes. When the universe expands and cools down,
the reduced number density of χ makes it harder and
harder for χ and χ̄ to find each other to annihilate, and
to find ordinary particles to scatter around. Eventu-
ally, when the temperature of the universe becomes suf-
ficiently low, the annihilation process stops, χ decouples
from the cosmic thermal bath consisting of photons and
other relativistic particles. Then, except for the possi-
bly very occasional annihilation into and scattering off
ordinary particles, χ is decoupled from the rest of the
universe. But it continues to expand freely with the
Hubble flow so as to maintain a constant number in a
comoving volume a3, i.e., a3nχ =constant. The number
density of χ resumes the T 3 behavior. Below we present
a qualitative argument for the physics of thermal decou-
pling or freeze-out of particles, and hence the appearance
of thermal relics. A detailed treatment can be found in
Section 11.

5.3.1 Thermal relics

In this subsection we outline the formulation in deal-
ing with thermal relics for both relativistic and non-
relativistic cases. In the relativistic case the relics result
in a hot dark matter and in the non-relativistic case a
cold dark matter. We assume the symmetric case that
the dark matter particle and its anti-particle have identi-

cal density functions nχ̄ = nχ. We start with the Boltz-
mann transport equation (BTE) which deals with the
time evolution of the number density of the particle χ,
nχ, to be derived in Section 11,

dnχ

dt = −3Hnχ − ⟨vσann⟩(n2χ − n(eq)2χ ), (5.5)

where n(eq)χ is given in Eq. (5.4), H the Hubble expansion
rate, σann the χχ̄ annihilation cross section of Eq. (5.3)
summed over all relevant final states, and v the magni-
tude of the relative velocity of χ and χ̄. ⟨vσann⟩ is the
thermal average of vσann. It is straightforward to check
that both sides of the above equation has the expected
engineering dimension of inverse volume divided by time,
i.e., cm−3·s−1. For the later usage we define two rates of
annihilation of χ and χ̄48).
Γann = nχ⟨vσann⟩,
Γ (eq)
ann = n(eq)χ ⟨vσann⟩. (5.6)

The time rate of change of the total number of particles
in a comoving volume a3, a3nχ has a simpler form,

d(a3nχ)
dt = −⟨vσann⟩a3

(
n2χ − n(eq)2χ

)
, (5.7)

which can be rewritten as
1

2

d(a3nχ)2
dt = −Γann

(
(a3nχ)

2 − (a3n(eq)χ )2
)
. (5.8)

48)Let us recall that the expressions of the equilibrium forms of
the number density in the relativistic and non-relativistic limit are

n
(eq)
relF =

3

4
g
ζ(3)

π2
T 3, n

(eq)
relB = g

ζ(3)

π2
T 3,

n
(eq)
non = gχmχ

(
2π
mchi

T

)−3/2

exp
(
−
mχ

T

)
.

For details see, Section 9.3.
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Since the comoving volume a3 is not a measurable
quantity and the cosmic time is awkward to work with in
the present setting. We replace a3 by the entropy density
s by defining

Y ≡ nχ
s
, Yeq ≡ n

(eq)
χ

s
. (5.9)

The BTE Eq. (5.7) becomes

dY
dt = −⟨vχσann⟩s(Y 2 − Y 2

eq). (5.10)

The more convenient variable is

x ≡ mχ

T
. (5.11)

Because of the entropy conservation in a comoving vol-
ume, a3s ∼const. Eq. (9.115), replacing a3 by s−1 is nat-
ural. The variable x can be used to differentiate directly
a relativistic case from a non-relativitic one. Crudely,
x = 2 can be used as a criterion for the two cases, x < 2
the relativistic case and x > 2 the non-relativistic case.

To obtain the BTE in terms of x, we need the time
derivative of the cosmic temperature

d
dt = −x

(
Ṫ

T

)
d

dx, (5.12)

where the conventional notation Ṫ ≡ dT/dt is used. To
calculate Ṫ/T we use the explicit expression of s given
in Eq. (9.137), i.e., s = (2π2/45)gs∗T

3, and a3s ∼const.
which gives ṡ = −3Hs,

Ṫ

T
= −H

(
1 +

T

3

d
dT ln(gs∗)

)−1

. (5.13)

Then49) the BTE Eq. (5.10) can be written in various
equivalent forms which can be found in the literature,
e.g.,

dY
dx =

⟨vσann⟩
3H

ds
dx (Y

2 − Y 2
eq)

= −⟨vχσann⟩
H

s

x

(
1 +

T

3

d
dT ln(gs∗)

)
(Y 2 − Y 2

eq)

= −
√

π

45
g
1/2
eff mχMP

⟨vσann⟩
x2

(Y 2 − Y 2
eq),

g
1/2
eff =

gs∗√
gρ∗

[
1 +

T

3

d
dT ln(gs∗)

]
, (5.14)

where MP = 1/
√
GN is the Planck mass. We have used

the expression for the entropy as quoted in the line above
49)The expression of the first equality below can be found in [25]

which is related to the second equality by the identity ds/dx =
−(3s/x)(1 + (T/3)d(ln(gs∗))/dT ).

Eq. (5.13), and the expression for the total energy den-
sity, Eq. (9.136), i.e., ρ = (π2/30)gρ∗T

4 in the expres-
sion of the Hubble expansion rate H ≡

√
(8πGN/3)ρ,

assuming radiation dominance. From the expression of
the second quality sign of Eq. (5.14) we can rewrite the
BTE in yet another form which is particularly revealing
of the physical properties of the BTE,

x

Y(eq)

dY
dx = −Γ

(eq)
ann
H

[
1 +

T

3

d ln(gs∗)
dT

][(
Y

Yeq

)2

− 1

]
.

(5.15)

We will come back to this equation later.50)

The BTE, in any of the forms given above, in their
full generality, having temperature dependent gs∗ and
Γ ann
ann , has to be solved numerically. They are the non-

linear, Riccati equation, which have no known general
analytic solutions.51) However, knowing the behavior of
the equations, an approximate solution can be obtained.

The ratio Γ (eq)
ann /H is the controlling factor in the so-

lution of the BTE. In the early universe of high tem-
perature, T ≫ mχ, the χχ̄ equilibrium annihilation rate
Γ
(eq)
ann is much larger than the universe expansion rate
H. When χ starts in equilibrium, the large coefficient
Γ
(eq)
ann /H in BTE Eq. (5.15) enforces χ to stay in equi-

librium due to the negative feedback effect. As the uni-
verse expands both H and Γ (eq) decrease, with the lat-
ter slower than the former, the coefficient Γ (eq)

ann /H de-
creases.52) As this tendency continues, at some point
Γ
(eq)
ann /H will become sufficiently small, Y is able to break

away from Yeq. This will happen in the case of massive
particle and it is crucial mechanism for the existence of
relics. If a particle species is unable to break away from
its equilibrium state, it number density would become
exponentially small and there would be no relics left
eventually. The temperature which begins the depar-
ture of nχ from the equilibrium form is denoted as the
freeze-out temperature Tf with the x-variable xf:

Γ (eq)
ann = H|x=xf . (5.16)

For xf < 2, the freeze-out takes place when χ is relativis-
tic resulting in a hot relic, while for xf > 2 the freeze-out
for non-relativistic χ which is a cold relic.

5.3.2 Hot relics

This is the case when the particle freezes out when it
is still relativistic, so xf . 2.53) At the decoupling or

50)Equation (5.15) is given in [74] Eq. (5.26) and in [25] Eq. (3),
while the possible temperature dependence of gs∗ is neglected.

51)which we will discuss in some detail in Section 11.3.
52)Since n(eq)χ ∼ T 3 and in a radiation dominated era H ∼ T 2,

Γ
(eq)
ann /H decreases like T or faster.

53)The discussion in the present subsection follows that given in
[74], pp 122–123.
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freeze-out χ is still relativistic and

Yeq(xf) =
n
(eq)
χ (xf)

s(xf)
=

45ζ(3)

2π4

gχ∗
gs*(Tf)

(xf < 2) (5.17)

is constant.54) Then the asymptotic value of Y , Y∞, is
insensitive to the temperature. We have

Y∞ = Yeq(xf) =
45ζ(3)

2π4

gχ∗
gs*(Tf)

(xf < 2). (5.18)

To calculate the number density at the present epoch,
we can identify Y0 = T∞ and call the present entropy s0
[13]

nχ0 = s0Y∞ = s0
45ζ(3)

2π4

gχ∗
gs*(Tf)

(xf < 2). (5.19)

In the present case the equilibrium density of χ,
n
(eq)
χ ∼ T 3, and the cosmic entropy density s ∼ T 3.

Then Yeq is time independent. For relativistic particles
the number density of χ and the entropy of the system
are given in Eqs. (9.119) and (9.122),

nχ(T ) = gχ∗
ζ(3)

π2
T 3,

s(T ) = gs*
2π2

45
T 3, (5.20)

where ζ(3) = 1.20206. gχ∗ = gχ for boson and gχ∗ =
3gχ/4 for fermion, where gχ is the spin degrees of freedom
of χ. gs is the effective degrees of freedom for the entropy
of the system at the temperature T , given by

gs* ≡ gB +
7

8
gF, (5.21)

where gB and gF are respectively the total degrees of
the freedom of the contributions to the entropy from all
bosons and fermions. We have

Y (T ) =
nχ(T )

s(T )
=

45ζ(3)

2π4

gχ∗
gs *

, (5.22)

which can be treated as a constant. Therefore, the
asymptotic value of Y∞ which determines the relic den-
sity is given by Eq. (5.18). The number density and mass
density of the hot relic χ, and its factional contribution
to the universe energy budget are respectively, of χ at
the present time are

nχ0 = s0Y∞ =
45ζ(3)

2π4

gχ∗
gs*

s0,

ρχ0 = mχnχ0 =
45ζ(3)

2π4

gχ∗
gs*

s0 ·mχ,

Ωχh
2 =

mχnχ0
ρch−2

=
45ζ(3)

2π4

g∗χ
gs

s0 ·mχ

ρch−2
. (5.23)

54)We recall that at xf, n
(eq)
χ = gχ∗(ζ(3)/π2)T 3, where gχ∗ =

(3/4)gχ for fermions and gχ∗ = (3/4)gχ for bosons, and s =
gs∗(Tf)(2π

2/45)T 3, while gs*(Tf) is gs* evaluated at Tf. Then
Yeq = (45ζ(3)/(2π4))(gχ∗/gs*(Tf)).

where s0 is the present entropy density and ρc the critical
density of the universe. Substituting s0 = 2891.2 cm−3

and ρc = 1.0538 × 104h2 eV/cm3 [13], we obtain the
numerical expressions
nχ0 = 8.0276× 102

gχ∗
gs*

,

ρχ0 = 8.0276× 102
gχ∗
gs*

(mχ

1eV

)
eV/cm−3

,

Ωχh
2 = 7.6178× 10−2 gχ∗

gs*

( mχ

1 eV

)
. (5.24)

This implies that there is an upper bound for hot relics.
From the third expression of the above equation with the
upper bound of the left-handed side Ωχ < 1, we have

mχhot < 13.13

(
gs*
gχ∗

)
h2 eV. (5.25)

Since the hot relics can not over-saturate the required
dark matter, with Ωdmh

2 = 0.1198, we have mχhot <
1.6(gs*/gχ∗) eV.

We can use Eq. (5.24) to derive the usual contribution
of neutrinos to the mass budget of the universe. The
neutrino decouples at the temperature around 1 MeV
(See Section 9.5). The particles which contribute to the
entropy include the photon three species of neutrinos and
anti-neutrinos, and the electron and positron. As shown
in the second row of Table 9.4, gs* = 10.75. For the
two-component neutrino theory gν∗ = 2(3/4), we obtain
from the third equation in Eq. (5.24)

Ωνh
2 =

∑
mν

94.1 eV (5.26)

The current neutrino mass bound given by PDG [13] is∑
mν < 0.23 eV which leads to Ωνh

2 < 0.00245, at least
a factor 50 smaller than the current dark matter value
of ΩDMh

2 = 0.1198.

5.3.3 Cold relics

For non-relativistic decoupling the freeze-out tempera-
ture is smaller than the mass of xf > 2. The decoupling
is a result of the time development of the number den-
sity of the massive particle under consideration. In the
following we first describe this time development quanti-
tatively, then do the calculation following the approach
of [101]55) based on an expression in Eq. (5.14) together
with the facilitating approximation. Let us repeat the
argument given below Eq. (5.15). After the thermal pro-
duction of χ at high temperature, T ≫ mχ or x ≪ 1, χ
is relativistic and in thermal equilibrium with the heat
bath of the universe. So it has an equilibrium distribu-
tion with its number density proportional to T 3, which
gives Y = Yeq. In this stage of the development, the an-
nihilation rate is much greater than the Hubble expan-
sion rate. So Y is forced to track Yeq very closely. When

55)[101], pp 74–77.
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the temperature decreases, x increases, the equilibrium
annihilation rate decreases like x−3 (T 3) or faster, while
H decreases like x−2 (T 2) in a radiation dominated sit-
uation. So the ratio Γann/H decreases as the tempera-
ture decreases. When the temperature decreases below
mχ or x > 2 the equilibrium number density takes the
non-relativistic form of the Maxwell-Boltzmann distribu-
tion which decreases exponential decreasing, ∼ exp−x.
Around xf > 2 Y departs from Yeq and gets away from
Yeq more and more as temperature decreases further. At
sufficiently low temperature the density of the particle is
so diluted that the annihilation process is no long effec-
tive, and the number of particles in a comoving volume
freezes to a constant and becomes a relic of the expanding
universe. The solution for xf from Eq. (5.16) depends on
the size of the annihilation cross section, Since the larger
the annihilation cross section, the larger the annihila-
tion rate, and the later the particle is able to maintain
its non-relativistic distribution, hence the lower its relic
density. A graphic description of the decoupling process
is depicted in Fig. 5.2 [74]. A detailed demonstration
of the decoupling can be found in Section 11. See, in
particularly, Fig. 11.1.

Below we will make a quantitative estimate of the ex-
pected relic density. Let us rewrite the third equality of
Eq. (5.14) as

dY
dx = − λ̃

x2
(Y 2 − Y 2

eq),

λ̃ ≡
√

π

45
g
1/2
eff mχMP⟨vσann⟩. (5.27)

Fig. 5.2 The WIMP comoving number density as in early
universe as the temperature decreases. The dashed curve
shows the density after decoupling [74]. Note the obvious
feature that xf increases with the annihilation cross section
which leads to the decrease of the relic density.

We will approximate λ̃ as a constant and focus on the
above equation in the region of T ≤ Tf.55) After freeze-
out Y is much larger than Yeq which is exponentially sup-
pressed and can therefore be neglected. Equation (5.27)
can be rewritten as

dY
dx = −λ̃Y

2

x2
. (5.28)

Integrating the equation from xf to ∞, we have

1

Y∞
− 1

Yf
=

λ̃

xf
, (5.29)

where Y∞ and Yf are respectively the values of Y asymp-
totically and at the freeze-out point. In general Yf ≫ Y∞,
we have the approximate asymptotic value of Y∞ which
allows to determine the freeze-out density,

Y∞ ≃ xf

λ̃
. (5.30)

To obtain the freeze-out density we multiply Y∞ by
the entropy density s1, where T1, which is much higher
than the present temperature T0, is a sufficiently later
temperature when Y reaches its asymptotic value. After
T1 the density will follow the Hubble flow to scale like
a−3. Hence the number density at the present time is
given by, using s1 = (2π2/45)gs∗T

3
1 ,

nχ0 = Y∞s1

(
a1
a0

)3

=

√
4π3

45

g
1/2
∗

mχMP

xf
⟨vσχ⟩

T 3
0

(
a1T1
a0T0

)3

,

g
1/2
∗ ≡ gs∗

g
1/2
eff

= g
1/2
ρ∗

[
1 +

T

3

d
dT ln(gs∗)

]−1

, (5.31)

where Eq. (5.14) for g1/2eff has been used.

5.3.4 The WIMP miracle

To proceed further we have to estimate the values of
xf, g∗, and (a1T1)

3/(a0T0)
3. xf is the order of a few

tens as indicated in Fig. 5.2. We normalize xf by 10. If
nothing happens between T1 and T0, the cosmic temper-
ature which is defined by the photon temperature, which
would simply track a−1. Then aT would be constant and
(a1T1)/(a0T0) would be unity. But this is not the case.
A familiar example is the temperature of the photon and
that of the neutrinos. When the cosmic temperature is a
few MeV or higher, the photon and neutrinos are in ther-
mal equilibrium and they have the same temperature.
Neutrinos are decoupled at about 1 MeV from the photon
before the electron-positron annihilation which heated
up the cosmic heat bath and hence the photon. Neu-
trinos are not affected. Hence the cosmic temperature
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becomes higher then that of neutrinos. The same mech-
anism works in the decoupling of χ. Between 100 GeV
and 1 MeV, a number of standard model particles are an-
nihilated and hence heat up the cosmic temperature, so
a0T0 is much larger than a1T1. See Table 9.4 for a list of
the various channels of annihilation involving standard
model particles. Ref. [101] gives (a1T1)3/(a0T0)3 ≈ 1/30.
For the same reason g∗ is estimated to be of the order
100. We now make a numerical estimate of the mass
fraction of χ at the present epoch and express it in the
various units one finds in the literature:

Ωχh
2 ≡ mχnχ0

h2

ρc
=

√
4π3

45

g
1/2
∗

MP

xf
⟨vσχ⟩

T 3
0 h

2

ρc

(
a1T1
a0T0

)3

= 0.282
( xf
10

)( g∗
100

)1/2 10−37 cm2

⟨vσχ⟩

= 0.847
( xf
10

)( g∗
100

)1/2 10−27 cm3s−1

⟨vσχ⟩

= 0.752
( xf
10

)( g∗
100

)1/2 10−10 GeV−2

⟨vσχ⟩
. (5.32)

Following the usual approach, We can set

⟨vσχ⟩ = a+
3

xf
b, (5.33)

where a denotes the s-wave and b the p-wave annihila-
tion cross sections. The average velocity can be taken as
0.27c. Let us rewrite the second line of Eq. (5.32)56)

Ωχh
2 = 0.1×

( xf
10

)( g∗
100

)1/2 0.282 pb
a+ 3

xf
b

(5.34)

where pb is picobarn (10−36 cm2). Since the contribution
of the cold dark matter is Ωdmh

2 = 0.11, which, accord-
ing to Eq. (5.34), requires the annihilation cross section
to be of the order of pb. This is highly non-trivial. It
is the cross section expected from many hypothetic par-
ticles in models beyond the standard model, including
WIMPs. Hence it is call the WIMP miracle.

5.4 Comments on thermal vs. non-thermal production

Most of the dark matter candidates, such as WIMPs, are
produced thermally, as already illustrated in Fig. 5.2.
However dark matter candidates can also produced non-
thermally, such as the axion, superWIMP, and WIM-
PZILLA. Let us briefly summarize their difference.

Thermal produced dark matter refers to the dark mat-
ter candidates which are in thermal equilibrium at the
early universe. They evolve according to the thermal
equilibrium distribution until their reaction rate drops
below the Hubble expansion rate, they lost contact with

56)This expression is Eq. (3.60) of Ref. [101].

Fig. 5.3 The blue curve if the evolution of thermal relics as
a function of the temperature, while the pink curve is that of
the non-thermal production of particle which has vanishing
number density at very high temperatures. This figure is
taken from Ref. [102].

the rest of the universe and are decoupled. Then they
expand freely with the Hubble flow and maintain the T 3

behavior of their number density. This kind of particles
are also referred to as thermal relics of the early universe.
During their thermal evolutions as described above, they
are governed by the laws of thermodynamics and cosmol-
ogy. Otherwise, no free adjustments can be made. This
is the reason why the WIMP miracle is so highly valued
and suggests that WIMPs should be taken as a serious
candidate for the cold dark matter.

Non-thermal dark matter particles are produced
through the decays of their parent particles which are
present in the very early universe. So the dark matter
particle may have a very small or even vanishing number
density initially, and increase their number with time as
more and more their parent particles decay. Eventually,
the non-thermal dark matter particles reach the required
number density. From there on they will also expand
freely with the Hubble flow and their number density
maintains the T 3 ∼ a−3(t) behavior. In this way they
have never entered equilibrium with the rest of the uni-
verse. The difference of the density evolution between
thermal relics, which include hot and cold species, and
non-thermal production of dark matter particles is illus-
trated in Fig. 5.3.57)

6 Dark matter searches I – Mostly WIMPs

As stated earlier, dark matter researches are presently
experimentally driven. The astrophysical observations
of the effect of dark matter, although critical in provid-
ing convincing evidences of its existence, is just half of
the story. From the view point of fundamental physics,
observations of actions of dark matter in contexts outside
gravity are indispensable for identifying the dark matter

57)This figure is taken from Ref. [102].
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particle and studying its properties. Hence we have to
put the dark matter in an appropriate particle physics
framework to do the experimental or theoretical study.

The general framework we work in is that the dark
matter consists of individual particles, subject to the cat-
egorization established in our experience with ordinary
particles: having a definite mass and a set of quantum
numbers. If the dark matter interacts via only gravity,
there is not much can be said from the standpoint of
particle physics. However, in addition to the universal
gravity, they may also interact, albeit weakly, with or-
dinary particles. If so, dark matter particles can be put
into an extended theoretical framework together with or-
dinary particles. In this way they can collide elastically
with and annihilate each other into ordinary particles. If
there is a theoretical framework which is imbedded with
both dark matter particles and ordinary particles, we can
write down the elastic scattering and annihilation cross
sections of dark matter particles and ordinary particles.
Then their detection can be searched in appropriate cos-
mos settings and terrestrial laboratories.

We discuss the search for dark matter particles in this
and the next two chapters.

Dark matter drives the dynamics of galaxies and clus-
ters, and generates the growth of large-scale structures.
The halo of our own galactic, the Milky Way, should be
filled with dark matter particles, with an energy density
of the order of 0.4 GeV/cm3. We can then try to detect
their presence by the signals of their elastic scattering off
and annihilation into ordinary particles. In high energy
accelerators they may be produced in pairs in collisions
of ordinary, SM particles. In any searches, one has to
study and verify all aspects of predictions that a rele-
vant theoretical framework can make, in tight control
of backgrounds and uncertainties, in order to claim the
discover of a dark matter particle. These are not easy
tasks to perform, of course. In the particle physics per-
spective, the most interesting candidates of dark matter
are WIMPs together with the axion and sterile neutri-
nos. These classes of dark matter candidates are well-
motivated. The study of what they can do in cosmology
is equally important in particle physics.

There are broadly three approaches to search for dark
matter particles and study their properties, including
WIMPs and other types, not relying on their gravita-
tional effects:

• Direct searches in deep underground laboratories;
• indirect detections in deep underground laborato-

ries, under water or ice, large area telescopes, and
satellite experiments;

• accelerator productions of dark matter particles.

These approaches are independent, complementary, and
necessary. Direct and indirect searches are necessary in

establishing the existence of dark matter particles. The
direct search is to detect signals of their scattering off
the nucleus and performed in terrestrial laboratories, rel-
evant to dark matter around Earth. The indirect search
is to detect their annihilation into ordinary particles as
shown in Eq. (5.3), relevant to dark matter located in
our local galaxy where concentrated dark matter distri-
butions are expected. These approaches allow us to es-
tablish their existence in the cosmic setting and also get
to know what ordinary particles they can interact with.
The accelerator production of dark matter particle en-
ables us to study their detailed properties under con-
trolled environment, find out their detailed properties,
and decide what particle physics theoretical framework
they can be fitted in. In the direct and indirect search for
the dark matter particle, the experiments are generally
designed with some specific assumptions on properties
of the dark matter in mind, and will therefore subject to
corresponding uncertainties.

There are a plethora of experiments in search for galac-
tic dark matter in terrestrial laboratories and in the
galactic environment, outside the collider and gravita-
tional approaches. They are mostly on going, or in con-
struction. The numerous experiments and the wide va-
rieties of state-of-art technologies employed reflect the
fact of how little we know about the dark matter. Un-
like collider experiments, which involve hundreds or even
thousands of collaborators with the deployment of gigan-
tic detectors, dark matter experiments, currently, are
generally moderate efforts, involving a few tens collabo-
rators and working with moderate-sized detectors. The
detectors designed are required to be very sensitive to
a certain type of signals, with strong background sup-
pression. Hence, most of the present generation of dark
matter experiments are a proof-of-existence exploration
which is a logical approach for getting a good peek of the
unknown in as many different possibilities as possible.

6.1 Worldwide deep underground laboratories

An important fact to consider in the direct search for
dark matter candidates is the suppression of any possible
backgrounds. A very serious source of the background is
the energetic neutrons produced by the penetrating cos-
mic ray muons originated in the atmosphere, leading to
interactions which may be indistinguishable from dark
matter events. Since this type of background are con-
trollable, it should be suppressed as much as possible.
For terrestrial experiments the practical way to enforce
background suppression is to degrade the cosmic muon
intensity by shielding a detector with sufficient amount
of Earth material, solid or liquid. Hence experiments of
direct search for dark matter have to be carried out in
a deep underground or deep ice/underwater laboratory.
A number of underground laboratories exist worldwide,
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Fig. 6.1 Worldwide distribution of underground physics research laboratories. It is noted that #26, the ANDES Deep
Underground Laboratory, being presently a proposal, will be the only science underground laboratory in the southern
hemisphere.

which are summarized in Figs. 6.158) and 6.259) Figure
6.1 shows the worldwide locations of existing deep under-
ground laboratories. Figure 6.2 gives the relevant phys-
ical parameters of those laboratories that are active in
physics and astrophysics research, their depths in meters
of standard rock, depths in meters of water equivalent
(MWE), and their remaining cosmic ray muon intensi-
ties.

Note that the underground laboratories #22 in
Fig. 6.1, which did not appear on the original plots, is
the Daya Bay underground laboratory, housing the on-
going reactor neutrino experiment of the same name. It
is the first experiment which determined accurately the
neutrino mixing angle θ13. Underground laboratory #24,
the China Jinping Deep Underground Laboratory (CJPL),
is a relatively new addition. It has the world’s deepest

58)The present figure is an updated version of the plot which,
appearing in 2007 in an article entitled Deep Science, and con-
taining 21 sites. It be found in http://www.deepscience.org/
contents/facilities.shtml

59)A plot of this kind also appeared in the 2007 “Deep Science”
article and can be found in http://www.deepscience.org/contents/
underground_universe.shtml The present figure is adopted from
P. Cushman’s talk in Ref. [26], entitled WIMP Direct Detection
Searches: Background Technology.

Fig. 6.2 Deep underground science laboratories together
with their rock overburdens (top scale), meters water equiv-
alent (bottom scale), and expected cosmic ray muon fluxes
and neutron fluxes (vertical scales). This figure is adopted
from P. Cushman’s talk in [26].

overburden of 2400 m rock or 6720 MWE. Its measured
cosmic muon intensity is about 40 per meter square per
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year. An early internal discussion of CJPL can be found
in TAUP 2011 [104] and a more recent summary is given
in [105]. #26, the ANDES Deep Underground Labo-
ratory, is in the proposal stage. If built, it will be
the first underground science laboratory in the southern
hemisphere. It has the unique capability to settle the
controversy of the annual modulation data which have
appeared in three dark matter experiments, in which
DAMA has the most and first data, to determine criti-
cally if the modulation is due to dark matter or not. A
Summary of the world’s underground laboratories in the
first decade of the new century can be found in TAUP
2011 [104]. For a more recent collection of descriptions
of deep and large underground laboratories, see [106].

6.2 Direct searches – Dark matter in terrestrial
laboratories

According to the model of the cosmological structure for-
mation, the luminous matter of a galaxy is gravitation-
ally bound to a more massive, sprawling halo of dark
matter. In the Milky Way the solar system and there-
fore Earth would constantly be passing through a flux
of dark matter particles distributed in the halo of the
galaxy. Once in a while the dark matter particles, such
as a WIMP, could interact with ordinary matter entities,
and, in the process, a nucleus is knocked off the ordinary
matter entity, signaling its encounter with a dark matter
particle.

Given the weak interaction scale of the expected
dark matter-ordinary matter scattering, according to the
WIMP miracle, galactic dark matter particle can deposit
a certain amount of energy in the detector. The order of
magnitude estimate of this energy deposit is not large, in
the order of 1–100 KeV which we shall show later. This
amount of energy deposition is measurable with a suit-
ably sensitive detector. The detection signatures involve
heat, light, or ionization. Roughly the detection rate can
be estimated as

R = ϖnχ⟨vχσela⟩ (6.1)

where ϖ is a numerical constant, nχ the WIMP number
density, vχ the WIMP velocity relative to the detector
in question, and σela the elastic scattering cross section.
Note that Eq. (6.1) has the right dimension of inverse
time. The majority of current experiments use one of
the following three detector technologies individually or
in combinations: cryogenic heat production, cryogenic
ionization, and scintillation light. There are other tech-
nologies proposed that have the potential to apply to the
case of very small cross sections of the order of 10−8 to
10−10 pb.

Direct searches are usually for WIMP mass in the
range of the order of several GeV to hundreds of GeV.
The experimental search results are usually present in

plots of cross section vs WIMP mass. The sensitivity for
low WIMP mass is constrained by the threshold effect
of the detector technology used due to low nucleus recoil
kinetic energy, as will be explained in Eq. (6.2) below
when we make a cursory look of the formulation of di-
rect WIMP searches. The high WIMP mass sensitivity is
limited by Eq. (6.1) due to the fact that the fixed energy
density of the galactic dark matter, which is about ∼0.4
GeV/cm3, makes the WIMP number density nχ small
for very large WIMP mass.

Both cryogenic and scintillation light detectors are ca-
pable of distinguishing the signal of dark matter particles
scattered off nuclei from the background. Background
events are ordinary particles scattered off electrons con-
tained in the detector target that are made of ordinary
atoms. A schematic description of the process of the
nucleus-WIMP scattering, together with the background
events of atomic electron scattered by photons and elec-
trons, is shown in the left panel of Fig. 6.3.

6.2.1 A cursory look of the basic formulation

We will take a quick look of some of the basic formulae
of experimental analysis necessary in the search of dark
matter particles. This is by no means a comprehensive
review of the formulation of the physical analysis. We
do not even try to push the argument to its logical con-
clusion. But going through some of the arguments to be
present below allows us to see the physics involved. We
follow the treatment of [107–110], to which we refer for
more details.

Let us first summarize the properties of the local
dark matter distribution. As we have alluded to before,
the WIMP local density in the galactic halo is about
ρχ0 ≈ 0.4 GeV/c2/cm3. We now consider the case of
a WIMP of mass mχ diffusing in the solar system and
scattered elastically off a nucleus of mass mA. We would
like to know the rate of this types of encounters. In the
earth rest frame, called simply the earth system, the nu-
cleus recoils in the direction of angle θr with respect to
the initial WIMP incident direction. See the right panel
of Fig. 6.3 for an illustration. The initial velocity of χ
relative to the detector in question, denoted by v, is dom-
inated by the galactic rotation of the solar system which
is about 220 km/s.60),61) So the process can be treated

60)Note that the earth orbital speed is about 30 km/s and the
maximal tangential speed due to the rotation of Earth around its
axis is about 0.5 km/s. So to our lowest order estimate we neglect
the earth motion. However, in the detail consideration, such as
the DAMA/LIBRA experiment, which we will discussed later, it is
exactly the earth motion which is supposedly to provide the signal.

61)Recently the National Astronomical Observatory of Japan
(NAJA) announced an updated value of the solar galactic rotation
velocity of 240 km/s. See www.nao.ac.jp/E/release/2012/10/03/
mass-of-dark-matter-revealed-by-precise-measurements-of-the-
galaxy.html. But this difference does not affect the discussion
given here.
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Fig. 6.3 Schematic diagram for the WIMP-nucleus scattering and detection. A single scatter nuclear recoil event of
ionization which about 3 times lower than the electron recoil from the dominant radioactive background of gamma rays and
electrons.

non-relativistically.
Consider the elastic scatter of a WIMP of mass mχ

with a nucleus of nucleon number A and mass mA. It
is straightforward to calculate the nucleus recoil momen-
tum qR, which is the momentum transfer to the nucleus
in this collision process,

qr = 2mRv cos θr
mR =

mAmχ

mχ +mA
, (6.2)

where mR is the reduced mass of the χ−N system. The
kinetic energy of the recoiled nucleus is

Er=
q2r

2mA
=

(
1

2
mχv

2

)(
4mχmA

(mA +mχ)2

)
cos2 θr. (6.3)

In the limiting cases, we have

Er ≈ 1

2
mχv

2 cos2 θr


4
mA
mχ

for mχ ≫ mA,

1 for mχ = mA,

4
mχ

mA
for mχ ≪ mA.

(6.4)

So the maximal nuclear recoil occurs when the mass of
the WIMP equals to that of the nuclear target. Since
v2 ∼ 10−6, generally the target nucleus gains a very
small kinetic energy. The maximal nuclear recoil kinetic
energy is 10−6mχ which happens in the forward scatter-
ing. Hence the recoil kinetic energy lies in the range of
0 to 100 keV, for a nuclear target and WIMP masses of
the order of 100 GeV.

The detection rate necessarily depends the reaction
cross section of the WIMPs and nucleus collision. The
situation is complicated by a number of factors. The

cross section can be spin-independent or spin-dependent.
There is also the coherent effect at low energies. The
form factor due to the finite size of the nucleus which
will also be different for the spin-dependent and spin-
independent interactions, etc. A detailed discussion can
be found in [107]. The differential cross section of the
recoiled nucleus can be parameterized in terms of the
nucleus momentum transfer

dσ(qr)
dq2r

=
σ0
q2rM

F 2(qr), (6.5)

where

qrM ≡ 2mRv (6.6)

is the maximal momentum transfer which takes place in
the case of forward scattering. F (qr) is a form factor
normalized to F (0) = 1, and σ0 is the total recoil cross
section [111] which consists of a spin-independent part
σ0id and a spin-dependent one σ0de:

σ0 ≡ σ0id + σ0de,

σ0id =
4µ2

π
(fpNp + fnNn)

2
,

σ0de =
4µ2

π

8G2
F(J + 1)

J
(ap⟨Sp⟩+ an⟨Sn⟩) . (6.7)

In σ0id, fp and fn are the WIMP couplings to the pro-
tons and neutrons respectively and they are about the
same magnitude in most theoretical models. So the spin-
independent cross section has a coherent enhancement by
A2, where A is the usual atomic number of the target nu-
cleus. The spin-dependent cross section is proportional
to the spin average of the nucleons and there is no co-
herent enhancement effect.

Bing-Lin Young, Front. Phys. 12(2), 121201 (2017)
121201-43



Review article

σ0 can also be defined in terms of the differential cross
section at zero momentum transfer by invert Eq. (6.5),

σ0 = q2rM
dσ(qr)

dq2r

∣∣∣∣
qr=0

. (6.8)

For the detection of the dark matter particles, a rate
per unit mass intervalR is defined in the following form

dR = nχ

(
v

mA

)
dσ(qr)

dq2r
dq2r f̃1(v)d3v. (6.9)

Note that all variables are defined in the rest frame the
detector that contains the scattering targets. Let us ex-
plain the various factors:

• nχ is the number density of dark matter particle
given by nχ = ρχ/mχ, with the galactic dark matter
density ρχ ≈ 0.4 GeV/cm3.

• The factor v/mA defines the rate per unit mass in-
terval. The product vσ is the effective interaction
volume per unit time.

• f̃1(v) is the velocity distribution of the dark matter
particle in the earth (rest) system.

In the galactic (rest) frame the velocity distribution
takes the Maxwellian form with the most probable speed
v0,

f1(v
′) =

(
1√
πv0

)3

exp
(
−v′2

v20

)
, (6.10)

where v′ is the dark matter velocity vector and f1(v′) is
normalized to unity when it is integrated over the whole
velocity ranges −∞ < v′j < ∞, j = x, y, and z. The
dark matter velocity vectors in the galactic and Earth
(rest) frames are related by the earth’s galactic velocity
vE and they have the following expressions respectively,

v′ = v + vE ,

vE = v0(1.05 + 0.07 cosωt), (6.11)

where 1.05v0 is the galactic velocity of the sun and the
term 0.07v0 cosωt, with ω = 2π/year = 6.39× 10−8πs−1

is due the correction introduced by the rotation of Earth
around the sun [110]. We can now write

f̃1(v) = f1(v + vE). (6.12)

Integrating over the WIMP velocity distribution for
fixed nucleon recoil energy, we have

dR
dEr

=
nχσ0

2m2
Rmχ

F 2(qr)

∫
v≥vmin

d3v
f1(v + vE)

v
, (6.13)

where

vmin =

√
mAEr

2m2
R

(6.14)

is the minimal velocity of the dark matter particle can
have in the earth (rest) frame for a fixed nucleus energy
Er. The Integration of the WIMP velocity distribution
can be done simply∫

v≥vmin

f1(v + vE)

v
d3v

=
1

2vE

[
erf
(
vmin + vE

v0

)
− erf

(
vmin − vE

v0

)]
, (6.15)

where erf(x0) is the error function defined by

erf(z) = 2√
π

∫ z

0

e−x2

dx. (6.16)

We obtain the expression for differential rate

dR
dEr

=
nχσ0

4m2
RvE

F 2(
√

2mAEr)

[
erf
(
vmin + vE

v0

)

−erf
(
vmin − vE

v0

)]
, (6.17)

Let us note that the relevant galactic velocity of the dark
matter particle can not be arbitrarily large, bound above
by its escape velocity vesc = 650 km/s. The dark mat-
ter particle can no long stay in the galaxy if its velocity
exceeds vesc. So to be exact, the existence of vesc should
be taken into account as the upper limit of the above
velocity integration. However the contribution from the
velocity regime higher than the escape velocity is gener-
ally very small, and the upper limit of integration can
be taken as infinite.

Going far enough for our purpose, we will stop pur-
sue the subject further. To continue the discussion will
push us into the consideration of the nuclear form fac-
tor. Discussions so far have provided an illustration of
the complications involved in the physics of the detection
of dark matter particles.

6.2.2 Direct search experiments

Let recall that direct search experiments look for energy
deposited in detectors by dark matter particles present
in the Milky Way halo. A large number of experiments
are running, some completed, and some in the process of
construction, or being proposed. Lists of experiments,
both direct and indirect searches, are given in Fig. 6.4.
The lists include experiments shown in the Dark Mat-
ter Portal [112] and Dark Matter Hub [113]. Both pro-
vide hyperlinks to individual experiments. The lists in
Fig. 6.4 also contain names not included in the Dark
Matter Portal and Hub.62)

62)There are other websites which give lists of dark matter
search experiments with hyperlinks to homepages provided, for
instance in Wikipedia: https://en.wikipedia.org/wiki/Category:
Experiments_for_dark_matter_search
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Fig. 6.4 Revised list of experiments of direct and indirect
searches for dark matter given in [112] and [113]. Some on
the list have been completed and some others are proposals
which may not be carried out. Also some are combined to
form a larger detectors and some names have been changed.
The indirect search experiment GLAST has been changed to
FermiLAT, so experiment has been double counted in the list.
To the indirect search list the ALPS Collaboration should be
added.

We make a few remarks on the above list:

• Some of the direct search experiments have been
combined. The DAMA and LIBRA are merged to
call DAMA/LIBRA. The LUX and ZEPLIN are
combined to be referred to as LZ.

• ADMX is a direct search experiment for the axion.
FUNK is for the direct search for light-weight dark
matter particles called hidden photons.

• There are several new additions to direct search ex-
periments in Asia in addition to Super-K: CDEX,
PANDA-X, TEXONO, and KIMS. CDEX and
Panda-X are experiments housed in the world’s
deepest underground laboratory, China Jinping Un-
derground Laboratory (CJPL) [105]. CDEX has its
first result published in 2013 and Panda-X in 2014.
The KIMS collaboration is housed in the Yangyang
underground laboratory in South Korea.63) KIMS
has its first physics result published in 2012 [114].

• Also note that some of the indirect searches are bal-
loon experiments.

• In the list there are proposed dark matter exper-
iments that had been mentioned at one time or
another, but did not seem to go forward are also
included. They include direct searches CASPER,

63)The Yangyang Laboratory is 700 m underground, similar to
the Soudan and Kamioka laboratories, all have an overburden of
about 2000 MWE.

Fig. 6.5 Technologies and detector material employed by
direct dark matter search experiments [116].

CAST, COSM, HDMS, IAXO, Majorana, MAX/
XAX, Ultima, etc., and indirect searches ACTS,
ATIC-2, EGRET, GLAST, PPB-BETS, Whipple-
GC, etc.

• Discussions of some of the newer experiments and
updates of the existing ones as of 2012 can be found
in IDM2012 [115].

The Current results, lacking any clear signals from
more than 20 running experiments, necessarily points to
the requirement of going into new directions and apply-
ing new technologies and approaches to further searches.
Another new experimental trend is to increase the size of
the detector, which can increase the data statistics and
embrace more than one type of technology in a given de-
tector. This can be achieved, as in some next generation
experiments, by joining forces of different collaborations.
An example is the LZ collaboration, which combines the
efforts of LUX and ZEPLIN and is expected to have
three-order of magnitude improvement over the current
WIMP sensitivity. Another example is the EURECA
(European Underground Rare Event Calorimeter Array)
experiment, which will include the future European 1
ton cryogenic dark matter search and three other exist-
ing collaborations, EDELWEISS, CRESST, and ROSE-
BUD, and plus possibly new members.64)

Detection technologies, as mentioned above, used by
various experiments can be illustrated in a cartoon shown
in Fig. 6.5 [116]. We refer to [116] and [115] for the de-
scription of a number of the experiments. Detailed de-
scriptions of many of the experiments can also be found

64)To manage the multiple efforts, a network of European na-
tional government agencies responsible for coordinating and fund-
ing national research efforts in astroparticle physics, including dark
matter searches, Called ASPERA (AStroParticle ERAnet), has
been established since July 2006.
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in their homepages that are hyperlinked through [112]
and [113].

6.3 Indirect searches – Galactic dark matter

Indirect searches for dark matter look for the occasional
dark matter annihilation or decay into standard model
particles. They cam take place in wide regions of the
cosmos, in Earth, the sun, the halo of the Milky Way, and
halos of other galaxies. A cartoon description of galactic
locations where higher concentration of dark matter are
expected is given in Fig. 6.6.

Indirect searches are sensitive to the interactions of
dark matter particles with normal particles and can
probe the dark matter annihilation cross section. The
manifestation of a signal is usually an anomalous event
of cosmic rays. As a result of the annihilation, the
final state particles to be studied include the proton,
light nuclei, electron, photons, neutrinos and their an-
tiparticles. The anti-particle signal can be particu-
lary sensitive because of their rarity in normal cosmic
ray events. The detectors used for the study are ei-
ther land-based, satellite-based, under water, or imbed-
ded in thick ice, employing state-of-the-art technology.
The cosmic ray has had a very long history in particle
physics research and has essentially initiated the exper-
imental study of elementary particles.65) The indirect
search of dark matter complements the direct search. It
may be able to explore dark matter of unusual situa-
tions, such as of very high masses, unusual couplings,
etc. We should mention, however, on general ground,
the γ-ray background is not fully understood, so sig-
nals based on anomalous behavior of γ-event may not be
conclusive.

WIMPs, such as neutralinos, can annihilate into ordi-
nary particle-antiparticle pairs, e.g., γγ, νν̄, e+e−, pp̄,
etc. Due to the non-relativistic nature of the dark mat-
ter particle, the pair of final state particles are mono-
energetic of the energy mχ/2. A schematic diagram for
the annihilation processes is given in Fig. 6.7. Let us
describe some of the interesting signals:

• Final state neutrinos can be a good signal, espe-
cially for the concentration of dark matter particles
gravitationally trapped in the sun and in the cen-
ter of Earth. Being neutrinos they can easily escape
the surrounding dense material of their production
sources to reach detectors near Earth surface.

• An interesting class of signals is the excess of
antiparticles including positrons, antiprotons, and
possibly anti-deuteriums, as anti-particles are very
rare in nature.

65)For a readily accessible and concise historical description, in-
cluding the space program as part of the cosmic ray study, we refer
to the very readable historical introduction of [117].

Fig. 6.6 A cartoon description of Galactic localities where
higher concentration of dark matter is expected.

• When the directional information of the final state
particles is available, pointing in the direction of a
dense medium, such as the center of our galaxy,
nearby dwarf galaxy, the sun, and the center of
Earth where higher density of dark matters is ex-
pected, such events can add to the weight for the
dark matter signal.

• Since annihilation processes are flavor blind, muon
neutrinos and anti-neutrinos resulting from annihi-
lation in the earth may cause excess muons to show
up in very deep underground detectors.

The event rate of the annihilation process depends on
the annihilation cross section and the square of the dark
matter particle density,

Rann∝
∫
n2χ⟨vχσann⟩dV. (6.18)

To identify the signal, it is necessary to distinguish the
WIMP annihilation process from possible astrophysical
backgrounds. Unlike the case of the direct detection, the
dark matter-ordinary matter scattering will happen in
the detector, the annihilation process, however, can take
place in another part of the galaxy, or even a nearby
galaxy. While the wide possibility for signals is an ad-
vantage of indirect searches, astrophysical backgrounds
can be serious and have to be understood and screened
out.

Below we describe possible signals in slightly more de-
tail together with some of their experiments. Note that
all these signatures of signals are model dependent. A
list of experiments of indirect searches can be found in
Fig. 6.4.

• Antimatter, e+, p̄, D̄, etc., from pair annihilations of
WIMPs in galactic halos from within a few kpc. The
detectors include MASS (Matter Antimatter Space
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Fig. 6.7 Schematic diagram for the WIMP-WIMP annihilation into particle-antiparticle pairs. As signals of the dark
matter, possible dark matter particle decays should be included.

Spectrometer), PAMELA (Payload for Antimatter
Matter Exploration and Light nuclei Astrophysics),
Fermi Gamma-ray Space Telescope, etc.

• Annihilation of WIMPs into high energy gamma ray
pairs in the galactic halo or in extra-galactic sources,
especially in the galactic center. The experimental
collaborations include GLAST, VERITAS, Whipple
GC (Galactic Center) Detection.

• Annihilation into high energy neutrinos taking place
in dense media, such as the center of the galaxy, sun,
or Earth. The high energy neutrino can easily leave
the dense media to reach a detector. The annihila-
tion rate is expected to be high because the possi-
bly high density of dark matter captured there due
to gravity. The detectors include: IceCube, Super-
Kamiokande, etc.

• There are other ideas: Traces of WIMP annihila-
tions in the WMAP haze [118], dwarf galaxies, rich
clusters, etc.

The instruments for indirect searches for dark matter
involve usually various forms of telescopes and satellite
observatories, including telescopes to search for excess
gamma rays, neutrino telescopes for high energy neutri-
nos, and antiparticle observation for positrons and an-
tiprotons, etc. Classified according to the type of tele-
scopes, we have, for example:

• Gamma-ray telescope: EGRET, Fermi, and MAGIC.
• Neutrino telescope: IceCube, Super-K, and

ANTARES.
• Antiparticle telescope: PAMELA for access positrons

and antiprotons. Other anti-particle detectors
include AMS and GAPS.

Indirect searches are understandably less competitive
than direct searches, partly due to data accumulation
and background problem. In case dark matter particles

do not annihilate or decay, indirect searches would fail,
of course. For a summary we refer to [119].

6.4 High energy collider – Accelerator production

If dark matter particles have been produced in the
high temperature environment of the early universe, we
should be able to produce them at high energy particle
accelerators such as LHC, unless they are exceedingly
heavy, say of mass above the TeV scale, or they are lep-
tophillic to interact with leptons only. An important
feature of the production of dark matter particles in an
accelerator is that normal particles, in conjunction with
or being related to dark matter particles, may also be
produced. This can facilitate the understanding of the
physics behind the dark matter. Extensive searches for
new particles had been conducted in high energy collid-
ers in the past, such as LEP and Tevatron. The lack of
any positive results could be due to insufficient energies
to produce them. In such a case, the much more powerful
LHC may be able to produce them.

Let us make a brief remark on SUSY WIMPs rele-
vant to the dark matter search. Experimental signa-
tures of SUSY WIMPs depend on how SUSY is bro-
ken and the energy scale at which the symmetry break-
ing takes place. In a given symmetry breaking scheme,
there may be several different models which require dif-
ferent sets of parameters to describe them. Therefore
the search of WIMPs has to be made in a given sce-
nario of the SUSY theory. There are a few ways to
achieve the symmetry breaking. For example, in GMSB
(gauge-mediated super-symmetry breaking), the symme-
try breaking is achieved by introducing new super chiral
multiplets, called messengers, of mass much less than
MPlanck, which couple to the ultimate source of sym-
metry breaking. In the case of R-parity conservation, all
super-partners decay into the next lightest super-particle
(NLSP) which is either the slepton or sneutrino. The

Bing-Lin Young, Front. Phys. 12(2), 121201 (2017)
121201-47



Review article

sneutrino, it decays into a gravitino plus a photon. To
solve the SUSY flavor problem, it needs light gravitino
with a mass of the order of 1 keV. This does not natu-
rally yield cold dark matter, but it can be a candidate of
the warm dark matter.

A large number of works on how to identify dark mat-
ter particles in LHC have appeared in the literature and
our brief summary here cannot do justice to the subject.
For more details we refer to [120]. Mini reviews on both
supersymmetry theory and experiment can be found in
[13].

The following is a quick tour of LHC: It is a proton
on proton collider with the maximal designed energy of
7 TeV for each beam. So the maximal total center of
mass energy is 14 TeV. The LHC designed luminosity is
1034 cm−2·s−1, 2 orders of magnitude higher than that of
the Tevatron which is at 1032 cm−2·s−1. There is a plan
to increase the LHC luminosity by another one order
of magnitude to 1035 cm−2·s−1 by 2018.66) With the
original designed luminosity of 1034 cm−2·s−1, the events
rate for the production of standard model particles is
quite high, e.g., the tt̄ quark pair production is about
1.6 per second or 1.7× 107 a year running at half of the
time. The two large general detectors, ATLAS and CMS,
and two smaller collaborations, ALICE and LHCb, have
been designed to look for the Higgs particle(s), studies
of general features of the standard model, and to search
for supersymmetric particles and any other beyond the
standard model particles that are within its energy reach,
including dark matter particles.

The first operational run were made in 2010–2013 dur-
ing which the discovery of the Higgs particle was an-
nounced on July 4, 2012 with the mass very close to
125 GeV. A new particle and some rare decays have also
been discovered, all consistent with the expectation of
the standard model. Upgrade to higher collision energy
has been made in the period of 2013–2015. The second
operational run began on April 5, 2015 with the initial
collision energy of 13 TeV and with the expectation of
the full designed energy of 14 TeV later. Collection of
physics data restarted on June 3, 2015.67)

The WIMP miracle makes it plausible that LHC may
be able to produce dark matter particles. In the case of
neutralino dark matter, it can be produced directly or
through the decays of other sparticles. Unless WIMPs
are very heavy they should be produced copiously at
LHC. However, if WIMPs turns out to be very light,
their search will become difficult due the overwhelming
standard physics background.

The dominant production mechanism of sparticles at
66)This upgrade of luminosity is called super LHC, or sLHC.

Details can be found on the LHC website [121].
67)An accessible write-up on general aspects of LHC, targeted

for the layman but also helpful for scientists, can be found in
https://en.wikipedia.orgwikiLarge_Hadron_Collider

LHC involves the parton process of sparticle pair pro-
ductions:

q + q′ → q̃ + q̃′,

q + g → q̃ + g̃′,

g + g′ → g̃ + g̃′, (6.19)

where q̃ and g̃ are respectively the squark and gluino. In
the MSSM the squarks and gluinos decay into quarks,
gluons, neutralinos, and charginos. And the heavier
neutralinos and charginos decay in turn to the light-
est neutralinos (χ̃0

1), plus Higgs, Z, leptons, etc. Look-
ing at the final state products, the reaction take the
form,

p+ p→ χ̃0
1 + ¯̃χ0

1 +X, (6.20)

where X represents multiple leptons and hadron jets,
and χ̃0

1 and ¯̃χ0
1 show as missing transverse energy. The

missing energy is an azimuthal imbalance in calorimeter
energy as shown in Fig. 6.8.68)

Fig. 6.8 A cartoon to indicate an event with unbalance
energy deposit in the calorimeter which implies some energy
is missing in the event that can represent a particle or par-
ticles escaping the detector. This means that the missing
particle(s) does not or has very weak interactions with the
detector material.

68)In the hadron collider, the colliding reactions are in forms of
parton-parton collisions. Even though the initial momenta of the
colliding particles can not be determined, it is known that the ini-
tial transverse momenta in the plan that is perpendicular to the
beam axis is very close to zero. So the sum of the transverse mo-
menta of the final state will have to vanish too. A neutral particle
leaving the detector without a trace can reveal its presence as a
transverse momentum imbalance of the final state. The measure-
ment usually takes in a calorimeter which registers the amount of
energy deposited in it. Minimal ionizing particles, such as muons,
leave little energy in the calorimeter. These cause a significant
vector sum of the transverse energy of all of the detected particles.
The imbalance, i.e., the negative of the vector sum in the transverse
plane then corresponds to the missing transverse energy (MET).

However, being a great “trick” as it is, since the missing trans-
verse energy measures the vector sum of all particles leaving the
detector, we obtain no information concerning the energy/mass/
direction of the individual particles involved nor the total num-
ber of particles involved. There are also instrumental sources for
the missing transverse energy, because of some imperfections of
the calorimeter, which may have regions of cracks due to support
structures, transition regions between components, etc.
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Typically we expect the neutralino event rate to be
105 per fb−1 integrated luminosity [120], while the or-
dinary particle event rates is 108–109, i.e., 3 to 4 orders
of magnitude higher. And these events involve ordinary
particles can be the background of the WIMP signal. So
to identify a signal can be a significant challenge.

If a model is confirmed from the collider data, its pre-
dictions for cosmology can be extracted, e.g., using the
model parameter to calculate the relic dark matter den-
sity and compare it with the WMAP result to determine
whether or not the WIMP is indeed a candidate of the
dark matter particle, or if other candidates should be
looked for. Hence the identification of a WIMP signal
at a hadron collider is not equivalent to the discovery of
a dark matter particle. It is the beginning of a process
that are necessary in order to ascertain that the WIMP
particle provides, at least a part of, the gravitation effect
of the dark matter which shows so conspicuously in the
cosmos.

7 Dark matter searches II – Light particles

In this section we discuss briefly the search for light dark
matter candidates, which we define to lie in the broad
mass region below 1 GeV. The candidates include the
axion, sterile neutrino, axino, SIMP, dark photon, grav-
itino, fuzzy DM, and possibly others. We will focus on
the following interesting candidates, the axion and axion-
like particles, and KeV sterile neutrino. They are highly
motivated in particle physics for physics beyond the stan-
dard model. A large amount of theoretical studies can
be found on them.

7.1 Searches for the axion and axion-like particles

The axion was originally proposed for solving the strong
CP problem and has been generalized to particles of sim-
ilar properties. To be specific, the original axion is also
referred to as the QCD axion. There are two typical
models, the DFSZ model and KSVZ model. Let us sketch
very brief some of the simple axion dynamics. For more
details we refer to [122] and [123]. The interaction La-
grangian of the axion with ordinary particles can be for-
mulated in terms of a current, arising through its mixing
with the neutral pion (π0) and eta particle (η), and its
coupling to photons. Denoting the axion field by ϕa, we
have the axion effective interaction Lagrangian,

La = GfJµ∂
µϕa +

gaγ
4
Fµν F̃µνϕa,

Gf =
gf
fa
,

Gaγ =
α

2π

gγ
fa
, (7.1)

where Jµ is the Noether-like current from the sponta-
neous breaking of a global U(1) symmetry, α the elec-
tromagnetic fine structure constant, Fµν is the elec-
tromagnetic field tensor and F̃µν ≡ ϵµνλτF

λτ its dual.
The quantity fa, having the energy dimension, is the
axion decay constant which provides an energy scale
for the axion physics. The coupling parameters gf and
gγ are model dependent, but they are expected to be
the order of unity. For the axion associated with the
standard model, we expect fa ∼ VSM, where VSM =
(
√
2GF )

−1/2 = 247 GeV is the standard model symmetry
breaking scale, and GF the Fermi constant. Such an ax-
ion is referred to as the standard axion. The second term
on the right-handed of the axion interaction Lagrangian
Eq. (7.1) defines the interaction of the axion with two
photons. It plays a crucial role in the axion physics, as
we see below, ranging from the search for axion to its
effect in the evolution of stars.

The first term on the right-handed side of the first
equation in Eq. (7.1) is generally the coupling to
fermions. A particularly interesting possibility is the cou-
pling to the electron-positron pair. This coupling can
have significant effect in astrophysical processes. An
electron-positron coupling can happen in in the DSFZ
model, although not in the hadronic model KSVZ. The
coupling is in the form ψ̄eγ

µγ5ψe∂µϕa which is equiva-
lent to a Yukawa coupling, taking the form

Lae ≡ gaeψ̄eiγ5ψeϕa,

gae ≡ Ceme

fa
, (7.2)

where ψe is the electron field and Ce is a constant related
to the ratio of the vacuum expectation values of the two
Higgs fields in the model.

The axion mass can be estimated from its mixing with
π0 by the relation fama ∼ fπ0mπ0 ,

ma =

√
z

1 + z

fπmπ

fa
≈ 6.0 eV
fa/(106 GeV)

, (7.3)

where z = mu/md ≈ 0.56, mπ0 = 135 MeV, and fπ0 =
92 MeV is the pion decay constant, and mu and md the
up and down quark masses. The above mass expression is
written for the case of axion in the meV (10−3 eV) range,
then the axion decay constant has to be very large in the
order of 1010 GeV. For a keV axions, the axion decay
constant will be the order of 104 GeV. For the standard
axion with fa ∼ 250 GeV, the mass of the axion is about
24 keV. So even with large uncertainties in fa, axion
would be a light dark matter.

The standard axion and those of the variant models
(called variant axions), in which quarks of different fla-
vors but the same chirality are assigned with different PQ
charges so that they can couple to different Higgs fields,
have a mass of the order of hundreds of keV. But they
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Fig. 7.1 Left: The axion and two-photon vertex. Right:
The Primakoff effect. The virtual photon interact with a
nucleus or a magnetic field which is represented by a cross.

have been ruled out experimentally. There remains the
possibility of very light axions, often called the invisible
axion, which has the scale factor fa ≫ VSM, such as the
example given in Eq. (7.3). Presently axion searches are
focused on the invisible axion with extended dynamics.
The most useful coupling of the axion to ordinary parti-
cles is with two photons, i.e., the effective γγϕa coupling
term given in Eq. (7.1), also depicted in the left panel
of Fig. 7.1. The two-photon coupling allows the detec-
tion of the axion by the Primakoff effect, which involves
one virtual photon originated from a nucleus or a region
of strong magnetic field. The coupling can be signifi-
cantly enhanced for nucleus with high atomic number
Z. The Primakoff effect is shown in the right panel of
Fig. 7.1. The Primakoff photon serves as a signal for the
axion.

The Primakoff effect can be the mechanism to produce
axions in the early universe which is the environment of
dense photons, together with strong magnetic fields and
many charged particles. Once produced, the axions can
stay in the cosmos long enough, and because the axion
can carry away the energy of a stars by free streaming
out of its core, it can affect the astrophysical processes
of the star. Recently, Ref. [124] using massive stars of
8–12 solar mass to place a bound on the axion-photon
coupling:

gaγγ < 0.8× 10−10 GeV−1. (7.4)

We have from Eqs. (7.1) and (7.3), fa & 3.6 × 106 GeV
and ma . 1 eV.69) This limit agrees with, but not yet
competitive to, the exiting ones. However it points again
to the interesting direction which uses stars as a labora-
tory for particle physics studies, independent whether of
not axion is a dark matter candidate. For a fuller de-
scription of the possibilities we refer to [123] and [125].

Constraints on axions have been established through
astrophysical and cosmological bounds, as well as labo-
ratory experiments. The laboratory experiments include
CAST (CERN Axion Solar Telescope), CARRACK (Ax-
ion Research with Rydberg Atoms in a Resonant Cav-

69)This again says that the axion is not the standard axion. Its
physics scale is much higher than that of the standard model. So
the physics of the axion, if axion exists, barring some fortuitous
reason, should be at a much high energy scale.

ity), ADMX (Axion Dark Matter eXperiment), PVLAS
(acronym for its name in Italy), and early experiments
RBF and UH. A large span of the mass value has been
covered, ranging from sub-MeV to µeV, and the major-
ity of the region has been excluded. But some of the
results are quite model dependent. The current bounds
can be found in [89], which we adopt in Fig. 7.2 and re-
fer for more details. Some of the features of Fig. 7.2 are
summarized below:

• The dark intervals marked as ADMX, Helioscopes
and Telescope/EBL are their approximate search
regions. Helioscopes refers to CAST and oth-
ers. Telescope/EBL refers FermiLAT and Chandra
X-ray Telescope, where EBL stands for Extragalac-
tic Background Light.

• The two green regions show the reach of the planned
future upgrades of the respective experiments.

• The Beam Dump represent roughly the exclusion
range for standard or variant axions.

• The “Globular Cluster” and “White Dwarfs” results
uses the DFSZ model with Ce = 1/6. gaγ and gae
refer respectively to calculations use axion-photon
and axion-electron couplings.

• The “Cold DM” is quite uncertain.

For the current status of the axion searches, let us
quote from [89]: “Direct searches for such particles and
calculations of their effect on the cooling of stars and on
the supernova SN1987A exclude most valus of fa < 109

GeV. Some of these constrain only the axion coupling to
photons (gaγγ), while others constrain the axion coupling
to electrons (gae). Recent and future laboratory test (the
latter shown in light green) can probe fa . 109 GeV or
fa & 1012 (possibly higher) but intermediate values are
more challenging.”

We have just presented a limited scope of the axion
search. Because of its strong theoretical motivation and
elegant theoretical formulation, axion has its enthusiastic
followers. Ongoing updates of the mass and coupling
limit are available in the literature, such as [89]. For
recent summer school lectures on the axion theory and
experiment, see [26]. For research directions, long term
future perspectives, and other aspects of axions we refer
to [126].

7.2 KeV sterile neutrinos

A class of particles with the possibility of mass in the
KeV order as candidates of WDM has attracted a sig-
nificant amount of attention. They include sterile neu-
trinos, light neutralinos, gravitons, majorons, etc. The
sterile neutrino is particularly attractive for the particle
physics consideration and astrophysics as well. In par-
ticle physics, the neutrino oscillation and therefore mas-
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Fig. 7.2 Axion exclusion ranges based on various astrophysical and cosmological observations, and laboratory experiments.
See the related text for the explanation.

sive neutrino suggests the right-handed and hence sterile
neutrinos, in addition to the three standard model neu-
trinos. For astrophysics, the motivation is the small scale
structure problem of the cold dark matter scenario. The
sterile neutrinos, outside the standard model will have
very weak interactions with SM particles. Despite the
fact that searches for sterile neutrinos of the eV order
have been pursued for two decades, in relation to the
LSND events [127, 128], and they are largely fruitless,
the interests in sterile neutrino is still high. There are
good reasons for the persisting interests in the subject
in particle physics. On the theoretical side, the idea of
the sterile neutrino is very attractive, as it can naturally
appear in many theories beyond the standard model as
right-handed states. And they can be a realization of the
Majorana fermion, a bold and elegant theoretical struc-
ture. Experimentally, for some years the MiniBooNE
experiment has data that are consistent with LSND, im-
plying the existence of extra neutrino states. For details,
we refer to the recent MiniBooNE analysis [129, 130],
where a brief summary of the phenomenological status
of sterile neutrinos can be found.

There is a large body of literature associated with the
subject of sterile neutrinos. To be a dark matter particle,
fine tune is generally needed to obtain the right produc-
tion rate in the early universe. For details, we refer to
the website [131] and the recent white paper on the light
sterile neutrino [132].

Our discussion below will focus on a simple massive
neutrino model constructed by a straightforward exten-
sion of the minimal standard model with the addition of
a set of right-handed neutrinos. The model is referred
to as the νMSM (ν-minimal standard model) [133, 134].

We will briefly describe the model and some of its phe-
nomenology.

As describe in νMSM [133, 134], let N right-handed
neutral leptons be introduced to the standard model and
they are referred to as right-handed neutrinos. Being
leptons they are color SU(3) singlet; being right-handed
they must be weak isospin SU(2) singlet; and being
electric charge neutral their hypercharge U(1) quantum
number are zero. These say that (i) these right-handed
neutrinos have no standard model interactions; (ii) they
can give rise to mass terms with the ordinary left-handed
neutrinos through the Higgs mechanism; and (iii) they
can be Majorana particles.70) The part of the Lagrangian
contains the right-handed neutrinos can be written con-
veniently by setting the charged leptons in diagonal form
and the Majorana mass terms for the right-handed neu-
trino also in the diagonal form.

For the νMSM, the number of right-handed neutrinos
is set to be 3, denoted as Nj , j = 1, 2, 3. There are

70)In theoretical model constructions there is a general unstated
principle, that is, once you decide the symmetry of your model,
you should include all terms which are allowed in your Lagrangian
dynamics as dictated by the symmetry. With this principle, the
addition of the right-handed neutrinos is natural. The standard
model does not include this term for two reasons. One is that the
right-handed neutrino have not standard model quantum numbers
so there is no reason to include them. Another could be that before
the neutrino oscillation has been confirmed, most people thought
that the standard model neutrinos would be massless. It should
be remarked that the neutrino mass terms so added does not have
to be treated at the fundamental Lagrangian level. They could be
effective terms induced by physics beyond the standard model. In
retrospect, ν-MSM should have been studied in details years ago,
even only on its merit as a very economical way to introduce the
Majorana fermions and, therefore, the see-saw mechanism which
allows naturally very small neutrino masses.
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18 new parameters in addition to those of the standard
model. The new parameters are 3 Dirac masses, 3 Majo-
rana masses, 6 mixing angles, and 6 CP violation phases.
The physics is arranged in the following way: N1 gain a
mass of order keV, M1 ∼ keV. N2 and N3 give masses
to the ordinary, active neutrinos and generate baryon
asymmetry. Their masses are of the order of the stan-
dard model energy scale, i.e., M2 and M3 are hundreds
of GeV. The sterile neutrinos N1 has a small mixing and
therefore can couple to the standard model particles via
charged and neutral currents. The interaction strength,
depending on the mixing angle, can be super-weak. All
three sterile neutrinos are unstable. N1 has a lifetimes
τ1 > τU, where τU ∼ 1017 seconds is the age of the uni-
verse. And the lifetimes of N2 and N3 are shorter than
0.1 second.

As a dark matter candidate N1 is quite robust. The
production of of N1 can be either thermal or non-thermal
and it may or may not be present initial in the early
universe. Take the case that N1 is not present initially in
the early universe with its presence through non-thermal
production, through lepton and quark annihilations,

ℓ+ ℓ̄, q + q̄ → ν +N1. (7.5)

N1 can decay, via the mixing with ordinary neu-
trino by the one-loop effect involving the W-boson and
charged lepton intermediate states, leading to the decay
process

N1 → ν + γ (7.6)

with a lifetime of the form [135]

τνs = 1.8× 1021(sin θ)−2

(
1 keV
mN1

)5

, (7.7)

where θ is the mixing angle. With the age of the uni-
verse 4.34 × 1017 s, a keV sterile neutrino looks like a
stable particle in the present epoch. This decay chan-
nel provides the signal for the search for N1. The final
state γ shows up as a monochromatic photon with the
energy Eγ = M1/2. This keV X-ray can be searched
in the sky. There are also particle physics consequences
of this model. In addition to the X-ray line from the
radiative decay of N1 as discussed above, the Majorana
nature of the sterile neutrino can cause neutrinoless dou-
ble β-decay. N1 can also participate in hadron weak de-
cays, in particular, in kaon decays showing as a missing
energy.

The sterile neutrino has been a very active topic in
both particle physics and astrophysics. However they
are interested in different mass ranges. particle physics,
motivated by LSND with not-so-small mixing with the
active neutrinos, focuses mostly in the eV mass region,

while being a proposed candidate for WDM, the in-
teresting mass range is in the keV range. Astrophys-
ical searches for keV sterile neutrinos have been made
through different channels, such X-rays spectra of galax-
ies and clusters, the supernova explosion, and other con-
straints. The X-ray search has excluded a significant
range of the N1 mass-mixing angle space.71) Figure 7.3
which is adopted from [139]72) is an example of the ex-
clusion plots in the νMSM model. Note that the allowed
region is significantly constrained: The mass of N1 is
greater than 1 keV and the mixing angle is very small
θ < 10−4 (see the figure caption). The obvious feature of
the constraint are the following: The dark regions above
and below are excluded by either too many or too little
dark matter particles. We should note that the exclusion
by “not enough DM” is due to the requirement that the
sterile neutrino is the whole part of the dark matter. In
the case of multi-particle scenario, in which sterile neu-
trino is one of the several species of dark matter particles,
this exclusion should be removed. The blue region in the
upper right is the exclusion due to the non-observation
of X-ray that would have resulted from the dark matter
decay. The left pink region is the limit established from
the Tremaine–Gunn bound [97] and the Lyman-α obser-
vational limit. For more details on the bounds, including
references, we refer to [136].73) For a summary of past
experiments and a list of the future ones, in both parti-
cle physics and astrophysics, we refer to [132]. A website
which provides a collection of references to the various
aspects of sterile neutrinos and useful links can be found
in [137].

7.2.1 A possible candidate of 7 keV sterile neutrino

In 2014 two research collaborations [138] and [139] an-
nounced the discovery a weak X-ray line of Eγ = 3.5
KeV, in a stacked XMM-Newton Observatory spectrum
of 73 galaxy clusters. This line has not been known pre-
viously to be present in the spectra of galaxies or galaxy
clusters, and it has the clear tendency to become stronger
toward the centers of the assumed source, and absent in
the data set of the deep blank sky. This anomalous x-ray
line, if not spurious, can be understood from the decay
of a dark matter particle. The mass of the dark mat-
ter particle is twice the energy of the X-ray, i.e., 7 keV.
Details of the interpretation of this events can be found
given in [139] and [140].

This event is shown in Fig. 7.3 as the blue data point.
It requires a rather small mixing angle of the order of
θ ≈ 3.5× 10−6 in the νMSM.

71)Let us recall that the energy of the X-ray ranges from 100 eV
to 100 keV. The soft X-ray lies below 10 keV and hard X-ray above
10 keV.

72)The figure appears originally in [136].
73)Fig. 2, [138]. Various other bounds can be found in [137].
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Fig. 7.3 Constraint plot of the keV sterile neutrino in the
νMSM model from astrophysics data. On the vertical axis
θ is the mixing angle of the sterile neutrino with the stan-
dard model neutrino and it essentially indicates the coupling
strength. The allowed region is the unshaded region without
a color. The colored-shaded regions are excluded based on
different types of data as indicated in the graph. See the text
and see [136]. The blue data point at MDM = 7 keV is the 7
keV sterile neutrino discussed in Section 7.2.1.

8 Summary of the status of dark matter
searches

To summarize a developing subject, with a number of
experiments running, new experiments commencing, and
therefore the possibility of new results emerging at any-
time, is not a very ensuring endeavor. Serious updates
are necessary from time to time, and hence some of
the results shown below might be out of date. In any
event, this chapter summarizing the status of dark mat-
ter searches has the characteristics of tentativeness to
exhibit the rapid development of topics of dark matter.

Most searches of dark matter performed to date, di-
rect, indirect, and accelerator, have set increasingly
tighter limits. There are also tantalizing signals claimed.
But they seem to conflict with other observations and,
therefore, need to be understood and confirmed indepen-
dently. We firs describe briefly below those experiments
that have made (tentative) claims of a signal, then the
summary results of most of the relevant experiments are
given. More details can be found in reports given in re-
cent conferences, several have have held in first half of
2015.74)

74)Let us mention some of the conferences: Workshop on
Off-the-Beaten-Track Dark Matter and Astrophysical Probes of
Fundamental Physics, ICTP, Trieste, Italy, April 13–17, 2015,
http://indico.ictp.it/event/a14282/; DARK MALT 2015, Dark
Matter: Astrophysical Probes, Laboratory Tests, and Theory As-
pects, Feb. 2–27, 2015, MIAPP, Munich, Germany, http://www.
munich-iapp.de/scientific-programme/programmes-2015/dark-
matter/; NDM15, Neutrinos and Dark Matter in Nuclear Physics
2015, Jun. 1-5, 2015, Jyväskylä, Finland, https://www.jyu.fi/en/
congress/ndm15, https://indico.cern.ch/event/394248/timetable/
#all.detailed

8.1 Direct searches

Most of the effort in direct searches of dark matter is fo-
cused on the searches of well-motivated WIMPs. Their
detection is based on searching for nuclear recoils of
the KeV magnitude in Earth based detectors. Excesses
events of this type, which may be interpreted as candi-
dates of dark matter particles, have been reported quite
early by the DAMA/Nal collaboration in 1997. Now 4
collaborations have reported data which contain possible
candidates of dark matter: DAMA [141], CDMS [142],
CoGeNT [143], and CRESST [144]. All four sets of data
are in regions of light WIMPs of mass 6-30 GeV, cover-
ing the scattering cross section range 5×10−4−4×10−7

pb. However, their allowed mass-cross section parame-
ter spaces are largely non-overlap, except for CoGeNT
and CDMS. Furthermore, they lie in regions of exclusion
of some other experiments. Below we discuss these four
sets of data.

8.1.1 Direct search: DAMA/LIBRA

The DAMA is an observatory for rare processes, based
on highly radio pure scintillators. It is model indepen-
dent and one of earliest detectors used in direct search
for Dark Matter particles in the galactic halo along the
earth orbital around the sun. The detector is 1400 m un-
derground, located in the Gran Sasso underground labo-
ratory in Italy near the French boarder. The first gener-
ation detector the DAMA/NaI has been replaced by the
present general detector DAMA/LIBRA.

Let us describe briefly the physics underlying the
DAMA detector. In the Milky Way, or the Galaxy, the
sun moves at a velocity vsun ≈ 232 km/s towards the
star Vega near Hercules, with respect to the Local Stan-
dard of Rest. Because of the orbital motion around the
sun (vorb ≈ 30 km/s), the magnitude of Earth’s veloc-
ity in the Galaxy has an annual modulation which gives
rise to a corresponding modulation in the dark matter
flux crossing Earth. So Earth should encounter a higher
flux of dark matter particles in the halo around June
2nd, and by a lower one around December 2nd. on the
former date, Earth’s orbital velocity is added to that of
the solar system with respect to the Galaxy, while on
the latter date, the two velocities are subtracted. Since
the event rate of the interaction of dark matter and ordi-
nary particles depends linearly on the relative velocity of
the dark matter and the DAMA detector, this will give
rise to a seasonal modulation in the event number of the
DAMA experiment. This is depicted in the upper panel
of Fig. 8.1.

In 1997 DAMA/NaI became the first dark matter
search experiment to claim a direct signal of the dark
matter [141]. The data accumulation prior to 2013 is
1.17 ton-year data over 13 annual cycles [145] and shows
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Fig. 8.1 Upper: The velocity modulation of an Earth laboratory. Lower: The DAMA/LIBRA and DAMA/NaI annual
modulation data and analysis. The plots are adopted from [145] and [146], which together with other presentations made on
DAMA can be found in Downloads of the collaboration homepage [147].

consistently the annual modulation in the counting rate.
The most recent data accumulation of 1.33 ton-yrs has
been reported in [146] which can be found on DAMA’s
download page [147], as shown in the lower panel of
Fig. 8.1, where the result of the date analysis is also
given. The annual modulation can be interpreted as the
seasonal dependence of the WIMP velocity in the earth
rest frame. The modulation is an 9.2σ effect. With all
known systemic and background effects address [145],
the collaboration ascertains that the observed annual
modulation effect is a model independent evidence of
the presence of dark matter particles in the galactic
halo. The DAMA collaboration will release a new annual
modulation at the end of the DAMA/LIBRA-phase 1.
DAMA/LIBRA-phase 2 will begin with some improved
hardware and software.

The DAMA data can be fitted to a WIMP-nucleon
cross section which is compatible with a MSSM model.

It is pointed out in [148]75) that if interpreted in the
DM framework, the DAMA data imply either a WIMP
of mχ = 50 GeV with the elastic WIMP-proton cross
section σχp ≈ 7 × 10−6 pb, or a lighter WIMP of mass
6-10 GeV with σχp ≈ 7× 10−3 pb. However, the DAMA
data is not compatible with current upper limits from
other experiments which have higher solutions, as will be
shown later. Proposals addressing the conflict of DAMA
with other experiments can be found in the literature,
but none has been totally satisfactory. We will describe
some of the proposals below. On the experimental side,
at least two modulation experiments have been planned
in an effort to verify the DAMA result. See [116] for
more details and references.

There are suggestions that the DAMA/LIBRA data is
due to the cosmic ray background which also varies sea-

75)See [148], pp 9–10.

121201-54
Bing-Lin Young, Front. Phys. 12(2), 121201 (2017)



Review article

sonally [149]. However, it was found in a recent detailed
simulation [150] that the muon background contribution
is rather small and can not explain the DAMA/LIBRA
data. An effort to resolve this quandary by a theoret-
ical framework can be found in [151] which proposed a
solution by a specific dynamics: A Dirac dark matter
particle interacts with ordinary particle through the ex-
change of a light pseudoscalar. This coupling enhances
significantly the interaction strength between the dark
matter particle and the proton over that of the neutron.
So the protophilic property of the pseudoscalar particle
enables the interaction of the dark matter particle with a
nucleus through the unpaired protons or unpaired neu-
trons, much more significantly for the former than for
the latter. The DAMA/LIBRA experiment uses Na(11)
and I(53) as targets containing odd number of protons
as indicated in the round brackets, while other conflict-
ing experiments, such as Xenon100, use Si(14), Ge(32),
and Xe(54) target which contain even number of pro-
tons. Hence, in this scenario, only the DAMA/LIBRA
experiment is sensitive to the presence of the dark mat-
ter.

Despite the impressive consistency of the DAMA data
collected for so long a period of time, the community is
still not convinced that dark matter has been discovered,
and the DAMA data is not a seasonally environment
effect. The particular environmental effect in question
arises from cosmic rays which is known to have a seasonal
varying intensity. Towards a resolution of the conun-
drum requires a direct demonstration that the DAMA
modulation is not caused by such an effect. This can be
done by duplicating the DAMA experiment in the south
hemisphere. The cosmic ray seasonal oscillation in the
south hemisphere is the opposite to that of the north
hemisphere, and hence the effect of the current DAMA
data, while the supposedly dark matter effect will be the
same in both hemisphere. Indeed, there is one ongoing
experiments Called DM Ice17 running along with Ice-
Cube, since July 2011. The first report, which is on its
background data of the first two years running, can be
found in [152]. Another experiment is proposed for a
deep underground science laboratory ANDES in South
American.

8.1.2 Direct search: CDMS-II and SuperCDMS

The Cryogenic Dark Matter Search (CDMS) employs
germanium and silicon detectors to search for WIMP
dark matter particles. The first general experiment
CDMS-I was located in a tunnel under the Stanford Uni-
versity campus. The second generation experiment, i.e.,
the CDMS-II has been relocated in the Soudan Mine in
Norther Minnesota, U.S.A. since 2003. It is about 700 m
underground which provides a much better shield against
cosmogenic events such as the cosmic ray muons. The

CDMS-II detector is designed to detect minute phonon
signals generated within a detector crystal due to elas-
tic collisions of the detector nuclei and the WIMP. The
energy deposited in the detector by an incident WIMP
may be as low as a few tens KeV. The detector is main-
tained at a very low base temperature of 10 mK in order
to suppress possible energy depositions by thermal ac-
tivities of detector nuclei. A further upgrade CDMS de-
tector, called the SuperCDMS, which has been running
since 2012, will be moved to an even deep underground
laboratory, the SNO Laboratory which is about 2000 m
underground and the detector volume will be increased
too.

The first observation of possible candidates of dark
matter was made in 2007 and the announcement of two
events for possible candidates was made in 2009, while
the expected background is 0.9± 0.2 events. The CDMS
II results have been published in 2013 [142], and the
SuperCDMS results in 2014 [153], They are summarized
in Fig. 8.2. In the 2013 results, the CDMSII Si provides
the data for the region of possible signals, shown as the
light blue region (at the 68% C.L.) in Fig. 8.2, covering a
region of possible WIMP mass between 6 and 20 GeV and
WIMP-nucleon scattering cross section 10−42−4×10−40

cm2, with the maximum likelihood point at 8.6 GeV and
WIMP-nucleon cross section 1.9×10−41 cm2 (not shown
in the present figure). The dark curve designated as “this
result” shows the exclusion region of the SuperCDMS
results. An upper limit on the spin-independent WIMP-
nucleon scattering cross section of 1.2×10−42 cm2 at the
WIMP mass 8 GeV.

The SuperCDMS will move to the deepest under-
ground Laboratory in North America, the SNOLAB and
will be renamed as SuperCDMS-SNOLAB. This new
home will allow a 100 times reduction of the cosmogenic
neutron background. It is expected to be able to reach
the cross section bound of 10−46 cm2 or 10−10 pb for
WIMPs of mass in the 30–100 GeV range.

We note that the U.S. Science funding agencies, DOE
and NSF have identified three next generation dark mat-
ter search experiments to represent the US effort in
the search for the dark matter: LZ and SuperCDMS-
SNOLAB for low and high mass WIMPs search, and
ADMX-Gen2 for the search of axions.

Another new generation of cryogenic experiment, the
1 ton EURECA (European UNderground Rare Event
Calorimeter Array), which will replace EDELWEISS,
CRESST, and ROSEBUD, is under planning. Its de-
signed reach is comparable to that of SuperCDMS, but
eventually down to 10−11 pb [155].

8.1.3 Direct search: CoGeNT

The CoGeNT (Germanium Neutrino Technology) collab-
oration, a dedicated search for low mass WIMPs, uses
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Fig. 8.2 The parameter space of allowed and excluded regions. The basic plot of the various exclusion curves and allowed
regions is given in [153]. Taken together with the inserts of explanations of the colored curves and regions, the present plot
is adopted from [154]. Note the prominent dark exclusion curve marked as “this result”.

high-purity and low radioactivity Ge for ionization sig-
nal. It is also located in the Soudan Mine. The detector is
tuned to detect WIMP mass around 10 GeV, much lower
than most of the other direct search experiments. The
techniques employed [143, 156] are also ideal to search for
annual modulation signatures due to low mass WIMPs as
DAMA/LIBRA. The experiment started data collection
in December, 2009. The CoGeNT data set has been an-
alyzed for the annual modulation effect. With 450 days
running, a modulation was found in the data set of 0.5–
3.0 keVee76) [157]. The modulation plot of [143] is repro-
duced in the upper panel of Fig. 8.3. Recently an inde-
pendent analysis has been made on the time-dependent
properties of the CoGeNT data, using a variety of statis-
tical tests, the authors confirmed the presence of annual
modulation within the statistical limit [158] as shown
in the lower panel of Fig. 8.3. Several publications have
studied the compatibility between DAMA and CoGeNT.
In the WIMP mass-cross section plot they do not over-
lap, but the CoGeNT allowed region is very close to the
low mass region of DAMA. Due to the astrophysics un-
certainties and the complications involved in extracting
the cross section, it is difficult to reach a clear cut con-
clusion. We refer to two publication for more details,
[159] and [160], where relevant references can be found.

The CoGeNT data which favors a light WIMP is in
contrast to the majority of theoretical models which
favor heavy WIMPs of hundreds of GeV. Similar to

76)keVee is the electron equivalent energy units. It is the energy
of an event if it were due to an electron recoil.

DAMA, CoGeNT is also in tension with other experi-
mental results that have not seen any candidate events.
The data from XENON100 [161] have excluded the al-
lowed regions of both DAMA/LIBRA and CoGeNT.
There are ways to avoid the direct conflicts among these
experiments if non-conventional astrophysical scenarios
are assumed.

An improved analysis on more data, which include
1200 days running since Dec. 3, 2009, has been presented
in [162]. Preference for annual modulation continues in
the bulk counting rate. But the amplitude of the oscilla-
tion is 4-7 times larger than expected a standard WIMP.
The possibility of a non-Maxwellian local halo velocity
distribution can help to reconcile it with other reported
observation. More independent analysis of the CoGeNT
data can be found in the literature, for example, [163]
which concludes that the CoGeNT data show a prefer-
ence for light dark matter recoils at less than 1σ.

8.1.4 Direct search: CRESST

The CRESST-II (Cryogenic Rare Event Search with Su-
perconduction Thermometers) is a direct detection ex-
periment via WIMP scattered off target nuclei in CaWO4

crystals, in which nuclear recoils produce both phonons
and scintillation signals. The phonon provides measure-
ment of the energy deposition of the interaction. The
scintillation light yield, together with the energy deposit,
discriminates different interactions, and serves to screen
out background events as well. Completing 730 kg days
data, the CRESST-II phase 1 [144] found 67 acceptable
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Fig. 8.3 CoGeNT annual modulation: The upper panel is taken from the CoGeNT publication [143]. The lower panel
shows the result of an independent analysis performed in [158].

events which fall into two regions marked as M1 (high
mass region) and M2 (low mass region) in Fig. 8.4. De-
tails of the experiment can be found in [164] where the
collaboration summarized their earlier results together
with other existing data.

Updated data based on the upgraded CRESST-II de-
tector were published in 2014 [165] in which new re-
sults are announced as summarized in Fig. 8.4: (i) A
limit is set on spin-independent WIMP-nucleon scatter-
ing which probes a new region of parameter space for
WIMP masses below 3 GeV. (ii) An exclusion limit is
obtained, shown as the red solid line in Fig. 8.4. (iii)
The former allowed low mass region M2 of the phase 1
is clearly excluded.

8.2 Indirect searches

The goal of indirect searches, shared with that of direct
searches, is to study what type of particle the dark mat-
ter is made of and how it interacts with the standard
model particles. An important aspect that differentiates
indirect searches from direct searches is that the source
of the former can be various astrophysical settings, such
as the center of the Galaxy, some nearby dwarf galax-
ies, etc., not restricted to the solar system. Hence the
indirect searches able us to study how the dark matter
is distributed elsewhere. There are no compelling evi-
dences up to date that can be called a signal of dark

Fig. 8.4 The WIMP parameter space of CRESST-II to-
gether with allowed and exclusion regions of other experi-
ments. The figure is taken from [165]. The allowed regions
are given by CRESST, DAMA, and CoGeNT. The solid red
curve is the new limit of exclusion regions. The former al-
lowed low mass region M2 is clearly excluded. The areas
above the various curves are the exclusive regions of the cor-
responding experiments. We refer to [165] for details.

matter. However, there are several unusual observations
which can not be explained by known astrophysics. They
are generally called anomalies which will come back to
them at the end of this section.

Wide scopes of discussions of the current status of
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many of indirect search the experiments can be found in
lectures of the 2014 SLAC Summer Institute. Summary
talks there given by Dan Hooper and Jennifer Siegal-
Gaskink and can be found in [26]. A review article which
provides many details on indirect searches can be found
in [166].

The physical processes and detection mechanism can
be seen from the cartoon of Fig. 6.7, to which the pos-
sibility of decay of dark matter particle should be in-
cluded. The detections are classified according to the
ordinary particles detected, mainly charged or neutral.
The charged particles are focused on positrons and anti-
protons for reducing background events, and the neutral
particles on photons and neutrinos. The general feature
of a signal event is the excess of these charged or neutral
normal particles over the cosmic ray background. Hence
in indirect searches, it is crucial to know the behavior of
the regular cosmic ray.

8.2.1 Indirect searches: Charged particles, positrons
and antiproton

The charged particles searched for dark matter signals
include positrons and antiprotons which do not exit in
the primordial fluxes of the cosmic ray, and generally are
secondary in nature. The experimental collaboration in-
volved include the major detectors PAMELA and AMS,
and also FermiLAT, HESS, and ATIC, CREAM, BESS,
etc.77) For WIMP particles annihilation and decay, the
flux shapes of the anti-particles e+ and p̄ are determined
by the WIMP mass and the annihilation or decay chan-
nels. For the annihilation channel the features of the pos-
sible excess of positron and anti-proton are illustrated in
Fig. 8.5. The required signature is that the excess occurs
in a limited energy range of the positron and anti-proton,
depending on the mass of the dark matter particle. And
eventually the energy spectrum should return to their
normal shape and magnitude when the effect of the dark
matter particle is exhausted.

The general feature of the charge particles of the cos-
mic ray as of the middle of last year, a data land domi-
nated by PAMELA, was that there is an increase in the
ratio of positron to positron-plus-electron when energy
increases, while the anti-proton to proton ratio follows
the expectation of the regular cosmic ray. But the er-
rors are quite sizable toward the higher energy end that
were available. This different behaviors for leptons and

77)The acronyms are PAMELA: Payload for Antimatter Matter
Exploration and Light-nuclei, AMS: Alpha Magnetic Spectrome-
ter, FermiLAT: Fermi Large Area Telescope, HESS: High Energy
Stereoscopic System, ATIC: Advanced Thin Ionization Calorime-
ter, CREAM: Cosmic Ray Energetics and Mass, BESS: Balloon-
Borne Experiment with Superconducting Spectrometer. Note that
FermiLAT, formerly called GLAST, is mainly a high energy pho-
ton detector, but it is also an electron detector and has contributed
to the early positron data.

hadrons lend to some model builders the proposal of a
leptophillic dark matter particle which is not overall too
satisfactory. See the discussion given in [166]. These
earlier data are shown in the upper panel of Fig. 8.6.

The new AMS02 data, published in 2014, have greater
accuracy and extend to much higher energy. It is shown
in the lower panel of Fig. 8.6. Let us discuss the positron
first and then the anti-proton data.

8.2.1.1 Positron data

There are interesting features in the positron data: The
positron fraction has been raising since below 7 GeV. It
starts a downward trend at 275 ± 32 GeV as marked as
zero crossing, where the slope of the curve becomes nega-
tive. The central value of the last data point at 500 GeV
clearly shows this trend, although the accuracy of the
data there and below have also deteriorated markedly.
Taking the central values of the data points and com-
paring them with the plot of the left panel of Fig. 8.5,
one is strongly tempted to say that this is the indication
of the presence of a heavy particle. However, there are
also suggestions that positron event can be explained by
conventional astrophysical sources due the presence of
nearby pulsars radiation.78)

Understandably, the new AMS02 data have prompted
a burst of theoretical activities in confront theoretical
models with the accurate new data available. We men-
tion a few of the works below and apologize for all omis-
sions. A detailed theoretical analysis of the new AMS02
positron data has been carried out in [167]. It has looked
into both the dark matter scenarios and the pulsars al-
ternative. The conclusion of the article is the following:
Subjected by the stringent requirement of gamma ray
and CMB bounds, the fulfilling dark matter species has
a mass between 0.5 and 1 TeV. The excess position is
explained by the annihilation of the dark matter particle
into four leptons through a light scalar or vector media-
tor. However, the excess may also be explained by one of
more of five nearby pulsars. This general conclusion has
also arrived at by a earlier paper [168]. Another article
[169] has done a studied particularly on the pulsar in-
terpretation of the new AMS02 data and found that any
of the four pulsars they selected, or the combination of
them can do the job. In the case of the multiple pulsars
contribution, the positron fraction will show a particular
structure at high energies.

8.2.1.2 Anti-proton data

The anti-proton in cosmic ray is an important messen-
ger for energetic phenomena of astrophysics as an impor-

78)For non-astronomers, a pulsar is a rotating, magnetized neu-
tron star. As a neutron star forms it rotates rapidly. Electromag-
netic radiation and Charged particles are created out and acceler-
ated near the star’s magnetic poles.
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Fig. 8.5 Illustrations of excess positron and anti-proton events over the regular cosmic ray background, due to a WIMP
particle. This figure is adopted from the talk by Ting given at the AMS Day at CERN [170].

Fig. 8.6 Upper panel: The older data on positron and anti-proton prior to AMS02. The dark curves are the expected
trends of the regular cosmic ray. Lower panel: The AMS02 data. These figures is adopted from the talk by Ting given at
the AMS Day at CERN [170].

tant diagnostic tool for cosmic ray sources and propaga-
tion properties. In indirect searches of dark matter, it
is one of the prime channels of the dark matter annihi-
lation, resulting from hadronization of primary quarks,
and through standard model processes, of gauge bosons
or leptons. Prior to the new AMS02 data, the secondary
antiproton, which is produced by the collision of cos-
mic rays primaries with interstellar medium by ordinary

hadronic processes, is sufficient to account for the bulk of
the existing anti-proton data, no exotic processes such as
the intervention of a dark matter particle needed. Sev-
eral papers reanalyzing the situation in light of the new
data have appeared. We summarize briefly two of them,
which reflect likely the generally conclusions on this mat-
ter. The first paper [171] which finds no unambiguous
evidence for a significant excess with respect to expecta-
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tion. The flat anti-proton to proton ratio implies a flatter
energy dependence of the diffusion coefficient. The pa-
per also gives an assessment to allow some components
of dark matter annihilation or decay and new stringent
constraints have to be imposed. Another article [172]
takes the flat anti-proton to proton ratio as an excess
and concludes that it calls for a dark matter particle of
the order of TeV mass. In particular, the Wino dark
matter with mass of abouit 3 TeV, which has a thermal
relic abundance is consistent with the present dark mat-
ter abundance, can account for the anti-proton excess
given by AMS-02.

8.2.1.3 A tentative conclusion on charged particle

The AMS02 precision data have brought a lot of excite-
ment to the community and established tighter constrain
on related physics. The situation of the charged particle
excesses is fundamentally unresolved. This reflects the
heavy gravity of the challenges in finding dark matter
and learning what it is, emphasizing again the experi-
mental nature of the subject. To conclude, let us quote
from Ting’s talk [170] on what more are needed:
To identify the dark matter signal we need

i) Measurement of e+, e−, and p̄.
ii) Precise knowledge of the comic ray fluxes (. . .).
iii) Propagation and acceleration (Li, B/C, . . .).

8.2.2 Indirect searches: Photons

The photon signature of the dark matter is the anoma-
lous photon events over the cosmic background. Both
prompt line photons and diffuse gamma rays can be pro-
duced by the annihilation and decay of dark matter. Dif-
fuse gamma rays, having continuous energy distribution,
are due to complicated processes of secondary photons
of dark matter annihilation into charged particles, which
are hadronized to produce, say, high energy neutral pions
which, in turn, decay into two photons of high energies.
Another source of diffuse gamma rays comes from the in-
ternal bremsstrahlung of charged particles produced in
the annihilation process. The prompt photons, which
are monochromatic, are results of dark matter annihila-
tion directly into a pair of mono-energetic photons, or
due to dark matter decays. in the case of annihilation,
each photon has the energy of the mass of the dark mat-
ter particle, as the annihilation process takes place at
very low kinetic energy of the dark matter particle. The
prompt photon, with very little cosmic background, is
generally considered as a smoking gun for the dark mat-
ter [173, 174]. As the propagation of the photon from its
production to its detection is largely not interfered, the
spatial distribution of the prompt photon follows that of
the dark matter particles. Hence there are higher pos-
sibility of finding these photons would be where higher

concentration of dark matter is expected, such as the cen-
ter of the galaxy and the Galactic satellite dwarf galax-
ies called dwarf spheroidals (dSphs). The Galactic core
is expect to have a dark matter density several orders
higher than that of the solar system (see Fig. 2.11), while
in the dSphs the average dark matter density is a couple
of magnitude higher.

Several experiments have been running, including the
space telescope FermiLAT, ground-based high energy
gamma-ray detector HESS, VERITAS, MAGIC, and air
shower ARGO-YBJ, etc.,79) while FermiLAT is, up-to-
date, the major gamma detectors.

Dark matter signals have been searched in dSphs [175–
177], galaxy clusters [178, 179], the Galactic (Milky Way)
halo [180], and extragalactic gamma-ray background
(EGRB/IGRB) [181, 182]. The experimental data is
has been dominated by FermiLAT and no Dark matter
signals have been uncovered, although some limits have
been derived by some of the data.

To amend the extremely compressed summary given
in the preceding paragraph, let us mention how some of
the limits are obtained by the FermiLAT collaboration
to show the extensive work that has been performed.
FermiLAT combined observations on Milky Way’s 10
satellite galaxies which are among the most promising
regions for diffuse γ-ray signals for the dark matter, to
increase the data sample. Joint likelihood analysis of 24
months observational data of 10 dSphs has not uncov-
ered any dark matter signals. But robust upper limits
are obtained on three channels of dark matter annihila-
tion cross sections [175]. The results are shown in Fig. 8.7
which are adopted from [175].

Our extremely simplified discussion above can not do
justice to these important topics. Fortunately there are
excellent reviews on them, see, for example, [166] for
detailed considerations of these topics and for ample ref-
erences.

8.2.2.1 Tantalizing signs

There are tantalizing data samples which hind the possi-
bility of dark matter signals. They are from the observa-
tion of the Galactic center and those of the extragalactic
gamma-ray background (EGRB).

Observations of the Galactic center

The Milky way galactic center is predicted to con-
tain very high density of dark matter. But since it is
also a very complicated astrophysical region, the neces-
sary search for dark matter there is quite challenging.

79)The acronyms are, FermiLAT: Fermi Large Area Telescope;
HESS: High Energy Stereoscopic System; VERITAS: Very Ener-
getic Radiation Imaging Telescope Array System; MAGIC: Ma-
jor Atmorspheric Gamma-Ray Imaging Chrekov; ARGO-YBJ: the
Yang-Ba-Jing Cosmic Ray Observatory
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Fig. 8.7 FermiLAT limits drawn from the joint analysis of data on the observation of 10 dSphs [175].

Studying the morphology and spectrum of the gamma
ray emission from the Galactic center of three years data
from FermiLAT, a group of authors found the evidence of
a spatially extended component which occurs at energies
between 300 MeV and 10 GeV [183]. And the extended
component has been independently confirmed [184] and
[185]. According to [183] the extended emission can be
accounted for by either the annihilation of dark matters,
or by the collision of high energy protons that are accel-
erated by the supermassive black hole of the Milky Way.
When interpreted as dark matter events, the emission
spectrum requires a dark matter particle of mass 7–12
GeV if the annihilation is dominated by lepton channels,
and 25–45 GeV if annihilation is dominated by hadrons.
The authors of [183] have fitted the data using a com-
bination of annihilation channels, and presented explicit
fittings in three different scenarios. One of the scenarios
in which the dark matter annihilation is dominated by
bb̄ is shown in Fig. 8.8. The other two scenarios can fit
data well.

A recent updated analysis [186] of the relevant Fermi-
LAT data found that it is a compelling case to interpret
the excess as an the annihilation of dark matter particle.
The data can be well fitted by a dark matter particle
of 36-51 GeV mass with an annihilation cross section
vσ = (1− 3)× 10−26 cm3/s. This agrees with the earlier
analysis as given above.

Observations of Spectral Lines

Monochromatic photon lines are very strong evidence
of exotic events, and hence the possibility of dark matter
particles. We discuss two separate observations:

• The 130 GeV line
Independent analysis of earlier FermiLAT data, con-
taining 43 months observations, were made by three
groups [174, 187], and [188], and found indications

Fig. 8.8 The figure is adopted from [183]. The result of a
30 GeV dark matter particle annihilates into the bb̄ channel
with an annihilation cross section is vσ ∼ 6× 10−27 cm3/s.

of a γ line at Eγ ≈ 130 GeV. As stated in [174] the
effect is 4.6σ base on the observation of 50 photons.
If this is interpreted as a WIMP annihilation into a
γ pair, the observation corresponds to a WIMP mass
mχ = 129.8± 2.4+7

−13 GeV and an average annihila-
tion rate ⟨vσ⟩ = (1.27± 0.32+0.18

−0.28)× 10−27 cm3/s.
Very recently, the FermiLAT collaboration has

published their updated search for monochromatic
spectral lines from Galactic dark matter in the en-
ergy range of 200 MeV to 500 GeV, using 5.8 years
data [189]. They found no strong evidence for the
existence of a line spectrum. They have also investi-
gated, in particular, the 133 GeV line, based on their
new data and new event reconstruction and selection
algorithms. They found that the confidence level of
the existence of such a monochromatic photon line
has significantly lowered from its earlier value, drop-
ping to 0.73σ.
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• The 511 keV line
The observation of the Galactic 511 keV emission
is one of the fascinating story lines of the devel-
opment of particle physics and astrophysics. The
first observation took place in the early 1970’s by
balloon-born experiments. It is the first γ-ray line
ever identified that originates outside the solar sys-
tem, from the general direction of the Galactic cen-
ter. The accepted explanation of this spectral line
if the e+e− annihilation taking place in the Galac-
tic center. From its flux on Earth of 10−3/(cm2 ·
s), together with the distance between Earth and
the Galactic center at 8 kpc, it implies an annihila-
tion rate of ∼ 1 × 1043 e+ per second. The power
released is about 104L⊙, where L⊙ = 2.83 × 1026

W is the Solar luminosity. Many experimental and
theoretical studies have been made, but the main
source of the positron has not been identified. Al-
though conventional astrophysical sources such as
type Ia supernovae, etc., are generally regarded to
be plausible candidate sources, dark matter annihi-
lation has been proposed. For a review of subject
we refer to [190].

8.2.3 Indirect searches: Neutrinos

Neutrinos and anti-neutrinos produced in annihilation of
DM particles sever as a good signal for its parent par-
ticles. Although neutrinos are difficult to detect, they
carry valuable information with them. An advantage of
the neutrino is its very long mean free path due to its
weak interactions. For heavy DM particles one expects
to see high energy neutrinos coming from the galactic
center, where a concentration of DM is generally ex-

pected. Unlike photons, neutrinos can be detected in
a well-controlled environment of underground laborato-
ries, under water, or in ice. The water and ice serve as
detection media of charge current interaction of neutri-
nos to produce charge leptons. The muon final state is
especially revealing by its Cherenkov radiation in water
and ice and their huge penetration length. An added ad-
vantage is the important directional information. When
the incoming neutrino energy is high enough, its travel-
ing direction is preserved by the outgoing muon. To al-
leviate the background problem of cosmic rays, upward
going neutrino signal in a detector can take advantage of
the whole Earth as its shield. Its background is neutrinos
from other sources, such as the atmospherical neutrinos,
which form the major background. Another advantage
of the neutrino probe is the existence of large detectors
for the neutrino physics which can be used to search for
neutrinos from DM particles.

Presently the online neutrino detectors include Super-
Kamiokande (Super-K), IceCube, and ANTARES. To
date there are no signals observed in the neutrino chan-
nel yet from Super-K, IceCube, and AMANDA, where
AMANDA is the predecessor of IceCube. The absence
of high energy neutrinos from the galactic center and
from the sun can set useful constraints on the DM par-
ticles mass and annihilation cross sections. Some earlier
results and analysis can be found in [191, 192], and [193].
For the most recent results from Super-K searching for
dark matter in the sun can be found in [194] and the
results are shown in Fig. 8.9, which we adopted from
[194].

The most recent results from IceCube searching for
dark matter from the Galactic center can be found in

Fig. 8.9 Comparison of the allowed and exclusion limits obtained from direct and indirect experiments. The colored regions
are allowed regions of the parameter space from the direct search experiments DAMA, CoGeNT, CDMS, and CRESST. The
curves mark the exclusion areas. Recall that Xenon, PICASSO, SIMPLE, and LUX are direct experiments. BAKSAN,
together with SK and IceCube are indirect searches. Let us remind ourselves that direct experiments measure the dark
matter-nucleon collisions and indirect experiments dark matter annihilations. Hence the indirect searches have to mark the
particular channel of final state that the limit is for. Left: Spin-independent cases. Right: Spin-dependent cases. This
figure is adopted from [194], to which we refer for details.
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[195]. The plot showing the result is given Fig. 8.10.
which is adopted from [195].

8.2.4 Anti-deuteriums

Indirect searches are generally focused on γ-rays,
positrons, anti-protons, and neutrinos, as discussed
above. However, these possibly copious channels may
suffer from more severe background due to uncertain-
ties of common astrophysical processes. The cosmic ray
anti-deuteriums, which can appear as secondary particles
from WIMP annihilation and which has very little expect
background, has been proposed as a promising signal for
an indirect search for dark matter [196]. The mechanism
of production is the coalescence of an anti-proton and an
anti-neutron originated from the annihilation of WIMP
dark matter particles. In order for the p̄ and n̄ to from
an d̄, they have to have similar momenta to move in the
same direction. This rather stringent phase space re-
quirement implies that the production cross section will
be small. Fortunately, according to calculation [196], the
flux of the d̄ so produced is peaked at low kinetic ener-
gies, which is a fraction of a GeV. Since the cosmic ray
d̄ production is generally from the spallation of high en-
ergy cosmic ray protons, there is very little cosmic ray
background in this low energy regime. Hence the detec-
tion of a low energy anti-deuterium can be considered a
smoking gun for the existence of a WIMP dark matter.
Recent considerations of the d̄ production suggests the
possibility of other scenarios, for instance, the coalesce
mechanism may be enhance and WIMP originated d̄ may
also appear at higher energies [197].

Fig. 8.10 Comparison of 4 IceCube measurements and re-
sults of other indirect searches. The grey-shaded region is the
dark matter interpretation of the PAMELA positron excess.
The figure is adopted from [195] to which we refer for details.

Fig. 8.11 A summary of the present status of experimen-
tal searches of dark matter candidates for the case of spin
independent scattering. Both allowed and exclusion regions
are shown. The upper right shaded area is the excluded region
which contain all the areas allowed by DAMA/LIBRA, Co-
GeNT, CDMS-Si, and CRESST. Reproduced from Ref. [199].

There are upper bounds for the d̄ search given by the
BESS experiment. The experiments for further searching
for d̄ include GASP and AMS-2. We refer to [119] for
more discussions and references. An updated review on
both theoretical and experimental aspects of cosmic-ray
anti-deuteriums search is given in [198].

8.2.5 Searches of other anti-particles

The are searches of other kind of antiparticles for dark
matter signal, such as antihelium-4. The experiments in-
clude BESS (Balloon-borne Experiment with supercon-
ducting Spectrometer) which has carried out antimatter
search since 1993. It has collected more than 5 billion
cosmic ray events as of the end of 2011 and found no
evidence of antihelium, which sets a bound of 10−7 for
antihelium to helium ratio.

8.3 Summary

8.3.1 Status of experimental searches

8.3.1.1 Summary-direct searches

The present status of direct searches are summarized in
Fig. 8.11 for the case of spin-independent cross sections.
The figure is adopted from [199]. A similar plot em-
phasizing the region of exclusion can be found in [65].80)

We note that for the majority of the mass region, ex-
cept for WIMP mass less than 8 GeV, LUX provides the
strongest limit. For low mass below 8 GeV, Xenon 100,

80)The plot shown in Fig. 8.18 is given in the 2014 version of the
PDG review article 25. Dark Matter. A newer plot is available in
the September 2015 updated of the PDG review article.
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Fig. 8.12 Left: Regions of exclusion for the proton-WIMP scatter cross section. Right: Regions of exclusion for the
neutron-WIMP scatter cross section.

SuperCDMS, and DAMIC provide the best contraints.
The overall region of exclusion contains all the four allow
parameter spaces: DAMA/LIBRA, CoGeNT, CDMS-Si,
and CRESST. The two sets of experiments are in serious
tension. The thick orange bars mark the dark matter
mass-cross section region where the direct search exper-
iment begin to be sensitive to neutrino scatterings, im-
posing strong constraints on reach of direct dark matter
search experiments in the future.

Bounds of exclusion obtained from various experi-
ments for spin dependent WIMP-nucleon scatterings, are
shown in Fig. 8.12. The figure is adopted from Ref. [200].
Note that the indirect search experiment IceCube has
provided rather strong exclusion bounds in the case of
WIMP scattering against proton.

8.3.1.2 Summary-indirect searches

A very prominent feature presently in indirect searches
is the presence of Excesses and anomalies, in addition to
various exclusion bounds obtained. We have discussed
most of the excesses and anomalies in Section 8.2. We
summarize them by showing a summary table of the talk
given by Hooper in [26] shown in Fig. 8.13, augmented
by the new data from AMS02 discussed in Section 8.2.
These anomalous events can be originated from unknown
conventional source or from the annihilation or decay of
dark matter particles. According to Hooper [26], for a
candidate of the dark matter particle, the last one on
the above list of anomalies, i.e., the GeV excess from
the Galactic Center, is particularly compelling, among
the many indirect detection anomalies having appeared
over the years, It can be interpreted as a WIMP of 31–
40 GeV having a annihilation cross section of the order
of ⟨vσ⟩ ≈ (1.7–2.3) × 10−26 cm3/s, agreeing with the
expectation of the WIMP miracle. Future observations
on dwarfs, cosmic-ray anti-protons, etc., are needed to
unravel the true nature of this inviting event.

Fig. 8.13 List of Excesses and anomalies in indirect search
experiments as of early 2014 before the release of the new
AMS-02 data. To this list we should add the possible excess
of anti-protons shown in the data of AMS02 as well as the the
new FermiLAT data which further weaken the significance of
the 130 GeV γ-line.

8.3.2 A glance at the future

The existence of dark matter, as manifested in its grav-
itational effect, is unequivocal. Almost any dark matter
theory tangible has been proposed. The experimental
situation presently is also unsettling. A few years ago
there were the inklings among physicists that dark mat-
ter signals might be discovered soon. But now the reality
sets in and people are prepared for the long haul.

Large detectors for direct searches are coming online
or in plan for the next few years. They are designed
to probe the dark matter mass vs cross section to one
or two orders of magnitude better in the elastic scatter-
ing of the dark matter particle with nucleons. They in-
clude XENON1T, XENONnT, DarkSide, LUX-ZAPLIN
(LZ), and DARWIN. The XENON1T [201], which ex-
pands from XENON100 at Gran Sasso just coming on-
line, has been inaugurated on November 11, 2015. Its
sensitivity is expected to improve that of LUX, which
provides the strongest exclusion limits to date, by a fac-
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tor of the order of 50 for the WIMP mass mχ > 6
GeV. Further expansions to XENONnT is planned to
take place in 2018. The sensitivity plots of XENON1T
and its expansion XENONnT, together with the existing
limits are given in Fig. 8.14. A further expansion beyond
the XENONnT experiment is the multi-ton DARWIN
(DARk matter WImp search with Noble liquids) project
at the 20 t scale [202, 203]. The sensitivity of DARWIN
is expected to approach the neutrino coherent scattering
limit.

The LZ (LUX-Zeplin) of Xe detectors is another next
generation (Generation 2) large dark matter experiment,
with a sensitivity similar to XENON1T. It has passed the
Critical Decision Step 1 and become an official project
of the US DOE. The LZ experiment will be housed at
the Sanford Underground Research Facility (SURF), lo-
cated at the former Homestake gold mine, in Lead, South
Dakota, USA. The experiment will involve two stages.
The first stage operates a 1.5–3 tonne detector while the
second stage a 20 tonne detector. Its designed sensitivity
can reach 5×10−49 cm2 for 100 GeV WIMPs. The most
recent status of LZ can be found in [204].

The 2013 Snowmass CF1 Summary [205], has pro-
vided a roadmap for WIMP direct searches up to the
year 2020. Compiled sensitivity reaches on pin indepen-
dent cross sections as functions of the WIMP mass, for
both presently established and future planned, are shown
Fig. 8.15 [205]. On future generations of experiments, it
includes the projected sensitivities for DarkSide G2, LZ,
as well as the neutrino coherent scattering limit. A simi-
lar plot of the sensitivity reaches including XENENOnT
and DARWIN is shown in Fig. 8.16 which, as adopted
from [205], appeared in [203] and other publications.

We note that since the report was published near the
end of 2013, some of the planned reaches, given in dot-
ted/dashed curves, have already been delivered. For ex-
ample LUX, represented by the dashed green curve pro-

Fig. 8.14 Sensitivity curves of the online XENON1T
together the existing results and its future expansions
XENONnT. The figure and its caption shown below the figure
are from [201].

Fig. 8.15 Figure and its caption are from Ref. [205]. The
solid curves are the established limits, and the dotted/dashed
curves are the planned ones as of the end of 2013. The LUX
bound represent by the green dashed curve is now an estab-
lished bound which is the strongest for WIMP mass greater
than 8 GeV.

Fig. 8.16 The figure is reproduced from Ref. [203] which,
in turn, adopted it from Ref. [205].

vides now the strongest exclusion bounds to date. We
should remark that these detectors are capable to probe
most of the SUSY parameter space.

The experimental progresses made in both the direct
and indirect searches are impressive. The direct detection
sensitivity has followed a Moore-like law, doubling the
sensitivity every 20 months. This is shown in Fig. 8.17
[206]. The future development is on track in consolidat-
ing different efforts of smaller experiments into larger
and more versatile ones. A few large experiments, in the
traditional high energy physics approach, covering all the
important technologies, competing yet collaborating, en-
abling checks made on one another, may create a con-
certed efforts to unveil this deep mystery we are facing.

Bing-Lin Young, Front. Phys. 12(2), 121201 (2017)
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Fig. 8.17 Moore law of the direct detection of dark matter. Roughly the experimental sensitivity doubles every 20 months
in the past decade. The figure is reproduced from [206].

8.3.3 Some miscellaneous theoretical remarks

We have not concerned ourself much with the particle
theory aspects of dark matter which is a very large sub-
ject by itself. Below we make a few remarks to just touch
on some of the current issues, in particular, about super-
symmetry. The remarks will be of a tentative nature,
likely to be altered when newer data appear from both
dark matter search experiments and particle physics ex-
periments carried out at the on-going Run 2, LHC.

8.3.3.1 Supersymmetry

Supersymmetry motivates the dark matter search exper-
iments for WIMPs. The present exclusion region of the
SUSY parameter space in the mass vs WIMP-nucleon
scattering cross section plot is shown in Fig. 8.18. The
lower right area shows the parameter space of some of
the SUSY schemes and the region of exclusion by dark
matter direct searches. Direct searches have eliminated
more and more portion of the SUSY parameter space.
The present strongest bounds are provided by LUX. As
indicated in Fig. 8.15, future experiments are able to
cover the whole SUSY parameter space.

With the operation of LHC, a systematic test of Su-
persymmetry has begun. The status of the Run 1 on the
search for new physics, including SUSY, can be sum-
marize as follows: No statistically significant sign for
SUSY particles has been uncovered. Neither the pre-

cision measurements of the B-meson system, nor the
search for an extended Higgs sector, has found any sign
of new physics. More generally, all precision measure-
ments of Run 1 show good agreement with the standard
model.

More specifically let us mention the following: The
low value of the mass of the Higgs particle discovered
at LHC is seen to disfavor the minimal supersymmet-
ric model. The recent measurement of the rare decay
Bs → µµ̄ branching ratio from LHCb [207] and the up-
dated rare decay B− → τ−ν branching ratio from at
Belle [208], both of which agree with the standard model
predictions, put further pressures on SUSY. However,
the actual situation is not yet clear. For example, [209]
found that the two highly constrained SUSY models, i.e.,
the constrained minimal supersymmetric standard model
(CMSSM) and the non-universal Higgs model (NUHM)
are still surviving but in a reduced parameter space.

At the present time, one cannot say what will happen
to SUSY. The LHC’s first phase proton running at 7 TeV
and then 8 TeV, with the discovery of the Higgs parti-
cle, is just the beginning.81) The next phase of proton
running has already begin in 2015 at the upgraded en-
ergy of 13.5 TeV. A more vigourous test of SUSY will be
executed.

81)For a brief description of this first phase of LHC see the LHC
news release on Dec. 17, 2012: http://press.web.cern.ch/press-
releases/2012/12/first-lhc-protons-run-ends-new-milestone
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Fig. 8.18 The current exclusion region of the SUSY pa-
rameter space. This is essentially the same exclusion region
of Fig. 8.11. This figure is reproduced from Ref. [65]. We
note that a newer version of this plot exits in the Septem-
ber 2015 updated version of the article. In the newer plot,
the CRESS II signal regions are removed because of updated
data of the CRESS collaboration. Also, exclusion curves from
Dark Side 50, CRESS, etc. are shown. The SUSY exclusion
region is deemphasized. Otherwise the newer plot is similar
to the present one.

A summary of highlights of LHC can be found in [210].
A more pedagogical presentation of LHC’s results so far,
together with lectures on SUSY and dark matter can be
found in [211]. A recent review of the status SUSY after
Run 1 can be found in [212].

8.3.3.2 Other developments of dark matter models

We focus on the possibility of light dark matter parti-
cles, which are particles of the order of several GeV or
lighter, not the WIMPs of hundreds of GeV commonly
expected in SUSY, and in addition to the sterile neutrino
and axion discussed earlier. There are both theoretical
and experimental motivations for this class of light dark
matter. Experimentally, the null result of the search of
SUSY particle at LHC will push the SUSY scale higher
and makes it even less accessible experimentally. Also
from existing dark matter search experiments, all claims
of signals from direct searches, DAMA, CoGeNT, and
CRESST, are in the regime of light dark matter parti-
cles. Theoretically, much high mass scale of SUSY makes
it less attractive. Furthermore, the original work of Lee
and Weinberg [213] suggested a lower mass bound of 4
GeV for thermal dark matter relics.82) So low mass dark

82)In Lee and Weinberg [213] the lower mass bound is 2 GeV,
with the assumption that matter provides the whole critical den-
sity. In the present case of dark matter is about one quarter of the
critical density, the lower mass bound is raised to 4 GeV.

mass particle is plausible.
The closeness of the baryon and dark matter density,

i.e., ρDM = 4.5ρb suggests that there might be a close
connection between baryon and dark matter particles,
while in the common WIMP scenario, a connection is
not necessary and the closeness of the two densities is
accidental. The well-known origin of the baryon density
clearly illustrate the difference. The baryon density is
a result of the baryon asymmetry as a consequence of
CP violation. But the WIMP scenario, motivated by
hierarchy, does not have such a connection. The asym-
metric dark matter (ADM) [214] is to assume that the
dark matter and the baryon have a common origin, both
are results of the CP violation mechanism. ADM models
typically result in similar number density of the baryon
and the ADM. This says that the dark matter particle
will have a mass of the order of 4 GeV, agreeing with the
result of the Lee–Weinberg decoupling mechanism. This
kind of light particles will entail different search strategy
from the common WIMPs. For a review of the ADM we
refer to [215]. A review of light dark matter can be found
in [216].

Another class of models is referred to as the dark sector
[217], which assumes that the dark matter is a complicate
particle sector by itself, not just one species of particles
as commonly assumed.

Part II
Related topics in cosmology

In this part we present several topics in cosmology rel-
evant to the discussion of dark matter. Since they are
also fundamental as parts of the corner stones which es-
tablish the present picture of the universe, it is useful to
see how the argument goes for readers who have not ac-
quired the expertise of modern cosmology, such as most
students in particles physics. We try to give as much
details as we think to be useful or to point out where
more details can be found. Hence Part II is lengthy. If
you are familiar with cosmology, or not interested in the
details, or simply comfortable with statements made in
dark matter discussions, these chapters are not for you.

Cosmology has become a precision science, e.g., with
the determination of the age of the universe to within
0.4% in 1σ, i.e., 13.81 ± 0.05 Gyr [13], the CMB
anisotropy in one part in 105, etc. Many reviews of cos-
mology can be found in the literature and good text-
books of different levels are also available. In addition
to the classics, such as [74, 218–220]1), etc., a number of
newer books have appeared in the new millennium after

1)This book which emphasizes inflation has an arXiv version
available online: arXiv: hep-th/0503203.
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the discovery of dark energy and other modern devel-
opments being made, e.g., [101, 221–223], and more re-
cently [224].2) A collection of entries A-Z, including key
ideas, relevant terms, scientists involved, observational
projects, etc., can be found in [225], which can serve as
a quick reference to various topics in cosmology.

The theoretical framework of cosmology is quite con-
cise as can be seen from these textbooks. The subject
is mostly organized into three parts: the fundamental
dynamic equations of general relativity and the FLRW
metric; applications of thermodynamics when considera-
tion of material is involved for the study of behavior of
the cosmos, such as the thermal history of the early uni-
verse, etc.; the application of relevant physics laws, per-
turbation theory on CMB anisotropy and large structure
formation. The detailed behavior of the universe is gov-
erned by laws of physics, of course. In particular, particle
physics and nuclear physics provide the basic physical
mechanism for the inner operation of the universe.

The theoretical and computational structures of cos-
mology have some parallelism to particle physics. The
homogeneous isotropic FLRW, which serves the starting
point and is referred to as the background universe, does
not concern with individual structure of the universe. It
can perhaps be thought of as the analogy of a (very com-
plicated) free field theory in particle physics. Then there
is the symmetry principle which is the invariance under
general 4-dimensional coordinate transformation of the
comoving frame. Because of the expansion of the uni-
verse, consequences of the invariance of the coordinate
transformation become very non-trivial. The analogy in
particle physics is the gauge transformation and gauge
invariance. Then there is the perturbative calculations
for the CMB anisotropy and large structures formation
due to growth of small perturbations. Perturbation in
particle physics is due to interactions among different
fields contained in the theory. In cosmology, perturba-
tions are performed in background universe in the FLRW
metric and the energy-momentum tensors. One may vi-
sualize the parallelism of these two types of perturbations
to imply some form of interactions, if one considers John
Wheeler’s famous words: “Spacetime tells matter how to
move; matter tells spacetime how to curve.” [226].

On the observational side, Hubble’s observation of a
linear relation between the redshift and distance of ob-
served galaxies in the late 1920s [227] is the corner-
stone in the establishment of the expanding universe,
and observations by Zwicky [20] and others, made in
the late 1920s and early 1930s, of the flattening of the
galaxy rotation curve when the distance of the galaxy
increases, as an indication of the presence of dark mat-

2)This is far from a complete list of the available books
on cosmology. A search of books available on Amazon,
http://www.amazon. com, will reveal many other books.

ter, are a milestone of our understanding of the cosmos
in the early development of cosmology. Prior to the
1960s, most of the information concerning the universe
has been obtained from the redshift and distances obser-
vation of distant galaxies. In the mid-1960 the discov-
ery [228] of a nearly isotropic background of microwave
radiation, known as the cosmic microwave background
(CMB) had greatly expanded the scope of astrophysi-
cal observations and prompted many subsequent mea-
surements. But for many years the detailed spectrum
of this background radiation was not determined. The
Planck spectrum of the microwave background radiation
as an ideal blackbody radiation was settled by the Cos-
mic Background Explorer Satellite (COBE) experiment
in the early 1990s [229] and ushered in the era of preci-
sion cosmology.3) The discovery of the dark energy in the
late 1990s [231, 232] put cosmology on a new trajectory
in the understanding of the cosmo.

As already mentioned, we work in the natural unites
which is extended to include the temperature sector
by taking the Boltzmann constant kB(= 8.6173 ×
10−5 eV/K) ≡ 1. So there is again only one unit and
all fundamental units are related as given in [74].4)

9 An introductory cosmology for pedestrians

9.1 The Einstein field equation and FLRW metric

9.1.1 Review of some generality

We begin by making a quick review to delineate some
the general known facts so as to define our notation.
The metric of a space is denote by the covariant and
contravariant symmetric metric tensors, gµν and gµν re-
spectively, which are related by

gµλgλν = δµν ,

gµν = gνµ, gµν = gνµ (9.1)

Under a general coordinate transformation x→ x′, then
a tensor is transformed as

V µ···
ν··· (x) → V ′µ···

ν··· (x′)

=
∂x′µ

∂xλ
· · · ∂x

σ

∂x′ν
· · ·V λ···

σ··· (x), (9.2)

where V ′µ···
ν··· (x′) means a functional form change of V µ···

ν···
and being evaluated at the transformed space-time point
x′.

3)For a detailed first look of the CMB, see Section 2 [221].
For an interesting historical description of the discovery of Pen-
zias and Wilson, see Weinberg’s classic science writing The First
Three Minutes [230].

4)See pp 499–500, Appendix A of [74] and we reproduce the
relations among the different units in Table C.2, Section C.1.
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Next we define the covariant derivative of the above
tensor
V µ···
ν··· ;λ(x) =

∂

∂xλ
V µ···
ν··· (x) + Γµ

λσV
σ···
ν··· (x) +

· · · − Γ σ
νλV

µ···
σ··· (x)− · · · , (9.3)

where Γλ
µν , called the affine connection, is given by

Γλ
µν =

1

2
gλσ

(
∂gµσ
∂xν

+
∂gσν
∂xµ

− ∂gµν
∂xσ

)
. (9.4)

It is symmetric with respect to the lower indices µ and
ν because of the symmetry of gµν .

The Einstein field equation which is a fundamental
equation of cosmology is given by
Rµν = −8πGNSµν

= −8πGN

(
Tµν − 1

2
gµνT

λ
λ

)
− Λgµν , (9.5)

where Λ is the cosmological constant and GN the grav-
itational constant. The other symbols involved are ex-
planted below. The Einstein field equation can also be
written in the form

Rµν − 1

2
gµνR

λ
λ = −8πGNTµν + Λgµν , (9.6)

where we have used Eq. (9.5) to express Tλ
λ in terms of

Rλ
λ.
Rµν is the Ricci tensor5) expressed in terms of the

affine connection of Eq. (9.4),

Rµν =
∂Γλ

λµ

∂xν
−
∂Γλ

µν

∂xλ
+ Γλ

µσΓ
σ
λν − Γλ

µνΓ
σ
λσ. (9.7)

The Ricci tensor is symmetric with respect to the inter-
change of its two indices, although not explicitly. It can
be simply demonstrated that
Rµν = Rνµ. (9.8)

Tµν is the energy-momentum tensor, also known as
the stress-energy tensor, which provides the information
on the energy density, momentum density, pressure, and
stress. It is given by, for a perfect fluid of frictionless
continuum,6)

Tµν = Pgµν + (P + ρ)uµuν , (9.9)

where uµ is a velocity four-vector. The conservation of
energy and momentum is defined by the vanishing co-
variant derivation of the energy-momentum tensor,

Tµν
;ν =

∂

∂xν
Tµν + Γµ

νλT
λν + Γ ν

νλT
µλ = 0. (9.10)

5)For the Ricci tensor we follow the definition given in [221].
The definition of the Ricci tensor given in some works is the neg-
ative of the expression Eq. (9.7)

6)Let us repeat that we use the natural units c = 1. We note
the proper, engineering dimensionality of the energy density and
pressure are the same: [mass][time]−2[length]−1. Hence the mass
density has the same engineering dimension as pressure divided by
c2, i.e., P/c2.

Here we note that a constant term in Tµν proportional
to the metric tensor gµν makes no contribution to the
energy-momentum conservation equation due to the van-
ishing of the covariant derivative of the metric tensor, as
an identity,

gµν;λ =
∂

∂xλ
gµν + Γµ

λσg
σν + Γ ν

λσg
µσ ≡ 0. (9.11)

Because of this we can absorb the cosmological con-
stant term of the Einstein equation (9.5) in the energy-
momentum tensor

Tµν → Tµν − gµνΛ̃,

Λ̃ ≡ Λ

8πGN
. (9.12)

Then the term gµνΛ on the right-handed side of Eq. (9.5)
can be dropped.7)

To conclude this subsection let us comment on the fact
that the energy momentum conservation law Eq. (9.10)
is not an independent relationship, but derivable from in
the Einstein field equation Eq. (9.6). This follows from
the differential Bianchi identity, rewritten in the form of
contravariant tensor,(

Rµν − 1

2
gµνgλσRλσ

)
;µ

= 0. (9.15)

Taking the covariant derivative of the Einstein field equa-
tion in the form of Eq. (9.6) and using the fact the co-
variant derivative of the metric tensor vanishes gµν;µ = 0,
we obtain the energy-momentum conservation relation
Eq. (9.10). A demonstration of the Bianchi identity can
be found in [218].8) Although the energy-momentum
conservation relation is not independent of the Einstein
field equation, it has the important relationship that the
conservation of energy and momentum hold separately
in isolated systems of cosmic constituents which do not

7)Let us mention that in many works the Einstein field equation
is written in a form which looks different from that of Eq. (9.5),
i.e.,

R′
µν −

1

2
gµνR

′ + Λgµν = 8πGNTµν , (9.13)

where R′ = gµνR′
µν . The sign difference between Eqs. (9.5) and

(9.13) can be explained by the sign difference in defining the Ricci
tensor, R′

µν = −Rµν , as already noted in Fn. 5). The other dif-
ference can be explained by contracting the µ and ν indices of the
Einstein equation to express the trace of the Ricci tensor R = Rµµ
in terms of the trace of the energy-momentum tensor Tµµ and Λ,

8πGNT
λ
λ = R+ 4Λ = −R′ + 4Λ.

Then Eq. (9.13) is just Eq. (9.5). Furthermore, the Einstein equa-
tion is often written in a more concise form by defining Gµν =
R′
µν − (1/2)gµνR′,

Gµν + Λgµν = 8πGNTµν . (9.14)

8)See, pp 146–147, [218].
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exchange energy and momentum with other system. An
example is the system of neutrinos, after the decoupling
of neutrinos at the cosmic temperature of 1010 K or 1
MeV, the energy and momentum are conserved within
the neutrinos themselves.

9.1.2 The FLRW metric

The expanding universe represented by the fact that
galaxies fly away from one another comes from Hub-
ble’s systematic observation of redshifts of galaxies. To
a good approximation, at a scale of 300 million light-
years larger, the universe looks isotropic and homoge-
neous to all comoving observers. We will define the
comoving observer below. An isotropic and homoge-
neous expanding universe can be described uniquely by
the Friedmann–Lemâitre–Robertson–Walker (FLRW)
model [218, 221].9),10) In this model the covariant met-
ric tensor gµν in the Cartesian system of the comoving
frame is given by

g00 = −1,

g0j = gj0 = 0,

gij = gji = a2(t)

(
δij + κ

xixj

1− κr2

)
, (9.16)

where i, j = 1, 2, 3 and r = (x1, x2, x3).11) a(t) is the
FLRW scale factor describing an expanding universe and
κ is the curvature constant.

For completeness we also give the contravariant metric
tensor gµν . First we note that regarding to gµν as a 4×4
matrix denote by (gµν), we have the determinant of the
matrix to be

|(gµν)| = − (a2(t))3

1− κr2
. (9.17)

Then the elements of the inverse of (gµν), denoted by
(gµν), give the matrix of the contravariant metric tensor.
They are related by gµν = gµλgνσg

λσ. The elements of
(gµν) can be worked out straightforwardly as

g00 = −1,

g0j = gj0 = 0,

gjk = gkj =
1

a2(t)

(
δjk − κxjxk

)
,

|(gµν)| = − 1− κr2

(a2(t))3
. (9.18)

9)§1.1 pp 2–4, [221]; §13.5 pp 395–403, [218].
10)Accessible quick readings of the attributions to FLRW can be

found in, e.g., <http://en.wikipedia.org/wiki/Alexander_ Fried-
mann> for Friedmann, <http://en.wikipedia.org/wiki/Georges_
Lemaître> for Lemaître, <http://en.wikipedia.org/wiki/Howard_
Percy_Robertson> for Robertson, and <http://en.wikipedia.org/
wiki/Arthur_Geoffrey_Walker> for Walker.

11)It is noted that most metric convention used in quantum field
theory is g00 = 1 for the special relativity, while many books in
gravity uses g00 = −1 for general relativity.

It is easy to verify the relationship Eq. (9.1). The ex-
pressions of components of the metric tensor are needed
in working out the explicit forms of the Einstein field
equations and the equations of the energy-momentum
conservation.

The FLRW line element is given by, written in the
spherical coordinates in the r space,12)

ds2 ≡ −gµνdxµdxν

= dt2 − a2(t)

(
(dr)2 + κ

(r· dr)2

1− κr2

)
, (9.19)

Using the identities

(dr)2 = dr2 + r2dΩ2,

r· dr = rdr,
dΩ2 = d2θ + sin2 θd2ϕ, (9.20)

we obtain the usual spherical form of the FLRW line
element

ds2 = dt2 − a2(t)

(
dr2

1− κr2
+ r2dΩ2

)
. (9.21)

This line element defines a simpler metric of the space
under consideration,

g00 = −1,

grr =
a2(t)

1− κr2
,

gθθ = a2(t)r2,

gϕϕ = a2(t)r2 sin2 θ, (9.22)

and all non-diagonal elements are zero.
The coordinates xj , j = 1, 2, 3 or equivalently r, θ,

and ϕ are the comoving coordinates. Individual objects,
such as galaxies, which participate in the expansion of
the universe, follow geodesics of constant values of xj
or r, θ, and ϕ.

√
ds2 is called the proper time, and t

the cosmological proper time or generally cosmic time
for simplicity. Hence a comoving observer is defined as
a stationary observer in a comoving frame which moves
with the Hubble flow. The cosmological proper time is
the time measured by a comoving observer.

Since κ always appear together with xjxk, we can scale
the comoving coordinates xj without affecting the met-
ric, Eq. (9.16), so that κ takes one of the following three
values:

κ =


+1 spherical, positive curvature, closed;
−1 hyperspherical, negative curvature, open;
0 Euclidean, no curvature, flat.

(9.23)
12)If we use the conformal time η, dt = a(t)dη, the dt2 term is

replaced by a2(t)dη2. The line element looks more symmetric but
then g00 and g00 become more complicate and have to be replaced
respectively by a2(t) and a−2(t).
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We note that in rescaling κ and xj , we have to rescale
the FLRW scale factor a(t), then the FLRW line element
(9.19) is not altered. This says that although a(t) is
a physical quantity, its magnitude is not physical. As
we will see later all measurable quantities, if related to
a(t), depend on the ratio of a(t)’s at different times. A
convenient normalization of a(t) is a(t0) = 1, where t0
is the time of the present epoch. We will not make this
choice by keeping a(t) arbitrary.

In the Euclidean case of vanishing curvature constant
κ = 0, the relevant expressions can be simplified:

ds2 = dt2 − a2(t)dr2, (9.24)

and the metric tensors in the Cartesian system have the
simple diagonal form

(gµν)|κ=0 =


−1

a2(t)
a2(t)

a2(t)

 ,

(gµν)|κ=0 =



−1
1

a2(t)
1

a2(t)
1

a2(t)


, (9.25)

which indicates a flat space with an expanding spatial
structure uniformly in all directions.

We conclude that in the FLRW model the local system,
i.e., the comoving frame, simply looks like a uniformly
expanding sphere in time with the radius scaled by the
time-dependent factor a(t). Or it looks like, in a given
sphere of a radius r, the equivalent time slows down by
a factor a(t). Such a system which seems to be simple
has very interesting features in the presence of matter
and energy when coupled with the Einstein dynamics
of general relativity. This is the case we will explore
below and we restrict ourselves to the Euclidean case of
vanishing curvature constant κ = 0. This flat, Euclidean
system, which simplifies greatly calculations presented
below and in subsequent chapters, agrees with the first
order observational data.

9.1.3 The Einstein equation in the FLRW metric

The cosmological dynamics is governed by three sets
of equations [218],13) the Einstein equation Eq. (9.6),
the energy-momentum conservation Eq. (9.10), and the
equation of state which will be given in some details
later. We explore each of the three equations below.
To exhibit the full display of the cosmological dynamics,
laws of physics, in particular thermodynamics, particle

13)See p. 473 [218].

Fig. 9.1 Physical quantities represented by the energy-
momentum tensor.

physics, and nuclear physics are used. Thermodynam-
ics treats average properties of systems of large number
of particles in the ideal situation of a dilute gas system.
Particle and nuclear physics provide the laws of inter-
actions among individual fundamental particles and the
formation of the baryonic matter.

9.1.3.1 Energy and momentum conservation

Let us first consider the energy-momentum conservation.
The energy and momentum conservation is defined in
terms of the energy-momentum tensor Tµν which appears
in the Einstein field equation, It is well-known in classical
physics. e.g., classical electrodynamics. The physics in-
volved can be described in a cartoon shown in Fig. 9.1:14)

In the comoving frame, for a given species of particle,
the isotropy and homogeneity requires that the proper
energy density ρ(t) and pressure density P(t) appearing
in the energy-momentum tensor in Eq. (9.9) are function
of the time only [221].15) The velocity four-vector is given
by
u0 = −u0 = 1, uj = uj = 0. (9.26)

From Eqs. (9.9) and (9.26), the components of the
energy-momentum tensor in the forms of Tµν , Tµ

ν =
gλνT

µλ, and Tµν = gµλgσνT
λσ, and for the case of van-

ishing curvature constant κ = 0 and vanishing shear
stress, can be readily calculated. They are diagonal and
the non-vanishing components are
T 00=ρ(t), T 0

0 =−ρ(t), T00=ρ(t),

T jk=δjka
−2(t)P(t), T j

k =δjkP(t), Tjk=δjka
2(t)P(t),

Tλ
λ =−ρ(t) + 3P(t), (9.27)
The affine connections are also simple in the case of

vanishing curvature constant and its non-vanishing com-
ponents are16)

Γ 0
jk = aȧδjk,

Γ j
0k =

ȧ

a
δjk, (9.28)

14)The figure is adopted from Wikipedia entitled Stress-energy
tensor [233].

15)See, p. 8 [221].
16)The affine connections and the Ricci tensor in the spherical

system with finite curvature constant κ ̸= 0 can be found in [234].
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where, as usual, the dot “·” over a symbol denotes the
cosmic time derivative.

We can now write down the explicit form of the energy-
momentum conservation law given in Eq. (9.10). Using
the expressions in Eqs. (9.27) and (9.28), we have the
only non-vanishing component to be

T 0ν
;ν =

∂

∂x0
T 00 + Γ 0

jkT
jk + Γ j

0jT
00 = 0. (9.29)

This gives the energy-momentum conservation constrain-
ing equation

ρ̇(t) + 3
ȧ(t)

a(t)
[ρ(t) + P(t)] = 0, (9.30)

which can also be rewritten as

Ṗ(t)− 1

a3
d
dt
[
a3(ρ(t) + P(t)

]
= 0. (9.31)

It should be noted that the simplicity of the energy-
momentum conservation equation comes from two sim-
plifications of the cosmic model that we are working with.
One is the Euclidean nature of the space-time so that the
metric tensor gµν has no spatial coordinate dependence
and is diagonal, and the other is the homogeneity and
isotropy so that the energy and pressure densities are
everywhere the same and depend on time only.

9.1.3.2 The Einstein equation

We now work out the Einstein field equation Eq. (9.5),
which is the dynamic equation governing the expansion
of the universe. First we work out the components of the
Ricci tensor Eq. (9.7):

R00 =
∂

∂x0
Γ j
j0 + Γ j

0kΓ
k
j0 = 3

ä

a
,

R0j = Rj0 = 0,

Rjk = − ∂

∂x0
Γ 0
jk + Γ 0

jℓΓ
ℓ
0k + Γ ℓ

j0Γ
0
ℓk − Γ 0

jkΓ
ℓ
0ℓ

= −(2ȧ2 + aä)δjk. (9.32)

The components of Sµν in the right-handed side of the
Einstein field equation Eq. (9.5) are

S00 = T00 −
1

2
g00T

µ
µ + g00

Λ

8πGN

=
1

2
(ρ+ 3P)− Λ

8πGN
,

S0j = Sj0 = 0,

Sjk = Tjk − 1

2
gjkT

µ
µ + gjk

Λ

8πGN

= a2
[
1

2
(ρ− P) +

Λ

8πGN

]
δjk. (9.33)

The structure of these results can be understood from
the symmetry properties of homogeneity and isotropy:
R00 and S00 are scalars, so they are allowed to take non-
vanishing values. R0j and S0j are 3-dimensional spatial

vectors, they have to vanish. Finally, Rjk and Sjk are
tensors of rank 2, so they have to be proportional to δjk.

From the above two sets of expressions, the Einstein
field equation Eq. (9.5) gives us two independent equa-
tions. The (µν) = (00) component gives
ä

a
= −4πGN

3
(ρ+ 3P) +

Λ

3
. (9.34)

The (µν) = (jk) components which are proportional to
δjk give just one equation:
ä

a
+ 2

ȧ2

a2
= 4πGN (ρ− P) + Λ. (9.35)

9.1.3.3 Hubble expansion rate

Substituting the ä/a term of Eq. (9.35) by its expression
given in (9.34), we obtain the expression for the Hubble
expansion rate

H2 ≡
(
ȧ

a

)2

=
8πGN

3
ρ+

Λ

3
=

8πGN

3
(ρ+ ρΛ), (9.36)

where
ρΛ =

Λ

8πGN
. (9.37)

which is the energy density due to the cosmological con-
stant. We can define the total energy density as
ρtotal ≡ ρ+ ρΛ = ρR + ρM + ρΛ, (9.38)

where ρR and ρM are respectively the energy densities
of the radiation and matter. The Hubble expansion rate
is simply given by the total energy density

H2 =

(
ȧ

a

)2

=
8πGN

3
ρtotal. (9.39)

From Eqs. (9.34) and (9.35) we also obtain the expres-
sion for the pressure:
2ä

a
+

(
ȧ

a

)2

= −8πGNP + Λ

≡ −8πGN (P + PΛ) ,
≡ −8πGNPtotal (9.40)

where
PΛ ≡ − Λ

8πGN
, (9.41)

and a total pressure is defined by
Ptotal ≡ P + PΛ. (9.42)
Here we make some remarks:
• In the case of non-vanishing curvature constant, the

Hubble expansion rate Eq. (9.36) is modified by
adding to the right-handed side by the term −κ/a2.

• The energy-momentum conservation equation,
Eq. (9.30) is not independent of the Einstein field
equation and can be derived by differentiating the
Hubble expansion rate equation Eq. (9.36) by time
and eliminating the acceleration ä term by the
acceleration equation Eq. (9.34).
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9.1.3.4 The equation of state

Each thermodynamic system has its characteristics
which are expressed in terms of relationships among its
variables. An elementary example is the ideal gas equa-
tion of a dilute gas system which relates the pressure,
volume, with the temperature. In cosmology the equa-
tion of state of the perfect fluid is used.17) The pressure
and energy densities of a particle are related by the equa-
tion of state

Pj = wjρj . (9.43)

where j denotes the different component of the system
in question: radiation, matter, and vacuum and wj is
independent of time.

The equations of state of several different types of par-
ticles and fields are given in [235] to which we refer for
further discussions.18) We reproduce them below in Ta-
ble 9.1. We will verify some of the equation of states
below when we discuss the thermodynamics of the uni-
verse. It should be noted that the pressure density of
a non-relativistic particles does not exactly vanish but
it is much smaller than the energy density and hence
generally it is set as zero. See Eq. (9.128) below. Note
that the equation of state for the cosmological constant
is already indicated in Eq. (9.54), i.e., wΛ = −1.

9.1.3.5 Some implications

We study below a few of the implications of the above
equations which allow us to obtain some gross, yet char-
acteristic features of the present model of cosmology.

Because of the linearity property of the time variation
equations of the energy and pressure density, Eqs. (9.30)
and (9.31) hold for individual particle species j,

ρ̇j = −3(ρj + Pj)
ȧ

a

Ṗj =
1

a3
d
dt
(
a3(ρj + Pj)

)
. (9.44)

Summing over all particle and energy components, above

relations hold also for the overall mass and pressure den-
sities, which can further be related to the Hubble expan-
sion rate:

ρ̇total = −3(ρtotal + Ptotal)
ȧ

a
=

3

4πGN
HḢ,

Ṗtotal =
1

a3
d
dt
[
a3(ρtotal + Ptotal)

]
= − 1

4πGN
(Ḧ + 3HḢ). (9.45)

Since the time variation of the FLRW scale factor is re-
lated to the total energy density as given be Eq. (9.36),
the time behavior of the energy and pressure densities
of a particle j depend also on other coexisting particle
species. From the first equation in Eq. (9.44) and the
equation of state Eq. (9.43) we obtain the behavior of
the various forms of energy density as a function of the
scale factor,

ρj ∼ a−3(1+wj) (9.46)

We can rewrite the acceleration and velocity equations
Eqs. (9.35) and (9.34) as

ä

a
+ 2

(
ȧ

a

)2

= 4πGN (ρtotal − Ptotal) = 3H2 + Ḣ,

ä

a
−

(
Ḣ

H

)2

= −4πGN (ρtotal + Ptotal) = Ḣ,

ä

a
= −4πGN

3
(ρtotal + 3Ptotal) = H2 + Ḣ, (9.47)

which will be used in the discussion of gauge transfor-
mation in the cosmological perturbation theory. We see
from the last of the above relations that matter and radi-
ation decelerate the expansion of the universe, while the
cosmological constant, or the vacuum energy, accelerate
it. Hence if one form of energy density dominates, the
Hubble expansion rate in the form of acceleration can be
summarized as follows:

ä


< 0 for ρtotal + 3Ptotal > 0 expansion slowing down, matter & radiation dominance;
= 0 for ρtotal + 3Ptotal = 0 expansion in a constant rate;
> 0 for ρtotal + 3Ptotal < 0 expansion speeding up, vacuum energy donminance.

(9.48)

We can obtain the time dependence of the scale fac-

17)Roughly speaking, a perfect fluid can be characterized by its
energy and pressure density in the rest frame. A perfect fluid has
no shear stresses, or viscosity, or heat conduction. Its pressure is
isotropic. And its energy-momentum tensor is diagonal which is
the case Eq. (9.9) together with Eq. (9.26).

18)Reference [235], pp 22–23.

tor a when a given type of energy density, radiation,
matter, or cosmological constant, dominates the Hubble
expansion. Substituting Eq. (9.46) into Eq. (9.39) and
taking the positive root, we can integrate over the time
to obtain

a ∼ t
2

3(1+wj) (9.49)
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Table 9.1 The equation of state, the ratio of pressure
density to energy density Pj/ρj .

wj Particle species j

1 Free massless scalar fields
1

3
Radiation and relativistic matter

0 Dust, i.e., non-relativitic matter

−
1

3
Curvature energy

−
2

3
Domain walls

−1 Cosmological constant

which is valid, of course for a limited range of time during
the age of the universe. During the cosmic evaluation,
the Hubble expansion may be dominated by different
types of energy densities at different epoches. So the
expansion rate will change as a function of time.

• For vacuum dominance, 1 + wΛ = 0, in which case
the above result is not valid, we have a constant
energy density which leads to a constant Hubble ex-
pansion rate H =

√
Λ
3 . Then, from the Hubble

expansion rate Eq. (9.39) we have

a|vd ∼ eHt. (9.50)

One can check that this is consistent with the ac-
celeration equation, Eq. (9.47), which gives ä/a =
(8πGN/3)ρΛ. This exponentially expansion is re-
ferred to as a de Sitter space. It is relevant to the
inflationary cosmology.

• For a radiation dominated epoch, w = 1/3, then
ä/a=−(8πGN/3)ρR, the expansion will slow down.

a|rd ∼ t1/2, H|rd =
ȧ

a
=

1

2t
. (9.51)

• For matter dominated, w=0, ä/a=−(4πGN/3)ρM ,
the expansion also slows down,

a|md ∼ t2/3, H|md =
ȧ

a
=

2

3t
. (9.52)

We summarize in Table 9.2 the relationship among the
three types of energy densities, the scale factor, the time
variable, and the Hubble expansion rate. In the sixth
column T stands for the temperature of the radiation
heat bath of the universe, necessarily involving the pho-
ton. We shall discuss the temperature in more detail be-
low in the next section, Section 9.2, on thermodynamics.
We include the temperature here to show its relationship
with the other parameters. These variables are together

Table 9.2 Relationship among the energy density, scale
factor, and time variable. T is the temperature at the corre-
sponding time or scale factor.

Dominance a ρR ρM ρΛ T¬ H p­

a−4 a−3 Constant a−1 a−1

Radiation t
1
2 t−2 t−

3
2 Constant t−

1
2 1/(2t)

Matter t
2
3 t−

8
3 t−2 Constant t−

2
3 2/(3t)

Vacuum eHt e−4Ht e−3Ht Constant e−Ht
√

Λ/3

¬Based on entropy conservation to be discussed in the topic of
entropy below.
­The momentum of a particle is always scaled as the inverse of
the scale parameter as the universe expands, p ∼ a−1. See, [221]:
Eq. (1.1.23) and the discussion on p. 109.

forming the central parameter sets for the description of
the evolution of the universe.

Let us briefly digress on the table. Firstly, we see that
as the universe expands the densities decreases as defi-
nite powers of the scale parameter, for matter as 1/a3,
for radiation as 1/a4, and the vacuum energy density
remaining constant. Because ρR/ρM ∼ 1/a, the mat-
ter density will overwhelm that of the radiation at some
point in in the expansion process of the unverse even if
the latter is much higher than the latter to begin with,
which is the case of our universe. Secondly, as a conse-
quence of the relationship between energy densities and
the scale parameter, the Friedman model also determines
the time behavior of the scale parameter and hence the
time behaviors of energy densities. This fact is impor-
tant in the chronological account of the evolution of the
universe.

Redefining the energy and pressure densities

We note that the cosmological constant can be in-
corporated into the expression of the energy-momentum
tensor, not as a separate term as given in the Einstein
equation of Eq. (9.5), by redefining the energy and pres-
sure densities in Eq. (9.9)

ρ→ ρtotal = ρM + ρR + ρΛ,

P → Ptotal = PR + PΛ, (9.53)

where PM = 0 for non-relativistic matter components.
Then all the above expressions containing the cosmologi-
cal constant Λ hold true without explicitly separating out
the cosmological constant Λ. We also note that energy
and pressure densities due to the cosmological constant
are related by

PΛ = −ρΛ. (9.54)

From now no we shall drop the subscript “total” and
use ρ instead of ρtotal to denote the total energy density,
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and likewise for the total pressure, including the vacuum,
radiation, and matter terms. In the most general case
they may also contain the equivalent terms due to the
curvature constant, as we will comment on later.

9.1.4 Cosmological redshift

Let us consider the propagation of a light signal emitted
from some galaxy and traveling to us. Because of homo-
geneity and isotropy we can take our own location to be
the origin of the coordinate system and orient the space
coordinates in any direction that is convenient. Since
the light travels in a null path, and in the present case,
with a constant θ and ϕ. Then we have from Eq. (9.21),
with the possibility of a curvature constant taking into
account in the present discussion, in order to show that
the result is independent of the curvature constant,

d2s = 0 = dt2 − a2(t)

1− κr2
dr2,

dt
a(t)

= − dr√
1− κr2

. (9.55)

The negative sign on the right-handed side of the sec-
ond expression is due the fact that we have to take the
negative solution in calculating

√
dt2, for a photon to

propagate from a radial location at r towards the ori-
gin where the observer is located in the comoving frame.
Note the interesting features of the second equation: The
left-handed side is a function of t and the right-handed
side is a function of r.

The derivation of the cosmological redshift, which is
straightforward from Eq. (9.55), is given below, follow-
ing, for example, [218]19). Let us consider a characteristic
point of a light wave, say the crest, which leaves a galaxy
located at the radial coordinate r1 at time t1, and arrives
at an Earth detector at r = 0 and t0, where t0 is the time
of the present epoch, which serves as the reference time.
Then we have∫ t0

t1

dt
a(t)

=

∫ r1

0

dr√
1− κr2

=
1√
κ

arcsin(
√
κr1)

=

arcsin r1 κ = 1,
r1 κ = 0,
arcsinh r1 κ = −1.

(9.56)

Then we consider the next light wave crest which leaves
the galaxy again at r1 but at time t1 + δt1, and arrive
at the detector at t0 + δt0. For the second light wave we
obtain an expression similar to Eq. (9.56) with but the
integration limits of the left-handed side being replaced
by t1 + δt1 and t0 + δt0, while the right-handed side is
unchanged. Hence we have∫ t0

t1

dt
a(t)

=

∫ t0+δt0

t1+δt1

dt
a(t)

. (9.57)

19)See pp 415–418 [218].

The above integrations can be rewritten as∫ t0+δt0

tE

dt
a(t)

=

∫ t1+δt1

t1

dt
a(t)

. (9.58)

For small δt1 and δt0 we have20)

δt0
a(t0)

=
δt1
a(t1)

. (9.59)

In the natural units these time intervals are just the re-
spectively wavelengths of their wave propagations at the
emission and observation points in the comoving frame,
δt1 = λ1 and δt0 = λ0, we can write Eq. (9.59) to ob-
tain the relationship between the scale factors and wave-
length/fequencies at r1 and r = 0, and define the redshift
z1:

δt0
δt1

=
a(t0)

a(t1)
=
λ0
λ1

=
ν1
ν0

≡ 1 + z. (9.60)

Defining a0 ≡ a(t0) and a1 ≡ a(t1), we can express the
scale factor as a function the redshift,

a1 =
a0

1 + z1
. (9.61)

Since a0 is a constant we have the important relation

da
a

= − dz
1 + z

. (9.62)

Let us note that the special relativistic flat space
Doppler effect is given by

1 + zDop = γ(1 + v//) = 1 + v// + v2 + · · · , (9.63)

where v is the magnitude of the velocity and v// is
the component of the velocity along the line of sight.
With the Hubble law, the cosmological frequency shift
finds a natural explanation in term of the Doppler effect
for small r1. To the first order in r1, we have21), from
Eqs. (9.61) and (9.56),

z1 ∼ (t0 − t1)H(t0) ∼
d
dt (r1a(t))|t0 → v//, (9.64)

which agrees with the above expression of the Doppler
effect to the first order in velocity. However, for dis-
tant galaxies, light frequencies are also affected by the
effect of gravitation. It is not useful or even correct to
characterize the frequency shift by the effect of special
relativity only. We can also interpret the result as fol-
lows: δt1 is the time interval between two photons sent
from the source and δt0 is therefore the time interval for

20)Being the periods of their respective wave propagations, δt1
and δt0 are of the order of 10−15 for the visible light. Hence unless
for very very long wave length Eq. (9.59) is justified.

21)See p. 417 [218].
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an observer receiving the photons. From

δt0 = (1 + z1)δt1, (9.65)

we see that the receiving time interval is stretched by a
factor 1 + z1. This result will be used in the discussion
of the luminosity distance later Section 13.

9.1.5 Energy components in the early universe as
functions of the redshift

From now on we will modify our notation slightly. The
overall energy and pressure density will carry no sub-

scripts, dropping the superscript total,

ρtotal → ρ = ρΛ + ρR + ρM (9.66)

and densities of specifical types are given a definite sub-
script as indicated above.

We can now express all densities, starting from some
earlier times which will be discussed later, by their re-
spective present values together with the corresponding
redshift, using the behavior of the densities in the scale
parameter as given in Table 9.2:

ρj =


ρR(z) =

(
a0
a(z)

)4

ρR0 = (1 + z)4ρR0, radiation plus relativistic particles,

ρM (z) =

(
a0
a(z)

)3

ρM0 = (1 + z)3ρM0, matter, all nonrelativistic particles,

ρΛ(z) = ρΛ, cosmological constant,

(9.67)

where ρR0, ρM0, and ρΛ are respectively the present den-
sities of radiation, matter, and vacuum. Knowing the
present density of a given form, we can obtain the infor-
mation of the densities at early times when the redshift
at that time is known, although the detailed information
of the densities is a complicated process to obtain.

We can rewrite the Hubble’s law Eq. (9.39) as

H2(z) =

(
ȧ(z)

a(z)

)2

=
8πGN

3
ρ(z)

=
8πGN

3

[
(1 + z)4ρR0 + (1 + z)3ρM0 + ρΛ

]
= H2

0

[
(1 + z)4ΩR + (1 + z)3ΩM +ΩΛ

]
, (9.68)

where H0 is the presently observed value of the Hubble
parameter which can be found in [13], and

Ωj ≡
ρj0
ρc

=


ΩR, radiation,
ΩM , matter,
ΩΛ, for cosmological constant,

(9.69)

and

ρc ≡
3H2

0

8πGN
, (9.70)

which is called the critical density of collapse, or simply
the critical density of the universe.

The meaning of the critical density as defined above
is clear. If the total energy density of the present epoch
is greater than ρc, or ΩΛ +ΩR +ΩM > 1, then we have
a non-vanishing curvature κ = +1 and the universe will

eventually collapse to a big crunch. The condition for a
flat universe is that the total energy density, including
the dark energy, radiation, and non-relativistic matter,
saturates the Hubble expansion rate without the need
of a curvature term. Defined for the present epoch, this
is ΩΛ + ΩR + ΩM = 1. These will become clear in the
subsection below when we consider the effect of the cur-
vature. Numerically the critical density is given by [13]
as

ρc = 1.87847(19)× 10−26h2 kg/m3

= 10.5375(11)h2 GeV/m3. (9.71)

Taking h = 0.673, we have mnemonically the various
densities in terms of number of protons per m3: the criti-
cal density is equivalent to 4 and three quarters protons,
the dark energy about 3 and a quarter, the cold dark
matter about 1 and a quarter, and the baryon matter
about a quarter.

9.1.6 Effect of the curvature term and the flat space

So far we have ignored the curvature term entirely. Let
us consider the effect of the curvature in some detail.
In the presence of a finite curvature, κ ̸= 0, we have to
modify the density formula that enters the expressions
of the Hubble expansion rate Eq. (9.39) and therefore
the total energy density (9.66) by adding an effective
curvature density term,

ρκ(z) = − 3

8πGN

κc2

a2(z)
= (1 + z)2ρκ0,

ρκ0 = − 3

8πGN

κc2

a20
, (9.72)
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where ρκ0 is the curvature density of the present epoch.
Then the total density entering the Hubble expansion
rate becomes

ρ→ (z)ρΛ(z) + ρR(z) + ρM (z) + ρκ(z). (9.73)

The corresponding ratio of the present curvature density
to the critical density is

Ωκ =
ρκ0
ρc
. (9.74)

Now we can write as an identity

ΩΛ +ΩR +ΩM +Ωκ = 1, (9.75)

which allows us to determine Ωκ and therefore κ given
the energy densities ΩΛ, ΩR, and ΩM .

We can write the density fraction of the curvature at
an epoch of arbitrary redshift z as

Ωκ(z) ≡
ρκ(z)

ρ(z)
=

8πGN

3H2(z)
ρκ(z)

=
H2

0

H2(z)
(1 + z)2Ωκ. (9.76)

We note that in the very early universe radiation energy
dominates. Then H2(z) ∼ (1 + z)4 which says

Ωκ(z) ∼ (1 + z)−2Ωκ. (9.77)

This gives rise to the well-known flatness problem. For
any finite value of the curvature parameter, i.e., any
value of Ωκ at the present epoch, the curvature frac-
tion to the effective total energy density is negligibly
small at the early universe of z ≫ 1. Running the argu-
ment in the reversed direction with Ωκ ∼ (1+ z)2Ωκ(z),
we have a z2 growth in the curvature density fraction.
From the fact that the observed matter-energy density
today ρ0 is close to the critical density ρc, this requires
a very small curvature density fraction in the early uni-
verse. This gives raise to a fine tuning problem unless
κ = 0. Furthermore, a finite curvature constant allows
the determination of the scale factor at the present time,
a0, which is unphysical, from the second expression of
Eq. (9.72).

As stated in the 2013 results of the Planck Collab-
oration [236] that there is “no compelling evidence for
deviation from the base ΛCDM model” and the limit of
the value22) of Ωκ is quite small. We will continue to
ignore the curvature term in discussions below.

22)See §6 and Table 10, [236].

9.1.7 Age of the universe

We follow [222]23) to use Eq. (9.68) to estimate the age
of the universe. Let us consider

H =
d
dt ln a(t)

a0

=
d
dt ln 1

1 + z

= − 1

1 + z

dz
dt , (9.78)

which together with Eq. (9.68) gives

dt=−
[
H0(1+z)

√
(1+z)4ΩR+(1+z)3ΩM+ΩΛ

]−1

dz.

(9.79)

Integrating the time variable from some early time te
corresponding to the redshift ze to the present time t0
corresponding to the redshift 0, we have

τe = t0 − te

=
1

H0

∫ ze

0

dz
(1 + z)

√
(1 + z)4ΩR + (1+z)3ΩM+ΩΛ

.

(9.80)

The age of the universe is obtained by putting te = 0
and ze → ∞,

τU =
1

H0

∫ ∞

0

dz
(1 + z)

√
(1+z)4ΩR + (1+z)3ΩM+ΩΛ

.

(9.81)

The most recent astrophysical data [13] give H−1
0 =

9.777752h−1 Gyr, h = 0.673, ΩM = 0.315, ΩΛ = 0.685,
Ωγ = 4.8 × 10−5, and 0.9 × 10−3 < Ων < 0.048, where
only the central values are quoted here. The errors in
most of the quantities are small, except for the uncer-
tainty in the neutrino energy density. However because
the smallness of its value, the contribution of the radi-
ation are negligible in our estimate of the universe age.
There are uncertainties in this simplified estimate,such as
abrupt changes in the radiation and matter densities dur-
ing the early evolution of the universe. But these com-
plications happened in the early history of the universe,
their effect will be small to the determination of the age
of the universe. Another uncertainty we will ignore is the
contribution of the neutrino. With the approximation as
stated the numerical integration of Eq. (9.81) gives

τU = 1.381× 1010 yr, (9.82)

which agrees with the age of the universe given in [13]:
τexpU = 13.81± 0.05 Gyr.

23)See, p. 76, [222].
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9.1.8 A brief comment on measuring the Hubble expan-
sion rate

Since the Hubble expansion rate is such a fundamental
quantity, let us discuss briefly how it is measured. Recall
the basic Hubble expansion law. Consider a point which
is at a comoving radial distance r from the origin at the
cosmic time t. The actual distance is

d(t) = a(t)r. (9.83)

Then the point will move away with a velocity

v(t) = ḋ(t) = ȧ(t)r = H(t)d(t). (9.84)

Since H(t) is independent of r, a function of time only,
this velocity-distance relationship is universal for all
points at a given time. This relation suggests a seem-
ingly simple way to measure H0 = H(t0), where t0 is the
cosmic time of the present epoch: measuring both the
distance and receding velocity of an astronomic object,
such as a galaxy, and dividing the latter by the former.
Then check the universal value of H0 by repeating the
measurements of many objects at different distance and
positions. In order to obtain a precise value for H(t0)
the measurements have to be performed on samples of
galaxies far enough away so that motions due to local
gravitational effect, the so-called peculiar motion, can
be neglected. The receding velocity measurement is rel-
atively simple by spectroscopic observation to obtain the
redshift of the object. However, the precise distance of a
galaxy can be difficult to determine in many situation.

9.1.9 Newtonian limit and gravitational potential

In this subsection we explore briefly the contact of the
Newtonian gravity with the Einstein theory and there-
fore the presence of gravitational potential in the Ein-
stein field equation.24) The Newtonian theory is a lim-
iting form of general relativity and from the discussions
presented so far in the above, we do not see where the
Newtonian gravitational potential may reside. We will
see below the gravitational potential can be introduced
through perturbation in the metric tensor. More details
on cosmological perturbation theory will be given in Sec-
tion 12 when the CMB anisotropy is discussed.

In the Newtonian theory two important frameworks
involve the equation of motion of a massive point parti-
cles in a gravitational force field and the Poisson equation
of gravitational potential due to the presence of a mass
distribution. They are respectively given by

d2x

dt2 = −∇Φ(x),

∇2Φ(x) = 4πGN · ρ(x), (9.85)
24)Parts of the discussions here follow that given in [218], §3.4.

where x is the trajectory of a massive particle in a local
inertial system Φ(x), and ρ(x) is the density of a mass
distribution providing the source of the gravitational po-
tential. The Einstein field equation Eq. (9.5) or (9.13) is
the law of gravity in general relativity and the Newtonian
gravitational potential is replaced by the ten components
4-dimensional symmetric metric tensor gµν .

In the case of purely gravitational force, the equation
of motion in the general case can be written as

d2xµ

dτ2 + Γµ
νλ

dxν
dτ

dxλ
dx = 0,

dτ2 = −gµνdxµdxν , (9.86)

where dτ is the proper time. Let us consider the case of a
weak stationary gravitational filed in which the particle
under consideration moves slowly, so that we can neglect
dxj/dτ , j = 1, 2, 3, in comparison with dx0/dτ = dt/dτ .
The first expression of Eq. (9.86) becomes

d2xµ

dτ2 + Γµ
00

(
dt
dτ

)2

= 0. (9.87)

In the stationary case the time derivative can be omitted,
the affine connection appearing above is simply

Γµ
00 = −1

2

∂g00
∂xµ

. (9.88)

We now introduce the gravitational potential as a per-
turbation to elements of the metric tensor Eq. (9.16).
For weak gravitational potential we can write

g00 = −1− 2ϕ(x), |ϕ(x)| ≪ 1. (9.89)

Equation (9.87) gives rise to two equations,

d2x

dτ2 = −
(

dt
dτ

)2

∇ϕ(x),

d2t

dτ2 = 0. (9.90)

The first expression gives the usual particle acceleration
equation in Eq. (9.85) when the perturbation term in g00
is interpreted as the gravitational potential

d2x

dt2 = −∇ϕ(x), (9.91)

which is the first equation of Eq. (9.85).
We continue the discussion of the case of stationary

weak gravitational potential for the Einstein field equa-
tion Eq. (9.5). Consider the time-time component of the
Ricci tensor:

R00=
∂Γλ

λ0

∂x0
− ∂Γλ

00

∂xλ
+ Γλ

0σΓ
σ
λ0 − Γλ

00Γ
σ
λσ

=
∂Γ j

j0

∂x0
− ∂Γ j

00

∂xj
+Γ 0

0jΓ
j
00+Γ

j
0kΓ

k
j0−Γ 0

00Γ
j
0j−Γ

j
00Γ

k
jk,

(9.92)
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where no approximation has been made up to this point.
Now we have to specify some details about the metric
tensor. Since we are looking for local stationary effects,
we will neglect the expansion of the universe and there-
fore drop the Hubble scale factor a(t). The metric tensor
can be written as

gµν = ηµν + δgµν(x), |δgµν | ≪ 1,

η00 = −1, η0j = ηj0 = 0, ηjk = δjk,

δg00 = −2ϕ(x). (9.93)

The affine connections Γµ
νλ given in Eq. (9.4) are first

order in the metric perturbation δgµν . Therefore, all
four terms in products of two affine connections, which
are second order in the perturbation, will be ignore. The
term in the time derivative of the affine connection can
also be omitted. Using Eq. (9.5), we have

R00 ≈ −∂Γ
j
00

∂xj
=

1

2

∂

∂xj
∂g00
∂xj

= −∇2ϕ(x). (9.94)

The right-handed side of the Einstein equation Eq. (9.5),
together with Eq. (9.27) and the omission of the cosmo-
logical constant term, gives

−8πGN

(
T00 −

1

2
g00T

λ
λ

)
= −4πGN [ρ(x) + 3P(x)] .

(9.95)

For non-relativistic matter the pressure term 3P can be
omitted. Equations (9.94) and (9.95) give the Poisson’s
equation

∇2ϕ(x) = 4πGN · ρ(x). (9.96)

This concludes our demonstration of the Newtonian limit
and the possibility of explicitly introducing the gravita-
tional potential.

Let us see to what extend the validity of the assump-
tion of weak gravitational potential holds. The engi-
neering dimension of the gravitational potential is en-
ergy divided by mass, i.e., the dimension of velocity-
squared which is dimensionless in the natural unit. This
is the reason why it is a pure number as appearing in
Eq. (9.89). Hence to calculate the strength of a gravita-
tional potential in Eq. (9.89), we calculate the potential
in any units divided by the light-velocity-squared. Let
us takes the gravitational potential at the surface of the
sun, denoted by ϕs⊙, as an example. Given the solar
mass M⊙ = 1.9885 × 1030 kg, the solar (equatorial) ra-
dius R⊙ = 6.9551 × 108 m, and GN = 6.6738 × 10−11

m3·kg−1·s−2, we have

ϕs⊙ → GNM⊙

c2R⊙

= 2.12× 10−6. (9.97)

Discussions for additional astrophysical settings can be
found in [218]: The gravitational potential at the surface
of the earth is 10−9 and that of a white dwarf star 10−4.
Therefore, in general the assumption of a first order weak
gravitational potential is valid.

9.2 Kinetic theory – Thermodynamics

Much of the early history of the universe can be de-
scribed by equilibrium thermodynamics, although some
important events taking place in the cosmos, such as the
decoupling of massive particles, are governed by non-
equilibrium dynamics. Below we review briefly the key
features of the equilibrium thermodynamics.

9.2.1 Equilibrium distributions

In the ideal gas approximation, in which particles are
considered to be diluted and weakly interacting, the en-
ergy distribution of particles species j of mass mj under
consideration in a heat bath of temperature T have the
following equilibrium distribution functions for fermions
and bosons respectively,

fFj(p) =
1

exp
(

Ej−µj

T

)
+ 1

,

fBj(p) =
1

exp
(

Ej−µj

T

)
− 1

, (9.98)

where Ej =
√
p2 +m2

j is the energy of the particle, p the
magnitude of the three-momentum, and µj its chemical
potential. We denote generically the two statistical types
of particles as

fj±(p) =
1

exp
(

Ej−µj

T

)
± 1

, (9.99)

where “+” is for fermions and “−” bosons. So we will
use the two types of subscripts F (B) and + (−) inter-
changeably. The number density of the particle species
j is given by

nj± =
gj

(2π)3

∫
fj±(p)d3p, (9.100)

the energy density

ρj± =
gj

(2π)3

∫
Ejfj±(p)d3p, (9.101)

and the pressure density

Pj± =
gj

(2π)3

∫
p2

3Ej
fj±(p)d3p. (9.102)

The integration is over the whole momentum space. gj is
the internal degrees of freedom of the particle species j,

Bing-Lin Young, Front. Phys. 12(2), 121201 (2017)
121201-79



Review article

generally the number of spin states times other internal
quantum numbers, if any, such as the color, isospin, etc.

Let us remark that the number density distribution
functions, Eq. (9.99) or Eq. (9.98) are Lorentz invariant
quantities. A demonstration of this fact will be given in
Appendix A.

9.2.2 Chemical potential

The chemical potential µ is a characteristics of a sys-
tem of congregation of particles. It is an important con-
cept in thermodynamics for the description of systems of
gases. In this elementary physical setting, the chemical
potential regulates the flow of particles among systems
in contact, while the temperature regulates the flow of
energy among them. For instance two systems of gases
in contact, originally at temperatures T1 and T2 with
chemical potentials µ1 and µ2, that can exchange both
energy and particles, are said to be in combined thermal
and diffusive equilibrium when T1 = T2 and µ1 = µ2.
For applications in cosmology, for a system which is in
chemical or diffusive equilibrium, the chemical potentials
of all particles involved in a reaction25) are conserved ad-
ditively, similar to the conservation of additive quantum
numbers of the particles involved. For an illustration let
us consider the following reaction,

A+B → C +D + · · · . (9.103)

Then if the particles have nonzero chemical potentials,
the chemical equilibrium requires

µA + µB = µC + µD + · · · . (9.104)

This relation shows that if there is no restriction on the
number of particles of a given species to appear in reac-
tions, the chemical potential of the species vanishes. The
Photon is such a particle species as multi-photon emis-
sions are allowed in a process for any charged particle.
So the photon has to have a vanishing chemical poten-
tial, µγ = 0. As a consequence, π0 and η, which can
decay into two photons, have vanishing chemical poten-
tials. These results can also be obtained by the fact that
particles which are their own antiparticles, such as the
photon, π0, and η0, have vanishing chemical potentials,
because the chemical potential of an antiparticle is the
negative of that of the particle.26) For a discussion of the
chemical potential in thermodynamics, see [237].

In the early universe, under equilibrium in the rel-
ativistic case the chemical potentials can be generally
neglected [218].27) Then the three density functions,

25)Let us note that in order to maintain equilibrium the reaction
has to take place rapidly enough.

26)This can seen straightforwardly from the crossing relation.
Moving particle B in Eq. (9.103) to the right-handed side we have
the reaction A→ B̄+C+D+ · · · and the equation corresponding
to Eq. (9.104) is µA = −µB+µc+µD+ · · · which says µB̄ = −µB .

Eqs. (9.100), (9.101), and (9.102), are functions of their
energy and the external temperature variable T . How-
ever, in some non-relativistical cases, in situations the
presence of the chemical potential are crucial and lead
to considerations of quantities which are independent of
the chemical potentials of the particles involved, such as
the Saha equations in baryogenesis and the last scatter-
ing surface to be considered later. Nevertheless, we do
not need to know the explicit form of the chemical po-
tential in these cases. Hence in general we do not have
to concern ourselves with the chemical potential.

For a more detailed discussion of the chemical poten-
tial, we refer to [218].27) and [74] which contains discus-
sions involving chemical potentials in several cases.

9.2.3 Entropy

Here we introduce the important quantity entropy,
S(T, V ), which is a function of the volume V and the
temperature T . We are concerned with the situation of
the early universe, in which the reaction rate among par-
ticles are large than the universe expansion rate so that
thermal equilibrium can be maintained. The entropy is
defined in term of the differential equation

dS(T, V ) =
∂S(T, V )

∂T
dT +

∂S(T, V )

∂V
dV

=
1

T
[d(ρ(T )V ) + P(T )dV ] . (9.105)

The above equations allow us to identify

∂S(T, V )

∂T
=
V

T

dρ(T )
dT ,

∂S(T, V )

∂V
=

1

T
[ρ(T ) + P(T )] . (9.106)

It is reasonable to assume that the derivatives involved
are continuous so that the mixed second order derivative
with respect to T and V is immaterial in the order of the
differentiation variables, i.e.,

∂2S(T, V )

∂T∂V
=
∂2S(T, V )

∂V ∂T
, (9.107)

which allows us to obtain the following relation, remem-
bering that the densities ρ and P are not functions of
the volume but depend only on the temperature,

dP(T )

dT =
1

T
[ρ(T ) + P(T )] . (9.108)

The time dependence of P can be obtained through that
of the temperature, we have

dP
dt = Ṫ

dP
dT =

Ṫ

T
[ρ(t) + P(t)] . (9.109)

27)See [218], pp 530–531.
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Comparing this equation with the energy conservation
equation Eq. (9.31), we obtain

1

a(t)3
d
dt
{
a(t)3[ρ(t) + P(t)]

}
=
Ṫ (t)

T (t)
[ρ(t) + P(t)] ,

(9.110)

which gives the important conservation equation

d
dt

(
a(t)3

(
ρ(t) + P(t)

T (t)

))
= 0. (9.111)

We define the entropy density

s(t) ≡ ρ(t) + P(t)

T
. (9.112)

The expression Eq. (9.111) is interpreted as the entropy
conservation in a comoving volume a(t)3,

a3(t)s(t) = constant. (9.113)

The entropy density of individual species of particles,
from Eqs. (9.101) and (9.102), expressed as functions of
time, is given by

sj±(t) =
ρj±(t) + Pj±(t)

T (t)

=
gj

(2π)3
1

T

∫
3E2

j + p2

3Ej
fj±(p). (9.114)

Let us recall that “+” is for fermions and “−” bosons.
We can also define the entropy functions as functions of
the scale factor a or the temperature T .

The energy and pressures densities that enter the en-
tropy density are those species of particles which are in
equilibrium with the heat bath of temperature T , i.e.,
the temperature of the photon. From the entropy con-
servation equation the last column of Table 9.2 can be
deduced in the case of no entropy production. The argu-
ment is as follows. As will be shown in Eq. (9.122) blow,
the photon contribution is proportional to T 3, then the
total entropy in a comoving volume a3 can be written as

a3s ∼ a3T 3 = constant. (9.115)

Hence the conservation of entropy in a comoving volume
requires that

T ∼ a−1. (9.116)

We note that this relation can already be obtained quite
early by using the energy-momentum conservation equa-
tion Eq. (9.30) and the equation of state Eq. (9.43) for
the case of radiation. It is independent of the form of
the dominant energy density of the universe. The differ-
ence due to the form of the dominant energy is reflected

in the time dependence of the scale factor and therefore
the temperature as functions of time, as summarized in
Table 9.2. This relation Eq. (9.116) says that the ex-
pansion of the universe is adiabatic and it enables us to
relate the cosmic temperature with the time:

d(aT )
dt = 0, (9.117)

which gives

1

T

dT
dt = −1

a

da
dt = −

√
8πGN

3
ρ. (9.118)

This explains Footnote 1 of Table 9.2. We shall make
use of this relation in later discussions.

The second law of thermodynamics dictates that the
total entropy of the universe does not decrease. The
cosmos total entropy will increase or stay constant during
the evolution of the universe. Since the various known
physical processes took place during the cosmic evolution
do not generated much entropy, except in the extremely
brief period of inflation. It is generally assumed that all
the entropy of the universe is generated during inflation
and then stays constant afterward.

9.3 Relativistic and non-relativistic behaviors of
particle densities

We now come back to the various densities to discuss
their properties in some details.

9.3.1 Ultra-relativistic limit

The ultra-relativistic limit is the case T ≫ m in which
the particle mass can be neglected in the integrants of
Eqs. (9.100), (9.101), and (9.102). Under this condition
and in the absence of chemical potential, µj = 0, all
integrals involved are analytically integrable. We have28)

nBRj = gj
ζ(3)

π2
T 3,

nFRj =
3

4
gj
ζ(3)

π2
T 3, (9.119)

28)The integrals involved can be performed as given below∫ ∞

0

xν

ex − 1
= Γ (ν)ζ(ν),∫ ∞

0

xν

ex + 1
=

(
1−

1

2ν−1

)
Γ (ν)ζ(ν),

where the Γ function is given by Γ (n) = (n − 1)! for an integral
value of n. The Riemann zeta function is defined by

ζ(n) ≡
1

Γ (n)

∫ ∞

0

xn−1

ex − 1
dx,

are given by: ζ(ν) functions for integral n are given explicitly as
ζ(0) = − 1

2
, ζ(1) = ∞, ζ(2) = π2

6
, ζ(3) = 1.020206, ζ(4) = π4

90
,

ζ(5) = 1.03693, ζ(6) = π6

945
.
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where ζ(x) is the Riemann zeta function and ζ(3) =
1.20206. The different species of particles are only dis-
tinguished by their internal degrees of freedom.

The energy densities Eq. (9.101) are given by

ρBRj = gj
π2

30
T 4,

ρFRj =
7

8
gj
π2

30
T 4. (9.120)

The pressure densities Eq. (9.102) are

PBRj =
1

3
ρBRj ,

PFRj =
1

3
ρFRj . (9.121)

This energy and pressure relationship is already adver-
tised early as the equation of state for massless particles
with w = 1/3. The entropy densities Eq. (9.114) are

sBj =
ρBRj + PBRj

T
= gj

2π2

45
T 3,

sFj =
ρBRj + PBRj

T
=

7

8
gj

2π2

45
T 3. (9.122)

To gain some insight of the dense state of the matter
in the early universe, let us examine the particle density
function in some detail. Taking the relativistic boson
for an example, we rewrite the boson particle density in
the proper units of number of particle per unit volume
cm−3. As discussed in Appendix C.1, the number density
of particles is obtained simply by multiplying expressions
in Eq. (9.119) by the numerical factorNMeV = (5.06773×
1010)3 = 1.3015× 1032 when the temperature is given in
units of MeV, or by the factor NKel = (4.36704×1010)3 =
8.3284×1031 when T is units of 1010 Kelvin, where these
conversion factors can be read off from Table C.2. So we
have

nBRj(T ) = 1.5851× 1031gj

(
T

1MeV

)3

cm−3

= 1.0143×1031gj

(
T

1010 K

)3

cm−3. (9.123)

For the photon its density at the present epoch of 2.725 K
the number density is 410.5 cm−3. At the early universe
of T = 1 MeV, which is 1.16045 × 1010 K, the photon
density is 3.2× 1031 cm−3.

We are also interested in knowing the number distribu-
tion of particles with the minimal energy Em at a given
temperature T , we write the particle number density
function as

nBRj(Em, T ) = nBRj(T )DB(ϵT)

= 1.5851×1031gj

(
T

1 MeV

)3

DB(ϵT) cm−3,

(9.124)

where nBRj(T ) is the total number of density in units of
MeV3 as given in Eq. (9.119)

DB(ϵT) =
1

2ξ(3)

∫ ∞

ϵT

y2

ey − 1
dy,

ϵT =
Em
T
, (9.125)

Normalized to unity, DB(0) = 1, DB(ϵT) is a universal
curve giving the fraction of particle with energy equal or
greater than Em = ϵTT .

The universal function DB(ϵT ) is plotted in Fig. 9.2.
For a given value of T the majority of the photons have
the energy of T or less. There are about 10% of the
photons with energy greater than 5T . The fraction drops
precipitously when the energy of the photon increases
further. But there are significant number of photons of
higher energies. There more than 1% of the photon with
energy greater than 8T , 0.23% with energies greater than
10T , 4× 10−5% with energy greater than 20T , etc.

9.3.2 Non-relativistic limit

For the non-relativistic case, T/m ≪ 1, we can expend
the energy expression in Eq. (9.98) in the non-relativistic
form Ej ≈ mj + p2/(2mj) and drop the ±1 terms in the
denominators. So we do not have to make the distinc-
tion of fermions and bosons. The integrals in the den-
sity functions Eqs. (9.100)–(9.102), ignoring the chem-
ical potentials, are straightforwardly integrable to give
the Maxwell–Boltzmann particle number density distri-
bution

nNj = gjm
3
j

(
T

2πmj

)3/2

e−
mj
T , (9.126)

Fig. 9.2 Plot of the particle fraction, DB(ϵT), with energy
greater than ϵT.
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the energy density

ρNj = gj

(
mj +

3

2
T

)
m3

j

(
T

2πmj

)3/2

e−
mj
T ,

=

(
mj +

3

2
T

)
nBNj (9.127)

and the pressure density

PNj = gjTm
3
j

(
T

2πmj

)3/2

e−
mj
T

= nNjT. (9.128)

The equation of state becomes

Pj =
T

mj + 3T/2
≈ T

mj
ρj , (9.129)

where higher order terms in T
m are dropped. Since T ≪

m, we can set the pressure to zero as noted in Table 9.1.
In circumstances where we need to include the effect of

the chemical potential, such as the tinny excess of baryon
and leptons than antibaryon and antileptons, which re-
quires nonvanishing chemical potential. Then the non-
relativistic density functions become

nNj(µj) = gjm
3
j

(
T

2πmj

)3/2

e−
mj−µj

T ,

ρNj(µj) = gj

(
mj +

3

2
T

)
m3

j

(
T

2πmj

)3/2

e−
mj−µj

T

= nNj(µj)

(
mj +

3

2
T

)
,

PNj(µj) = gjTm
3
j

(
T

2πmj

)3/2

e−
mj−µj

T

= nNj(µj)T. (9.130)

So the relations between the particle number density and
those of the energy and pressure density remain the same
as the case of vanishing chemical potential. The chemical
potential of an antiparticle is the negative of that of the
particle.

We note some salient of points of the non-relativistic
results in light of the elementary kinetic theory of gas in
classical mechanics:

• From Eqs. (9.126), (9.127), and (9.130) we have the
average energy per particle

ε̄c = m+
3

2
T. (9.131)

Restoring the proper units, we have the first term to
be the “rest energy” mc2 of the particle. The second
term 3

2kBT
3 is the kinetic energy resulting from the

well-known equal partition of energy of a classical
particle, i.e., T/2 in each spatial degree of freedom.
So we have
1

2
mv̄2c =

3

2
T, (9.132)

which is just the kinetic energy of a monatomic
molecule (γ − 1)−1kBT for the specific heat ratio
γ = 5/3.

• Similarly the average pressure per particle is given
by

P̄c = T =
1

3
mv̄2c .

We summarize the analytic results of the relativistic
and non-relativistic cases in Table 9.3.

9.3.3 Internal degrees of freedom gj

We give some examples of the counting of the internal
degrees of freedom. For massless particles the number
of spin states is always 2 as only the maximum helicity
states are physical. So for the photon gγ = 2; gluons
gg = 2 × 8, where 8 is the number of color states of
gluons; for the quark and antiquark of a given flavor
gq = gq̄ = 2×3×2, where 3 is the number of color states
of the quark. The total number of degrees of freedom for
the three families of neutrinos and antineutrinos is gν =
3×2 as neutrinos are left-handed and hence each neutrino
species just has 1 degree of freedom. Composite particles
and bound states, such as hadrons and molecules which
can act in circumstances in a whole as individual entities,
are counted similarly by ignoring their internal structure.
The proton and neutron each has gp,n = 2, and similarly
for their anti-particles. Pions of a definite charge state is

Table 9.3 Relativistic and non-relativistic forms of number, energy and pressure density functions.

Relativistic (T ≫ m) Non-relativistic (T ≪ m)

Bosons Fermions Fermions/Bosons per particle

nj gj
ζ(3)

π2 T
3

(
3
4

)
gj
ζ(3)

π2 T
3 gjm

3
j

(
T

2πmj

)3/2
e−(mj−µj)/T -

ρj gj
π2

30
T 4

(
7
8

)
gj
π2

30
T 4

(
m+ 3

2
T
)
nj m+ 3

2
T

Pj ρj/3 ρj/3 Tnj T

sj = 1
T
(ρj + P) gj

2π2

45
T 3

(
7
8

)
gj

2π2

45
T 3 - -
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Table 9.4 The Boson, fermion, and total degrees of freedom contributing to the energy density function of effective
massless particles. The last two columns will be used in Section 11 in the dark matter calculation.

Temperature¬ Particles added 4gB∗ 4
(
7
8

)
gF∗ 4g∗­

CX®

channels
CX/

√
g∗¯

channels

me > T γ + ν′s 8 21
(

4
11

)4/3° 13.45 4 2.2

mµ > T > me e± 8 14+21
(

4
11

)4/3 27.45 5 1.9

mπ > T > mµ µ± 8 49 57 6 1.6

Tcd± > T > mπ π±, π0 20 49 69 6 1.4

mc > T > Tcd u, ū, d, d̄, s, s̄,
+ gluons
removing π’s

72 175 247 15 1.9

mτ > T > mc c, c̄ 72 217 289 18 2.1

mb > T > mτ τ, τ̄ 72 231 303 19 2.2

mW,Z > T > mb b, b̄ 72 273 345 22 2.4

mHiggs > T > mW,Z W±, Z 108 273 381 24 2.5

mt > T > mHiggs H0 112 273 385

T > mt t, t̄ 112 315 427

¬The temperature here can be considered as that defined for the photon.
­g∗ = gB∗ + 7

8
gF∗ is the total effective degrees of freedom.

®This is the total number of channels of particle and antiparticles normal particles pairs created in the heavy particle and antiparticle
annihilation, to be used in Section 11.6.
¯This will be used in Section 11.6.
°The neutrino temperature is Tν =

(
4
11

)1/3
Tγ below 1 MeV.

±Tcd is the confinement-deconfinement temperature between quarks and hadrons, taken to lie between 150 and 400 MeV. The inclusion
of the pions is to take into account of the gluon effect below the confinement temperature but above the pion mass.

gπ±,π0 = 1. Nucleus are also counted similarly: e.g., the
helium-4 and helium-3 have respectively spin 0 and 1/2,
then g(4He) = 1 and g(3He) = 2. Deuteron has spin 1,
so gD = 3. For the hydrogen atom, the 1s ground state
has two hyperfine states of respectively total spins 0 and
1. The spin 0 configuration has only one state while the
spin 1 configuration has 3 states. So the counting of the
internal degrees of freedom of the ground state hydrogen
atom is gH1s = 1 + 3 = 4.

Following [238], we summarize in Table 9.4 the inter-
national degrees of freedom entering the energy density,
referring to the standard model particle spectrum. A
complication should be kept in mind in that, as will be
discuss later, some of particle species may evolve with a
temperature which is different from that of the photon.
We should note that in Table 9.4 the effective degrees of
freedom in one temperature period to the next change
abruptly. This is an approximation, of course. In reality
they change continuously. This will be discussed in the
next two sections Section 9.4 and Section 9.5 below in
some details.

We also note that in the above table the Higgs mass
lies below the top quark mass.29) We cannot give the de-
grees of freedom for energies above the standard model

29)The Higgs mass is mH0 = 125.7 ± 0.4 GeV and that of the
top quark mt = 173.21± 0.51± 0.71 GeV. See [13] for details.

symmetry breaking energy scale. They are model depen-
dent.

9.3.4 Some detailed properties

Most of the following discussion of some of the details is
of no immediate direct relevance to the present goal of
the study of dark matter here, we present them below for
the purpose of completeness. Figure 9.3 shows the ratios
of exact and limiting expressions of the particle number
densities, Eqs. (9.100), (9.119), and (9.126). The curves
show how the onsets of the validity of the limiting expres-
sions, relativistic and non-relativistic. The temperature
is expressed in units of the particle mass T/m. Let us
explain the five curves in the figure:

• The dashed-dotted curve (black). The dashed-
dotted curve in the middle of the figure is the ratio
of the exact expressions of fermion over boson. We
see that there is no difference between bosons and
fermions for low temperature T/m < 0.2 which is re-
flected by the fact that the fermion and boson have
the same non-relativistic form. But this fermion and
boson identity sets in much earlier than the valid-
ity of the non-relativistic limiting expression. For
higher temperature the fermion drops to 75% of the
boson for T/m > 8 which is comparable to the be-
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Fig. 9.3 Ratios of the exact and limiting expressions of
particle number densities. The dash-dotted (black) curve:
ratio of exact particle number densities of fermion over boson;
Solid (blue) curve: the ratio of expressions exact over limiting
for the fermion; dotted (red) curve: the ratio of expressions
exact over limiting for the boson.

ginning of temperature range in which the relativis-
tic limiting expressions become exact.

• Solid curves (blue). The two solid curves are the
fermionic exact expression over its limiting expres-
sions. Above the ratio 1 is for the non-relativistic
case and below the ultra-relativistic case.

• Dotted curves (red). The two dotted curves are
similar to the solid dashed curves but for the boson.

We note that the relativistic limiting expressions are
larger than the exact one in the intermediate values of
T/m, while the non-relativistic limiting expressions are
lower. The fermion approaches to the relativistic limiting
form for T/m > 5 and the boson for T/m > 8. For the
non-relativistic case, the approach to the limiting form
is slow, roughly for T/m < 0.01.

Plots of ratios of energy densities and those of pres-
sure densities show similar features as ratios of number
densities as given in Fig. 9.3. The approach to the ultra-
relativistic limiting forms are faster than those of the
non-relativistic limiting forms.

It is also interesting to examine the energy behavior
of the particle number distribution functions. We can
write the energy differential distribution of the particle
number density,

∂nj±(E)

∂E
=

gj
2π2

E
√
E2 −m2

jfj±(E) (9.133)

In Fig. 9.4, we plot the differential distribution
Eq. (9.133) as a function of the particle energy E at
fixed temperature and a given particle mass. Both the
energy and mass are normalized to the temperature. We
also normalize the particle mass in terms of the temper-
ature. We show four sets of curves and each set consists

of two curve in solid and dotted lines. The solid lines
are for bosons and dotted lines for fermions. Each set of
curves has a different point of on set, at E/T = 0, 1, 3
and 5 which are their respectively m/T . The zero mass
m/T = 0 lines are the universal curves for the radia-
tion. The heights of the curves are arbitrary, but nor-
malized with respect to the height of the boson radiation
curve. Most features of the curves can be easily under-
stood. For a given temperature and mass, the fermion
curve is lower than the corresponding boson curve and
the fermion curve peaks at a higher value of the energy
than the boson curve, which reflects the fact of the dif-
ference of the fermionic vs bosonic statistics. The rapid
decrease in the heights of the curves as the mass increases
reflects the fact that it become more difficult to excite a
state when its mass increases.

From Figs. 9.3 and 9.4 we can summarize some of the
general features of particle number density in relation
with the temperature and particle energy:

• The fermion and boson distributions are approach
to each other when the temperature is low in com-
parison with the mass T/m ≤ 0.2.

• The expressions of the non-relativistic limit is valid
approximately for T/m . 0.02.

• The expression of the ultra-relativistic limit is valid
approximately for T/m & 5.

• To know quantitatively the energy distribution of
number function of a particle, the mass of the par-
ticle has to be given. For the case of radiation,
or practically massive particle for T/m > 5, as
can be seen from Fig. 9.4, the maximum occurs at
E/T ≃ 1.594 for bosons and E/T ≃ 2.218 for the
fermions. It can also be found that half of the par-
ticles have energy greater than 2.35T in the case of
the boson and 2.84T in the case of the fermion.

Fig. 9.4 Particle number distribution in the particle en-
ergy at fixed mass and temperature. See the relevant text for
the identification of different sets of curves.
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• For massive particles at a fixed temperature, the
height of the maximum of the particle number dis-
tribution function decreases as the ratio of the mass
over the temperature increases. The difference be-
tween the energy where the height of distribution is
maximal and the threshold m decreases.

• The average energy per particle, i.e., ρ/n, is linear
in the temperature for T/m & 5 as given in the
relativistic situation Eqs. (9.119) and (9.120),

⟨E⟩rel =


π4

30ζ(3)
T = 2.701T for bosons,

7π4

180ζ(3)T
= 3.151T for fermions.

(9.134)

In the non-relativistic case for T/m . 0.02 the
average energy per particle, as given Eqs. (9.126)
and (9.127), is m + 3T/2 where 3T/2 is the av-
erage kinetic energy. The intermediate range of
T/m extrapolates between the relativistic and non-
relativistic results.

• There is a long tail of high energy particles in the
particle number density function that depends on
the mass of the particle. In the case of radiation
or ultra-relativistic particle (T/m & 5) there are
more than 1% of the particles have energies greater
than 8T . For the massive case, i.e., for the temper-
ature to be comparable or smaller than the parti-
cle mass, the minimal energy of the 1% higher en-
ergy particles moves to higher and higher E/T val-
ues. Let us denote the minimal of the higher energy
particle to be Emin. For example, for m/T = 1
we have Emin = 8.55T = 8.55m for bosons and
Emin = 8.75T = 8.75m. For m/T = 3, Emin is
9.94T = 3.31m for the boson and 9.97T = 3.32
for the fermion. For m/T > 5 boson and fermions
behave similarly and Emin ≃ 11.6 = 2.3m. For
m/T = 10 we have Emin = 16.2T = 1.6m, and
for m/T = 20, Emin = 26T = 1.3m. So Emin moves
gradually to the threshold value of m. Hence most
particles have very little kinetic energies which is
expected. For very high m/T , the whole features
becomes academic as number density becomes very
small and the particle will decouple to the heat reser-
voir and is no longer in equilibrium with the heat
bath. This is a topic we will discuss below.

9.4 Beyond equilibrium, decoupling of particles or
original of species

In the very early universe the temperature is high, much
larger than the masses of all particles present. Hence all
particles are relativistic and can be treated as massless.

All species of particles, including the photon, have the
same temperature and the energy density expression is
simply. The total energy density is

ρ = g∗

(
π2

30

)
T 4,

g∗ =
∑

jB ,bosons
gjB +

(
7

8

) ∑
jF ,fermions

gjF . (9.135)

However, during the evolution of the universe, as temper-
ature decreases non-trivial features arise due to episodes
in which parts of the content of the universe departs
from thermal equilibrium. They include baryogenesis,
neutrino decoupling from the cosmos heat bath, primor-
dial nucleosynthesis, photon reheating due to electron-
positron annihilation, etc. The temperature ranges and
the universe ages for these important cosmos events are:
about 3 ∼ 4 MeV for νµ(ν̄µ) and ντ (ν̄τ ) decoupling,
about 2 MeV for νe(ν̄e) decoupling when the universe
is about 0.1 second old, about 1 MeV for the proton-
neutron freeze out at the universe age of 1 second, at
me/3 for photon reheating when the universe is 40 sec-
ond in age, and at about 0.1 MeV for primordial nucle-
osynthesis when the universe is about three minutes old,
etc. Particle species which are decoupled but still rela-
tivistic, such as the neutrino, will track the expansion of
the universe as they did before the decoupling but may
have a temperature which is different from, i.e., lower
than, the temperature of particles which are in thermal
equilibrium including the photon. We will explain this
below. With radiation dominance, in general form the
total energy density can be written as

ρ=gρ∗

(
π2

30

)
T 4,

gρ∗=
∑

jB ,bosons
gjB

(
TjB
T

)4

+

(
7

8

) ∑
jF ,fermions

gjF

(
TjF
T

)4

,

(9.136)
where T is the photon temperature which is taken to
be the temperature of the cosmic heat bath. The other
particles may have different temperatures as exhibited
explicitly in the above expression. gρ∗ is the effective
degrees of freedom relative to the degree of freedom of the
photon. The analogous expression for the total entropy
is

s=
∑
j

1

Tj
(ρj + Pj) = gs∗

(
2π2

45

)
T 3,

gs∗=
∑

jB ,bosons
gjB

(
TjB
T

)3

+

(
7

8

) ∑
jF ,fermions

gjF

(
TjF
T

)3

.

(9.137)
Let us remark that if a relativistic species is decoupled
from the rest of the cosmos, its entropy in a comoving
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volume a3 will conserve by itself. The total entropy of
all the rest of relativistic particles which couple ther-
mally with the photon will also be conserved in a co-
moving volume. Hence the total entropy given in the
above expression can be written as a sum of separately
conserved components. All relativistic particles species
in a given component will have a common temperature.
The entropy of the universe is usually referred to be the
component containing the photon. The entropy of the
photon sγ = (2π2/45)T 3 is referred to as the fiducial
entropy [239].

9.4.1 Mechanism of equilibrium

What is the mechanism for maintaining thermal equilib-
rium among different species of particles and for a given
species of particles with the thermal heat bath? Here
another component of cosmology comes into play: in-
teractions among all relevant particles. Due to elastic
and inelastic collisions, energy, momentum, and particle
numbers are maintained statistically. Let us focus on
the stage of the early universe after the hadronization of
quarks and gluons, and most of the short lived hadrons
disappear through decays. This begins the period when
we know the underline physics governing the particles in-
volved, modulo the dark matter which is supposedly not
to participate in the common interactions of the stan-
dard model particles. The only baryons present are pro-
tons and neutrons; the leptons are electrons, muons and
neutrinos; and the ubiquitous photons. The stable par-
ticles are the photon, proton, electron, three species of
neutrinos as required in the standard model. Their equi-
librium can be maintained by the following groups of
electroweak elastic scattering, production, and annihila-
tion processes:

p(p̄) + γ → p(p̄) + γ,

p(p̄) + e± → p(p̄) + e±,

p(p̄) + νj(ν̄j) → p(p̄) + νj(ν̄j), (9.138)

for the elastic scattering involving nucleons, and

e± + γ → e± + γ,

e± + νj → e± + νj ,

νj + ν′j → νj + ν′j ,

ν̄j + ν̄′j → ν̄j + ν̄′j ,

νj + ν̄′j → νj + ν̄′j , (9.139)

for the elastic scattering involving leptons, and

p+ p̄� γ + γ, e− + e+, νj + ν̄j ,

e− + e+ � γ + γ, νj + ν̄j ,

νj + ν̄j � ν′j + ν̄′j , (9.140)

for the annihilation and production processes. In the first
two reactions of Eq. (9.140), in order for the production

processes to be significant, the temperature of the uni-
verse has to be sufficiently high, no less than the sum of
the masses of the massive particles in the final states.

Unstable particles will mostly disappear if they are left
long enough, at a given epoch, we have to compare their
lifetime with the time of the early universe under con-
sideration to ascertain whether or not they can be con-
tinuously produced. The muon and anti-muon, though
having the short mean lifetime τµ = 2.197× 10−6 s, can
be produced through particles production mechanism to
have a presence in the very early universe if the temper-
ature is high enough. We will come back to it in some
detail later. The neutron can live much longer with the
mean free lifetime τn = 880.3 s or 14.67 min. The pro-
cesses for them to be in equilibrium with the stable par-
ticle are, for the muons

e−(e+) + ν̄e(νe) � µ−(µ+) + ν̄µ(νµ),

e−(e+) + νµ(ν̄µ) � µ−(µ+) + νe(ν̄e),

µ− + µ+ � γ + γ, e− + e+, νj + ν̄j ,

p+ ν̄µ � µ+ + n,

n+ νµ � p+ µ−, (9.141)

and for the neutron and proton conversion

n+ νe � p+ e−,

n+ e+ � p+ ν̄e,

n� p+ e− + ν̄e. (9.142)

When the universe expands its temperature drops as
the inverse of the scale factor and eventually a massive
particle move into the non-relativistic regime if the par-
ticle maintains to be in equilibrium. Then the number
density of the particle will drop exponentially as given
by Eq. (9.126). For example the number ratio of a non-
relativistic particles, fermions or bosons, of mass m, and
the photon is, from Eqs. (9.119) and (9.126),

ηm(T ) =
nm
nγ

=

√
2π

8ζ(3)
gm

(m
T

)3/2
exp

(
−m
T

)
, (9.143)

which would already drop to about to 10−11 for T =
m/29. For proton this is about T ≈ 33 MeV or 3.8 ×
1011 K. For the electron this is T ≈ 1.8 × 104 eV or
2.1×108 K. Hence if massive particles are in equilibrium
with the background radiation today, they would become
insignificant in number.

9.4.2 Decoupling – Breakaway from equilibrium

Fortunately the cosmos has a mechanism to break away
from the bondage of equilibrium. Roughly speaking when
the reaction rate, such as those shown in Eqs. (9.138)–
(9.142) is slower than the cosmos expansion rate, equilib-
rium can no long be maintained. The relevant particles
in question will decouple from the background radiation,
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called freeze out. Then the energy density and therefore
the number density will decrease as a−3 for massive par-
ticles as indicated in Eq. (9.46). Let us discuss this in
some detail.

Let us first consider the universe expansion rate which
is given by the Hubble expansion rate H = ȧ/a. A useful
scenario that also allows us to make analytic approxima-
tion is the case when the decoupling takes place in the
radiation dominated era. From Eq. (9.36), dropping the
curvature term, we have in the radiation dominate era,
with the effective energy density given by (9.135),

H =

√
8πGN

3
ρ =

√
4π3

45

√
g∗

(
T 2

MP

)
∼ T 2 ∼ a−2, (9.144)

where we have used the Planck mass MP = 1.2209×1019

GeV defined by G−1
N =M2

P .30) So the Hubble expansion
rate decreases as T 2 as the universe expands and the
temperature decreases.

Next let us estimate the particle reaction rate and com-
pare it with the Hubble expansion rate. The particle
reaction rate if defined as

Γ = n⟨vσ⟩. (9.146)

n is the density of the particle under consideration which
behaves as n ∼ T 3 ∼ a−3. ⟨vσ⟩ is the average of the ve-
locity of the particle v times its relevant reaction cross
section σ which behaves generally as a power of the cos-
mic temperature

⟨vσ⟩ ∼ T ξT , (9.147)

where ξT ≥ 0. We note that the reaction rate Γ has
indeed the dimension of inverse time and behaves as

Γ ∼ T 3+ξT ∼ a−(3+ξT ). (9.148)

At sufficiently early in the universe, the reaction rate
will be very large due to the high particle density, it will
be larger than the Hubble expansion rate, Γ > H.31)

30)We can rewrite the Hubble expansion rate as

H =

√
4π3

45
g∗MP

(
T

MP

)2

= 2.066× 105
√
g∗

(
T

1 GeV

)2

s−1,

(9.145)

where we have used the Planck time tP =M−1
P = 5.39123×10−44 s

given in Table C.6. The value of g∗ at various temperature range
can be found in Table 9.4. The above relation will be given later
in Eq. (10.8).

31)It should be remarked that the universe expansion rate is
smaller than particle reaction rate is not true during the inflation-
ary epoch, the universe expands exponentially and the particles
in the universe will not be able to maintain in equilibrium. Since
the inflation lasted for only a very small time interval it could not
affect the particles equilibrium in the subsequent evolution of the
universe.

The expansion of the universe does not hinder the parti-
cle interactions, so the particle can maintained its equi-
librium with the cosmic heat bath. As the universe ex-
pands, both Γ and H decreases, but the decrease in Γ is
faster by at least one power of the cosmic temperature
T , and in some cases much faster, say, by 3 powers of the
temperature, T 3. Such is the case when the scattering
involves neutrinos. Then there will be a temperature Tf ,
called decoupling or freeze out temperature, at which(

Γ

H

)
T=Tf

≈ 1. (9.149)

Below Tf , the universe expansion rate overtakes that of
the particle reaction rate, it will be less and less prob-
able for the particle to find one another to interact in
order to maintain equilibrium. The particle will even-
tually be decoupled from the rest of the particles of the
universe, in particular from the photon. Then the par-
ticle will be streaming freely and maintains a constant
number density in a comoving volume so that its number
density decreases like a−3, maintaining a constant ratio
with the photon number density which determines the
cosmos temperature and decreases also as a−3.

We will make a more detailed illustration on how the
decouple happens when we consider below the Big Bang
nucleosynthesis and the decoupling of massive particles
later in Section 11, where we will show a derivation of
Eq. (9.149).

9.5 Thermal history of the early universe

In the evolution of the universe, when the cosmos tem-
perature decreases, some of the particles species will de-
couple when their reaction rates with the rest of the
universe, as defined in Eq. (9.146), to maintain thermal
equilibrium become slower than the rate of expansion of
the universe. The history of the early universe contains
records of such milestone events. We start at the cos-
mic temperature below 1012 K which corresponds to an
energy below 90 MeV. At such a temperature, the en-
ergy is not large enough to produce muons, for instance,
through the production process νµ+ e− → µ−+νe, and,
due its unstable nature with a sufficiently short lifetime
τµ = 2.1970 × 10−6 s, most of the muons from earlier
times have disappeared. So we can neglect the effect of
the muon. The particles which can contribute to the cos-
mos energy density include γ, e±, νj and ν̄j , for j = e,
µ, and τ , and a tiny fraction of baryons. Our discussion
below follows that of [221]32) and [218]. In order to have
the argument valid at temperature around or below the
electron mass, we will not neglect the electron mass. But
it is justified to ignore the masses of the neutrinos. We

32)See, pp 151–154, [221].
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will also ignore the effect of the baryons, except for two
topics in which baryons are discussed specifically.

9.5.1 Separation of neutrino and photon temperatures

In this subsection we will derive the temperature differ-
ence of the neutrino and photon.33) The conservation
of entropy s(T ) in a comoving volume a3 allows us to
connect the cosmic time with its temperature as follows.
From the conservation of entropy, a3s(T ) = constant, we
have

3
ȧ

a
+
ṡ

s
= 0. (9.150)

We rewrite the above equation,

3H +
1

s(T )

ds(T )
dT

dT
dt = 0. (9.151)

Then

t = −
∫

1

s(T )

ds(T )
dT

dT
3H

+ const. (9.152)

Let us first estimate the time-temperature relationship
assuming radiation dominance. In the situation of radi-
ation dominance, we have an analytic expression for the
total energy density and the Hubble expansion rate,

H =

√
8πGN

3
ρ(T )

ρ(T ) = g∗
π2

30
T 4 =

g∗
2
ργ(T ), (9.153)

where the total degrees of freedom for the energy density
is

g∗ = 2 +

(
7

8

)
2× 2 +

(
7

8

)
3× 2 =

43

4
. (9.154)

The first term on the right-handed side is from the pho-
ton, the second term from the electron and positron, and
the third from the three flavors of neutrinos. This value
of g∗ appears in the second row of Table 9.4.

The entropy density s(T ) is proportional to T 3 for
relativistic particles, then

1

s(T )

ds(T )
dT =

3

T
, (9.155)

which is independent the actual energy content of the
universe. We can integrate Eq. (9.152), with the New-
ton constant GN being related to the Planck mass

33)Our order of magnitude estimate of the neutrino reaction rate
Γ and the Hubble expansion rate H that enter in Eq. (9.149) is
different from that given in [221].

MP , GN = M−2
P in natural units, to obtain, using

Eq. (9.154),34)

t =

√
45

16π3g∗

MP

T 2
+ const

= 0.73818

(
1 MeV
T

)2

s + const

= 0.99416

(
1010 ◦K

T

)2

s + const. (9.156)

Following [221] we set the time to be zero when the tem-
perature of the universe is 1012 K and call this time t̃.
For simplification we also replace the factor 0.99416 by
unity. Then we have the simple time-temperature rela-
tionship holds in the radiation dominated epoch for the
cosmic temperature below 1012 K,

t̃

1 s ≃
(
1010 K
T

)2

− 10−4. (9.157)

Let us remark that this relation can be obtained more
quickly by the radiation dominance relation t = 1/(2H)
as shown in Table 9.2.

The time-temperature relation given in Eq. (9.156)
will become problematic when the cosmic temperature
decreases below the electron mass. Then we have to in-
clude the effect of the electron mass, but still neglect
masses of neutrinos. In addition, there is another com-
plication which is the freezing out of neutrinos which we
discuss below.

The neutrino decoupling temperature can be esti-
mated using Eq. (9.149). The reactions that maintain-
ing neutrino equilibrium with the electron and positron
system are the neutrino-electron scattering listed in
Eq. (9.139). For the electron neutrino the scattering is
mediated by both charge and neutral currents, and for
the muon and tau neutrinos by the neutral current only.
So the decoupling of the muon and tau neutrinos may
have slightly higher temperatures. The estimate made
below will not differentiate among the three neutrino
species. The elastic neutrino-electron scattering cross
section is given in Eq. (B.8), with ξT = 2 in Eq. (9.147),
we write

⟨vσνe⟩ = nνξcsG
2
FT

2, (9.158)

where ξcs is a numerical factor of the order of unity. The
energy entering in Eq. (9.147) is the total 4-momentum
squared S of the initial state, which is proportional to
T 2. The velocity entering in Eq. (9.158) is the order of
1 in natural units. Using the Hubble expansion rate

34)The second line in the equation below is obtained by con-
verting the MeV into second using the relation 1 MeV−1 =
6.5822× 10−22 s.
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Eq. (9.144), the effective degrees of freedom Eq. (9.154),
and the reaction rate (9.146), we have

Γ

H
=

9

4

ζ(3)

π2

(
43π

5

)−1/2
G2

FMP

π
ξscT

3 (9.159)

which gives for Γ/H = 1 the neutrino decoupling tem-
perature(

T

1 MeV

)∣∣∣∣
νdecoupling

=
3.30

(ξcs)1/3
. (9.160)

So the neutrino decoupling temperature is the order of
1 MeV, or around 1010 ◦K. Hence when we consider the
early history of the universe across the 1 MeV regime
we have to take into consideration of the effect of the
neutrino decoupling.35)

To calculate the temperature of the neutrino we note
that when the neutrino decouples its free expansion with
the universe makes its number in a comoving volume a3
a constant. Then its number density maintains the equi-
librium form, Eq. (9.119) which leads to the following
relationship of neutrino temperature Tν and the FLRW
scale factor

Tν ∝ a−1 (9.161)

which is an important fact to recognize in the calcula-
tion of the neutrino temperature relative to that of the
photon.

However, looking at the photon and electron and
positron system (γ − e±), which are in equilibrium, in
decreasing temperature below me, the electron mass is
no long negligible in the calculation of he entropy of the
system, and hence the entropy is no longer proportional
to T 3. The conservation of entropy in a comoving volume
does not lead to Tγ ∝ a−1, where Tγ is the temperature
of the γ − e± system. Hence Tν and Tγ are no longer
the same. The entropy of the γ − e± system is given by,
including the electron mass,

seγ(T ) =
1

T
(ργ + Pγ) +

2

T
(ρe + Pe)

=
4

3

π2

15
T 3 +

4

2π2

1

T

∫ ∞

0

(√
p2 +m2

e

+
p2

3
√
p2 +m2

e

)
1

e
√

p2+m2
e/T + 1

p2dp

≡ sγ(T )Se(T ), (9.162)

35)The exact energy for Γ/H = 1 depends on the value of ξSC .
Since the dependence is ξ1/3SC , this is not a strong dependence. So
the value of TDν given in the literature varies. For example, [221]
(p. 153) gives the value 1010 ◦K or about 1 MeV, [235] (p. 112)
gives also 1 MeV, while [222] (p. 155) gives 4 MeV.

where

sγ(T ) =
4π2

45
T 3,

Se(T ) = 1 +
45

2π4

∫ ∞

0

(√
y2 +

m2
e

T 2

+
y2

3
√
y2 +

m2
e

T 2

)
y2

e
√

y2+
m2

e
T2 + 1

dy. (9.163)

sγ(T ) is the entropy of the photon. We have neglected
the effect of the chemical potentials of the electron and
positron. The integral in Se(T ) can be obtained analyt-
ically at T = 0 and T → ∞,

Se(0) = 1,

Se(∞) =
11

4
, (9.164)

where we have used the results of integrals given in
Footnote 28) to obtain the second equality. Combining
the conservation of entropy in a comoving volume and
Eq. (9.161), we have

a3sγ(T )Se(T ) ∝ T−3
ν sγ(T )Se(T )

∝ T−3
ν T 3Se(T ) ∝ const. (9.165)

We define the “const” by taking very large T when Tν =
T , then we have

Tν =

(
Se(T )

Se(∞)

)1/3

T

=

(
4

11

)1/3

(Se(T ))
1/3

T

−−−−−→
T≪1MeV

(
4

11

)1/3

T. (9.166)

The neutrino will maintain its number density in the
form Eq. (9.119) and its energy density Eq. (9.120) with
the temperature Tν which tracks with that of the photon
according to Eq. (9.166).

The above discussion of neutrino is an example of the
situation in which the particle species which is frozen out
when it is still relativistic, i.e., the freeze out tempera-
ture Tf is greater than the mass of the particle, Tf > m,
and the universe is radiation dominated. The calcula-
tion of the relic abundance, which is similar to that of
the relic photon, is relatively straightforward as shown
above. Another category of freeze out takes place when
the particle species becomes non-relativistic, m > Tf .
We will discuss it in great detail in Section 11 where we
consider the freeze out of heavy dark matter particles.

9.5.2 Temperature chronology of the early universe

When the neutrino starts to decouple, the dependence
of the time on the cosmos temperature will change, no
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longer given by Eq. (9.156). We have to recalibrate their
relationship, due to two influencing factors. One factor
is the decoupling of the neutrino which is no longer in-
cluded in the calculation of the entropy of the universe
that contains the photon as a component. The tempera-
ture of the photon and that of the neutrino are no longer
the same, as demonstrated in the previous subsection.
The other factor is that the mass of the electron is not
negligible so that the universe is no longer radiation dom-
inated. These Changes affect both the entropy and the
Hubble expansion rate, the latter through the change
in the energy density. Therefore the two expressions,
Eqs. (9.153) and (9.155) are modified.

First, the cosmic energy density:

ρ = ργ + ρν + ρe

= 2× π2

30
T 4 +

7

8
× 6× π2

30
T 4
ν

+4× 1

2π2

∫ ∞

0

√
p2 +m2

e

e
√

p2+m2
e/T + 1

p2dp

≡ ργ(T )Ee(T ), (9.167)

where ργ(T ) is the energy density of the photon,

ργ(T ) =
π2

15
T 4,

Ee(T ) ≡ 1 +
21

8

(
4

11
Se(T )

)4/3

+
14

8

(
120

7π4

)∫ ∞

0

√
y2 +

m2
e

T 2

y2

e
√

y2+
m2

e
T2 + 1

dy.

(9.168)

For T ≫ me, Ee(T ) → g∗/2 = 43/8 given in Eq. (9.154)
as expected. We can again use Eq. (9.152) to obtain the
cosmic time as a function of the temperature. Here we
have, from (9.162),

1

s(T )

ds(T )
dT =

1

sγ(T )

dsγ(T )
dT +

1

Se(T )

dSe(T )

dT

=
1

T

[
3 +

T

Se(T )

dSe(T )

dT

]
, (9.169)

where the first expression of Eq. (9.163), sγ ∼ T 3, has
been used. From Eqs. (9.167) and (9.168), we write

3H = 3

√
8πGN

3
ρ(T ) =

√
8π3

5

√
εe(T )

T 2

MP
. (9.170)

From Eq. (9.152) we have the cosmic time for the tem-
perature less than the electron mass

t<=−MP

√
5

8π3

∫
1

T 3

[
3 +

T

Se(T )

dSe(T )

dT

]
1√
Ee(T )

dT.

(9.171)

To be precise we should add a constant term to the right-
handed side of the above expression, but the constant
term is quite small.

We can combine the two cosmic time functions t> and
t<, where t> is given by Eqs. (9.156), to form a chrono-
logical order of temperatures vs time, defining t = 0 at
T = 1012 K where the neutrino and the photon have
the common temperature. Since neutrinos decouple at
around 1 MeV, it still has the same temperature as the
photon above a few times 1010 K. After decoupling, neu-
trinos are free streaming, following the Hubble expansion
of the universe. Hence the time-temperature relationship
of the neutrino follows Eq. (9.171) before and after the
decoupling. Approximating the numerical factor 0.99416
by 1, w write

Tν(t) ≈
√

1 s
t+ 10−4

× 1010 K. (9.172)

To obtain the photon temperature as a function of
the cosmic time after the neutrino decoupling is more
complicate. We have to numerically invert Eq. (9.171),
or to invert Eq. (9.166) by replacing Tν(t) by Eq. (9.172).
For an approximate expression, we take Eq. (9.166) and
replace Se(T ) by Se(Tν) to obtain

Tγ(t) ≈
[
4

11
Se(Tν(t))

]−1/3

Tν(t), (9.173)

where Tν(t) is given in Eq. (9.172). The conditions at
both high and low temperatures are satisfied, i.e., at high
temperatures we have Tν = Tγ and at low temperature
Tν = (4/11)1/3Tγ . Numerically, the error is a few per
cent. We plot the two temperatures in Fig. 9.5.

The temperature difference between the photon and
neutrino has a clear physical reason due to entropy con-
servation (in a co-moving volume). Before the decou-
pling, the neutrino contributes to a component of the

Fig. 9.5 The photon and neutrino temperature as a func-
tion of the cosmic time, with starting time to be set at the
cosmic temperature 1012 ◦K. The solid red line is the pho-
ton temperature Tγ and the dotted blue line is the neutrino
temperature Tν .
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cosmic entropy together with the photon and electron-
positron. The three individual systems, are in equilib-
rium and have a common temperature. After the de-
coupling, the 3 flavors of neutrinos form a separated
system which has its own entropy sν(Tν) which is con-
served in a co-moving volume, where the FLRW scale
factor evolves according to sν(Tν) a−1. The γ−e± system
forms another conserving entropy with its own tempera-
ture. When the universe evolves and the cosmic tempera-
ture decreases, the contribution of e± deceases because of
their mass. In order to maintain the entropy, the temper-
ature Tγ of the system γ− e± has to increase. The usual
way to describe this is to say that the e± system dumps
its entropy into the photon system. Hence the photon
temperature will be higher and the photon number den-
sity will be larger. The increase in the photon num-
ber density can also be understood due to the electron-
positron annihilation into photons e− + e+ → 2γ. The
total entropy of the universe, i.e., the sum of the neu-
trino entropy and that of the γ−e± system are the same
in a co-moving volume before and after the decoupling.
This is straightforward to verify by taking the temper-
ature after the decoupling to be sufficiently low so that
the e± is negligible.

Figure 9.5 shows a general feature of the variation of
the cosmo temperature as a function of time. In most of
the period of the early universe, the energy is dominated
by radiations and the temperature varies as T ∼ t−1/2

except the region where a massive species of particle
cools down from being relativistic to non-relativistic and
transfer energies to the pool of radiation to raise the
temperature of the universe and the temperature varies
slower than t−1/2. Eventually the particle drops out of
the picture and the temperature resume its t−1/2 behav-
ior, which lies higher than the original t−1/2 curve. The
region that the temperature deviates from t−1/2 lies in
the region around the mass of the particle in question,
starting from temperature which is several times of the
particle mass down to a fraction of the mass.

When the cosmic temperature decreases to about
109 K, the temperatures and number densities of the
photon and neutrino track each other in the relationship

Tν =

(
4

11

)1/3

Tγ = 1.9454

(
T

2.7255 K

)
K,

nν = 0.4091nγ = 168.0

(
T

2.7255 K

)3

cm−3,

nγ =
2ξ(3)

π2
T 3 = 410.7

(
T

2.7255 K

)3

cm−3,

ργ =
π2

15
T 4 = 0.2606

(
T

2.7255 K

)4

eV/cm3
, (9.174)

where the temperature of the current epoch is T0 =
2.7255 K corresponding to 410 photons per cm3, 168

neutrinos and 58 of them each flavor, and the photon
energy density is 0.2606 eV per cm3. Most of these pho-
tons are in the microwave frequency range, about 1 to
100 GH. They form the cosmic microwave background
(CMB). It is the oldest light of the universe, embedded
in the sky when the universe is about 380 000 years old,
left over during the recombination period, which we will
come back briefly in Section 9.5.6. Its observation forms
the cornerstone of the Big Bang model of the universe.
It is largely homogeneous and isotropic with tiny fluctu-
ation of the order of 10−5. The CMB anisotropy will be
discussed in some detail in Section 12.

9.5.3 Baryon-photon ratio in the equilibrium era

At early enough time and with sufficiently high temper-
ature, there is an era that the radiation and the baryonic
part of the matter are in close interaction and, therefore,
thermal equilibrium, say for the temperature much less
than the proton mass of 1013 K. Photons are in free ex-
pansion and preserves their Planck black-body distribu-
tion, while the baryons, i.e., protons and neurons become
non-relativistic and follow the Maxwell–Boltzmann dis-
tribution. Hence the temperature of the photon would go
like a−1 and the photon number density decreases as a−3.
Being in the non-relativistic regime, the baryon number
density has the form proportional exp{−p2/(2mPT )}.
Then the temperature would seem to decrease like a−2.
But the two temperatures should be the same as they
are in equilibrium. So how exactly will the temperature
behave?

To settle this question let us examine the conservation
of baryon number and the second law of thermodynam-
ics.36) In a given comoving volume a3 both the entropy
and the baryon density are conserved. This also says that
the entropy per unit of baryon is conserved. Denoting
the entropy per unit baryon by σB, we have, considering
the dominant contribution for the photon and baryon,
the second law of thermodynamics gives37)

dσB =
1

T

[
d
(
ϵ

nb

)
+ Pd

(
1

nb

)]
, (9.175)

where ϵ is the total energy density of the system of pho-
tons plus baryons and P is the pressure density. nb is
the baryon number density and 1/nb is the volume per
baryon, therefore d(1/nb) provides the dV term in the
second law of thermodynamics. The energy density and
pressure density of the photon plus baryon are given by

ϵ =
π2

15
T 4 +

3

2
nbNbT,

P =
1

3

π3

15
T 4 + nbNbT, (9.176)

36)We follow the argument given in [221], p. 109–110.
37)Recall the second law of thermodynamics: ds = (1/T )(dU +

PdV ).
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where Nb, which is the number of particles per baryon
to take into account the possibility of the presence of
light nucli other than the proton and neutron, is of the
order of unity. In the above two equations, the first terms
on the right-handed sides are from photons, while the
second terms are from the thermal contributions of the
non-relativistic baryonic particles present in the system.
We note from Eqs. (9.131) and (??) that the energy and
pressure per particle for non-relativistic particle do not
depend on the chemical potential of the particle. The
solution of Eq. (9.175) is

σB =
4

3

π2

15

T 3

nb
+Nb ln

(
T 3/2

nbC

)
=

2π4

45ζ(3)

nγ
nb

+Nb ln
(

π2

2ζ(3)

nγ
nb

1

CT 3/2

)
, (9.177)

where C is an integration constant and nγ is the photon
density given in (9.119).

Since this entropy density is conserved, σB of
Eq. (9.177) must be nearly constant as a function of the
temperature. But the two terms on the right-handed side
have different temperature behaviors. The first term re-
quires that nb tracks with nγ , i.e., both behaves as T 3.
The second term requires that nb ∼ T 3/2. A possible
way to resolve this conflict is that one of the two terms
dominates and being constant in T . The present value of
nγ/nb is the order of 109 (see, Table C.5). If nb tracks nγ
form this early time down to the present epoch, we can
set nγ/nb ∼ 109. Then the first term is ∼ 109 which is
definitely dominant. In comparison, the second term is
minuscule in the temperature under consideration, and
the integration constant becomes irrelevant.

In order for the second, logarithmic term to dominate
we have to have a very small or very large integration
constant C. And σB is undetermined. We don’t consider
this physical. So we conclude that during the equilibrium
epoch of non-relativistic baryon, the baryon number den-
sity tracks with that of the photon in their temperature
variation

nb ∼ nγ ∼ T 3 ∼ a−3. (9.178)

The present value of the ratio of the baryon and photon
number is [13] η ≡ nb

nγ
= 6.05× 10−10 and this value has

been maintain since the relatively early universe.

9.5.4 Matter-radiation equality

At the very early universe, the radiation energy domi-
nates the expansion of the universe. Densities of all forms
of energy decrease with the expansion of the universe,
with the radiation component decreasing faster going like
a−4 ∼ T 4, while the non-relativistic matter component
a−3 ∼ T 3. Because of the faster decrease, at some tem-
perature period in the the expansion of the universe, the

matter component will becomes dominant. The cross
over temperature of the two forms of energies, called
the matter-radiation equality temperature T − eq, can be
readily calculated from their values at the present epoch,
which we will do below.

The matter energy density, including both the dark
matter and baryonic matter, is given by

ρM = ΩMρc

(
T

T0

)3

, (9.179)

where T0 = 2.725 K is the temperature of the present
epoch, ΩM = 0.133h−2, and the critical density ρc =
1.05375× 10−2h2 MeV/cm3 [11].

For the radiation energy we include both the photon
and neutrino contributions. It is not unreasonable to as-
sume that neutrinos are relativistic at this energy unless
the equality temperature is extremely low. We will be
able to check this assumption when we obtain Teq. We
calculate the radiation energy density according to the
expression given in Eq. (9.119),

ρR =
π2

15

[
1 + 3

7

8

(
4

11

)4/3
]
T 4. (9.180)

The equality temperature is given by ρM = ρR. For the
convenience of calculation we convert the critical density
in units of K4, ρc = 1.47457× 106 K4. Then we obtain

Teq ≈= 8760 K. (9.181)

The corresponding redshift is

zeq ≈ 8760 K
T0

− 1 ≈ 3220. (9.182)

9.5.5 Recombination and the last scattering surface

The recombination is the period during which the uni-
verse undergoes a fundamental change in which the mat-
ter component transforms from ionized gases to neutral
atoms. As a consequence the photon reduces its inter-
actions with the electron, proton, and other forms of
ions. When there is a sufficient amount of conversion
of charged ions into neutral atoms, the photon will no
longer have significant interactions and therefore it de-
couples from matter and can freely stream in the cosmos.
So the universe becomes transparent to the photon, and
for every observe in the cosmos, there is sphere of space,
in which the photon carries the information of its last in-
teractions. The outer most surface of the sphere is called
the last scattering surface. Space outside the last scat-
tering surface (LSS) is opaque to any observers, because
the scattering with charged particles the that the photon
have suffered there will erase any memory it may have
before the scattering. In this subsection we estimate the
temperature and age of the universe when this happens,
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and the redshift of the LSS when we try to make a ob-
servation of it.

Let us give some more details of the physics of the last
scattering surface. When the universe is sufficiently ex-
panded and the temperature becomes significantly low,
the content of the universe is similar to what it has
presently, but in different proportions and forms: baryon
and non-baryon matters, radiation, and dark energy.
The matter component is made of the dark matter which
has decoupled and the baryon matter which is in com-
plex nuclei and atomic forms, and in close contact with
the photon. The radiation component is made of the
photon and neutrinos. The photon and neutrino evolve
at different temperatures as discussed in Section 9.5.1.
Originally, the baryon matter consists of protons, neu-
trons, and electrons. When the temperature decreases,
it first goes through the energy regime of strong interac-
tions undergone the processes of the formation of light
nuclei and subsequently photo-dissociated. When the
universe further expands, the temperature and energy
of the photon decrease more, and eventually it does not
have enough energy to breakup the light nuclei. Then the
light nuclei will stay. As we will see in Section 10, that
at the temperature of a fraction of the nuclear energy
scale, less than one tenth of 1 MeV, or the temperature
below 109 K, nucleosynthesis is completed. The matter
component now consists of dark matter, protons, helium
nuclei, and electrons, plus very small fractions of other
light nuclei. The matter components, not including the
dark matte, are in thermal equilibrium with the photon.
24% of the baryon is now in the form of helium 4. Since
the helium 4 ionization energy being 24.587 eV, the he-
lium atom will be formed when the photon energy drops
roughly to above the eV scale.

At the meantime the hydrogen formation and dissoci-
ation are also progressing, following the reaction process

p+ e− ↔ H + γ, (9.183)

where H denotes collectively the ground state as well as
all excited states of the hydrogen atom. Because of the
large ratio of photon to proton, there are sufficient num-
ber of higher energy photon to ionize the hydrogen atom
even at the temperature of the order of 1 eV. But more
and more hydrogen atoms are formed to stay as the tem-
perature decreases more and more. When most of the
protons are in the form of neutral hydrogen atoms, cos-
mic photons are free to stream and the universe become
transparent. In the following we calculate the fraction
of the free proton left as a function of the temperature.
Let us recall that at the temperature of the order of 1
eV, the proton, electron, and hydrogen atoms are non-
relativistic and their number densities are given by the
non-relativistic expressions given in Eq. (9.130).

First we note that the chemical potentials of the parti-

cles involved in Eq. (9.183) have to be taken into account
and they play an important role. Since the universe is
electrical charge neutral, the number density of the pro-
ton and that of the electron are equal. In view that huge
difference in their masses the number density equality of
the proton and electron can be maintained only with the
help of their chemical potentials. Hence Eq. (9.183) says

µp + µe = µH. (9.184)

We note that H in the right-handed side of Eq. (9.183)
represents a large number of states of the hydrogen atom,
which include the 1s ground state and all the excited
states. Furthermore, there are also rare states, such as
the fine structure, Lamb shift, and hyperfine structure
states. As all atomic states of the hydrogen atom are
related by photoemission and since the photon has a
zero chemical potential, all hydrogen atomic states have
the same chemical potential as that of the ground state.
Then the number ratio of the n-th excited state to that of
the ground state is exp(−(E1−En)/T ), where En and E1

are the excitation energies of the n-th and ground states.
With En = 13.6/n2 eV, E1 − En ≥ E1 − E2 = 10.2 eV.
We see that for the temperature around 1 eV the number
densities of all excited states, n ≥ 2 are highly suppressed
in comparison with the ground state. So we need only to
consider the effect of the ground state of hydrogen atom
in Eq. (9.183), greatly simplifies the discussion.

Now we want to calculate the free proton fraction of
the total number of protons as a function of the temper-
ature, defining

X ≡ np
np + nH

, (9.185)

where np is the number density of the free proton and
nH the number density of the hydrogen atom. As will be
discussed in Section 10, after the nucleosynthesis, pro-
tons, free and bound in the hydrogen atom, are 76% of
the total baryons, 24% are in the form of helium 4 plus
other rare light nuclei. So we have

np + nH = 0.76nb = 0.76ηnγ , (9.186)

where nγ is the photon number density and η = nb/nγ =
6.05× 10−10 as discussed in Section 9.5.3. In the set up
so far, we cannot work out the free proton fraction X
as defined in Eq. (9.185) without knowing the chemical
potential involved. Fortunately there is a way to get
around the hurdle as follows. From Eq. (9.184), we see
that the following expression is independent the chemical
potentials involved,

nH
n2p

=
nH
npne

=

(
meT

2π

)−3/2

eQH/T , (9.187)

where

QH = mp +me −mH = 13.6 eV (9.188)
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is the excitation energy of the ground state of the hydro-
gen atom. For Eq. (9.187) the relationship np = ne has
been used in the right-handed side of the first equality.
To obtain the second equality we have used Eq. (9.130)
and made the approximation mH = mp. For the inter-
nal degrees of freedom, we have gp = 2, ge = 2, and
gH = 4.38)

Using Eqs. (9.186) and (9.187) we consider the follow
quantity which is independent of the chemical potentials,
and known as the Saha’s equation

S ≡ (np + nH)nH
n2P

=
1

X2
− 1

X

= 0.76ηnγ(T )

(
meT

2π

)−3/2

eQH/T

= 0.76η
2ζ(3)

π2

(
2πQH
me

)3/2(
QH
T

)−3/2

eQH/T

= 2.50146−16

(
QH
T

)−3/2

eQH/T , (9.189)

where we call S the Saha factor. The baryon over photon
number ratio η = 6.05 × 10−10 can be found in [11] as
already mentioned in Section 9.5.3. We can now solve
the Saha’s equation to obtain the free proton fraction

X =
1

2S

(
−1 +

√
1 + 4S

)
. (9.190)

This solution of the root of a quadratical equation is
generally dull and trivial. However the rapidly varying
function S as a function of the temperature can make it
interesting. Let us first examine its behavior for small
and large S:

X =


1− S +O(S2), S ≪ 1,

1√
S

(
1 +O(S−1)

)
, S ≫ 1.

(9.191)

Because of its exponential behavior, S varies very
quickly, which makes X to drop precipitously when S
increase from the value 1. We plot in Fig. 9.6 X against
T and z, with the temperature and with the redshift
which are related by

1 + z =
T

T0
, (9.192)

where T0 = 2.725 K is the temperature of the present
epoch. As the blue dotted and pink dash-dotted curves
show that the Saha factor, as an exponential function is a
very steep function of the temperature or redshift, vary-
ing several orders of magnitude when the temperature

38)The hydrogen ground states have the triplet spin 1 and singlet
spin 0 states. We treat these spin states as degenerate by neglecting
the hyperfine structure due to the spin-spin interaction arising from
the intrinsic magnetic moments of the proton and electron.

or the redshift vary just a factor of a few. The curves in
Fig. 9.6 show clearly the features given in Eq. (9.191).
When S is below unity, X stays close to 1. When S
increases over unity as T or z decreases, X decreases
precipitously. We list in Table 9.5 several values and the
corresponding values of T and z.

Since during this period, which has the temperature
of several thousands of Kelvin, the universe is already
matter-dominated, we can calculate the age of the uni-
verse at each of these temperatures. From Eq. (9.78), we
have

t(z1)=
1

H0

∫ ∞

z1

dz
(1+z)

√
(1+z)4ΩR+(1+z)3ΩM+ΩΛ

,

(9.193)

where values of the various quantities are given below
Eq. (9.81). The age of the universe at the several red-
shift values are given in Table 9.5. We have comments as
follows:

Fig. 9.6 Proton fraction and the Saha factor. The hori-
zontal axis denotes the temperature T and redshift z. Note
that T and z decrease from left to right, or in the direction of
increasing time as the universe expands. The red solid curve
is the free proton fraction as a function of the temperature,
the green dashed curve the proton fraction as a function of
the redshift, the blue dotted curve the Saha factor as a func-
tion of the temperature, and the pink dash-dotted curve the
Saha factor as a function of the redshift.

Table 9.5 The free proton fraction, i.e., the ratio of free
proton number density to the total proton number density,
and the time of its occurrence.

X 0.99 0.5 0.4 0.3 0.2 0.1 0.01

T (K) 4295 3737 3680 3616 3537 3418 3093
z 1575 1370 1349 1326 1297 1253 1134

t (Megayear) 0.221 0.280 0.287 0.295 0.307 0.325 0.383
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• The universe ages at the various temperature and
redshift given in Table 9.5 are different from those
given [221]39). Our age values are also different from
those given in [240]40) for the same reason.

• In the present calculation of the age of the universe
at various redshift values, the value of the redshift is
the order of 103. So it is tempting to drop both the
vacuum and radiation contributions and the integral
in Eq. (9.193) can be done analytically. In doing so,
a sizable error can occur.

• The present calculation is for values of X not too far
from unity when the electron is still in equilibrium
with the photons. However for small values of X
and therefore lower temperature the electron will go
out of equilibrium, the Saha equation is no longer
valid. We have to use the full Boltzmann equation
in dealing with temperature dependence of the free
proton ratio. With the exact calculation one finds
that X decreases much slower as the temperature
decreases and eventually flattens out at a value of a
few times 10−4. However, the Saha equation gives a
good estimate of the redshift value at the recombi-
nation. We refer to [221] and [101] for the details.41)

We will illustrate the use of the Boltzmann equation
in Section 11 in the discussion of the freeze out of
massive particles.

9.5.6 Decoupling of the photon and the last scattering
surface

When the recombination is completed, the photon will
lose contact with matter. It no longer suffers scatter-
ing with the electron and other charged particles, dom-
inated by the scattering with the electron, to become
free-streaming. Hence the universe now becomes trans-
parent and the photon is able to carry the information
of the universe that is imprinted on it during the last
scattering.

The decoupling of the photon takes place when the
rate of the elastic electron-photon scattering, or the
Compton scattering,

e− + γ → e− + γ (9.194)

falls below the rate of the expansion of the universe. This
also means that the mean free path of the electron is
longer than the Hubble length given by

dH =
c

H
, (9.195)

where we restore the appearance of the speed of the light
in order to explicitly show the proper units it has. The

39)See, Table 2.2, p. 124 in [221] at similar z values. The differ-
ence is due the different values of cosmic parameters used here and
those in [221].

40)Table 9.1, p. 195.
41)See [221] pp 116–129 and [101] pp 70–73.

mean free path of the electron is given by

λe =
1

neσTh
, (9.196)

where ne is the electron number density and σTh the
Thomson scattering cross section. The Thomson scat-
tering is the low energy Compton scattering in the limit
of zero energy photons. It has a constant cross section
proportional to the classic radius of the electron which
can be found in Appendix B.1.2.

σTh = 6.65256× 10−25 cm2

= 1.2687× 10−23 K−2. (9.197)

The decoupling temperature is given by the condition
λe = dH, i.e.,

H = necσTh. (9.198)

We can start directly with this equation, which says that
the electron reaction rate neσTh equals the universe ex-
pansion rate H. σTh is given Eq. (9.197) and the other
factors entering in Eq. (9.198) are

ne = bpηnγXe,

H = H0

√
ΩΛ +ΩM

(
T

T0

)3

+ΩR

(
T

T0

)4

. (9.199)

With the parameters bp = 0.76, ΩM = 0.26, ΩR = 4.8×
10−5, ΩΛ = 1−ΩM −ΩR, η = 6.23×10−10, and Xe = X
given by Eq. (9.190), we obtain the approximate electron
decoupling temperature

T
(A)
ed = 3112 K, (9.200)

which corresponds to the approximate redshift, zed =
(Ted/T0)− 1, and the age

z
(A)
ed = 1142,

τ
(A)
ed = 0.38 Megayear (9.201)

and the free proton or electron fraction is about 0.1.
The values given above overestimate the decoupling

epoch. The Boltzmann calculation gives

Ted ≈ 3000 K,
zed ≈ 1100,

τed ≈ 0.42 Megayear (9.202)

and the corresponding electron or proton fraction is the
order of 0.4. So the decoupling happens in the middle of
the recombination era, while in the Saha approach it hap-
pens near the end of the recombination era. Although
the Saha approach is a poor estimate of the proton or
electron fraction because of the rapid decreasing of the
fraction as a function of the temperature, its results on
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the decoupling temperature, and therefore redshift, has
only a 4% error. The estimate of the age of the universe
at the last scattering surface is also quite good using the
Saha approach. So the last scattering surface is a spher-
ical surface of about 13.6 billion years, during which the
universe lives most of its time.

The decoupling of the cosmic photon with the charged
media, which consists of charged particles of electrons
and protons, does not happen instantaneously, but over
a period of time. Therefore the LSS is not a single surface
but has a finite depth during which the mean free path of

the photon increases rapidly. The first year WMAP [241]
determines that the LSS depth is about 115 000 years,
while the CMB photons start to form when the universe
has the age of about 372 000 years, and the formation of
CMG is completed at the universe age of 487 000 years.

9.5.7 A cheat sheet of the cosmo-history & a map of the
universe

A cartoon of the cosmic timeline from the Big Bang to
the present is shown in Fig. 9.7. In the table below
that follows, Table 9.6, we list the various events hap-

Fig. 9.7 The cosmic Chronology of the standard model of the universe from the Big Bang to the present epoch.
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Table 9.6 Historical landmarks in the evolution of the universe. Gyr is giga years and Myr million years. The time-
temperature relation t = (1010 K/T )2 sec., Eq. (9.171) is useful in the radiation dominated era. The various numbers given
should be considered as approximations that provide order of magnitude estimates.

Cosmic event Redshift z Temperature (K) (energy) Age τU
Comment

Planck era & 1032 (& 1019 GeV) . 10−43 s

Inflation era 10−36–10−34 s

Seeding density perturbations

End of inflation, reheating ∼ 10−32 s

Vacuum energy transferred to radiation & matter

Undelineated physics Undelineated but important physics took place Including possibly SUSY breaking at ∼ 1011−
1013 GeV, decoupling of dark matter, etc.

Physics of SM (EW era)
Antiparticles disappearing

∼ 1016 (103 GeV) Order of the physics listed here is not clear Physics between reheating and
ν-decoupling not delineated

Neutrino decoupling 1.6× 1010 ( 1 MeV) ∼ 0.4 s

Tν =
(

4
11

)1/3
Tγ

Neutron-proton freeze out 4× 109 1010 ∼ 1 s

Freeze out of 2γ → e+e− 8× 108 2× 109 40 s

Nucleosynthesis 3× 108 109 ∼ 2× 102 s

Synthesis of light elements: 4He, D, 3He, Li

Matter-radiation equality 3220 8800 (< 1 eV) ∼ 50 000 yr

Before recombination Baryonic plasma (e− + nuclei) due to Coulomb interaction Isotropic Pγ due to Thomson
scattering with baryonic plasma

Recombination End of γ-baryon plasma thermal equilibrium

1370 3740 0.24 Myr

Photon decoupling 1100 3000 0.38 Myr

Last scattering surface 1100 3000 0.38 Myr

Universe transparent to photons

Dark age 0.35–400 Myr

First star 70 30 Myr

Reionization by first stars 11 30 100–400 Myr

Λ-radiation equality 9 25 540 Myr

Structure formation 7 1 Gyr

Formation of stars, galaxies, clusters

Λ-matter equality
Solar system formation

0.42 3.9 9.2 Gyr

Present epoch 0 2.725 13.81 Gyr

pened during the evolution of the universe, listing their
redshifts, temperatures, and ages. The tell us about the
universe at their respective times epoches. Our numbers
may not be precise, but they show the chronological or-
ders and basic parameters of the various important land-
marks of the cosmic history.

A conformal map of the universe depicting the recent
discoveries up to the beginning of this 21th century can
be found in [242], which is largely for experts.

10 Big Bang nucleosynthesis: Primordial
helium

The theory of the Big Bang nucleosynthesis (BBN) was
proposed in 1948 [243]42) which ascertains that the Big

42)There is an interesting history to this paper. See <https://en.
wikipedia.org/wiki/Alpher-Bethe-Gamow_paper> for a brief de-
scription and additional references.
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Bang created the chemical elements hydrogen, helium,
etc., in the right amount in the early universe. In the
1970 it became clear that the cosmic baryon density cal-
culated on the base of the BBN was much less than that
obtained from the universe expansion rate. This arose
as a serious challenge to the BBN theory. With the
introduction of the dark matter, the disagreement was
remove. And it is the first indication of the existence of
non-baryon matter other than the evidence from rotation
curves of galaxies.

According to the Big Bang theory, nuclear reactions
taking place in the first few minutes produced the first
three elements, the hydrogen, helium, lithium, and their
isotopes. Heavier elements are produced in stars much
later. In this chapter we discuss helium production that
took place in the early universe during the first three
minutes to illustrate a general method for treating the
decoupling the baryon and the mechanism of light ele-
ments production, mostly the helium-4. We also outline
the production of other rare ones, such as deuterium43)

Let us quote from the brief review on Bing-Bang Nucle-
osynthesis (BBN) given in the 2011 Particle Data Book
[11] “Predictions of the abundances of the light elements,
D, 3He, 4He, and 7Li, synthesized at the end of the
’first three minutes’, are in good overall agreement with
the primordial abundances inferred from observational
data, thus validating the standard hot Big-Bang cos-
mology · · · . This is particularly impressive given that
these abundances span nine orders of magnitude - from
4He/H ≈ 0.08 down to 7Li/H ≈ 10−10 (ratios by num-
ber). Thus BBN provides powerful constraints on possi-
ble deviations from the standard cosmology · · · , and on
new physics beyond the Standard Model · · · .”

In BBN the determination of the abundances of the
light elements are dependent on the baryon to photon
ratio η which is now measured quite accurately by the
anisotropy of the cosmic microwave background CMB.
From η, the fraction of the baryonic matter Ωbh

2 is de-
termined. It turned out that this is much smaller than
the fraction of all non-relativistic matter that should con-
tribute to the critical density of the universe. This dis-
crepancy provides a quantitative evidence of the exis-
tence of non-baryonic matter. Furthermore, BBN can
also serve as a test of the standard model of cosmology,
with the inclusion of dark matter, and as a probe in the
dark matter study [244, 245]. A particular relevant point
is the lithium problem which we will return to at the end
of this Section.

10.1 Introduction

Let us elaborate briefly what are stated above. Currently,
43)Most of the discussion we focus on concerns with the deu-

terium nucleus, the deuteron. Following the convention usage, we
will use deuterium to represent both the atom and its nucleus.

the most abundant chemical element is the hydrogen
which constitute about three quarter, in mass, of the
baryon matter.44) The next widely distributed element
in the cosmos is the helium-4 which forms about one
quarter of the cosmic baryon mass. The fact that the
origin of the hydrogen lies in the early universe is quite
clear. Convincing arguments can also be made for the
case that the majority of the other light elements, the
deuterium, etc. are also of cosmic origin, most of them
are unlikely formed by stars burning [74, 218].45) The for-
mation of nuclei involves nuclear physics processes of the
energy scale of MeV. For instance, the binding energy of
the helium-4 is 28.3 MeV and that of the deuterium 2.23
MeV, their formation must be at energies smaller than
their binding energies. Hence the temperature range of
the BBN is around 1010 K or lower, recalling that 1 MeV
is 1.16 × 1010 K. Under such high temperatures, there
are very few tools available for us to probe the physics
involved. It is still a photon fog state when photons are
actively interacting with all the charged particle present
at the time, which will smooth out most of the memories
that the photon may initially have. Furthermore, the
neutrino is also in the verge of being decoupled and they
cannot offer useful clues for us to study. BBN, which
allows the prediction of the abundances of light elements
being produced in the early universe, together with the
cosmic microwave background (CMB) temperature fluc-
tuation, offers stringent probes of the standard model of
the universe [246] in this energy regime.

There are recent reviews on the subject which pro-
vide more details than given in the PDG article referred
above. Several review articles are given in [221] which
are accessible from the high energy Archive. For the
readers’ convenience, they are listed in [247].

The physical argument for the BBN goes roughly as
follows. When the universe temperature decreases to the
QCD scale of the order of a hundred MeV, hadrons are
formed and the nucleons, protons and neutrons, are in
equilibrium and they become non-relativistic when the
temperature is below their mass. When the temperature
decreases to the order of tens of MeV which is in the
nuclear physics energy scale, light nuclei begin to form
by the fusion of protons and neutrons and they are all in

44)Baryon matter is made of protons and neutrons, or quarks
and antiquarks. It is the ordinary matter, which also include other
short-lived particles, unstable over the cosmic time scale. It also
include electrons, in numbers equal to that of the proton, which
do not contribute significantly to the present mass of the universe
because they are about 2000 times lighter than protons. Baryon
matter can be found in many different forms: gaseous clouds, neu-
tron atoms and molecules, ionized plasmas, frozen condensations
of comets. It also exists in dense and hot environments such as
stars, planets, stellar remnants like white dwarfs, neutron stars,
and black holes. Except for stars, star remnants, and planets,
baryon matter consists mainly hydrogen and helium.

45)See, §15.7, particularly pp 545–546 in [218], and §1.6, pp 15–
16 in [74].
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equilibrium, although their number are rather small. We
expect that the lightest nucleus, i.e., the deuterium, con-
sisting of a proton and a neutron, appears first through
two-body interaction processes. The direct formation
of multi-nucleon nuclei, such the tritium, helium, etc.,
are very rare because multi-body reactions are highly
suppressed and are proportional to the product of sev-
eral powers of nucleon densities which are small to begin
with. For instance, the direct production of helium from
nucleons, 2p+2n→ 4He+ γs, requires an interaction of
four-body initial state and the product of four nucleon
densities functions, two for the proton and two for the
neutron. The nucleon density functions are very small
when the four-body reaction can take place, giving rise to
negligibly small reaction rates. Hence the effective way
for BBN is to create nuclei of higher and higher atomic
numbers, step by step, A = 2, 3, 4, · · · , through a series
of two-body reactions.

The formation of nuclei begins with that of the deu-
terium when the temperature is still above its bind en-
ergy of 2234.52±0.20 keV. In this temperature range the
fusion of nucleons into deuteriums and the deuterium
dissociation are equally probably. As the temperature
decreases sufficiently below the deuterium nuclear bind-
ing energy, the deuteron fusion rate overtake the rate of
its dissociation, more and more deuterons are accumu-
lated. The formation of the deuterium becomes the first
step of a series of reactions that form the helium and a
few other light elements.

This body of helium so produced is referred to as the
primordial helium and the process, and in general the
BBN, as cosmological nucleosynthesis. This is to be
distinguished from nucleosynthesis of heavier elements
which takes place inside of stars during the latter’s evo-
lution. However, for two reasons the procedure of cosmo-
logical nucleosynthesis cannot continue very long so as to
produce very heavy isotopes. One is that there is no sta-
ble nuclei of mass numbers A = 5 and 8 to support the
process of the step by step increase in the mass number
of the nuclei formation beyond A = 7. And the other is
that after the formation of the helium, the temperature
has fell sufficiently low and there is very little possibility
to form nuclei of much higher atomic numbers. BBN can
form nuclei as heavy as 7Li and heavier nuclei have to be
await for a long while to be produced in star burning.

The calculation of the primordial helium abundance
constituents some of the most quantitative works in cos-
mology. It deals with a theory which goes beyond equi-
librium and makes use of calculations used in particle
and nuclear physics. The success of the calculation of
the helium abundance in the early universe forms a part
of the foundation of the Big Bang model of the cosmos
and provides good probes to aspects of particle physics,
such as the number of species of neutrino or, generally,

massless particles. Discussions on BBN of helium and
other light elements, which are accessible to beginners
can be found in [218] and [221].46) Further discussions
can be found, fore example, in [248], [249], and [250].

Precise calculations of BBN require detailed numerical
work, in which the physics of BBN is difficult to reveal.
However, analytic analysis assisted by nominal numerical
computation are given in several works: [251–253]. We
follow closely the approach given in [251] which will be
referred to as BBF. We will also adopt some of the argu-
ments give in [252] and [253]. The approach of BBF [251]
involves necessarily approximations which can be justi-
fied on physics ground. It deals only with the abundance
of helium 4. Analytic calculations of the abundances of
other very rare light elements can be found in [252] and
[253]. In this Section our goal is to show, using exam-
ples, the type of calculations employed and the physics
involved in this branch of fundamental science. Our cal-
culation concerns mostly on the proton-neutron conver-
sion through inelastic collisions at high temperatures due
to weak interactions and the subsequent decoupling of
the proton and neutron when temperature decreases, re-
member that neutron has a higher mass than the proton
and, therefore, equilibrium statistics will favor to have
more proton than neutrons as cosmos evolves so that its
temperature decreases as time increases. The road map
of the calculation is the followings:

• We will first estimate the energy scale at which the
proton and neutron begin to decouple and therefore
the rough abundance ratio of neutron to proton at
the decoupling. This has to happen sufficiently early
in the universe in order to make sure that the num-
ber density of (free) neutrons remains high enough
for the nucleus formation, in the wake of decays of
free neutrons.

• We then demonstrate decoupling quantitatively
through the solution of a first order differential
equation, mostly by analytical approach, but with
the assistance of nominal numerical work. The ef-
fect of the decoupling is that the neutron and proton
densities can maintain a constant ratio independent
of the decrease of the cosmos’ temperature when the
cosmos time increases. This is done by ignoring the
decay of the neutron.

• The decay channel of the neutron cannot be decou-
pled, of course. Hence if it left in the free state, the
neutron will disappear eventually. We demonstrate
this effect by including the decay channel of the neu-
tron into the solution of the differential equation.

46)See [218] pp 545–556 and [221] pp 159–173. A concise sum-
mary of the history of the calculation of the production of light
elements in BBN can be found in footnote 1, pp 159–160, [221]
where several recent reviews of the subject are also given.
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• Nature has an ingenious way to prevent the decay
of the neutron by storing them in nuclei. Then we
have to calculate when the fusion of neutrons and
protons to form a nuclei begins. Once it starts, the
fusion, which is a nuclear (strong interaction) inter-
action with possibly some electromagnetic process,
will proceed very quickly. Then all the undecayed
free neutrons will be captured almost instantly into
deuteriums and possibly other light nuclei.

10.2 Estimate decoupling

We first observe that the amount of primordial helium
formed depends on the amount of the deuterium avail-
able, which in turn depends on the neutron to proton
ratio at the time when the deuterium begins to form. In
the early universe, say the temperature of 1012 K, or the
order of a hundred MeV, all particles present are kept
in thermal equilibrium through rapid collision via weak
interactions. when the universe temperature decreases
to the order of MeV, the weak interaction rates are no
longer fast enough in comparison with the universe ex-
pansion rate, and the neutron and proton are decoupled
to freeze out. So we have to calculate the neutron con-
centration at freeze out.

The neutron and proton maintain their equilibrium
by their interactions with members of the first lepton
family,

n+ νe � p+ e−,

n+ e+ � p+ ν̄e,

n� p+ e− + ν̄e. (10.1)

Let us start at the temperature of about one trillion
Kelvin, i.e., T ≈ 100 MeV or 1.1605× 1012 K. It is rea-
sonable to assume that all the baryons are in the from
of protons and neutrons. The proton and neutron are
non-relativistic while maintain thermal equilibrium due
to weak interactions according to Eq. (10.1). Their ther-
mal distributions are given by Eq. (9.130) and they are
assumed to have negligible chemical potentials. Since
neutron and proton have about the same mass, their
densities ratio at the thermal and chemical equilibrium
is expected to take the simple Boltzmann-Maxwell form
given by(

nn(T )

np(T )

)
eq

≃ exp
(
−Q
T

)
, (10.2)

where

Q = mn −mp = 1.2933 MeV, (10.3)

and the proton and neutron masses are mp = 938.2720
MeV and mn = 939.5653 MeV.

Since at this high temperature baryons are overwhelm-
ingly in the form of neutrons and protons. The equilib-
rium baryon fraction of the neutron is given by

X(eq)
n (T ) ≡

(
nn(T )

np(T ) + nn(T )

)
eq

=
1

1 + eQ/T
. (10.4)

We will verify this relation with a quantitative calcula-
tion later. Equation (10.2) forms the initial condition
which allows us to estimate the neutron fraction at the
temperature of freeze out. We need to calculate the uni-
verse expansion rate and the n− p reaction rate.

10.2.1 Cosmic expansion rate

First we consider the cosmos expansion rate, the Hubble
expansion parameter. The universe is now dominated by
relativistic particles: photons, electrons, positrons, and
the three families of neutrinos and antineutrinos, and
they are in equilibrium at the same temperature. The
total internal degrees of freedom for the energy density
content of the universe is given by Eq. (9.154). Because
of the mass information provided by neutrino oscilla-
tion and the upper bound of the electron neutrino,we
know that the masses of all three flavors of neutrinos
are of the order of electron volt or smaller. So they are
ultra-relativistic. Then by Eqs. (9.120) and (9.36), ignor-
ing the cosmological constant and the curvature term,
the total energy density and the Hubble expansion rate
are

ρ = g∗
π2

30
T 4 (10.5)

and

H =
ȧ

a
=

√
8πGN

3
ρ

=

√
4π3

45

√
g∗
T 2

MP

= 1.66015
√
g∗
T 2

MP
, (10.6)

where MP is the Planck mass given in the natural units
by

MP =
1√
GN

= 1.2209× 1022 MeV. (10.7)

Generally speaking, the Hubble expansion rate is sup-
pressed by a factor of the Planck mass. Expressing en-
ergies in units of MeV and convert energy into second
inverse, we have

H = 0.20658
√
g∗

(
T

1MeV

)2

s−1, (10.8)
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which has been given earlier in Eq. (9.145). Below
T = 100 MeV and till me with g∗ = 43/4 as given in
Eq. (9.154) we obtain H = 6.7732 × 103 sec−1. Below
T = me, the electron and positron degrees of freedom
are removed and we have g∗ = 29/4 which makes H just
about 18% smaller.

10.2.2 Interaction rate

Next we estimate the rate of the reactions listed in
Eq. (10.1) which maintain the equilibrium state among
the nucleons, i.e., protons and neutrons. The average
rate can be written as

Γnp = nℓ⟨vℓσnp⟩, (10.9)

where nℓ is the lepton, i.e., electron or neutrino, number
density, vℓ the lepton velocity, and σnp the low energy
leptonic nucleon weak interaction scatter cross section
for Eq. (10.1). At this energy the leptons are relativistic,
hence nℓ takes the form of Eq. (9.119), and their energy is
the order of T , then nℓ ∼ T 3. The velocity is vℓ ∼ c = 1.
From Eqs. (B.12) and (B.13) where the lepton energy is
the order of the heat bath temperature T , the weak cross
section is given by σ ∼ G2

FT
2. Therefore, we have47)

Γnp = ξnpG
2
FT

5, (10.10)

where GF = 1.16637 × 10−5 GeV−2 = 1.16637 × 10−11

MeV−2 is the Fermi constant. ξnp is a numerical con-
stant. As can be seen from Eqs. (B.12) and (B.13) it is
of the order unit, e.g., ξnp = (g2V + g2A)/π ≈ 1.83.

10.2.3 Approximate decoupling temperature Tf and
neutron freezing fraction

From Eqs. (10.8) and (10.10), we see that the reaction
rate has a temperature dependence of T 5 while the cos-
mos expansion rate depends on T 2. At sufficiently high
temperatures which exit in the early universe the reac-
tion rate overwhelms the cosmos expansion, and at low
enough temperatures the reverse is true. The critical
temperature Tf below which the nucleons species be-
gin to freeze out and decouple from each other. The
freeze out temperature is determined by the condition
Γnp = H, which gives

Tf =

(
4π3

45
g∗

)1/6(
1

ξnp

)1/3(
1

MPG2
F

)1/3

= 1.000

(√
g∗

ξnp

)1/3

MeV. (10.11)

47)In the formula below we should multiple the right-handed side
by a factor ξℓ = gℓζ(3)(3/4π

2), where gℓ = 2 and ζ(3) = 1.202,
which appears in the formula of the leptonic number density. But
for a quick estimate, we ignore it.

The decoupling temperature is the MeV order. From the
above discussions on the values of g∗ and ξnp, we have

Tf ≈ 1.2 MeV. (10.12)

The neutron to proton density ratio, Eq. (10.2), is of
the order of 0.34. The baryon fraction of the neutron
Eq. (10.4) is

Xn(Tf )eq ≈ 0.26. (10.13)

So there is a significant number of neutrons remained
to participate in the primordial nucleosynthesis. This
estimate is rather crude and a more careful calculation
is required.

10.3 Differential equation and initial condition for the
neutron fraction

Now we make a quantitative calculation of the freezing
fraction of the neutron. At the starting temperature of
T = 100◦ K, the neutron to proton ratio is close to unity,
but decreases exponentially when the universe expands
and the temperature deceases. Let us form the respective
neutron and proton fractions with respect to the total
baryon number density, taking into account of the fact
that at this temperature the baryons are exclusively in
the forms of nucleons, i.e., neutrons plus protons,

Xn(T ) =
nn(T )

np(T ) + nn(T )

Xp(T ) =
np(T )

np(T ) + nn(T )
= 1−Xn(T ). (10.14)

We focus on the properties of the neutron fraction Xn(T )
which has the equilibrium value, approximating the value
mn/mp ≈ 1,

X(eq)
n (T ) =

1

1 +
(

np(T )
nn(T )

)
eq

=
1

1 + exp(Q/T )
. (10.15)

The above expressions have already been discussed in
Appendix B.2 where we estimate the nucleon decoupling
temperature. The formation of nuclei which are stable
under dissociation will take some time to happen after
the temperature drops much blow T = 100 MeV. A dif-
ferential equation for Xn(T ) will be derived below, under
the effects of the reactions of Eq. (10.1) which cause con-
versions between the neutron and proton.

Notice that We have expressed the nucleon densities
and their fractions in the above as functions of the tem-
perature. However, they can be expressed as functions
of the time, as the temperature is a function of the time t
of the cosmic evolution. So the two types of expressions,
Xn(T ), etc., and Xn(t), etc., are equivalent and we use
them interchangeably.
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There are advantages in considering the baryon frac-
tion into the neutron fraction Xn(T ) and the proton
fraction Xp(T ), rather than the number density densi-
ties themselves. To deal with the densities we have to
consider a3nn(T ) and a3np(T ) which involves the com-
plication of the time variation of the comoving volume.
Furthermore, the controlling factors of the time variation
of the baryon fractions are easier to see. Denoting the
rate of conversion of a neutron into a proton by λn→p(t)
and its inverse, the rate of a proton transferring into a
neutron, by λp→n(t), we have the rate of change of the
neutron fraction to be48)

dXn(t)

dt = −λn→p(t)Xn(t) + λp→n(t)Xp(t). (10.16)

Similarly,

dXp(t)

dt = −λp→n(t)Xp(t) + λn→p(t)Xn(t). (10.17)

Clearly, we have

dXn(t)

dt +
dXp(t)

dt = 0 (10.18)

as expected. We will discuss the rates λn→p(t) and
λp→n(t) in more detail in the following subsection. The
differential equation for the rate of change of the proton
fraction can be obtained from Eq. (10.16) by interchange
the subscripts n and p. It is clearly that the sum of the
rate of neutron and that of the proton vanishes, as it
should be.

Using the second expression of Eq. (10.14), we obtain
a first order differential equation for the rate of change
of the neutron fraction,(

d
dt + Λnp(t)

)
Xn(t) = λp→n(t)

Λnp(t) = λn→p(t) + λp→n(t). (10.19)

Suppose we are given the initial condition Xn(t0) at some
time t0. A solution of differential equation of the follow-
ing form is obtained:

Xn(t)=I(t, t0)

(∫ t

t0

I(t′, t0)
−1λp→n(t

′)dt′ +Xn(t0)

)
=

∫ t

t0

I(t, t′)λp→n(t
′)dt′+I(t, t0)Xn(t0), (10.20)

where

I(t2, t1) = exp
(
−
∫ t2

t1

Λnp(t
′)dt′

)
. (10.21)

48)For more discussions, see pp 65–66, [101]; pp 161–162, [221];
and p. 548, [218].

A description of how to obtain the solution is given in
the footnote.49)

We note that the function I(t, t′) satisfies the following
identity:

I(t, t′) =
1

Λnp(t′)

dI(t, t′)
dt

′
(10.22)

Applying this identity in Eq. (10.20) and performing the
partial integration, we can rewrite Xn(t),

Xn(t) =
λp→n(t)

Λnp(t)
−
∫ t

t0

I(t, t′)
d

dt′

(
λp→n(t)

Λnp(t′)

)
dt′ +

I(t, t0)

(
Xn(t0)−

λp→n(t0)

Λnp(t0)

)
. (10.23)

Equation (10.22) can be used repeatedly to write Xn(t)
in powers of time derivatives and Λnp(t)

−1.
Let us examine Eq. (10.23) in some details. We define

X̃n(t) =
λp→n(t)

Λnp(t)
−
∫ t

t0

I(t, t′)
d

dt′

(
λp→n(t′)

Λnp(t′)

)
dt′,

(10.24)

which consists of the first two terms of the right-handed
side of Eq. (10.23) and is independent of the initial con-
dition. It can be easily verify that X̃n(t) satisfies the
same differential equation as Xn(t), i.e.,

dX̃n(t)

dt = −Λnp(t)X̃n(t) + λp→n(t). (10.25)

The difference between X̃n(t) and Xn(t) is their initial
conditions. As shown in Eq. (10.23), Xn(t) has an ar-
bitrary initial condition Xn(t0) at t0, while the initial
condition of X̃n(t) is given by the nucleon conversion
rates at t0:

X̃n(t0) =
λp→n(t0)

Λnp(t0)
. (10.26)

49)The form of the differential equation Eq. (10.19) suggests that
we write the solution as

Xn(t) = I(t, t0)g(t),

where I(t, t0) is given in Eq. (10.21). It is straightforward to show
that the function g(t) satisfies a simpler differential equation

dg(t)
dt

= I(t, t0)
−1λp→n(t)

The solution for g(t) is straightforward

g(t) =

∫ t

t0

I(t′, t0)
−1λp→n(t

′)dt′ + const.

The initial condition, Xn(t0) = g(t0), says that the “const.” above
is just Xn(t0). Putting together everything concerned we obtain
the solution Eq. (10.20).
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Hence if Xn(t) satisfies an initial condition as that of
X̃n(t0) above, Xn(t) is just X̃n(t). From the numerical
view point, as will be shown below, for T > 10 MeV the
sum of the nucleon conversion rate Λnp(t) will be very
large and therefore I(t, t0) is very small. So the initial
condition dependent terms in Eqs. (10.20) and (10.23)
are very small. Hence the solution is almost indepen-
dent of the initial condition and X̃n(t) is practically the
needed solution.

10.3.1 Nucleon conversion rates

The n� p conversions go through weak interaction. As
we have seen above, the rates λn→p and λp→n are es-
sential in the calculation of the baryonic fraction of the
neutron. We discuss them below.

For a order of magnitude estimate, an average inter-
action rate has been defined in Eq. (10.9), and the tem-
perature is taken to be the energy scale of the scattering
cross section. However, for a quantified calculation, we
have to take into account of the energy of the individual
particles involved and integrate over the phase space of
the relevant particles. The temperature enters the calcu-
lation through the thermal distribution function. Let us
describe in some details of the calculation of the nucleon
conversion rates:

• The conversion rates λn→p and λp→n are for indi-
vidual nucleons, integrated over all available leptons
momenta.

• For the cosmic temperature below 100 MeV, the nu-
cleons are non-relativistic with small kinetic ener-
gies. We can neglect the kinetic energy of the nu-
cleon in the initial state as well as the recoil of the
nucleon in the final state, so only their masses enter
the calculation.

• The leptons involved are relativistic and we have
to treat them properly. For the rate of individual
nucleons, We have to integrate over the momentum
spectrum of the lepton in the initial states, weighted
by the momentum distribution determined by the
thermal distribution function given in Eq. (9.98).

• For the lepton in the final state, in the stationary nu-
cleons approximation, the final state lepton energy
is determined by that of the initial lepton by energy
conservation. There is also a factor 1− f multiply-
ing the cross section due to Pauli blocking, where f
is the distribution function of the final state lepton.
The Pauli blocking factor provides a counting of the
unfilled states at a given energy, because the final
state lepton is externally introduced into the system
through nucleon conversion reactions and, therefore,
the Pauli exclusion principle has to be imposed ex-
ternally.

• Because of the highly relativistic nature of the lep-
ton, the velocity of the lepton can be set to be c = 1.

Putting all these together and referring to the cross sec-
tion formula in Eqs. (B.12) and (B.13) the expressions of
the rate of conversion of the reactions of Eq. (10.1) are
given below. For further details, we refer to [218]50)

λ(n+ νe → p+ e−) = A

∫
peEep

2
νdpνfν(1− fe),

λ(n+ e+ → p+ ν̄e) = A

∫
E2

νp
2
edpefe(1− fν),

λ(n→ p+ e− + ν̄e) = A

∫
peEep

2
νdpν(1− fe)(1− fν),

(10.27)

while the reversed conversion p→ n by

λ(p+ e− → n+ νe) = A

∫
E2

νp
2
edpefe(1− fν),

λ(p+ ν̄e → n+ e+) = A

∫
peEep

2
νdpνfν(1− fe),

λ(p+ e− + ν̄e → n) = A

∫
peEep

2
νdpνfefν , (10.28)

where fe is the thermal distribution function for the elec-
tron or positron and fν that of the electron neutrino or
electron antineutrino, as given by the form of Eq. (9.98),
and

A ≡ =
(g2V + 3g2A)G

2
F

2π3
cos2 θc

= 1.8167× 10−2 MeV−5 · s−1, (10.29)

where gV = 1, g2A = 1.257 is the correction to the axial
vector charge of the nucleon, and θc is the Cabibbo angle,
cos θc = 0.9745.51) The energies of the final state electron
(positron) and electron neutrino (electron antineutrino)
are related as follows:

Ee = Q+ Eν , for n+ νe � p+ e−,

Eν = Q+ Ee, for n+ e+ � p+ ν̄e,

Ee = Q− Eν , for n� p+ e− + ν̄e, (10.30)

where Q = 1.2933 MeV is the neutron-proton mass dif-
ference given in Eq. (10.3), which is the energy release
in the neutron to proton conversion.

We note that the quantity A defined in Eq. (10.29) is
made of two factors: a factor G2

F (g
2
V + 3g2A) cos2 θc/π

from the cross section formulas and another factor
1/(2π2) from the momentum phase space integration

50)See [218], pp 547–548.
51)To be more precise we follow [221] to include the Cabibbo

angle which is a 5% effect. See, Eq. (3.2.6), p. 161, [221]. The
contribution of the Cabibbo angle is omitted from the cross section
formulae in Eqs. (B.12) and (B.13).
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over the Fermi distribution function with the angular in-
tegration being performed. We do not distinguish distri-
bution functions of the particle from the antiparticle, as
we have neglected their chemical potential. However, the
chemical potentials of the electron and positron cannot
be strictly zero as there is a very small excess of number
of electrons over positrons in the universe. However, this
difference between the electron and positron will have lit-
tle effect, hence we will omit the chemical potential in
the discussion below.

In order to proceed with an analytic approach, some
simplification has to be made in the calculation of the
reaction rates. BBF made the following approximations:

• Using low temperature approximation such that the
lepton energy is larger than the temperature. So we
have

fj ≈ e−Ej/T , 1− fj ≈ 1. (10.31)

This kind of approximations will also be used in the
derivation of the Boltzmann equation in the calcu-
lation of the massive particle decoupling given in
Section 11 below.

• The above approximation allows us to extend the
upper limit of the momentum integration to infinite
to simplify the result. The cross section formulae
used in Eqs. (10.27) and (10.28) are not valid for
very large lepton momentum. But the error so in-
troduced is negligible due to the exponential sup-
pression of large lepton momenta present in the ini-
tial lepton distribution function. Then the neutron
to proton conversion rates become

λB(n+ νe → p+ e−) ≈ A

∫ ∞

0

peEep
2
νdpνe−Eν/T ,

λB(n+ e+ → p+ ν̄e) ≈ A

∫ ∞

0

E2
νp

2
edpee−Ee/T ,

λB(n→ p+ e− + ν̄e) ≈ A

∫ Q−me

0

peEep
2
νdpν ,

(10.32)

where the subscript “B” denotes the BBF approxi-
mation. The approximate expression of the neutron
to proton conversion rate is the sum of the three
expressions above, i.e.,

λB(n→ p) = λB(n+ νe → p+ e−)

+λB(n+ e+ → p+ ν̄e)

+λB(n→ p+ e− + ν̄e). (10.33)

• As to be demonstrated later, the neutron decay
channel contributes very little when the tempera-
ture is greater than 0.3 MeV due to the long lifetime

of the neutron, τn = 885.7± 0.5 sec. So we will first
neglect neutron decay process to further simplify the
calculation of the nucleon conversion rate.

λB1(n→ p) ≡ λB(n+ νe → p+ e−)

+λB(n+ e+ → p+ ν̄e). (10.34)

Similarly for the proton to neutron conversion rate.
The omission of the neutron decay effect allows us
to demonstrate more clearly the decoupling between
neutron and proton. We will put back the neutron
decay effect when we later calculate the neutron
fraction available for deuterium formation.

Before we proceed further with the approximation
we pause to examine how good the approximation is
by comparing numerically the BBF approximate, i.e.,
Eq. (10.33) including the neutron decay channel or
Eq. (10.34) omitting the neutron decay effect, with the
exact expressions given by Eqs. (10.27) and (10.28). The
rate expressions of the latter are given in [218] and [221].
As already stated before, the BBF approximation allows
us to obtain an analytic result and the physics is more
transparent when we put the neutron decay channel back
into the nucleon conversion rates.

Compact expressions for the exact nucleon conver-
sion rates, including the neutron decay, Eqs. (10.27) and
(10.28) are given in [218] and [221].52) We reproduce
them below with a slight simplification by means of the
change of the variable of integration,53)

λW(n→ p)

= A

∫ ∞

me

(
1− m2

e

q2

)1/2
{

(q −Q)2q2[
1 + e(q−Q)/Tν

] (
1 + e−q/Tγ

)
+

(q +Q)2q2[
1 + e−(q+Q)/Tν

] (
1 + eq/Tγ

)} dq, (10.35)

and
λW(p→ n)

= A

∫ ∞

me

(
1− m2

e

q2

)1/2
{

(q −Q)2q2[
1 + e−(q−Q)/Tν

] (
1 + eq/Tγ

)
+

(q +Q)2q2[
1 + e(q+Q)/Tν

] (
1 + e−q/Tγ

)} dq

= Ae−(
Q
Tν
)
∫ ∞

me

(
1− m2

e

q2

)1/2

{
(q −Q)2q2[

1 + e(q−Q)/Tν
] (

1 + e−q/Tγ
)eq

(
1

Tν
− 1

Tγ

)

52)[218], p. 348 and [221], pp 160–161, in particular, Eqs. (3.2.4)
and (3.2.5). A description of how the expressions are obtained can
be found in [218], pp 546–548.

53)The expression in Eqs. (10.35) and (10.36) are obtained from
n-p conversion rates of [218] and [221] by making the change of the
variable of integration, q → q −Q.
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+
(q +Q)2q2[

1 + e−(q+Q)/Tν
] (

1 + eq/Tγ
)e−q

(
1

Tν
− 1

Tγ

)}
dq,

(10.36)

where the subscript “W” denotes expressions lifted off
[218] and [221]. Tν denotes the temperature the neu-
trino and Tγ that of the photon. As discuss in Section 9,
the two temperatures start to depart from each other no
more than 10% at the temperature of 0.4 MeV and reach
the relation Tν = (4/11)1/3Tγ to within 10% at about
T = 0.1 MeV. In light of our approximation we will not
distinguish the two temperature and set Tν = Tγ = T .
We note that Tν = Tγ is valid for the cosmic temper-
ature above a few MeV. Then the expressions given in
Eqs. (10.35) and (10.36) satisfies the relation of the de-
tailed balance

λW(p→ n)|Tν=Tγ=T = e−Q/TλW(n→ p)|Tν=Tγ=T ,

(10.37)

i.e.,

e−mp/TλW(p→n)|Tν=Tγ=T =e−mn/TλW(n→p)|Tν=Tγ+T ,

(10.38)

We can rewrite Eqs. (10.35) and (10.36) as

λW(n→ p)

= AT 5

∫ ∞

x

(
1− x2

z2

)1/2{
[z − (Q/me)x]

2z2

[1 + e(z−(Q/me)x)](1 + e−z)

+
[z + (Q/me)x]

2z2

[1 + e−(z+(Q/me)x)](1 + ez)

}
dz (10.39)

and

λW(p→ n) = AT 5e−(Q/me)x

∫ ∞

x

(
1− x2

z2

)1/2

×
{

[z − (Q/me)x]
2z2

[1 + e(z−(Q/me)x)](1 + e−z)

+
[z + (Q/me)x]

2z2

[1 + e−(z+(Q/me)x)](1 + ez)

}
dz,

= e−(Q/me)xλW(n→ p), (10.40)

where x ≡ me/T and the integration variable is changed
to z ≡ q/T .

First let us look at the high temperature behavior of
the nucleon conversion rates. For T ≫ me, we can set
x = 0 in Eq. (10.39) to obtain54)

λW(n→ p)|T≫me =
7π4

15
AT 5,

λW(p→ n)|T≫me =
7π4

15
AT 5e−Q/T . (10.41)

54)The resultant integrals by setting x = 0 in Eq. (10.39) are
elementary to perform when the following identity is applied:∫∞
0

y4

(1+ey)(1+e−y)
dy = 7π4

30
.

If the small term Q/T in the exponential e−Q/T is ne-
glected, the proton to neutron and neutron to proton
rates are the same as expected.

The high temperature form of the BBF approximation
Eq. (10.32) can be obtained similarly by dropping its
dependence on me and Q. The integrals can be done
straightforwardly and we obtain

λB(n+νe→p+e−)|T≫me ≈λB(n+ e+→p+ ν̂e)|T ≫ me

=(4!)AT 5 (10.42)

So in the BBF approximation the high temperature ex-
pression for the neutron to proton conversion is

λB1(n→ p) = 2(4!)AT 5, (10.43)

which agrees with the exact expression given in
Eq. (10.41) within 6%.

At sufficiently low temperature, the two-body reac-
tions contribution to the neutron-proton conversion rates
are suppressed exponentially and the conversion rate is
dominated by the neutron decay process. Let us con-
sider this case of the neutron to proton conversion. For
the BBF approximation the low temperature behavior
given in Eq. (10.32) is dominated by the neutron de-
cay channel, as the contributions of scattering channels
are suppressed exponentially by e−E/T . Numerically we
have

λB(n→ p)|T≪me ≈ λB(n→ p+ e− + ν̄e)

≈ 1.04× 10−3 s−1. (10.44)

We can estimate the low temperature behavior of the
Weinberg expression given in Eq. (10.39) by considering
the case x≫ 1. The dominant contribution is given by

λW(n→ p)|T≪me ≈ A

∫ Q

me

(
q2 −m2

e

)1/2
q(Q− q)2dq

= 1.13× 10−3 s−1. (10.45)

The two estimates agree within in 9%. Hence we can
conclude that the BBF approximation and that the ex-
act expression for the neutron to proton conversion rates
agree better than 10%. We can make similar conclusion
for the proton to neutron conversion rate.

In Fig. 10.1 we plot the neutron to proton conversion
rate using the value of A = 1.8167 × 10−2 MeV−5 · s−1

as given in Eq. (10.29). The horizontal axis is the tem-
perature in units of MeV, where 1 MeV = 1.1605× 1010

K. The vertical axis is the neutron to proton conver-
sion rate in second inverse. The meanings of the various
curves are explained in the caption. We note particularly
the dotted (red) and dashed (blue) curves. The latter
is the high temperature expression λW (n → p)|T≫me

given in Eq. (10.41) and the former the exact expression
λW (n → p) of Eq. (10.35). The two curves are close to
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Fig. 10.1 The neutron to proton rate λ(n → p). The hor-
izontal axis is the temperature in units of MeV (1 MeV =
1.1605 × 1010 K). The various curves are, the dotted (red)
curve: the Weinberg exact expression given in Eq. (10.35),
the dashed curve (blue): The high temperature approxima-
tion given in Eq. (10.41); the dash-dotted (black) curve: The
BBF approximate expression without the neutron decay con-
tribution as given in (10.34); The solid (dark green, almost
horizontal) curve: The ratio of the BBF full approximation
given in Eq. (10.33) to the Weinberg expression Eq. (10.35).

each other down to T = 1 MeV, and the high tempera-
ture expression is exactly valid for T ≥ 5 MeV. Note that
T = 5 MeV is only about 4 times of the neutron-proton
mass difference Q which is the largest energy scale in
the expression. We also note the exact conversion rate
as given by the dotted (red) curve becomes constant for
T < 0.1 MeV, with the value 1.04 × 10−3 s−1. This
constant value is dominated by the contribution of the
neutron decay process.

A numerical comparison is made of the full approxi-
mation of BBF as given in Eq. (10.32) with the exact
expressions of [221] and [218] as given in Eq. (10.35).
The ratio of the former over the latter is plotted as the
solid (dark green, almost horizontal) curve in Fig. 10.1.
The former is larger by no more than 10%. So the use
of the BBF approximation is justified within such an ap-
proximation. So much for the digression, we can now
proceed with Eq. (10.23).

10.3.2 Solution of the differential equation

To obtain an analytic solution for the neutron frac-
tion as a function of the temperature we have to make
further simplification of the neutron-proton conversion
rates. With the approximate expressions of BBF given
in Eq. (10.32) together with Eq. (10.30), and further set-
ting me = 0, the integrals of the first two expressions in

Eq. (10.32) can be analytically integrated:

λ(n+νe→p+e−) = λ(n+ νe → p+ e−)

= AT 3(24T 2+12QT+2Q2) (10.46)

The limit of setting me = 0 has almost no effect on the
rate λ(n + νe → p + e−) even down to low temperature
of 0.01 MeV, neither will it significantly affect the rate
λ(n + e+ → p + ν̄e) for T > 1 MeV. The difference at
T = me is less than 6%.55)

The neutron decay contribution, neglecting the Pauli
blocking factors of the final state electron and neutrino,
is just the neutron decay width, or the inverse of the
neutron lifetime. Here we have to keep the electron
mass. Performing the integral of the third expression
of Eq. (10.32), we obtain the BBF expression56),

Γn = λ(n→ p+ e− + ν̄e)

= A

∫ ∆

0

pνEνp
2
edpe

= A

(
1

5
∆

[
1

6
Q4 − 3

4
m2

eQ
2 − 2

3
m4

e

)

+
1

4
m4

eQ ln Q+∆

me

]
, (10.47)

where ∆ ≡
√
Q2 −m2

e. The numerical value of Γn is
already given in Eq. (10.44). The neutron lifetime thus
calculated is

τThn =
1

Γn

= 965.6 s. (10.48)

The experimental value of the neutron life-time found in
[11] is

τ expn = 885.7± 0.8 s. (10.49)

The calculated value Eq. (10.44) is 9% too large. To cor-
rect this error, we follow BBF to normalize the value of
A by Eq. (10.47) by using the inverse of the experimen-
tal neutron lifetime Eq. (10.49) for the left-handed side.
Hence we define A, following BBF,57)

A =
a

4τ expn
Q−5,

a = 254. (10.50)

55)For much smaller T the difference for physics me and me =
0 for the rate λ(n + e+ → p + ν̄e) is very dramatic. However,
their magnitudes are very small and, fortunately this region of the
temperature does not contribute the physics of helium production.

56)See Eq. (2.23), [251].
57)BBF used the neutron lifetime of 986± 16 sec and hence had

the value of a to be 255 which is very close to our value of 254
given in Eq. (10.50).
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From Eqs. (10.46) and (10.50), we have the approx-
imate neutron to proton conversion rate defined in
Eq. (10.34) to be58)

λB1(n→ p) =
a

τ expn

(
T

Q

)3
[
12

(
T

Q

)2

+ 6
T

Q
+ 1

]

≡ a

τ expn

(
12

y5
+

6

y4
+

1

y3

)
, (10.51)

where

y ≡ Q

T
. (10.52)

The proton to neutron conversion rate is

λB1(p→ n) = e−yλ(n→ p)BBF1

= e−y a

τ expn

(
12

y5
+

6

y4
+

1

y3

)
, (10.53)

The sum of the n → p and p → n rates, defined in the
second expression of Eq. (10.19), is given by

Λnp1 =
a

τ expn

(
12

y5
+

6

y4
+

1

y3

)(
1 + e−y

)
, (10.54)

We now proceed to calculate X̃ defined in Eq. (10.24).
First we calculate the function I(t, t′) defined in
Eq. (10.21). It is more convenient to rewrite Λnp1(t) and
I(t, t′) as functions of the variable y = Q/T as defined
in Eq. (10.52),

I(y, y′) = exp
(
−
∫ ′y

y

Λnp1(y
′′)

dt
dy′

′
dy′′

)
, (10.55)

where, from Eqs. (9.151) and (9.153), the Jacobian of
the variable change is

dt
dy =

dt
dT

dT
dy

=
Q

y2

[
T

3s(T )

ds(T )
dT

]
1

TH

=
MP

Q2

√
45

4π3g∗

[
T

3s(T )

ds(T )
dT

]
y. (10.56)

For radiation dominance the entropy is proportional to
T 3, therefore the factor depending on the entropy, which
is contained in the parentheses in the right-handed side
of the above equation, is just unity. However, as dis-
cussed in §9.5 the situation is more complicated during
this epoch around the T = 1 MeV, during which period
some of the epic events of the cosmos took place. They
include the decoupling of the neutrino and the annihi-
lation of the electron and positron to reheat the photon
gas. For a brief time period the entropy has a more com-
plicated temperature dependence than the T 3 form and

58)This is Eq. (2.27) of BBF.

the temperature of the neutrino and that of the photon
start to depart continuously. However, for the interest
of simplification so as to push an analytic solution as
much as possible, we keep the T 3 form of the entropy,
The complication in the entropy function does not spoil
the validity of this simplification. Then the Jacobian is
proportional to y

dt
dy =

MP

Q2

(√
45

4π3g∗

)
y (10.57)

and the integral in the exponent of Eq. (10.55) can be
worked out,∫ y

y′
Λnp1(y

′′)
dt

dy′′ dy
′′

=
Mp

Q2

√
45

4π3g∗

a

τ expn

∫ y

y′

(
12

y′′4
+

6

y′′3
+

1

y′′2

)(
1+e−y′′

)
dy′′

≡ −b [K(y)−K(y′)] , (10.58)

where, because of the specific form of the integrant, the
integral has a analytic expression,

K(y) =
4

y3
+

3

y2
+

1

y
+

(
4

y3
+

1

y2

)
e−y

b ≡ Mp

Q2

√
45

4π3g∗

a

τ expn
. (10.59)

Then

I(y, y′) = exp (b (K(y)−K(y′))) . (10.60)

Let us come back to Xn(t) given in Eq. (10.23) again
to clarify a point on the initial condition raised earlier.
We can now see the justification of the omission of the
third term on the right-handed side of Eq. (10.23) so that
Xn(t) is practically X̃n(x) given in (10.24). The omitted
term is I(t, t0) times a factor which is of order one. Since
the initial time t0 is very small and so the corresponding
cosmic temperature T0 is very high and so y0 is very
small, then I(t, t0) or I(y, y0) is highly suppressed for
almost any t (y) after, but not too close to, t0 (y0). So the
arbitrary initial condition will not influence the solution
of the differential equation.

Another clarification we would like to make concerns
the solution X̃n(t), Eq. (10.24). As we have discussed
earlier, neglecting the neutrino and photon temperature
difference, the neutron to proton and the proton to neu-
tron conversion rates are related by detailed balance as
shown in Eqs. (10.39) and (10.40). The first term on the
right-handed side of (10.24) is just X̃n(t0), i.e., the initial
value of X̃n(t),

X̃n(t0) ≡
λp→n(t0)

Λnp(t0)
=

1

1 + ey0
, (10.61)
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which is the equilibrium solution ofXn(t) given in (10.4)

X(eq)
n (t) ≡ λp→n(t)

Λnp(t)
=

1

1 + ey . (10.62)

BBF uses the approximation of the photon and neu-
trino temperature degeneracy and neglects the neutron
decay to demonstrate the approach of decoupling of the
proton and neutron system at some temperature, and
shows that their densities ratio becomes constant when
temperature decreases further. Starting at T ≫ Q and
hence y ≪ 1, we have Xn(t) ≈ X

(eq)
n ≈ 1/2. When time

increases to cause T to decrease so that y is not signifi-
cantly different from 1, then Xn(t) will move away from
the equilibrium solution and reaches a constant solution
of the freeze out value. For additional discussions we
refer to [221]59).

10.4 Freezing out neutron fraction

We can now write down the solution for the neutron frac-
tion, X̃n, expressed as a function of temperature through
the variable y. We first note from Eq. (10.62)

d
dy

(
λp→n(y)

Λnp(y)

)
= −eyX(eq)

n (y)2

= − ey

(1 + ey)2
. (10.63)

Then Eq. (10.24) gives

X̃n(y)

= X(eq)
n (y)+

∫ y

y0

ey
′
X(eq)

n (y′)2 exp (b (K(y)−K(y′))) dy′

=
1

1 + ey +
∫ y

y0

ey′

(1 + ey′)
2 exp (b (K(y)−K(y′))) dy′.

(10.64)

The initial condition is given by

X̃n(y0) = X(eq)
n (y0)

=
1

1 + ey0
. (10.65)

We plot the neutron fraction in Fig. 10.2 as both a func-
tion of y = Q/T and that of the temperature T . Since
the initial temperature is very high we take y0 = 0. We
have use the experimental neutron lifetime τn ≈ 886 s
and the total particle internal degree freedom g∗ = 43/4
in the approximate case of degenerated photon and neu-
trino temperature.

Let us notice some of the properties of the neutron
fraction as given above. At the temperature of T = 1012

K or about 86 MeV which is much greater than the neu-
tron and proton mass difference, the neutron fraction

59)See the discussion below Eq. (3.2.12), pp 162–163, [221].

is about 1/2, i.e., the baryon content is composed of
about equal number of proton and neutrons. As dis-
cussed above the solution X̃n tracks the equilibrium so-
lution at high temperatures down to T = 3 × 1010 K or
about 2.6 MeV where X̃n ≈ 0.38. When the tempera-
ture decreases further, X̃n departs from the equilibrium
value and aproaches to an asymptotic value, while the
equilibrium value goes exponentially to zero.

The significance of the initial condition Eq. (10.65) is
pointed out in [218] and [221].60) This is an interesting
point worthy of further elaboration. The initial condition
Eq. (10.65) is independent of any detailed model of the
early universe and does not require the choice of a spe-
cific function in order to start the process of nucleosyn-
thesis, even though such a possibility exists according to
Eq. (10.23). We can trace back the origin of the inde-
pendence of the initial condition as follows: The singular
behavior61) of the K function Eq. (10.59) at very small
time and therefore very large temperature washes out
whatever the initial condition is. The statistical thermal
distribution of the particle contents of the early universe
at high temperature can provide its own initial condition
as shown in Eq. (10.24). It is also important to note that
the self-consistent initial condition makes it possible for
the leptons involved to have a very small or vanishing
chemical potential.

The asymptotic value of the neutron fraction is what
we are after for. As given in X̃n above, it is

X̃n(∞) = 0.143, (10.66)

which is approached slowly at low temperatures from
the value of slightly over 0.15 at T = 109 K or 0.1 MeV.
This asymptotic value depends on the input parameters
and we discuss below their effects and possible physics
implications.

One parameters is the particle species internal degrees
of freedom g∗ which determines the energy content of the
universe at the time when the nucleosynthesis starts to
takes place. The other is the neutron lifetime τn which
in the present approach represents the weak interaction
strength. Let us consider the effect of the latter first.
Increasing or decreasing the neutron lifetime means re-
spectively to decrease or increase the weak interaction
strength. If we decrease the weak interaction strength,
the neutron-proton conversion rates are weakened and,
as the conversion rate depends on T 5, the departure from
the equilibrium solution will take place at a higher tem-
perature and the asymptotic value of the neutron frac-
tion will be larger. Since the weak interaction strength
can be measured accurately in the terrestrial laboratory,

60)See the discussions in [218] below Eq. (15.7.21) on p. 550, and
[221] below Eq. (3.2.13) on p. 163.

61)The origin of the self-consistent initial condition was pointed
out in [254], see Ref. 109a, Section 15, [218].
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Fig. 10.2 The neutron fraction X̂n as a function y in the left panel and a function of the temperature T in the right
panel. The solid curves (blue) are the neutron fraction X̂n, the dotted curves (red) are the equilibrium solution X

(eq)
n , and

the dashed curve (brown) the second term of the right-handed side of the neutron fraction solution Eq. (10.64).

if it was determined that one had to adjust the weak in-
teraction strength in order to gain a proper understand-
ing of the helium production in the early universe, it
would suggest that the weak interaction strength might
be changed in the environment of high temperature heat
bath so that the interaction strength has a temperature
dependence. The terrestrial laboratory can be regarded
as a very low temperature heat bath.

Another parameter is the particle degrees of freedom
g∗ which enters indirectly at the very late stage of the
calculation of Xn, as the Jacobian of the variable change
from time to temperature which is given in Eq. (10.56).
Larger g∗, which means the universe has a high energy
content, leads to a faster decrease of temperature as time
increase. This implies that reaction rates will generally
decrease faster. So, the departure from the equilibrium
solution will again happen at a higher temperature and
the asymptotic value of Xn is higher.

Numerical studies of X̃n bears out the above physical
arguments: increasing τn or/and g∗ increase the value
of y where the solution departs from that of the equilib-
rium and therefore a higher asymptotic value for x̃n will
be obtained. Decreasing τn or/and g∗ will have the op-
posite effect. The effect of g∗ on the primordial helium
production has been used effectively on constraining the
number of neutrino flavors [255]. Each flavor of neutrino
contributes to g∗ by a factor of 7/4. See [256] for a review
and additional references.

The result given in Eq. (10.66) is the important first
part of the story. In order to arrive at a proper pre-
diction of the helium abundance We need to know the
effect of the decay of the neutron in the neutron-proton
conversion rates.

10.5 Effect of neutron decay

The effect of the neutron decay is included in the BBF
treatment by multiplying X̃n by the exponential decay

factor,

X̃n(y) → e−t/τnX̃n(y). (10.67)

Here, we include the effect of the neutron decay
by restoring directly its contribution to the total np
conversion rate Λnp in Eq. (10.24), since the ratio
λp→n(y)/Λnp(y) is not changed. This is done, from
Eqs. (10.21), (10.24), (10.58), and (10.59), by putting
back the decay contribution to the right-handed side of
Eq. (10.64) with the following replacement:

I(y, y′) → exp(b(K(y)−K(y′)))ξI(y, y
′), (10.68)

with

ξI(y, y
′) = exp

(
−
∫ t

t′
λ(n→p+e−+ν̄e)(1+e−y′′

)dt′′
)

= exp (b (δK(y)− δK(y′))) , (10.69)

where

δK(y) ≡ 1

a

[
−y

2

2
+ (1 + y)e−y

]
. (10.70)

The variable y corresponds to the time t and y′ the time
t′. So the effect of the inclusion of the neutron decay
process is to replace the K function in (10.60) by

K(y) → K̂(y) = K(y) + δK(y) (10.71)

and

X̃n(y)→X̂(d)
n (y)

=
1

1+ey +
∫ y

y0

ey′

(1+ey′)2
exp

(
b
(
K̂(y)−K̂(y′)

))
dy′.

(10.72)

We plot the modified neutron fractions X̂(d)
n and the orig-

inal X̃n in Fig. 10.3. The various curves are explained in
the figure caption.
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Fig. 10.3 The neutron fractions X̃n and X̂
(d)
n as functions

of y. X̂
(d)
n takes into account of the three body process of the

neutron decay while X̃ does not. The red solid curve: X̂
(d)
n ;

The blue dotted curve: X̃n; The brown dashed curve: The
equilibrium solution, i.e., the first term of the second line of
Eq. (10.72); and the cyan dotted-dashed curve: the second
term of the right-handed side of the second line of Eq. (10.72).

Comparing the red curve (X̂(d)
n (y) including the ef-

fect with neutron decay) and the blue dotted curve
(X̃n(y) without the neutron decay effect), we see that
the two curves are on top of each other for y < 10
or T > 1.5 × 109 K, so in this temperature region the
neutron decay process has very little effect. Beyond
y > 30 or T < 5 × 108 K, the red curve X̂

(d)
n (y) is

suppressed exponentially for larger y due to the neutron
decay effect. Let us examine Eq. (10.72) more closely.
The term exp(bK̂(y)) can be factored out of the inte-
gral. From Eqs. (10.71) and (10.70), we identify the
term −by2/(2a) to be just the exponential factor due the
neutron decay −t/τn. Hence the integral on the right-
handed side of Eq. (10.72) is proportional to exp(−t/τn),
recalling Eqs. (10.47) and (10.48). Actually one can read-
ily see the appearance of the exponential decay term from
Eq. (10.69). The first term on the right-handed side of
the first line contributes to a term

exp
(
− t− t′

τn

)
. (10.73)

The first part, which is exp(−t/τn), gives the exponential
decay factor of the neutron and can be factored out of
the integral. The second part exp(t′/τn) which depends
on the integration variable has to be integrated.

Let us make two remarks. The first is that BBF did
not not go into any details of the effect of the neutron
decay channel other than stating that the inclusion of the
effect of the neutron decay is to multiply the rate equa-
tion X̃n by the exponential decay factor exp(−t/τn), i.e.,
Eq. (10.67). So in BBF this exponential decay factor will
also multiply the equilibrium solution. However, we see

in the above discussion that the exponential decay fac-
tor should not affect the equilibrium solution. However,
the difference between the results with and without the
exponential decay factor is small because of the rapid
decreasing nature of the equilibrium solution at large y.

The second remark is that our solution including the
neutron decay channel is close to the treatment of [221].
We reproduce approximately its Table 3.262) down to the
temperature of 6×108 K which corresponds to an energy
of 0.05 MeV. Our result is larger when the temperature
is further decreased. The origin of this difference is very
likely due the fact that we have used a value for the
number of degrees freedom g∗ larger than it is warranted
at this low temperature. At this lower temperature, the
e− and e+ are rapidly disappear due to annihilation and
the energy content of the universe is dominated by the
photon and the neutrino where the neutrino has a lower
temperature than the photon. So g∗ should be taken as
2+6× (7/8)× (4/11)4/3 = 3.363 instead of 43/4 = 10.75
which is used as stated. Numerical work shows that using
the lower value of g∗ brings our results more in lines with
that of [221]. However, at higher temperature the use of
the larger number of g∗ is justified.

10.6 Arresting neutron decay – Formation of light
elements

Nature has an ingenious mechanism to stop neutrons
from decay by storing them in bound states through nu-
clear interactions to form complex nuclei. The forma-
tion process stars from the simplest multi-nucleon nu-
cleus, i.e., the deuterium D (2H) to go to more compli-
cated ones, i.e., tritium T (3H), helium-3 (3He), helium-4
(4He), etc.63) The reactions that form the light elements
are two-body reactions given by

n+ p
 D + γ

D + D 
 T + p


 3He + n

D + T 
 4He + n,

D + 3He 
 4He + p
4He + 4He 
 7Li + p

T + 4He 
 7Li + γ
3He + 4He 
 7Be + γ

7Li + p
 7Be + n (10.74)

Although helium-4 can, in principle, be formed directly
from the four-body collision involving two neutrons and

62)See p. 164, [221].
63)The binding energies of these light elements: the deuterium

εD = 2.23452 MeV, the tritium εT = 8.4818 MeV, helium-3 ε3He =
7.7180, and the helium-4 ε4He = 28.301 MeV. For elements of
higher atomic number, the binding energy per nucleon is usually
given.
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two protons in the initial state, i.e., 2n + 2p 
 4He +
γs, the rate is too small to be effective, due to small
cross sections, small phase space, and the four powers of
a small nucleon density functions. So the formation of
light elements starts with the formation of the deuterium
which can be accomplished by two-body collisions. The
nuclear reactions in the formation of light elements up to
7Be and 7Li are depicted graphically in Fig. 10.4 which
we adopt from [257]. Although 7Be can be formed in the
process of primordial process but its half-life is only 53
days, so it is not one of the primordial light elements.

The reaction time of the deuterium formation n+p→
D + γ is typically the electromagnetic interaction time
of the order 10−16 seconds, which is much faster than
the universe expansion time. And at the temperature
of the order of T = 1 MeV, the reaction rate of the
deuterium formation is also larger than the Hubble ex-
pansion rate. So the deuterium is in equilibrium with
the nucleon with the deuterium formation and dissoci-
ation the same rate. As the universe expands further
its temperature drops and the nuclear dissociation rate
of the deuterium decreases. So we need to calculate the
time when the neutron and proton begin to fuse to form
the deuteron and the reversed deuteron dissociation pro-
cess becomes small in comparison. Since the formation
reaction is of the electromagnetic strength, it completes
very rapidly characterized by the eV time scale which is
10−16 s as already stated, once the effective formation
starts it completes very quickly and all free neutron are
converted into deuterons almost instantly. This hence
gives the amount of neutrons which is available for the
formation of the helium eventually.

Fig. 10.4 The nuclear reactions of the nucleosynthesis of
light elements. This figure is reproduced from [257].

Let us now elaborate some more on the fact that the
primordial formation of light element stops at lithium.
On the formation reactions, a crucial factor is the ab-
sence of the relatively stable element of atomic numbers
5 and 8. Without an A = 5 element, the highest atomic
number that can be formed by two-body reactions is
A = 8 from two helium-4. The resultant nucleus is the
beryllium-8 which a extremely unstable with a half-life
of 7 × 10−17 s. After 7Li the lightest stable element is
9Be. Although 7Li plus a deuterium can form a 9Be, due
to the very small density of 7Li, and by this time the
temperature of the universe is also low, no meaningful
amount of 9Be can be formed.

The nucleons and light elements are in thermal and
chemical equilibrium through the reactions listed in
Eq. (10.74). The number densities of most of the el-
ements are very small and follow the non-relativistic,
Maxwell–Boltzmann distribution of Eq. (9.126),

nj(Tγ) = gj

(
mjTγ
2π

)3/2

e−(mj−µj)/Tγ , (10.75)

where the chemical potential are not negligible. Since
the temperature involved in maintaining the equilibrium
is that of the photons as indicated by the first expres-
sion of Eq. (10.74), so the temperature variable above is
explicitly marked to avoid any confusion. The internal
(spin) degrees of freedom are: gp = 2, gn = 2, gD = 3,
gT = 2, g3He = 2, and g4He = 1. Denote the total baryon
density number by nb which includes the free nucleons,
p and n, and all nucleons bound in nuclei. We define the
baryon-photon ratio,

η ≡ nb
nγ

≡ η10 × 10−10,

nγ =
2ζ(3)

π2
T 3
γ , (10.76)

where η10 = 6.23± 0.17 [11].
To carry out the calculation we have to work with an

expression which is independent of the chemical poten-
tial of the particles involved. The deuterium formation
reaction, i.e., the first reaction of Eq. (10.74), offers such
a possibility. We first observe that the chemical potential
of the photon always vanishes, because the possibility of
multi-photon process for a given initial state, e.g., in the
final state of the first reaction in Eq. (10.74), multiple
photons are allowed even though their probabilities are
very small in comparison with the single photon process.
The thermal and chemical equilibrium of the first reac-
tion in Eq. (10.74) says that the sum of the chemical
potentials of the proton and neutron equals to that of
the deuteron, µp + µn = µD. This leads us to consider
the Saha equation,

nnnp
nD

=
gngp
gD

(
mnmp

mD
· Tγ
2π

)3/2

e−εD/Tγ , (10.77)
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where εD is the nuclear binding energy of the deu-
terium63).

εD = mn +mp −mD = 2.23452 MeV. (10.78)

We consider the ratios of individual nucleons and nu-
clei possibly formed divided by the total baryon number
density. Defining

Xj ≡
nj
nb
, (10.79)

we have

Xn+Xp+2XD+3XT+3X3He+4X4He+· · · = 1. (10.80)

The Saha equation can be rewritten as

Gnp =
XnXp

XD

=

√
π

12ζ(3)

1010

η10

(
mn

Tγ

)3/2

e−εD/Tγ

= 3.5388× 1013η−1
10

(
1 MeV
Tγ

)3/2

e−εD/Tγ , (10.81)

where we have made the approximation mD = 2mp.
From

XD = G−1
npXnXp, (10.82)

we use Eq. (10.80) to eliminate Xp and obtain

XD=
G−1
npXn

1+2G−1
npXn

(1−Xn−3XT−3X3He−4X4He−· · · ) .

(10.83)

Similarly expressions can be obtained for other nucleus
fractions XT, etc.

10.6.1 Deuterium bottleneck

Let us examine briefly the behavior of Gnp given in
Eq. (10.81). Its exponential form makes it a rapidly
changing function of Tγ . It reaches a maximum at Tγ =
1.5 MeV with the magnitude of the order of 1012 for
η10 = 6.23. At Tγ = 0.1 MeV, Gnp decreases by 8 or-
ders of magnitude to Gnp ≈ 3.5 × 104. So G−1

np is very
small and rapidly varying in this range of temperature.
This implies that all the nucleus fractions, including XD,
except Xp and Xn, are small and rapidly varying with
Tγ . When Tγ decreases further Gnp decreases quickly
to unity at Tγ ≈ 0.067 MeV. The formation of the deu-
terium will become important somewhere in the temper-
ature range below 0.1 MeV. In the general study of XD
the G−1

npXn term in the numerator of Eq. (10.83) and in
all the nuclei fractions on the right-handed side can be
neglected. We can write

XD . G−1
npXn (1−Xn) . (10.84)

Now we can study the behavior of XD as a function
of the temperature. For Tγ = 1 MeV, Gnp ∼ 1012 and
XD is about 10−13 for Xn = 0.2. At Tγ = 0.1 MeV,
Gnp ≈ 3.5 × 104 and XD ≈ 4.5 × 10−6. At such a tem-
perature the density of deuteriums is still too small to
provide a sufficient reservoir for the formation of the he-
lium. As the temperature decreases further XD increases
dramatically. For Tγ = 0.09, 0.08, and 0.07 we obtain
respectively XD = 4.6×10−5, 8.6×10−4, and 3.8×10−2.

Let us interject some physical considerations here.
First, the physical reason of the smallness of XD in the
temperature range of 1 to 0.1 MeV is the high entropy per
baryon as determined by the ratio of baryon to photon,
with the photon energy equal or greater than the bind-
ing energy of the deuterium. Such photons are energetic
enough to dissociate the deuteron into their neutron and
proton components once it is formed.64) Consider the
case of Tγ < εD so that exp(εD/Tγ) ≫ 1. We can obtain
the number of such photons by analytically integrating
Eq. (9.100) by approximating the photon distribution
function by fγ(E) ≈ exp(−E/Tγ). Roughly, this ap-
proximation is valid already for Tγ = 1 MeV which gives
exp(εD/1 (MeV)) = 9.34. Then we have

nγ(E≥εD)≈gγ
T 3
γ

2π2

[(
εD
Tγ

)2

+2

(
εD
Tγ

)
+2

]
e−(εB/Tγ).

(10.85)

The entropy relative to the deuterium is measured by

nγ(E ≥ εD)

nD
=
nγ(E ≥ εD)

nbXD

≈ 1010

ζ(3)η10XD

(
εD
Tγ

)2

e−(εD/Tγ), (10.86)

where we have replace the factor 1/2 + (ϵ/Tγ)
−1 +

(ϵ/Tγ)
−2 by 1. It is an approximation good within a fac-

tor 2 for Tγ < 1. Substituting XD given in Eq. (10.84)
and using Gnp defined in Eq. (10.81) we have

nγ(E ≥ εD)

nD

≈ 1

Xn(1−Xn)

(
1010

ζ(3)η10

)2√
π

12

(
mn

εD

)3/2(
εD
Tγ

)7/2
e−2εD/Tγ

=2.271× 1021
1

Xn(1−Xn)

(
εD
Tγ

)7/2

e−2εD/Tγ . (10.87)

Taking Xn ≈ 0.1, the above expression shows that for ev-
ery deuterium nucleus there are about 4.8×1021 photons
at Tγ = 1 MeV, 6.3 × 1020 at 0.5 MeV and 5.2 × 107 at
0.1 MeV. The ratio decreases rapidly as the temperature
decreases. The entropy to deuterium ratio becomes 1 at

64)Here we follow the discussion given in [253].
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0.07 MeV. We expect that this is the ball park tempera-
ture scale when the deuterium start to form. Because of
the rapidly decrease of the entropy to deuterium ratio,
the formation of the deuterium can be completed rather
quickly once it begins.

The fact that the formation of helium 4 depends on
the formation of the deuterium which can only happen
at a low temperature blow 0.1 MeV is known as the deu-
terium bottleneck because of smallness of the amount of
deuteriums available at earlier time. If helium-4 can be
formed independent of the deuterium, the appearance of
helium-4 would have happened much sooner. We discuss
this briefly below. From the consideration of thermal
equilibrium alone, we can define the baryon fraction of
helium-4

X4H4
=
n4He
nb

, (10.88)

and form the ratio

G4He =
X2

pX
2
n

X4He
∼ e−ϵ4He/T , (10.89)

similar to the discussion of the deuterium in Eq. (10.81),
where ϵ4He is the binding energy of helium 4. Because
of the exponential factor exp(−ε4He/T ), G4He decreases
very fast as the temperature decreases. At T = 0.3
MeV, G4He is 8.5 with a very steep slope65), it seems that
helium-4 could be formed at around T = 0.3 MeV. But
the reaction for the direct formation, 2p+2n→ 4He+γ,
is fantastically small, this channel of formation is not
valid and it has to wait till there are a sufficient number
of deuteriums to continue the series of reactions listed in
Eq. (10.74). So this is also a factor contributing to the
deuterium bottleneck.

Another remark we would like to make is the follow-
ing. From T = 0.1 MeV to 0.07 MeV, the deuterium
density increases by about four orders of magnitude. Is
this physically reasonable? Let us look how long it takes
for such a variation of temperature to occur. We can
estimate this time spend as follows. As we have dis-
cussed in §9.5, after the cosmic temperature decreases
below 1 MeV the photon has been reheated due to the
electron-positron annihilation, while neutrinos are de-
coupled and expand with the universe by themselves.
The photon and neutrinos evolve with different tempera-
tures Tν = (4/11)1/3Tγ . One of the approaches to do the
calculation is to track the neutrino temperature when the
universe expands and then convert it to that of the pho-
ton which defines the cosmic temperature. When neutri-
nos are decoupled, they expand freely with the universe
so that a3T 3

ν = const. We have

ȧ

a
+

1

Tν

dTν
dt =

√
8πGN

3
ρ(Tν) +

1

Tν

dTν
dt = 0. (10.90)

65)G4He is the order of 10−2 at 0.28 MeV and 103 at 0.32 MeV.

Below T = 0.1 MeV the universe is dominated by pho-
tons and neutrinos and the temperatures of the two
species of particles track each other by the relation
Tγ = (11/4)1/3Tν , and

ρ(T ) = ργ(Tγ) + ρν(Tν) = g′∗
π2

30
T 4
ν ,

g′∗ = 2

(
11

4

)4/3

+ 6

(
7

8

)
= 12.956. (10.91)

Integrating Eq. (10.90), we obtain66)

t =

√
45

16π3g′∗

MP

T 2
ν

+ t0

=

√
45

16π3g′∗

(
11

4

)2/3
MP

T 2
γ

+ t0

= 1.3199

(
1 MeV
Tγ

)2

s + t0, (10.92)

where t0 is estimated in BBF to be t0 = 2 s. Hence
the time lapse between 0.1 MeV and 0.07 MeV is about
137 second. This is a very long period of time for
neutron fusion with proton to form the deuterium by
strong/elctromagnetic interaction in the MeV/eV energy
scale. Their corresponding interaction time scales are re-
spectively 10−22 and 10−16 seconds.

10.7 Primordial fraction of helium-4

The calculation of the neutrons capture time into deu-
teriums has two important features. One is that it con-
tains many details which require, in particular, the ex-
amination of rates involving the reaction sequence of
Eq. (10.74). The second is that the rapid variation of the
various quantities involved in the temperature region of
0.1 MeV, which we have seen in our order of magnitude
estimate, requires careful numerical works. Both are too
involved for our attempt of a simple exposition of these
topic. However, we expect the formation of 4He to take
place when the deuterium is no long being overwhelmed
by the entropy, that is when the cosmic temperature
is below 0.1 MeV. This has been discussed in the para-
graph below Eq. (10.87). This critical temperature of the
formation of 4He, denoted as Tγ,c, can be found in the
literature and is also given in BBF,

Tγ,c =
εd
26

≈ 0.086 MeV, (10.93)

which lies indeed in the temperature range as expected
above. According to Eq. (10.92), the corresponding crit-
ical time is

tc = 180 s, (10.94)
66)The first and second lines of the equation below are Eq. (3.10)

of BBF.
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which is three minutes after the big bang. We have the
neutron fraction at the critical temperature

X̂n(Q/Tγ,c) = 0.136 (10.95)

with the neutron decay channel included in the integra-
tion. Another results is

X̃(d)
n (Q/Tγ,c) = 0.123, (10.96)

which is just the result of BBF given its equation (3.43).
We can now obtain the baryon fraction of helium-4.

Once the deuterium begins to form, all neutrons are cap-
tured into deuterium very quickly due to the very rapid
strong/electromagnetic interaction process. The rest of
the series of reactions in Eq. (10.74) can also be com-
pleted very quickly. Because of the large binding energy
of the helium-4 most of the deuteriums are converted into
it. The total number of the deuterium nucleus fraction
is just X̂n or X̃(d)

n . The helium-4 formation is given by
the first five reactions of Eq. (10.74), they are effectively
D +D → 4He + γ. We have the number of the helium-
4 to be just one-half of the number of the deuterium.
Then the primordial baryon number faction of helium-
4, which is denoted as Yp with the subscript P to mean
“primordial”, is 4 times of the fraction of helium-nucleus,
we have

Yp = 4X4He =

2X̂n(Q/Tγ,c) = 0.272,

2X̃
(d)
n (Q/Tγ,c) = 0.246,

(10.97)

where the value 2X̃
(d)
n (Q/Tγ,c) = 0.246 is the BBF result

and 2X̂n(Q/Tγ,c) = 0.272 agrees with the result given in
[221]67). The recent observational data give the value of
Yp in the range of 0.247 to 0.252 with typically rather
small errors [11]. The value given in Eq. (10.97) for X̂(d)

n

lies in this observation range. This agreement should not
be overstated in view of the approximations made in the
calculation. It just says that the approximates which
are made to enable us to do analytic calculations are not
unreasonable.

10.8 Counting the baryonic matter and the primordial
lithium problem

The predicted abundances of 4He, D, 3He, and 7Li by
the standard model of Big-Bang cosmology and the ob-
servational values are shown in Fig. 10.5 which is taken
from [11]. The predicted values as represented by vertical
bands are in the 95% range. The observational values are
shown as horizontal bands, where the smaller bands with
solid boundary-lines include 2σ statistical errors and the
larger bands with dashed boundary-lines include 2σ sta-
tistical plus systematic errors. For 4He the systematic

67)See, page 167, [221].

Fig. 10.5 The predicted abundances of light elements in
Big-Bang nucleosynthesis and their observational values. The
fractions of the deuterium, 3He, and lithium-7 are relative to
the hydrogen. The subscript p means primordial. Note that
η × 1010 is η10 in the notation used here.

error dominates. The wider vertical band marked by in-
clined red line segments indicates the range predicted by
the BBN concordance theory. The narrow vertical band
marked by short blue line segments shows the predic-
tions according to the CMB measurement of the cosmic
baryon density. The predicted and observational values
for helium-4 and deuterium agree very well. There are
yet no observation data for helium-3. We will come to
the Lithium-7 later below. The scale of the upper hor-
izontal axis Ωh2 and that of the lower horizontal axis
η × 1010 ≡ η10 are related by

Ωbh
2 ≡ ρb

ρC
h2

=
nγmN
ρc

η10

= 3.65× 10−3η10

( mN
0.938 GeV

)
, (10.98)

where mN is the effective nucleon mass which is close to
the proton mass and

ρc =
3H2

0

8πGN

= 1.05375× 10−5h2 (GeV/c2)cm−3 (10.99)

is the critical density.
The BBN result is an earlier evidence, no later than

the 1970s, for non-baryonic matter before the WMAP
precision measurement. As indicated in Fig. 10.5, The
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deuterium fraction is quite sensitive to η and serves as a
good determination of it. The deuterium data gives η10
in the range of 5.0–6.8 which corresponds to

Ωbh
2 = 0.018− 0.024, Ωb = 0.042− 0.053,

where we have taken the current value of the scale factor
for Hubble expansion rate h = 0.673. However, the frac-
tion of all non-relativistic matter Ωm which contributes
to the critical density obtained from other studies is
much larger. The study of galaxy clusters gives Ωm ≈ 0.2
and the study of redshift-distance relation of type I su-
pernovae gives Ωm ≈ 0.3. This difference, which is close
to a factor 5, makes it very difficult to identify Ωb with
Ωm. Hence extra matter not in the form of baryon should
exist.

The lithium-7 data, which agrees marginally with
helium-4 and deuterium, requires that η10 to be no more
than 5. This conflicts with the high precision CMB mea-
surement of the baryon density which requires η10 to be
no less than 6. As shown in Fig. 10.5, the CMB deter-
mination of the baryon to photon ratio η predicts the
lithium-7 ratio to be no smaller than 5 × 10−10, while
the observed value is no greater than 3 × 10−10. This
disagreement is usually referred to as the lithium prob-
lem. Assuming that the origin of the disagreement is
not experimental in origin, we have to have new physics
for its explanation. Indeed there are scenarios in the su-
persymmetric standard model which can account for the
overabundance of lithium-7, and the lithium problem can
be related to the dark matter. For further discussions for
probes of the standard BBN with new physics, we refer
to [244, 245].

11 Freeze out of massive particles

In this Section we discuss in some details the freeze out
of particles in the early universe, assuming the standard

cosmology. This is relevant in the treatment of dark
matter such as WIMPs in establishing the widely known
WIMP miracle. Good treatment of the subject can be
found in, e.g., [74], [221], and [101].68) The original ar-
ticle [213], which is the basis of the WIMP miracle, is
concise and also readable, starting from the Boltzmann
transport equation. We begin by deriving the Boltzmann
transport equation which we have relied on the discus-
sion of the physics of thermal relics WIMPs in §5.3.

11.1 Boltzmann transport equation for particle produc-
tion and annihilation

We consider the two-body scattering process, involving
particles denoted as 1, 2, 3, and 4,69)

1 + 2 � 3 + 4. (11.1)
This process describes the annihilation of particles 1 and
2 into 3 and 4, as well as the reversed reaction of the
production of particles 1 and 2 from 3 and 4. In the
discussion of dark matter, particles, 1 and 2 represent the
dark matter particle and its antiparticle. In the case of
Majorana particles, the particle and anti-particle are the
same. Particles 3 and 4 are normal particles, which can
be photons, charged leptons, neutrinos, quarks, etc., and
their anti-particles. A particular example is the reaction
of dark matter particles, X and X̄ annihilation into a
pair of lighter normal particles, say a lepton-antilepton
pair

X + X̄ ↔ ℓ+ ℓ̄. (11.2)

The present discussion is not restricted to the production
of normal leptonic particles. of course.

We denote the number densities of the particles in-
volved by nj , = 1, · · · , 4. Let us fix our attention on
particle 1. The rate of change of number density of par-
ticle 1 in the expanding universe in the comoving volume
a3 is given by the Boltzmann equation

1

a3
d
dt (n1a

3) =
∑
spins

∫
. . .

∫ 4∏
j=1

(
d4pj
(2π)3

δ+(p
2
j −m2

j )

)
(2π)4δ4(p1 + p2 − p3 − p4)|M|2

× (f3f4(1± f1)(1± f2)−f1f2(1± f3)(1± f4)) , (11.3)

where M is the matrix element of the reaction of
Eq. (11.1) and the summation is over the spins states
of all particles involved. The δ+ means to take the posi-
tive root in the solution of the δ-function, and fj are the
particle distribution function given in Eq. (9.98). The
factor fj is associated with particles in the initial state
of the reaction, while (1 ± fj) for particles in the final
state. 1− fj is for the fermion and 1 + fj for the boson.

They represent respectively the effects of Pauli blocking
and the boson enhancement.

The first term in the second line of the right-handed
side of Eq. (11.3) is the production of particles 1 and 2
by particle 3 and 4. It increases the number of particle 1

68)We follow the discussion given in [101], pp 58–61 and 73–78.
See also [74], pp 119–130 and [221], pp 185–196.

69)Our starting argument follows that given in Section 3, [101].

121201-116
Bing-Lin Young, Front. Phys. 12(2), 121201 (2017)



Review article

and therefore has a positive sign. The second term, which
represents the annihilation of particle 1 and 2 into 3 and
4, decreases the number of particles 1, and hence gets
the negative sign. Let us look at the engineering dimen-
sionality of both sides of the equation as a quick check.
The left-handed side has the dimension per unit volume
per unit time in the proper units. In the natural units it
is energy to the fourth power. Since a two-body to two-

body reaction matrix element is dimensionless and the
dimension of a δ-function is the inverse of its agrement,
hence the right-handed side has indeed the required di-
mension of the energy to the fourth power.

Since the particle distribution functions fj , j =
1, · · · , 4 are independent of the particle spin states, we
can move the summation sign to the matrix element
term,

1

a3
d
dt (n1a

3) =

∫
. . .

∫ 4∏
j=1

(
d4pj
(2π)3

δ+(p
2
j −m2

j )

)
(2π)4δ4(p1 + p2 − p3 − p4)

∑
spins

|M|2

× (f3f4(1± f1)(1± f2)−f1f2(1± f3)(1± f4)) , (11.4)

11.2 The rate of change of particle number density

The particle number density change rate Eq. (11.4) can
be simplified in the physical situation under considera-
tion.70) In the WIMP model, the cold dark matter parti-
cle are heavy with mass in the GeV to multi-GeV range.
Before it freezes out it is already non-relativistic. Hence
if it is maintained in equilibrium, its number density,
denoted by nX, will have the form of Eq. (9.126) which
decreases exponentially as the cosmic temperature de-
creases. Then there will be very little of the particle
remaining today. It has to decouple from the cosmic
heat bath at some point of the cosmic evolution so as
to freeze out to maintains the dilution due to Hubble
expansion, nX ∼ a−3. It is hopefully that the number
density is still large enough to allow its existence to be
probed experimentally. The freeze out takes place pre-
sumably below the GeV temperature range mX ≫ T ,
and the energy of the massive particle is dominated by
its mass. Because of the energy conservation δ-function
in Eq. (11.4), E1+E2 = E3+E4, particles 3 and 4, which
are lighter ordinary standard model particles, are highly
relativistic, and therefore in equilibrium with the cosmic
thermal bath. So in this dominant kinematic condition,
all the number density distribution functions involved
can be approximated by

fj =
1

e(Ej−µj)/T ± 1
→ e−(Ej−µj)/T , (11.5)

where µj is the chemical potential of the particle j.
In this approximation the Pauli blocking and boson
enhancement factors can be replaced by unity. This says
that the particle densities are sufficiently diluted, the
effects of the Pauli block and boson enhancement can be
neglected. This realization of the kinematic states of the

70)We follow the treatment of [101], pp 58–62 and pp 73–78.

particles involved greatly simplify the formulation to be
discussed below.

In the out-of-equilibrium situation the particles in-
volved in the reaction are not in chemical equilibrium
so that

µ1 + µ2 ̸= µ3 + µ4. (11.6)

Now we can write the expression of the second line of
Eq. (11.4)

f3f4(1± f1)(1± f2)− f1f2(1± f3)(1± f4)

→ e−(E3−µ3)/T e−(E4−µ4)/T − e−(E1−µ1)/T e−(E2−µ2)/T

= e−(E1+E2)/T [e(µ3+µ4)/T − e(µ1+µ2)/T ], (11.7)

where we have used the energy conservation relation E1+
E2 = E3 + E4.

In the spirit of the approximation of Eq. (11.7) above,
the particle number densities involved can be approxi-
mated by

nj ≈ gj
4π

(2π)3

∫
e−(E−µj)/T p2dp

= gjeµj/T


T 3

π2
, T ≫ mj ,(

mjT
2π

)3/2
e−mj/T , T ≪ mj .

(11.8)

We also define the number density in the absence of
chemical potential,

n
(0)
j ≡ nj |µj=0

=


gj
T 3

π2
, T ≫ mj ,

gj

(
mjT

2π

)3/2

e−mj/T , T ≪ mj .

(11.9)
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Comparing the above expressions for n(0)j and the exact
ones given in Eqs. (9.119) and (9.126), we see that the
non-relativistic approximations are the same while the
relativistic expression given in the above lies between
the fermion and boson cases of Eq. (9.119). So the dif-
ferences are small, unimportant in light of the treatment
presented here. We now arrive at the crucial approxima-
tion,

eµj/T =
nj

n
(0)
j

. (11.10)

We can rewrite Eq. (11.7)

f3f4(1± f1)(1± f2)− f1f2(1± f3)(1± f4)

→ e−(E1+E2)/T

(
n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

)
. (11.11)

In the case of chemical equilibrium, µ1 + µ2 = µ3 +
µ4, the above expression vanishes. This is the expected
result that in thermal equilibrium the particle density in
a comoving volume is constant.

Now the Boltzmann equation Eq. (11.4) becomes

1

a3
d
dt (n1a

3) ≈
∫
. . .

∫ 4∏
j=1

[
d4pj
(2π)3

δ+(p
2
j −m2

j )

]
(2π)4δ4(p1 + p2 − p3 − p4)

∑
spins

|M|2

×e−(E1+E2)/T

[
n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

)

]

= n
(0)
1 n

(0)
2

[
n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

)

]

× 1

n
(0)
1 n

(0)
2

∫
. . .

∫ 4∏
j=1

(
d4pj
(2π)3

δ+(p
2
j −m2

j )

)
(2π)4δ4(p1 + p2 − p3 − p4)

×
∑
spins

|M|2e−(E1+E2)/T . (11.12)

In the second equality sign we factor out the terms involving ratios of particle number densities because they are
independent of the particle momenta. Let us rewrite the last two lines of the above expression,

1

n
(0)
1 n

(0)
2

∫
. . .

∫ 4∏
j=1

[
d4pj
(2π)3

δ+(p
2
j −m2

j )

]
(2π)4δ4(p1 + p2 − p3 − p4)

∑
spins

|M|2e−(E1+E2)/T

=
g1g2

n
(0)
1 n

(0)
2

∫
e−E1/T

d3p1
(2π)3

∫
e−E2/T

d3p2
(2π)3

∣∣∣∣ p1

E1
− p2

E2

∣∣∣∣
× 1

2E12E2| p1

E1
− p2

E2
|

∫ ∫ d3p3
(2π)22E3

d3p4
(2π)22E4

(2π)4δ4(p1 + p2 − p3 − p4)
∑

|M|
2

=
g1g2

n
(0)
1 n

(0)
2

∫
e−E1/T

d3p1
(2π)3

∫
e−E2/T

d3p2
(2π)3

∣∣∣∣ p1

E1
− p2

E2

∣∣∣∣σ(1 + 2 → 3 + 4)

≡ ⟨vσ⟩, (11.13)

where
∑

|M|
2 is the summation over the spin states of

particles 3 and 4, and average of the spin states of par-
ticles 1 and 2. To average over the spins of particles 1
and 2 is to divide

∑
spin |M|2 by the product g1g2. We

note in the above expression that the second line after
the first equality sign is the cross section formula of the
reaction 1 + 2 → 3 + 4. The term∣∣∣∣ p1

E1
− p2

E2

∣∣∣∣ (11.14)

is the relative velocity of the initial particles. As can be

seen in the non-relativistic situation, it is the absolute
value of the difference of the velocities of the two parti-
cles, |v1 − v2|.71) The form of the integrals over p1 and
p2 is just the average over the distribution functions of

71)We remind the reader that the term 2E12E2| p1
E1

− p2
E2

| in
Eq. (11.13) is referred to as the flux density of the initial state and it
is usually written in the covariant form, in either the center of mass
frame or the laboratory frame, as 2λ(S,m2

1,m
2
2), where λ(a, b, c) ≡√

a2 + b2 + c2 − 2ab− 2ac− 2bc. In the present discussion S =
(p1 + p2)2, where p1 and p2 are respectively the 4-momentum of
particles 1 and 2.
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Eq. (11.9) of the initial particles of the product of their
relative velocity and the reaction cross section. The mul-
tiplication of the factors g1 and g2 is just a counting of
the degrees of freedom entering in the densities of par-
ticles 1 and 2. Now we obtain the differential equation
for the rate of change of the number density of particle
1, averaged in a comoving volume,

1

a3
d
dt (a

3n1) = −⟨vσ⟩n(0)
1 n

(0)
2

[
n1n2

n
(0)
1 n

(0)
2

− n3n4

n
(0)
3 n

(0)
4

)

]
.

(11.15)

From Eqs. (9.151), (9.155), and (9.153), or simply from
the fact aT ∼ const., we have

dt = − 1

H(T )

dT
T
. (11.16)

Let us introduce the variable

x =
mX

T
. (11.17)

Then we can rewrite the time derivative in terms of the
derivative in x,

d
dt = xH(T )

d
dx = x−1H(mX)

d
dx. (11.18)

The second equality of the above expression follows from
the fact that the massive particle decoupling takes place
at high temperatures and therefore the cosmic expansion
is dominated by radiation composed of relativistic ordi-
nary particles.72) So the total energy density is ρR ∼ T 4.
Then, from Eq. (9.153), we have

H(T ) =

√
8πGN

3
ρ(T ) = x−2H(mX),

H(mX) =

√
8πGN

3
ρ(mX)=

√
4π3

45
g∗

(
m2

X

MP

)
, (11.19)

where g∗ is the total number of degrees of freedom of
effectively massless particles at the temperature under
consideration. See Table 9.4 for values of g∗ under var-
ious situations. In arriving at the above expression,
Eq. (11.19), we have used the fact that the cosmic tem-
perature is high energy so that the universe is radiation
dominated, so the total energy density takes the form
ρ(T ) = g∗(π

2/30)T 4 of Eq. (9.135).
Let us come back to Eq. (11.15). In the symmetric

case of the annihilation of massive particles n1 = n2 and
n
(0)
1 = n

(0)
2 . For particles 3 and 4, we take T ≫ m3, m4

so that they are in thermal equilibrium with the cos-
mic heat bath. Then n3 and n4 are respectively n

(0)
3

72)Strictly speaking, we should write H(T ) =

H(mX)
√
g∗(T )/g∗(mX). We make the approximation by

ignoring the difference between g∗(T ) and g∗(mX).

and n
(0)
4 . We also take particles 3 and 4 to be particle

and antiparticle in the symmetric case n3 = n4. Further-
more, we assume that this is a radiation dominated epoch
and particles 3 and 4 are highly relativistic so that their
chemical potentials can be neglected. From Eq. (9.116),
i.e., aT ∼ const., we define the massive particle number
density in a comoving volume up to a constant73)

Y (x) ≡ n1
T 3

∝ n1a
3,

Yeq(x) ≡
n
(0)
1

T 3
∝ n

(0)
1 a3. (11.20)

We can now write the rate of change of the massive par-
ticle density Eq. (11.15) as

d
dxY (x) = − λ

x2
[
Y (x)2 − Yeq(x)

2
]
, (11.21)

where

λ ≡ m3
X

H(mX)
⟨vσ⟩ =

√
45

4π3g∗
mXMP ⟨vσ⟩. (11.22)

All the quantities involved, Y , x, and λ, are dimension-
less. We note that the product mX⟨vσ⟩ enters the differ-
ential equation which is a major feature of the freeze out
equation to be explored later. As pointed out in [101], in
many theories λ is a constant.74). We will take it to be
a constant and estimate it later in this section, following
the treatment given in [221].

Let us now interpret Eq. (11.21). Our derivation of
the equation uses the fact that around the decoupling
the approximation Eq. (11.5) is valid and where the
physics of heavy particle under consideration is domi-
nated. Therefore, instead of the approximation employed
in Eq. (11.9), we can use the exact equilibrium distribu-
tion function of the massive particle without the chemical
potential for n(0)1 . Then Yeq(x) is known explicitly. The
density function n1, even in the approximate form, con-
tains the unknown chemical potential is now the function
to be solved from the differential equation Eq. (11.21).
Hence n1 can stay arbitrary. Therefore we write for the
heavy particle of spin sX by its exact equilibrium form,

n
(0)
X =

2sX + 1

(2π)3

∫
4πp2dp

exp
(√

p2 +m2
X/T

)
+ (−1)2sX+1

,

(11.23)

where the number of spin states of the massive particle

73)In the WIMP miracle discussions in §5.3.1, the function Y is
defined in an equivalent form in Eq. (5.9), i.e., Y = n/s, where s is
the entropy density. In the case of no-entropy production s ∼ T 3.

74)See p. 75, [101].
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2sX + 1 is its degrees of freedom. Then we have75)

Yeq(x) =
n
(0)
X

T 3

=
2sX + 1

(2π)3

∫
4πy2dy

exp
(√

y2 + x2
)
+ (−1)2sX+1

.

(11.24)

An equation equivalent to Eq. (11.21) can be obtained
by going back to the time derivative of the massive
particle density, which follows straightforwardly from
Eq. (11.21) with the relationship given in Eqs. (11.18),
(11.19), and (11.22), or directly from Eq. (11.15), to ob-
tain

d
dtnX(x) = −3HnX(x)−⟨vσ⟩

[
(nX(x))2 − (n

(0)
X (x))2

]
,

(11.25)

which is the Boltzmann transport equation (BTE) given
in Eq. (5.5). The physical meaning of the BTE is clear.
The terms on the right-handed side describe the differ-
ent origins that cause the density variations of the mas-
sive particles. The first term on the right-handed side
describes the dilution of massive particles due to the ex-
pansion of the universe and hence the dependence on the
Hubble expansion rate H. The factor 3 comes from the
spatial dimension of the space. This is a universal term
common to all particle species. The function Y ∼ a3n
defined in Eq. (11.20) removes this term from it. The
second term is also a dilution effect due to the annihila-
tion of two massive particles into normal particles, and
hence the coefficient ⟨vσ⟩. This term depends on nX(x)2

because the annihilation reaction involves two massive
particles. The negative sign reflects the fact that they de-
crease the particle density. The third term which is pro-
portional to n(0)X (x)2, with its positive sign and the ⟨vσ⟩
coefficient, represents the reversed reaction, the produc-
tion of heavy particles from the annihilation of normal
particles. As has been discussed in Section 5.3.1, in par-
ticular related to Eqs. (5.15) and (5.16), the second and
third terms on the right-handed of Eq. (11.25) consti-
tute a feedback that tends to maintain the particle to its
equilibrium density when ⟨vσ⟩/H is large, but can break
away from it when ⟨vσ⟩/H becomes small. We will work
with Eq. (11.21) to obtain a solution for Y (x). After ob-
taining the solution, we will refer back to Eq. (11.25) to
gain some understanding of the general behavior of the
solution. Equation (11.21) is a Riccati equation, which,
known since the early 1700s, does not have a general
closed form solution although particular forms of Riccati

75)The expression of Eq. (11.24) is the function ueq(x) given in
Eq. (3.4.8) of [221]. Note that the variable x there is the inverse
used here.

equation have analytic solutions. So before we go about
getting a numerical solution for Eq. (11.21), we digress
to give a brief discussion of the general properties of the
Riccati equation. In doing so we will also indicate how
to obtain a unique solution, which is a necessary require-
ment when the equation can only be solve numerically.

11.3 Digression – Riccati equation and some of its
properties

The Riccati equation (RE) for a function y(x) takes the
form

d
dxy(x) = P (x)y(x)2 +Q(x)y(x) +R(x). (11.26)

It is a first order non-linear differential equation. It has
no known general solutions and, unlike a linear differen-
tial equation, it can have many different solutions as we
will show later. Below we discuss two important proper-
ties of the equation.

11.3.1 Transforming to a linear equation

If there is an analytic solution, it can often be obtained
by the following procedure which transform the Riccati
equation to a linear equation. Let us define a function

v(x) = P (x)y(x), (11.27)

which can be shown straightforwardly to satisfy a RE

d
dxv(x) = v(x)2+

[
Q(x) +

d
dx lnP (x)

]
v(x)+P (x)R(x).

(11.28)

Further we define

v(x) = −f
′(x)

f(x)
. (11.29)

Then f(x) satisfies a second order linear different equa-
tion,

d2

dx2 f(x)−
(
Q(x)+

d
dx lnP (x)

)
d

dxf(x)+P (x)R(x)f(x)=0.

(11.30)

If an analytic solution for f(x) is obtained. We can then
refer back to Eqs. (11.27) and (11.29) to obtain the an-
alytic solution of the original Riccati equation,

y(x) = − 1

P (x)

d
dx ln(f(x)). (11.31)

11.3.2 Multiple solutions

If a solution of a RE is known, another solution can be
readily obtained. This is particularly useful if the known
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solution is a closed form function. Suppose a solution is
known. Let us call it y1(x). Define

y(x) = y1(x) + u(x), (11.32)

where u(x) satisfies also a RE, not the original form due
to non-linearity,

d
dxu(x) = P (x)u(x)2 + (Q(x) + 2P (x)y1(x))u(x),

(11.33)

which does not have the term independent of u(x) and
hence a null function is a solution, in which case y(x) is
just the known solution y1(x). If u(x) = 0 is a unique
solution of the above equation, then y1(x) is a unique
solution of the original Riccati equation.

The above equation, Eq. (11.33), can be further trans-

formed to a linear form by defining

u(x) =
1

z(x)
, (11.34)

where z(x) satisfies a first order linear differential equa-
tion

d
dxz(x) = − [Q(x) + 2P (x)y1(x)] z(x)− P (x). (11.35)

The solution of this equation is well-known, obtained by
multiplying the integrating factor

e
∫ x
x0

(Q(x′)+2P (x′)y1(x
′))dx′

(11.36)

to the differential equation and the solution can be ob-
tained by inspection,

z(x) = −
(∫ x

x0

P (x′)e
∫ x′
x0

(Q(x′′)+2P (x′′)y1(x
′′))dx′′

dx′ + C1

)
e−

∫ x
x0

[Q(x′)+2P (x′)y1(x
′)]dx′

, (11.37)

where C1 is an integration constant and x0 is arbitrary.
So a second solution of the original RE can be obtained:

y2(x)=y1(x) +
1

z(x)

=y1(x)−
e
∫ x
x0

[Q(x′)+2P (x′)y1(x
′)]dx′∫ x

x0
P (x′)e

∫ x′
x0

[Q(x′′)+2P (x′′)y1(x′′)]dx′′
dx′+C1

.

(11.38)

We can use the solution y2(x) to construct yet another
solution, repeating the process, by substituting y2(x) for
y1(x) in the above expression together with another in-
tegration constant C2. This process can be repeated as
many times as allowed. So, in principle, there may exist
infinite many solutions. This will be a nightmare when
even the first solution has to be obtained numerically.
Then to apply the Riccati equation is simply impracti-
cal.

11.3.3 Boundary condition and the unique solution

Fortunately the process can be terminated quite quickly
by a boundary or initial condition. Suppose a boundary
condition is imposed at x0, which is the lower integration
limit in Eq. (11.37). This boundary condition has to
be satisfied by all possible solutions of the RE, y1(x0),
y2(x0), etc. Then we have to have

z(x0)
−1 = C−1

1 = 0, (11.39)

which says that C1 → ∞. Therefore the added part
to the solution, i.e., 1/z(x) vanishes identically. Hence

y1(x) is a unique solution. Therefore, in the case of nu-
merical solution, if it can be constructed to satisfy a
boundary/initial condition, the numerical solution will
be unique. This tells us that we can construct a numer-
ical solution for Eq. (11.21) this way and the solution is
unique.

11.4 Solution of the particle number density

We now present the numerical solution for Eq. (11.21),76)

using a commercial program called Mathcad. Since at
high temperature x≪ 1 the massive particle under con-
sideration is in equilibrium with the cosmic heat bath, its
number density will have the equilibrium form. So the
boundary condition can be imposed as Y (0) = Yeq(0).
Per the discussion above on the Riccati equation, the
numerical solution is unique. As will be demonstrated in
the next section, the value of λ on the right-handed side
of Eq. (11.21) is generally very large.

We plot in Fig. 11.1 for 5 different values of the pa-
rameter λ = 10n, n = 5, 6, 8, 10 and 12. The cases
of λ = 105 and 1010 are plotted in [101]77), and the case
λ = 1010 in [221]78), which agree with the corresponding
curves given in Fig. 11.1.

We make several comments below and a couple re-
marks concerning the numerical work are given in the

76)Although (11.21) has no closed form solution, approximation
with appropriate analytic expression can be used to obtain a rea-
sonably good solution in the case of helium production in primor-
dial nucleosynthesis. See [258] and Section 10.

77)Figure 3.5, p. 76, [101].
78)Figure 3.2, p. 189, [221].
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Fig. 11.1 Plot of the numerical solutions of Eq. (11.21). m
is the mass of the massive particle. The solid curves of various
colors are Y (x) for five values of λ = 10n, n = 5, 6, 8, 10,
and 12. The asymptotic value Y (x) decreases ad n increases.
The black dashed curve is for Yeq.

footnote.79)

• The behavior of the curves in Fig. 11.1 can be un-
derstood as follows. Y (x) starts at small x, where
the cosmic temperature us much larger than the par-
ticle mass, to be the order of its equilibrium value
Yeq(x) as the boundary condition. Because λ in the
right-handed side is large and the presence of the
x−2 which is also large, Y (x) is forced to maintain
its closeness to Yeq(x). Any significant deviation of
Y (x) from its equilibrium value will be amplified
further by the effect of the Y (x)2 term, and this

79)(1) Although, there is not much can be said about the process
of employing a canned numerical program for the general usage,
such as Mathcad, there are, however, subtleties in the present case
because Y (x) can vary rapidly in a smallmrange of values of x. Let
us mention some technic problems in obtaining the plot of Fig. 11.1
in case a reader has the desire to reproduce it, in particular, also
using Mathcad, or uses a program which has numerical instabil-
ity when a small function under consideration varies rapidly. It
should be noted first from Fig. 11.1 that the curves begin drop
precipitously around x = 10. For the largest λ value considered,
i.e., λ = 1012, Y changes more than 7 orders of magnitude when
x changes only 1 orders of magnitude: from Y (7) = 2.8× 10−3 to
Y (27) = 2.1 × 10−10. A straightforward application of Mathcad
to Eq. (11.21) would not give a sensible result for even λ > 107.
The smallness of the value of Y (x) at large x causes numerical in-
stability. However, the differential equation can be rewritten for
the function

√
λY (x) then Mathcad can be applied to λ = 1013,

but not for still larger λ. Furthermore, the value of x can only be
applied for x ≤ 300, although for small values of λ the applicable
range of x can be extended to x = 600. We have not studied if
there are other transformations of Eq. (11.21) which would allow
us to extend the solution to larger values of λ and higher values of
x.

(2) We would also like to remark that for technic reason, we have
imposed the boundary condition Y (x0) = Yeq(x0) at x0 = 0.01
rather than at x0 = 0.

would cause Y (x) to have a gigantic derivative which
pushes Y (x) back to Yeq(x). When the cosmic tem-
perature decreases passing the particle mass so that
x > 1, Y (x) will follow Yeq also decreases exponen-
tially as e−x. The right-handed side becomes small,
which gives a small slope for Y (x), hence Y (x) will
change very slowly and its value practically freezes,
while Yeq still drops exponentially. This is the freeze
out phenomenon.

• The above discussion starts out with the bound-
ary condition that Y (x) has its equilibrium value
at small x≪ 1. How crucial is this boundary condi-
tion in the numerical solution? We have found that
even if the initial condition at small x, say x = 0.01,
is away from the equilibrium value, either greater or
smaller, the differential equation Eq. (11.21) drives
Y (x) to its equilibrium value near x = 0.1 so that
the right-handed stays small. Then Y (x) follows the
curve as shown in Fig. 11.1. This kind of “restoring
force” at small x can be understand simply from
the sign of the right-handed side of Eq. (11.21).
If Y (x) > Yeq, the derivative of Y (x) is negative
which forces Y (x) to decrease towards Yeq(x). If
Y (x) < Yeq, the derivative of Y (x) is positive which
forces Y (x) to increase towards Yeq(x). Hence for
small x, Y (x) is forced to be very close to Yeq.

• When λ increases the exponentially decreasing be-
havior of Y (x) for x > 1, as described in the above
paragraph, can be maintained to a larger value of
x, and hence a small value of the asymptotic value
for Y (x). This can also be understood physically
as follows: Increasing λ corresponds to increasing
the reaction cross section for a fixed mX and hence
the reaction strength, and therefore maintaining the
equilibrium state of the massive particle longer to a
lower cosmic temperature. Consequently, the freeze
out value of Y (x) decreases. Increasing the mass
of the massive particle for a fixed cross section will
have the same effect.

• Another way to understand the behavior of the so-
lution is from Eq. (11.25). We focus on the terms
on the right-handed side of the equation which de-
cides the time behave of the massive particle number
density function nX . Let us start at an early time
or at a high temperature. The temperature behav-
iors of the quantities in the differential equation are
nX ∼ T 3 and H ∼ T 2. So the first term 3HnX goes
like T 5, and the second term which is proportional
to the reaction cross section like T 6 because it is pro-
portional to the density squared. The latter, i.e., the
reaction term, would be dominant at high tempera-
ture if nX deviates from its equilibrium form. In the
equilibrium form, the time derivative of the particle
number density on the left-handed side is given by
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the first term of the right-handed side and maintains
its equilibrium form, nX ∼ T 3. When the temper-
ature decreases, the terms on the right-handed side
decrease, with the first term slower than the second
term. At some T the first and second terms will
become comparable and the particle density is al-
lowed to deviate from the equilibrium form. When
the temperature decreases further, the second term,
being proportional to the particle density squared,
becomes very small and the differential equation is
again determined by the rate of expansion of the
universe, represented by the first term of the right
handed side of Eq. (11.25). So again nX ∼ T 3 and
Y approaches a constant value, becoming freeze out.
Although at both very high and very low tempera-
tures, nX scales like T 3, however, with very different
coefficients. In the high temperature case, the parti-
cle behaves like massless and the coefficient is deter-
mined by thermodynamics together with all parti-
cles in equilibrium with it. At very low temperature,
the particle is non-relativistic and decoupled in free
streaming, and the coefficient is determined by its
freeze out density. The particle is simply diluted by
the expansion of the universe as a function ∼ T 3.

11.5 Freeze out: Freeze out temperature and particle
abundance

Let us summarize. At very high temperature x = m/T ≪
1, the dark matter particle is in equilibrium with the cos-
mic heat bath by its rapid interactions with the rest of
the particles of the universe, and it maintains its equi-
librium abundance, so that its number density has the
T 3 dependence, n ∼ T 3, i.e., the particle expands with
the universe, n ∼ a−3 ∼ T 3. As the universe expands
further, T decreases and hence x increases. Eventu-
ally the cosmic temperature passes below the mass of
the dark matter particle which becomes non-relativistic
and its equilibrium density decreases exponentially in x,
n ∼ e−x. For sufficiently large x, the equilibrium abun-
dance becomes so rare, and the universe keeps its Hubble
expansion, that the particle can no longer be able to in-
teract with the rest of the cosmic contents or to find its
antiparticle to annihilate, there begins the on-set of the
freeze out. The freeze out density again expands with
the universe in the form of na3 ∼ n/T 3 ∼ const, as
indicated by the first term of the right-handed side of
Eq. (11.25), i.e., the particle density is governed by the
Hubble expansion. Because of T ∼ a−1, the dark mat-
ter particle maintains its temperature dependence as if
it is in thermal equilibrium in the relativistic form. With
the solution of the Boltzmann equation, Eq. (11.21), we
can determine the epoch of the freeze out and the relic
abundance of the dark matter particle.

Next we make a summary of some of the relevant
points in the freeze out solution. Given the BTE, a com-
plete numerical solution as shown in Fig. 11.1 depends
the boundary condition and the value of the parameter
λ. The boundary condition seems unimportant other
than the fact it guarantees the uniqueness of the solu-
tion. The important quantities to be determined are the
freeze out epoch and the asymptotic abundance of the
freeze out particle. The freeze out epoch is roughly the
x value, denoted as xf , at which Y (x) begins to separate
from Yeq(x). The freeze out particle abundance today is
determined by Y∞ = Y (x → ∞). As we have already
alluded to early, these two quantities are actually inde-
pendent of the boundary condition. The BTE drives the
solution to the equilibrium value for x < 1, and then fol-
lows the unique solution of the freeze out as x increases
further. This is the nature of BTE, a non-linear differ-
ential equation emerging out of the general properties
of the cosmic dynamics. Hence this makes the predic-
tion on the dark matter particle more forceful. Below we
discuss the epoch of the freeze out and the asymptotic
abundance.

11.5.1 Relic abundance due to freeze out

First we discuss the freeze out abundance of the massive
particle. The cosmic relic abundance of massive parti-
cles due to freeze out has been studied in detail in the
1970s in a similar physical context [213, 259, 260]. The
approximate asymptotic value of Y (x) is given in [221]80)

as

Y (LW)
∞ ∼ 6.1

λ0.95
. (11.40)

We list in Table 11.1 the values of Y (LW)
∞ and those of our

Y (x) evaluated at x = 300 for several values of λ. Our
Y (300) should be close to the asymptotic value. The last
row of the Table lists values of an expression which deter-
mines the freeze out epoch to be discussed below. We see
that in the range of λ = 107 to 1012 the agreement be-
tween Y LW

∞ and Y (300) is very well, within a few percent.
For λ = 106 the agreement is not as good, within about
11%, and for smaller λ the difference is even larger. For
much larger λ, say, at λ = 1013, the agreement is within
22%. This large difference could, at least, be partially
accounted for by the fact that at x = 300 the asymptotic
value for very large λ is not yet reached.

11.5.2 The freeze out epoch

We follow the treatment given in [101]81) to calculate
the freeze out epoch when the massive particle decouples

80)See Eq. (3.4.11), p. 189, [221] where more references can be
found.

81)See, pp 73–78, [101].
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Table 11.1 Values at freeze out. The freeze out epoch xf = 6.1λ0.05 is given in Eq. (11.44).

λ 106 107 108 1010 1012 1013

Y
(LW)
∞ 1.22× 10−5 1.37× 10−6 1.53× 10−7 1.93× 10−9 2.43× 10−11 2.72× 10−12

Y (300) 1.09× 10−5 1.33× 10−6 1.58× 10−7 2.03× 10−9 2.54× 10−11 3.49× 10−12

xf = 6.1λ0.05 12.2 13.7 15.3 19.3 24.3 27.2

from the cosmos heat bath. Let us use Tf to denote the
freeze out temperature and the corresponding x is given
by xf ≡ mX/Tf . Let us consider the application of the
differential equation in the region x > xf . We rewrite
Eq. (11.21)

1

Y (x)2
d

dxY (x) = − λ

x2

[
1−

(
Yeq(x)

Y (x)

)2
]

≈ − λ

x2
. (11.41)

The second line is obtained from the fact that Yeq drops
very quickly when the particle begins to freeze out. The
term Yeq(x)/Y (x) becomes small when x increases pass-
ing xf , except in a tiny region next to xf , as can be seen
from Fig. 11.1. Hence (Yeq(x)/Y (x))2 will make very lit-
tle contribution when we integrate the equation from xf
to ∞. The result of the integration is

1

Y∞
− 1

Y (xf )
=

λ

xf
. (11.42)

Since Y (xf ) is an order of magnitude larger than Y∞ as
can be seen in Fig. 11.1, the 1/Y (xf ) term on the left-
handed side can be dropped and we can relate the freeze
out temperature to the asymptotic particle density,

Y∞ =
xf
λ
,

Tf =
mX

xf
. (11.43)

From Eqs. (11.43) and (11.40), we have at the freeze out
point

xf = λY (LW)
∞ = 6.1λ0.05. (11.44)

Values of xf for several λs can be found in Table 11.1.
We note that these values agree with the usual statement
that the decoupling takes place at approximately Tf ≈
mX/20.

We should note that the above evaluation of xf , and
hence Tf , is not exact. The freeze out or decoupling
point is usually defined to be the temperature when the
particle reaction rate is equal to the Hubble expansion
rate.82) To avoid confusion, let us denote the exact freeze
out temperature by Tfe,

[nX(T )⟨vσ⟩ −H(T )] |T=Tfe
= 0. (11.45)

82)See p. 75, [101].

The decoupling temperature obtained above does not
satisfy this condition. It can be shown straightforwardly
that using the decoupling temperature given in (11.43)
and the definition of λ given in (11.22), together with
radiation dominance so that H(mX) = H(Tf )x

2
f , we ob-

tain

Y∞T
3
f ⟨vσ⟩ −H(Tf ) = 0. (11.46)

Y∞T
3
f is the freeze out asymptotic number density, not

nX(Tfe) which may not have a simple T 3 dependence on
the temperature. The exact freeze out temperature Tfe
has to be obtained by evaluating Eq. (11.45).83)

11.6 Numerical value of λ and its Physical implications

Let us come back to λ defined in Eq. (11.22) and study
its numerical value and its physical implications. First
we will examine the general case by leaving the reaction
cross section and the mass of the particle free. In this
discussion we follow the approach of [101]. Then we fol-
low [221] by assuming a reasonable reaction cross section
to see what sort of mass range of the massive particle can
be expected.

11.6.1 Estimate of λ

We assume that the massive particle annihilation is of the
weak interaction strength.84) For T < mX , the massive
particle is non-relativistic and the thermal average cross
section times the relative velocity of the massive particles
in the initial state is given by,85) in the natural units,

⟨vσ⟩ = G2
F

2π
m2

XCXF

= 5.30× 10−38CXF
( mX

1 GeV

)2
cm2

= 5.30× 10−2CXF
( mX

1 GeV

)2
pb. (11.47)

Let us briefly discuss how the first line of the above ex-
pression is obtained. Not rely on any particular model,
there are two energy scales in this situation. Being a
weak cross section the factor G2

F , which has the dimen-
sion of inverse of energy to the 4th power, is expected.

83)p. 83, Exercise 10, [101].
84)We follow the approach of [221], p. 189.
85)Eq. (3.4.9), p. 189, [221].
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The other energy scale is the mass of the dark matter
mX , while most of the normal particles entering in the
reactions in the final state can be considered as massless
so they cannot determine the dimension of the reaction
cross section. Since the left-handed side has the dimen-
sion of length squared or energy inverse squared in natu-
ral units, so we need the factor m2

X to get the right units
for the right-handed side of the equation. The rest fac-
tors are numerical factors: 2π is a phase factor. CX is the
number of open channels of normal particles entering in
the massive particle annihilation reaction Eq. (11.2). F ,
called a fudge factor in [221],86) includes all other details
of the reaction which we don’t expect to deviate from
unity too much.

Now we can rewrite the dimensionless λ of Eq. (11.22)

λ =
1

2π

√
45

4π3

CXF
√
g∗
G2

FMPm
3
X

= 1.5923× 108
CXF
√
g∗

( mX

1 GeV

)3
. (11.48)

Both the effective degrees of freedom g∗ in the Hubble
expansion rate H(T ) parameter and the number of an-
nihilation channels CX depend on the mass of the heavy
particle. From Table 9.4 we see that g∗ varies from 72.3
for T ≈ 5 GeV to 95.3 for T ≈ 100 GeV, about a 25%
variation. So we can treat g∗ a constant in this range of
the cosmic temperature. In the same range of T , CX/

√
g∗

takes the value of around 2.1 to 2.5, so it is the order of
1. This is the justification for considering λ a constant
and large.

11.6.2 Fraction of critical density

The contribution of the massive particle at the present
time can be calculated if we know its density at a time
after freeze out.87) Let us assume that Y (x) reaches its
asymptotic value at the temperature T1 < Tf . Being a
non-relativistic particle and frozen out, its energy density
at T1 is given by, following the expansion of the unverse,

ρX1 = 2mXnX(T1) = 2mXY∞T
3
1 , (11.49)

where the factor 2 on the right-handed side comes from,
for the usual case, that the Heavy particle and its an-
tiparticle are not identical. In the case of Majorana
fermions or self-conjugate bosons, the factor 2 should
be removed. T1 is presumably still quite high and it is
also the temperature of the photon then. But from T1
down to the present time, the photon will evolve with
a higher temperature because of the extra heat put into
the universe due to episodes of particle-antiparticle anni-
hilation that can take place during the cosmic evolution.

86)p. 189, [221].
87)We follow the approach of [101], pp 76–77.

The explicit example of the neutrino and photon tem-
perature separation has been given in §9.5. It is due to
the electron-positron annihilation which takes place af-
ter the neutrino is decoupled and when the universe tem-
perature drops below 1 MeV. This episode gives a sim-
ilar temperature difference between the photon and the
massive particle under consideration. In addition, other
annihilation processes may happen between T1 and the
cosmic temperature of 1 MeV. Consequently, the temper-
ature difference between the photon and massive particle
today can be much larger than that of the photon and
neutrino.

Let TX0 and T0 be respectively the present day tem-
perature of the massive particle and that of the photon
which defines the temperature of the cosmos. The cur-
rent density of the massive particle is then

ρX0 = ρX1
T 3
X0

T 3
1

= 2mXY∞T
3
0

(
TX0

T0

)3

≡ 1

rX
2mXY∞T

3
0 ,

rX ≡
(
T0
TX0

)3

. (11.50)

What is rX? As mentioned above the electron-positron
annihilation increases the photon temperature by a fac-
tor (11/4)1/3 = 1.40 relative to that of the neutrino.
If this is the only such episode reheating of the uni-
verse after the massive particle freezes out, then rX =
(T0/TX0)

3 = 11/4 = 2.75. This is the value used in
[221].88) However, in the case that the freeze out takes
place in the cosmic temperature range of T & mZ , and
when all annihilations of particle-antiparticle pairs de-
posit their energies into the cosmos, then from Table 9.4,
we have crudely T0/TX0 = (381/43)1/3(11/4)1/3 = 2.90
which gives rX = 24.3. So the present day temperature
of the massive particle is about 1/3 of that of the photon.
This is roughly the value used in [101].89) There is about
an order of magnitude difference in the two estimates of
rX .

We use the explicit expressions for the asymptotic Y∞
given in Eq. (11.40) and λ given in (11.48) to calculate
the present day energy density of the massive particle,

ρX0 = 2mX

(
6.1

λ0.95

)
T 3
γ0

rX

=

(
CXF
√
g∗

)−0.95 ( mX

1 GeV

)−1.85
(

Tγ0
2.725 K

)3

× 1

rX

3.32× 10−4 (GeV/c2) · cm−3

or
5.92× 10−28 g · cm−3.

(11.51)

88)Eq. (3.4.12) and the discussion above it, p. 190, [221].
89)Eq. (5.57) and the discussion above it, p. 76, [101].
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Now we can calculate the contribution of the massive
particle in terms of the fraction of the critical density.

ΩX =
ρX0

ρc

=31.50

(
CXF
√
g∗

)−0.95( mX

1 GeV

)−1.85
(

Tγ0
2.725 K

)3
h−2

rX
,

(11.52)
where ρc = 3H2

0/(8πGN ) = 1.05375 × 10−5h2 (GeV/c2)
·cm−3 is the critical density of the universe.

11.6.3 Mass and annihilation cross section of massive
particle

We can express the unknown massive particle mass and
the fudge factor in terms of ΩX ,90) fixing Tγ0 = 2.725 K,

( mX

1 GeV

)√
F≈6.46

(
CX√
g∗

)−0.51(
1

rX

)0.54(
ΩXh

2
)−0.54

,

(11.53)

where we have approximate F0.51 by
√
F .

Suppose the massive particle accounts all the miss-
ing cold dark matter, ΩX ≈ Ωcdm. The latter has the
present epoch fractional energy density [11]
Ωcdm = Ωm −Ωb −Ων

= 0.12h−2. (11.54)
Further, simplifying the expression CX/

√
g∗ to 2 which

can be justified by looking at Table 9.4, we obtain

mX

√
F ≈

{
8.25 GeV, rX = 11/4,

2.54 GeV, rX = 24.3.
(11.55)

Substituting the above value of mX

√
F for rX = 24.3

and CX ≈ 20 as shown in Table 9.4 into Eq. (11.47), we
obtain

⟨vσ⟩ ≈ 7pb. (11.56)

Hence with a cross section of the order of 10−2 pb, i.e.,
F of order 1 we have a massive particle of mass in the
range of 10 GeV. For a smaller cross section, of the order
of 10−4 pb or 10−40 cm2 we have a massive particle of the
order of 100 GeV. The fact that with a weak interaction
cross section we are able to obtain a reasonable range of
mass mX , this is highly non-trivial and is often referred
to as the WIMP miracle.

If several different kinds of particles contribute to dark
matter, we have ΩX < Ωcdm. Since mX is proportional
to (ΩX)−0.54, mX will be greater than the value given in
Eq. (11.55). Hence Eq. (11.55) is a lower limit of the mass
of the cold dark matter particles with weak interaction
cross sections.

90)We follow [221] Eq. (3.4.13), p. 190.

12 CMB anisotropy

The electromagnetic radiation, owing to its special prop-
erties, is a unique tool in probing various physical phe-
nomena. The tremendous range of the radiation wave-
length accessible can provide rich information across
wide areas of particle physics, nuclear physics, astro-
physics, and cosmology. In cosmology, the crucial role of
the photon can be illustrated by the grand unified pho-
ton spectra (GUPS) [261] of observable diffuse radiations
as shown in Fig. 12.1. Noted that the wavelength cov-
ered ranges from 105 cm to 10−22 cm with the intensity
varying over more than 30 orders of magnitude.

Most of the diffuse photons are found in a nearly
isotropic background of the thermal spectra around the
temperature of 2.75 K today, known as the cosmic mi-
crowave background (CMB). The CMB, a cornerstone of
the Big Bang cosmology, is usually referred to as the af-
ter glow of the Big Bang or the radiation relic at a time
when the universe is dense and hot of about 3000 K. The
CMB was predicted by Alpher and Gamov in the 1940s
[243]. It is very close to be an ideal blackbody spectrum,
and therefore isotropic, as predicted by the Boson dis-
tribution given in Eq. (9.98), with a vanishing chemical
potential µγ = 0. The agreement of the theoretical ther-
mal spectrum and that of the observation is over three
decades of multi-GHz frequency regime, mostly in the
microwave frequency range91). The radiation intensity
varies by four orders of magnitude including a maximum
around 150 GHz of wavelength about 2 mm. The ob-
served CMB spectrum is shown in Fig. 12.2.92) This
background radiation is a necessary consequence of the
Hot Big Bang theory93) and it provides very effective
probes into the early universe back to the last scattering
surface.

The CMB dominates the content of the radiation
energy in and beyond our own galaxy and it presents a
snapshot of the state of the universe at the last scat-
tering surface (LSS) (see Section 9.5) with the redshift
of the order of zL = 1100, when the universe is 380 000
years old and became transparent and the information of
the universe at the time imprinted on the CMB photon
can be largely preserved. However, there are small devi-
ations from uniformity, known as the CMB anisotropy

91)The microwave frequency ranges from 0.3 to 300 GHz, of the
wavelength 1 m to 1 mm, and of photon energy 1.24 µeV to 1.24
meV. The upper end of the CMB is actually in the far infrared
region, which has frequencies in the range of 300 GHz to 405 THz.
In comparison, a common kitchen microwave oven operates at 2.45
GH, with a power in the range of 700–1000 Watts.

92)The figure is taken from <http://ned.ipac.caltech.edu/level5/
Sept05/Gawiser2.html#Figure1>.

93)The discovery of the CMB is a very interesting story, in the
spirit of good scientific works and dramatic suspenses. For a de-
scription, see, [230], or a search of the subject on the web.
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Fig. 12.1 The grand unified photon spectra [74, 261]. The
figure given here is taken from [262].

Fig. 12.2 The observed CMB distribution at the temper-
ature 2.736 K. The vertical axis Brightness is defined as the
energy density multiplied by the speed of light.

which is represented by tiny temperature fluctuations
from point to point across the sky. They provide us a
snapshot of the state of the universe about 380 000 years
after the big bang as wells as some specific features of
the universe there after. Therefore, the CMB together
with its anisotropy carry the information of how the uni-
verse came into being at the very first instance of the
cosmos and formed the initial condition for the forma-
tion of large structures of the universe observed today.
The Study of the CMB anisotropy, i.e., the deviation of
CMB from perfect isotropy, plays a crucial role in many
aspects of cosmology, such as constraining cosmological
models and probing the natures of dark energy, modi-
fied gravity, etc. The anisotropy, observed as one part
in 105, presents a high accuracy measurement unusual in
cosmology. Data on the anisotropy obtained from differ-

ent observational techniques are in excellent agreement.
Since there are no preferred directions in the cosmos,
we can only expect to obtain statistical information, not
specific values, of temperature fluctuations. Hence the
quantities of interest will be statistics of the observed
pattern of the temperature fluctuation.

Many reviews on CMB anisotropy can be found in the
published literature and on the web. We refer to the
review appeared in the particle data book [11] for an ex-
pert summary. The present Section is an introduction
to the subject and provides some of the mathematical
tools needed in the formulation of the CMB anisotropy.
But our coverage of the various relevant topics is spotty.
A full exposition, especially a full scale of cosmologic
perturbation theory, which is needed to handle the vari-
ous sources of the anisotropy is beyond the scope of the
present work. All relevant information needed can be
found over several chapters in [221]. Other good treat-
ment can be found in, e.g., [223] and [224].

The investigations of the CMB anisotropy allows us
to study a wide range of properties of the universe and
probe some of the underlying fundamental physics, such
as inflation, dark energy, dark matter, topological de-
fects, statistical fluctuations, etc. In broad categories,
the investigations include:

• The very early initial conditions of the universe: We
can study the power spectra, the types of perturba-
tions to the Friedmann universe, and the nature of
the perturbation whether it is Gaussian-like or not.
We can study inflation and its possible alternatives.

• The composition of the universe: What stuffs the
universe was initially made of and how much for
each. What are the matter densities and neutrino
masses. They are related to details of peaks and
shapes of the multipole expansion of the anisotropy.

• Geometry and topology: The universe’s global cur-
vature and topological properties, such as the per-
turbation angular size and repeated patterns as re-
vealed in the sky.

• Evolution: Studies of the expansion rate as a func-
tion of time; reionization which determines Hubble
constant H0; the dark energy equation of state w,
i.e., the relation between pressure and energy den-
sities. See, Eq. (9.43) and related discussions.

• Astrophysical effects: The Sunyaev–Zel’dovic effect
(SZ effect), the effect of the foregrounds, etc.

12.1 Classification of CMB anisotropy and key
experiments

12.1.1 Classification of CMB anisotropy

The study of CMB anisotropy is far from straightfor-
ward. Observed fluctuations of the CMB spectrum are
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generally mixtures of effects of various sources, which
can be classified into two broad categories, e.g., depend-
ing on when the anisotropy occurs, with the last scat-
tering surface (LSS) as the demarkation: the primary
anisotropy taking place before the LSS, and the sec-
ondary anisotropy taking place after the LSS. The lat-
ter is also known as the late time anisotropy, and the
former the early, or primordial temperature variation.
CMB anisotropies are sensitive to the energy and matter
content of the universe and the initial conditions of the
cosmological perturbation. Hence CMB anisotropies can
provide important observational tests for mechanisms of
the early universe that explain the origin of the cosmo-
logical fluctuations. We first give a brief summary of
them and then provide some more details later.

The quantitative expression of the temperature
anisotropy is defined by

∆T (n̂) ≡ T (n̂)− T0,

T0 ≡
∫
T (n̂)d2n̂, (12.1)

where T (n̂) is the temperature measured in the sky along
the line of sight in the direction n̂, and T0 is the uniform
temperature obtained by averaging over all directions n̂
with the effect of the earth motion removed. By defini-
tion, the average of ∆T (n̂) over all directions n̂ vanishes.

Primary anisotropy

The primary anisotropy is caused by effects which occur
prior or at the last scattering surface. The effect left over
from the early university is the order of 10−5. Specifi-
cally, the primary anisotropy consists of the following
effects:

(a) The intrinsic matter inhomogeneity which occurs
in the very early universe gives rise to temperature vari-
ations.

(b) The Doppler effect caused by velocity fluctuations
in the proton-electron plasma at the last scattering sur-
face.

(c) The Sachs–Wolfe effect due to fluctuations in the
gravitational potential which cause red- or blue-shifts at
the last scattering surface.

Secondary anisotropy

The secondary anisotropy is caused by what happen to
the CMB photons on their way from the LSS to the ob-
server, and by the particular kinetic status of the earth
(solar system) with respect to CMB. There are generally
three effects:

(a) The earth motion relative the CMB which defines
a preferred axis. The distortion due to the earth motion
is mainly a dipole effect with an amplitude of the order
of 10−3.

(b) The CMB photons, on their way from the LSS to

the observer, are scattered against charged particles in
the intergalactic media and alter their energy/temper-
ature. This gives rise to the Sunyaev–Zel’dovich effect
which distorts the CMB spectral also of the order of 1
mK.

(c) In traveling from the LSS to the observer, if the
CMB photon passes through large scale structures, such
as galaxy clusters, it will be affected by the gravitational
field of the latter that lie in the path. The CMB photon
will be blueshifted as it falls into the gravitational poten-
tial well and redshifted as they climb out of the well. This
is called the integrated Sachs–Wolfe effect. If the grav-
itational potential fluctuates in time, the blueshift and
redshift will not cancel each out, leaving a non-vanishing
net integrated Sachs–Wolfe effect.

In Section 12.2 we discuss in some details the various
effects of the secondary anisotropy, then in Section 12.3
those of the primary anisotropy.

12.1.2 Key experiments

Since the experimental discovery of the CMB by Pen-
zias and Wilson in 1965 [228], many CMB experiments
have been conducted to measure the radiation at differ-
ent wavelengths and characterize their signatures, mostly
with ground- or balloon-based detectors, reaffirming the
thermal spectrum of the CMB and the presence of small
amount of anisotropies. Among the experiments, three
satellite measurements in the passed two decades and
a half have methodically transformed in profound ways
the study of the CMB into a precession science. These
are the COBE, WMAP, and Planck space explorations.
COBE (Cosmic Background Explorer 1989–1996) was
launched in November 1989 and, within a couple of
months, quickly confirmed that the CMB is a blackbody
radiation [263]. The cosmic temperature was given as
2.735±0.06 K to be compared with the present day value
of 2.7255±0.0006 K. The result of the first year observa-
tions was published in 1992 [264], which has determined,
to 7σ, a statistically significant temperature anisotropy.
During this period, together with other experiments, it
has been determined that the universe has a flat geom-
etry. The cosmic strings were ruled out as the leading
theory of cosmic structure formation, and it suggests cos-
mic inflation as the right theory.

Launched in June 2001, WMAP (Wilkinson Mi-
crowave Anisotropy Probe 2001–2010) succeeded COBE
as the second CMB space mission to make more accurate
measurements of large scale anisotropies over the full sky.
In its first year data, the WMAP team reconfirmed the
big bang and inflation theories. The age of the universe
was determined to be 13.7 years and the contents of the
universe include 4% baryonic matter, 23% dark matter,
and 73% dark energy. The new measurements also shed
light on the nature of the dark energy, acting as a sort
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of an anti-gravity.94) New results have been summarized
and announced every tow years. The final two years re-
sults including a list of all previous news releases can be
found in the final NASA news release.95) A list of all
WMAP technic papers can be found in the website96).

The Planck (Planck Cosmology Probe 2009–2013) was
ESA’s (European Space Agency) space mission to ob-
serve the first light of the universe to do even more de-
tailed study of the cosmos. In contrast, both COBE
and WMAP were US NASA’s scientific programs. The
Planck satellite was launched in May, 2009 and ceased
operation on October 23, 2013. The Planck data con-
firm the result of WMAP and found the universe to be
slightly older than people have thought earlier at 13.8
billion years. The universe consists of 4.9% baryonic
matter, 26.8% dark matter, and 68.3% dark energy. The
Planck temperature map suggests that the temperature
fluctuations were imprinted on the deep sky when the
universe was 370 000 years old. Many of the cosmolog-
ical parameters have been determined to a one percent
level, making it truly a precision science. Information
concerning the Planck measurement can be found in the
home page of the collaboration97) We refer to [265] and
[266] for the present status of the Planck results.

A comparison of the resolution of the three highly suc-
cessful satellite experiments is given in Fig. 12.398) For a
list of CMB and anisotropy experiments we refer to the
NASA LAMBDA (Legacy Archive for Microwave Back-
ground Data Analysis) website [267] which hosts also var-
ious information related to CMB.

12.2 Secondary anisotropy

This is also known as the late time anisotropy which has
the sources causing the anisotropy to occur after the last
scattering.

12.2.1 Anisotropy due to Earth motion

This is an effect of the recent universe due to the rel-
ative motion of Earth and the CMB, giving rise to an
anisotropy in the observed CMB. It is a Doppler effect
of local origin and has an annual modulation. A detailed
treatment can be found in [221]99). The earth motion
(EM) relative to the CMB provides a preferred direction
and gives rise to the Doppler effect, hence an apparent

94)See the news release of the first year results: http://map.gsfc.
nasa.gov/news/PressRelease_03-064.html.

95)http://map.gsfc.nasa.gov/news/
96)http://lambda.gsfc.nasa.gov/product/map/current/map_

bibliography.cfm.
97)http://www.cosmos.esa.int/web/planck/home.
98)The figure is taken from a Wikiwand article entitled Cosmic

Background Explorer. See, http://www.wikiwand.comenCosmic_
Background_Explorer.

99)See [221], §2.4, pp 129–132.

Fig. 12.3 Comparison of the resolutions of COBE, WMAP,
and Planck.

anisotropy of the observed CMB is expected. We sum-
marize the result as follows:100)

∆T (θ)

T

∣∣∣∣
EM

=
1

γ(1 + βEM cos θ) − 1

= −βEMP1(cos θ)+ β2
EM
6

(−1 + 4P2(cos θ))

+O(β3
EM). (12.2)

θ is the angle between the direction of the earth motion
and that of the CMB photon being observed,101) βEM is
the velocity of the earth relative to the CMB rest frame in
nature units, γEM is the usual relativistic factor given by
(1− β2

EM)−1/2, and Pj(cos θ), j = 1, 2, · · · are Legendre
polynomials. Note that the contribution to the measure-
ment of the CMB anisotropy is dominated by the dipole
form which is linear in βEM. There are also monopole and
quadrupole contributions as given by the second term in
the second line of Eq. (12.2), but they are proportional
to β2

EM. This quadrupole term is known as the kinematic
quadrupole. The presence of the monopole term makes
the average of the observed anisotropy over all angles
non-vanishing, unlike the primordial anisotropy left over
from the early universe which has a vanishing average.

The dipole effect of the earth motion was first observed
in 1969 with a rather low level of accuracy. Later obser-
vations made in the 1970s established the effect beyond
any doubts.102) Modern experiments such as WMAP
have further clarified the situation, determined the value
of βEM and hence the velocity vector of the earth in
the cosmic frame of reference in which the CMB is close
to be isotropic, called the CMB rest frame. The mo-
tion of Earth in the CMB rest frame, known as a pe-

100)The Legendre polynomials used below are defined by P1(x) =
x and P2(x) = (1/2)(3x2 − 1).

101)The angle θ can also be defined as the angle between the line
of sight of the CMB photon and the direction of the earth motion.
Then cos θ should be replaced by − cos θ.

102)There are controversies about the first discovery of the dipole
anisotropy. For a discussion we refer to [268], which also gives the
early observations of the dipole anisotropy.
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culiar velocity, is 369.0 ± 0.9 km/s [270] which gives
βEM = 1.23 × 10−3.103) Hence we see that the dipole
anisotropy due to the earth motion is two orders of mag-
nitude larger than the primordial anisotropy of the early
universe. The monopole and quadruple from the former,
which are quadratic in βEM, are about an order of mag-
nitude smaller than the primordial anisotropy.

12.2.2 The Sunyaev–Zel’dovich effect

This is also an effect of the recent universe that affects
the CMB photon due to scatterings against intergalactic
electrons in galaxy clusters. When CMB photons travel
from the last scattering surface to the observer on Earth,
secondary anisotropy can be produced as the CMB pho-
ton goes through the intervening matter of clusters of
galaxies that lie in the line of sight of the observer.
Some of the low energy CMB photons are bumped into
higher energy state after interacting with high energy
electrons through the inverse Compton scattering pro-
cess γ + e− → γ + e−, while the energy of the outgoing
photon is higher than that of the incoming one. The
distortion of the CMB spectrum so produced is a func-
tion of the frequency of the CMB photon. The result
is a deficit of low frequencies but excess of higher fre-
quencies. This is known as the Sunyaev–Zeldovich effect
(SZE) [271, 272].

Using the present epoch as an illustration, we have
the ideal blackbody spectrum of the CMB has the av-
erage temperature of 2.725 K which corresponds to the
photon average energy 2.35 × 10−4 eV and the average
frequency 56.8 GHz. The maximum of the spectrum oc-
curs at 160 GHz corresponding to photon temperature
of 7.68 K. In comparison, for the intergalactic media,
roughly 10% of the mass of galaxy clusters is made of
hot ionized plasma with the temperature of the electrons
mostly greater than 106K ∼ 86 eV. This provides the
environment for the inverse Compton scattering to redis-
tribute the energy of some of the CMB photons. Again
the spectral distortion of the CMB is the order of 1 mK.

The SZE is generally associated with galaxy clusters
because of its huge mass and hence the presence of a sig-
nificant number of high energy electrons. This effect does
not take place in individual galaxies which does not have
enough mass to cause a detectable frequency shift of the
CMB photons. After passing through a massive galaxy
cluster the CMB appears to be fainter at lower frequen-
cies but brighter at higher ones. Hence The SZE can be

103)This peculiar velocity is a result of five contributions: the
motion of Earth around the sun (of the speed of about 30 km/s),
the motion of the sun in the local standard of rest, the motion of
the local standard of rest around the Milky Way (about 220 km/s),
the motion of the Milky way in the Local Group, and finally the
motion of the Local Group with respect to the CMB rest frame.
For more details and references we refer to [269].

used to identify clusters and superclusters.104) The SZE
can also arise from low density, warm baryonic gas that
may be present between galaxy clusters.

12.2.3 Integrated Sachs–Wolfe effect

The integrated Sachs–Wolfe effect (ISWE) [273, 274]
arises from the gravitational effect causing frequency
shift of CMB photons traveling between the LSS and
Earth. It is the first work that predicts the existing of
anisotropy in CMB based on general properties of grav-
ity. A straightforward explanation of the physics of the
ISWE can be given as follows: As the CMB photon trav-
els from the LSS to an observer, it may encounter matter
distributions on its way and is affected by the gravita-
tional effect of the latter. The effect will be detectable for
superclusters and supervoid. Entering in a supercluster,
say, the CMB photon will blueshifted and hence the en-
ergy increased because of the gravitational potential well
of the cluster. Entering a supervoid the opposite hap-
pens. In a matter dominated universe the matter distri-
bution will not be changes and the redshift and blueshift
cancel each other and the net shift of frequency of the
photon is zero. However in a universe dominated by dark
energy or radiation, the matter distribution expands and
gravitation potential well becomes shallower when the
CMB photon emerges out of it. Hence the net effect if
that the final CMB photon has a slightly higher tem-
perature. The supervoid has the opposite effect. These
result in an anisotropy of the CMB photon. The ISWE
has been used as another evidence for the presence of
dark energy. For a recent review of the ISWE see, [275].

12.3 Primary CMB anisotropy

The primary CMB anisotropy involves of acoustic os-
cillations and the diffusion damping. The latter is also
knows as collisionless damping and as Silk damping. We
briefly describe them below.

12.3.1 Acoustic oscillation and modes of perturbations

The acoustic oscillations arises from the initial state of
minute primordial density variation and the dynamic ef-
fects between the expansion of the photon pressure and
gravitational attraction in the tightly coupled photon-
baryon plasma. In the very early universe, at the tem-
perature much higher than that of the LSS, the baryon
matter, consisting of ions and electrons105) couple tightly
with photons in the form of a cosmic plasma. Regions

104)The PLANCK Collaboration uses precisely the SZE to
hunter for galaxy clusters. see: http://sci.esa.int/science-e/www/
bject/index.cfm?fobjectid=48227 for a layman description of this
program.

105)In cosmology baryons refer to both atomic nuclei and the elec-
tron.
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of slightly higher density will have slightly higher tem-
perature, slightly higher photon pressure, and slightly
higher gravitational attraction. The opposite is true for
a region of slightly lower density. The higher gravity
will attract more plasma which tends to collapse the
region into dense haloes. But the higher photon num-
ber increases the pressure which tends to expand into
neighboring regions. These two opposite effects compete
to create acoustic oscillations which form characteristic
peaks and valleys in the angular power spectrum. Since
the photon number density is about 10 orders of mag-
nitude higher than that of the baryon, we only need to-
consider the effects of the photon in order to understand
the physics involved. The photon pressure is given by
Pγ = (1/3)ργ ∼ T 4, which is proportional to the 4th
power of the temperature. The gravity effect is propor-
tional to the particle number density, which, for the pho-
ton nγ ∼ T 3, is proportional to the third power of the
temperature. Hence the rate of change of the pressure is
higher than that of the gravitational attraction. There-
fore, when a higher density region gets increases to a
point, the effect of the pressure will over power that of
the gravity, and the region expands to become rarefied.
This sets a density or pressure variation and produces a
acoustic oscillations which give the CMB a characteris-
tic peak and valley structure, analogous to sound waves
with oscillation characterized by fundamentals and har-
monics.

The peaks contain characteristic physical signatures.
The angular scale of the first peak determines the cur-
vature, but not the topology, of the universe. The next
peak, with ratio of the odd peaks to the even peaks, de-
termines the reduced baryon density.106) The third peak
obtains information about the dark matter density.107)

The locations of the peaks also give important informa-
tion about the nature of the primordial density pertur-
bations. There are two fundamental modes of density
perturbations, called adiabatic and isocurvature. A gen-
eral density perturbation is a mixture of the two modes,
and different theories predict different mixtures. We de-
scribe briefly the two modes of perturbations. For more
details we refer to some accessible literature, e.g., [277]
and [278]. We following the discussion given in [277].

Adiabatic (curvature) density perturbations

For an adiabatic perturbation, which is also known as
curvature perturbation or isentropic perturbation, the
fractional density fluctuations of various components of
the universe, radiation and matter, are simply related.
More specifically,

1

1 + wj

δρj
ρj

106)See, baryons.html, [276].
107)see, driving.html, [276].

are all equal for all cosmic components of radiation and
matter, where δρj and ρj are respectively the density
fluctuation and density of the j-th cosmic component,
and wj relates the energy and pressure densities of the jth
component through the equation of state.108) More sim-
ply, the adiabatic condition is that the fractional number
density fluctuation for all radiation and matter compo-
nents, δnj/nj , are equal, i.e., δ(nj/nk) = 0. Such a re-
stricted form of density fluctuations of the early universe
is predicted by the inflationary scenario with one scalar
field. To date, all CMB observations are in good agree-
ment with the adiabatic fluctuation of the anisotropy
which forms a part of the standard cosmological theory,
the ΛCDM model.

Isocurvature density perturbations

The isocurvature fluctuation, also known as the entropy
fluctuation perturbation complements the adiabatic per-
turbation. It deals with the difference of fluctuation of
different components of the universe, i.e.,

δnj

nj
− δnk

nk
or 1

1 + wj

δρj
ρj

− 1

1 + wk

δρk
ρk

.

The difference vanishes for adiabatic fluctuations. Cos-
mic strings would produce mostly isocurvature primor-
dial perturbations.

The CMB spectrum can distinguish between these two
modes of perturbations as the predicted peaks are lo-
cated at distinctively different locations. Isocurvature
density perturbations produce a series of peaks whose
angular scales109) are roughly in the ratio 1:3:5:…, while
adiabatic density perturbations produce peaks whose lo-
cations are in the ratio 1:2:3:… [279]. The most recent
experimental result, given by the Planck Collaboration
[266], found no evidence of any contributions from the
isocurvature fluctuation, consistent with the primordial
density perturbations being adiabatic, which provides
a key support for inflation, and ruling out many mod-
els of structure formation involving, for example, cosmic
strings.

12.3.2 Diffusion damping

The diffusion damping, also known as collisionless damp-
ing or Silk damping, is caused by two effects, when the
treatment of the primordial plasma as a fluid begins to
break down: The increasing mean free path of the pho-
ton as the primordial plasma becomes increasingly rar-
efied in an ever expanding universe the finite depth of the
last scattering surface (LSS), which causes the mean free

108)Pj = wjρj , wj = 1/3 for the photon and neutrinos, and
wj = 0 for the baryon matter and dark matter. See, Section 9.1.3.

109)The ℓ-values of the peaks to be discussed in the following
section, Section 12.4.
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path to increase rapidly during decoupling, even while
some Compton scattering is still going on.

These effects contribute about equally to the suppres-
sion of the CMB anisotropy at small scales, and give rise
to the characteristic exponential damping tail seen in the
very small angular scale anisotropy.

The depth of the LSS refers to the fact that the decou-
pling of the photons and baryons does not happen instan-
taneously, but instead, requires an appreciable fraction
of the age of the Universe up to that era. One method
of quantifying how long this process took uses the pho-
ton visibility function (PVF). This function is defined so
that, denoting the PVF by P (t), the probability that a
CMB photon last scattered between time t and t+ dt is
given by P (t)dt.

The maximum of the PVF (the time when it is most
likely that a given CMB photon last scattered) is known
quite precisely. The first-year WMAP results put the
time at which P (t) is maximum at 372 000 years [65].
This is often taken as the “time” at which the CMB
formed. However, to figure out how long it took the
photons and baryons to decouple, we need a measure of
the width of the PVF. The WMAP team finds that the
PVF is greater than half of its maximum value (the “full
width at half maximum”, or FWHM) over an interval of
115 000 years. By this measure, decoupling took place
over roughly 115 000 years, and when it was complete,
the universe was roughly 487 000 years old.

We summarize the various features of the CMB
anisotropy in a cartoon in Fig. 12.4. The upper figure is
adopted from [280] and the lower figure from [281].

12.4 Formulation of anisotropy

We begin by making a multipole expansion of the tem-
perature anisotropy, which is also referred to as the tem-
perature fluctuation, or temperature variation, as de-
fined in Eq. (12.1). This is an expansion along a unit vec-
tor n̂, pointing into the sky from the observational point,
in terms of spherical harmonics Yℓm(n̂) ≡ Yℓm(θ, ϕ),
where θ and ϕ are respectively the polar and azimuthal
angles that define n̂,

∆T (n̂) ≡
∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓmYℓm(θ, ϕ), (12.3)

where ∆T also depends on other variables which are not
shown. The expansion coefficients aℓm represents what
happens at the last scattering surface (LSS), on its way
to the observer, and the particular position where the
observer is located as well, and

aℓm =

∫
dΩn̂Yℓm(θ, ϕ)∆T (n̂),

dΩn̂ ≡ sin θdθdϕ, (12.4)

Fig. 12.4 Upper: Cartoon of CMB anisotropy time line
[280]. Lower: Acoustic oscillation as a function of the inverse
of the angular separation [281]. More details will be given in
later sections.

Physically interesting quantities are sometimes studied
under some suitable form of average. For the present
case, the average can be taken either over all possible
positions from which observations of a given point are
made, or over times say from a single observation point.
These are the ensemble average or the time average. Un-
der rather general conditions these averages are equiva-
lent.110) The average of a quantity will be denoted by
⟨· · · ⟩. T0 is the average temperature defined by

⟨T (n̂)⟩ = T0,

⟨∆T (n̂)⟩ = 0. (12.5)

So in defining the observed anisotropy, the effect of the
earth motion has to be subtracted.

12.4.1 Properties of aℓm, Gaussian distribution, and
angular power spectrum

The temperature anisotropy is thought to originate from
the perturbation of the very early universe which is dom-
inantly isotropic, in particular at the period of the expo-
nential expansion of cosmic inflation. Given the initial
conditions the time evolution of the perturbation is well-
known, following the dynamic evolution governed by the

110)For more discussions of the average, we refer to [221], p. 136
and its App. D The Ergodic Theorem.
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Einstein equation. But it is impossible to know how the
perturbations are distributed spatially, especially in the
environment of exponential spatial expansion. Forming
a random distribution, the perturbation is a stochastic
process. Hence it is the statistical properties of the per-
turbation that are interested to us and their measurable
consequences that are expected to be uncovered by cos-
mological observations. Hence in the temperature fluc-
tuation, one do not expect to predict the fluctuation at a
particular point in the sky, but rather the average prop-
erty of the anisotropy. In the following we will make a
brief description of the statistical properties of aℓm, de-
fined in Eq. (12.3), which is resulted from the properties
of the Gaussian perturbation.111)

Taking the complex conjugate of Eq. (12.3), from the
orthogonality of the spherical harmonics, the reality con-
dition of the temperature variation, we have

aℓm = (−1)ma∗ℓ−m. (12.6)

The vanishing average of the temperature variation over
the whole sky gives

⟨aℓm⟩ = 0. (12.7)

We shall assume the expansion coefficient of the CMB
temperature variation aℓm to be Gaussian random vari-
ables112), then

⟨aℓma∗ℓ′m′⟩ = ⟨|aℓm|2⟩δℓℓ′δmm′

≡ Cℓδ
′
ℓℓδmm′ ,

⟨aℓmaℓ′m′⟩ = (−1)m
′
Cℓδℓℓ′δm−m′ , (12.8)

where Cℓ, which is real and non-negative, is known as
the (theoretical) angular power spectrum113). The lack
of a preferred direction in the cosmos implies that Cℓ is
independent of m.

The angular power spectrum enters the average of the
product of the anisotropy distributions in two directions
n̂ and n̂′:

⟨∆T (n̂)∆T (n̂′)⟩ =
∑
ℓm

∑
ℓ′m′

⟨aℓma∗ℓ′m′⟩Yℓm(n̂)Y ∗
ℓ′m′(n̂′)

=
∑
ℓm

CℓYℓm(n̂)Y ∗
ℓm(n̂′)

=
1

4π

∑
ℓ

(2ℓ+ 1)CℓPℓ(cos θ), (12.9)

where cos θ = n̂· n̂′. As it will become clear later that in
such an expansion, θ and ℓ can be thought as conjugate

111)From more detailed exposition, we refer to [221, 282], and
[224].

112)We refer to Appendix E “Gaussian Distributions” in [221], for
a discussion of the Gaussian variables.

113)Cℓ is called the temperature multipole coefficient in [221], p.
137 and p. 565.

variables. So large angular scale corresponds to small
ℓ and vice versa. We can redefined the angular power
spectrum as

Cℓ =
1

4π

∫ ∫
dΩn̂dΩ

′
n̂Pℓ(n̂· n̂′)⟨∆T (n̂)∆T (n̂′)⟩,

(12.10)

which can readily be verified by means of Eq. (12.9).
In specific cosmological models, such as the inflationary
model, Cℓ can be computed explicitly [283, 284]. As a
system of Gaussian distributions, the power spectrum
given in Eq. (12.8) and the relation Eq. (12.7) determine
the average of the product of an arbitrary number of
aℓm’s: The averages of the products of an odd number of
aℓm’s vanishes, while that of an even number of aℓm’s can
be expressed as a sum of products of the power spectrum.
For example, the average of the product of four aℓm’s is
decomposed as a sum of the various possible products of
the average of two aℓm’s,

⟨aℓ1m1a
∗
ℓ2m2

aℓ3m3a
∗
ℓ4m4

⟩
= ⟨aℓ1m1a

∗
ℓ2m2

⟩⟨aℓ3m3a
∗
ℓ4m4

⟩+ ⟨aℓ1m1a
∗
ℓ4m4

⟩⟨a∗ℓ2m2
aℓ3m3⟩

+⟨aℓ1m1
aℓ3m3

⟩⟨a∗ℓ2m2
a∗ℓ4m4

⟩
= Cℓ1Cℓ3 (δℓ1ℓ2δℓ3ℓ4δm1m2δm3m4 + δℓ1ℓ4δℓ2ℓ3δm1m4δm2m3)

+(−1)m3+m4Cℓ1Cℓ2δℓ1ℓ3δℓ2ℓ4δm1−m3δm2−m4 . (12.11)

12.4.2 Observed angular power spectrum

The actual observation of the temperature distribution is
made at a fixed observational position by varying n̂ over
the whole sky. The observed angular power spectrum is
defined according to Eq. (12.10) but without the average,

C
(o)
ℓ ≡ 1

4π

∫ ∫
dΩn̂dΩ

′
n̂Pℓ(n̂· n̂′) (∆T (n̂)∆T (n̂′))

=
1

4π

∫ ∫
dΩn̂dΩ′

n̂

4π

2ℓ+ 1

∑
m

Y ∗
ℓm(n̂)Yℓm(n̂′)

×
∑
ℓ′m′

∑
ℓ′′m′′

aℓ′m′a∗ℓ′′m′′Yℓ′m′(n̂)Y ∗
ℓ′′m′′(n̂′)

=
1

2ℓ+ 1

∑
m

|aℓm|2. (12.12)

So the observed angular power spectrum is approximated
by averaging over the magnetic quantum number m, and
hence the average of C(o)

ℓ is just the angular power spec-
trum. From Eq. (12.8)

⟨C(o)
ℓ ⟩ = 1

2ℓ+ 1

∑
m

⟨aℓma∗ℓm⟩

= Cℓ. (12.13)

If we take C(o)
ℓ to be Cℓ, how good is this approximation?

Let us calculate the cosmic variance, using Eqs. (12.8),
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(12.11), (12.13), and the fact that the aℓm’s are Gaussian
distributions,⟨
C

(o)
ℓ − Cℓ

Cℓ
·
C

(o)
ℓ′ − Cℓ′

Cℓ′

⟩

=
1

CℓCℓ′

(⟨
C

(o)
ℓ C

(o)
ℓ′

⟩
−
⟨
C

(o)
ℓ

⟩
Cℓ′−Cℓ

⟨
C

(o)
ℓ′

⟩
+CℓCℓ′

)
=

1

CℓCℓ′

[
1

(2ℓ+1)(2ℓ′+1)

∑
mm′

⟨aℓma∗ℓmaℓ′m′a∗ℓ′m′⟩−CℓCℓ′

]

=

(
2

2ℓ+ 1

)
δℓℓ′ . (12.14)

This result114) demonstrates the following important
properties of the cosmic variance: Cosmic variances of
different ℓ values are uncorrelated and the cosmic vari-
ance decreases with increasing ℓ. For large ℓ the cosmic
variance becomes very small and the C(o)

ℓ is practically
the theoretical angular power spectrum. So for ℓ > 5 we
will be able to extract the relevant cosmological infor-
mation from the measurement of C(o)

ℓ . However, there
is a limitation of how large a value of ℓ we can reach.
For very large ℓ, e.g., ℓ > 2000, the Sunyaev–Zeldovich
effect will be too strong to allow a useful measurement
of Cℓ.115)

12.5 Angular sensitivity, multipoles, and angular scales

In measuring the CMB anisotropy, the sensitivity is lim-
ited by the angular resolution of the experiment, i.e.,
the smallest angle of observations that its instrument
can resolve. The temperature fluctuation over the sky
expressed in terms of the multipole expansion Eq. (12.3)
allows us to determine the highest multipole value ℓres
that can be reached in a given experiment, and therefore
the kind of physics that can be probed and the sensitivity
it has.

12.5.1 Analysis by spherical harmonics

Let us first examine the angular resolution of the spheri-
cal harmonics.116). Since we have to define the average in
terms of the summation of the magnetic quantum num-
ber m, which appears in Yℓm(θ, ϕ) as a phase factor, we
need only to focus on the behavior of the polar angle
θ. The following is the argument for determining the
angular resolution.

The θ dependence of the spherical harmonics appears
in the associated Legendre function Pm

ℓ (cos θ), which can
be written in the Fourier form, i.e., linear combinations

114)If the observation is made over a fraction of the whole sky
fsky the above result will be multiplied by the factor

√
fsky, i.e.,

the cosmic variance is degraded by a factor 1/
√
fsky [285].

115)See, p. 138, [221].
116)We follow the treatment given in [282].

of cosnθ or sinnθ. The cosnθ is for even values of m
and sinnθ odd values of m, where n = ℓ − 2k ≥ 0, k =
0, 1, · · · .117) So the spherical harmonics, as determined
by the part of the associated Legendre function, is an
oscillating functions in θ. The oscillation increases with
increasing value of ℓ, and, for a fixed ℓ, decreases when m
increases. Hence for a fixed ℓ, the highest oscillating term
is with the 0 magnetic quantum number, i.e., Yℓ0, which
is a real function independent of ϕ. As θ increases from 0
to 180◦ the value of Yℓm given in the associated Legendre
function alternates between positive and negative values,
separated into ℓ−|m|+1 regions. Plots of Pm

ℓ (θ), m = 0,
ℓ = 7 and 10, in Fig. 12.5 can illustrate this clearly.118)

Therefore, in order to effectively probe the term pro-
portional to Yℓm(cos θ) of the temperature anisotropy,
the angular resolution of an experiment has to be no
worse than π/(ℓ+ 1). Measured in degrees we have

δθres ≈
180◦

ℓ+ 1
. (12.15)

Fig. 12.5 The horizontal axis is θ in degrees. The vertical
axis is Yℓ0(θ, ϕ). The red solid curve is for ℓ = 10 and the
blue dotted curve for m = 0. Note the 11 alternate positive
and negative valued regions for the case ℓ = 10 and 8 regions
for the case ℓ = 7.118).

117)For a list of Yℓm up to ℓ = 10, see [286]. The associated
Legendre polynomials are commonly expressed in powers of cos θ
and sin θ. They can be re-expressed in the Fourier form in terms
of cosmθ and sinmθ.

118)The functional forms of the two spherical harmonics can be
found in [286], and for the convenience of the reader they are listed
below:

Y7,0(θ, ϕ) =
1

32

√
15

π
(429ζ7 − 693ζ5 + 315ζ3 − 35ζ),

Y10,0(θ, ϕ) =
1

512

√
21

π
(46189ζ10 − 109395ζ8 + 90090ζ6

−30030ζ4 + 3465ζ2 − 63)

ζ ≡ cos θ.
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Hence for an observation with the angular resolution δres,
the largest value of ℓ that can be probed, for large ℓ is

ℓmax ≈ 180◦

δθres
. (12.16)

This is not a sharp cutoff, of course. For a given ex-
periment, it may be able to extend its sensitivity some-
what above ℓres. In an experiment the angular resolu-
tion will not be uniform, depending on the frequency of
the CMB photons observed, generally the higher the fre-
quency range, the better the angular resolution can be.

For a list of CMB and CMB anisotropy experiments,
see [267]. In Table 12.1 we list the largest spherical har-
monics, ℓres, that can be probed in the past experiments
which shows great improvement over the past 25 years.

12.5.2 Analysis by Fourier transform

In this subsection We will analyze further the multipole
expansion. Let us make a Fourier transform of the tem-
perature anisotropy. It is more quantitative and will be
in practical use for the analysis. We write

∆T (n̂) ≡ f(n̂x). (12.17)

For the moment we just mention that x is the comoving
distance of the LSS. We will discuss it in more detail
later.

We now make a Fourier analysis

f(n̂x) ≡ 1

(2π)3/2

∫
d3qeiq·n̂xf̃(q). (12.18)

We make a multipole expansion of the exponential func-
tion exp(iq.nx) as well as the Fourier components f̃(q):

eiq·n̂x =
∑
ℓm

iℓ(2ℓ+ 1)jℓ(qx)Pℓ(n̂· q̂)

= 4π
∑
ℓm

iℓjℓ(qx)Yℓm(n̂)Y ∗
ℓm(q̂), (12.19)

where q ≡ |q|, q̂ ≡ q/q. The summation runs for ℓ from
0 to ∞ and for m from −ℓ to ℓ. The function jℓ is the
spherical Bessel function of the first kind which we will
discuss in some detail later. Define

f̃(q) ≡
∑
ℓm

f̃ℓm(q)Yℓm(q̂). (12.20)

Table 12.1 Angular sensitivities of CMB anisotropy ex-
periments.

Experiment δθres ℓmax

COBE [287] 7◦ 26
WMAP [288] 0.23◦ 783
BOOMRANG, DASI, MAXIMA 10′ = 0.167◦ 1078
Planck [289] 5′ = 0.0833◦ 2160

We now write, using known properties of the spherical
harmonics,

f(n̂x) =
4π

(2π)3/2

∑
ℓm

∑
ℓ′m′

iℓ
∫
q2dqdΩq̂ f̃ℓ′m′(q)

Yℓ′m′(q̂)jℓ(qx)Yℓm(n̂)Y ∗
ℓm(q̂)

=
4π

(2π)3/2

∑
ℓm

iℓ
∫
q2dqf̃ℓm(q)jℓ(qx)Yℓm(n̂). (12.21)

Then we have, from Eq. (12.4),

aℓm =

∫
dΩn̂Y

∗
ℓm(n̂)f(n̂x)

=
4πiℓ

(2π)3/2

∫
q2dqf̃ℓm(q)jℓ(qx). (12.22)

The observed power spectrum, given in Eq. (12.12) be-
comes

c
(o)
ℓ =

2

(2ℓ+ 1)π

∑
m

∣∣∣∣∫ q2dqf̃ℓm(q)jℓ(qx)

∣∣∣∣2 . (12.23)

To proceed we have to know some of the properties of
the spherical Bessel function of the first kind jℓ(z). We
will study the scaled function defined by

j
(r)
ℓ (z) ≡

√
ℓ(ℓ+ 1)

2ℓ+ 1
jℓ(z). (12.24)

We note that the scaling is for the study of the scaled
angular power spectrum, ℓ(ℓ + 1)C

(o)
ℓ , which is in the

form that the data on the angular power spectrum are
generally presented.

12.5.3 Some properties of the Spherical Bessel function
of the first kind

The spherical Bessel function of the first kind of order ℓ
is defined as

jℓ(z) =

√
π

2z
Jℓ+ 1

2
(z) = (−z)ℓ

(
1

z

d
dz

)ℓ sin z
z

= −djℓ−1

dz
+ (ℓ− 1)

jℓ−1

z

= zℓ
∞∑

n=0

(−1)n

n!(2ℓ+ 2n+ 1)!!

(
z2

2

)n

, (12.25)

where Jℓ+ 1
2
(z) is the Bessel function of the first kind.

The spherical Bessel function has some special properties
that can be demonstrated by their graphic plots. These
properties are useful in the study of the CMB anisotropy.

We need some of the limiting forms of jℓ(z):

jℓ(z) ≈


zℓ

(2ℓ+ 1)!!

[
1− z2

2(2ℓ+ 1)
+ · · ·

]
, z ≪ 1,

1

z
sin
(
z +

ℓπ

2

)
, z > ℓ(ℓ+ 1).

(12.26)
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For large ℓ (ℓ≫ 1), neglecting the difference between ℓ+ 1
2 and ℓ,119) we have

jℓ(z)
ℓ≫1
≈


1

2
√
ℓz

(
1− z2

ℓ2

)−1/4

exp
(
−ℓ

(
ln
(
1 +

√
1− z2

ℓ2

)
− ln

(z
ℓ

)
−
√

1− z2

ℓ2

))
∼ 0, 0 < z < ℓ,

1

z

(
1− ℓ2

z2

)−1/4

cos
(
z

√
1− ℓ2

z2
− ℓ cos−1

(
ℓ

z

)
− π

4

)
, z > ℓ.

(12.27)

From the above expressions, it can be seen that for large
ℓ, in the region z < ℓ, jℓ(z) is mostly vanishingly small,
except for a small region in which z is very close to
ℓ. Hence for a good approximation we can set jℓ(z)
to zero for z < ℓ. Note that the above limiting form
are divergent at z = ℓ, but spherical Bessel functions

are well defined at this particular point. The divergence
is due to the approximation made that breaks down at
z = ℓ.

Later we also need first derivatives of large order
spherical Bessel functions. They can be derived from
Eq. (12.27):

j′ℓ(z)
ℓ≫1
≈


1

2ℓ

(
1− z2

ℓ2

)−3/4

exp
(
−ℓ

(
1−

√
1− z2

ℓ2

))
∼ 0, 0 < z < ℓ,

−1

z

(
1− ℓ2

z2

)1/4

sin
(
z

√
1− ℓ2

z2
− ℓ cos−1

(
ℓ

z

)
− π

4

)
, z > ℓ.

(12.28)

Again for large ℓ, the first derivative of jℓ(z) in the
region z < ℓ can be set to zero. Therefore, We need only
the explicit expression for the case z > ℓ.

In Fig. 12.6 we plot j(r)ℓ (z), for ℓ = 1, 10, 50, 100, 200,
500, 1000. We summarize some of the relevant proper-
ties of the scaled spherical Bessel function and its scaled
form, Eq. (12.24) as follows:

• They are oscillating functions around zero, and the
oscillation becomes rather fast for z > ℓ.

• They are very small for z small until z is close to
z = ℓ.

• The first maxima of j(r)ℓ (z), where the function has
the largest magnitude, occurs to a good approxima-
tion at

z(ℓ)max ≈ ℓ(1 + ℓ−0.69), (12.29)

which is valid for ℓ to be a few up to at least ℓ =
5000.

• The integration of j(r)ℓ (z) over the range of z from
0 to ∞ is approximately constant, independent of
ℓ, having the value approximately 0.89. The main
contribution of the integration comes from a small
range of values around the first maximum given in
Eq. (12.29).

• For z > ℓ the envelopes of the values of |jℓ(z)| and
|j(r)ℓ (z)| decrease like z−1.

Properties of the spherical Bessel function have inter-
esting implications as can be seen from Eq. (12.22). The
convergence of the q-integral requires that the Fourier
component of the temperature fluctuation, f̃ℓm(q), de-
creases in some power of q for large q. For f̃ℓm(q) de-
creases no less than q−2 the integral will be convergent
because jℓ(qz) ∼ (qx)−1 times an oscillating function as
given in Eq. (12.27). Furthermore, if f̃ℓm(q) does not
fluctuate violently, most of the contribution to the inte-
gral in Eq. (12.22) comes from a small region near

qx ∼ z(ℓ)max ∼ ℓ, (12.30)

for the following reasons: For the integration region be-
low qx ∼ ℓ, jℓ is very small and so the contribution to the
integral Eq. (12.22) is very small. In the region signifi-
cantly above qx ∼ ℓ, the rapid oscillation of jℓ together
with the fact that q2f̃ℓm goes to a constant or decreases,
the contribution to the integration will also be small.

When we examine the physics at the LSS the coor-
dinate x is the comoving distance of the LSS dC(zdec).
In a flat universe it equals to the corresponding comov-
ing angular diameter distance d(c)A (zdec). Hence in flat

119)The limiting forms are usually given for the Bessel function of
the first kind Jℓ+ 1

2
. See formulae of large order ℓ Bessel functions

given in [290], §8.452 and §8.453 respectively in p. 963 and p. 964.
Leading order terms of these limiting forms can also be found in
[291], formulae 9.3.2 and 9.3.3, p. 365 and p. 366.
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Fig. 12.6 The vertical axis is the scaled spherical Bessel
function j

(r)
ℓ (z), Upper panel: ℓ = 1 (red), ℓ = 10 (blue),

ℓ = 50 (black), and ℓ = 100 (pink); lower panel: ℓ = 200
(red), ℓ = 500 (blue), and ℓ = 1000 (purple).

universe the dominant contribution to the power spec-
trum Cℓ, from Eqs. (12.16) and (12.30), comes from the
Fourier modes

q ≈ ℓ

dC(zdec)
≤ 1

d
(c)
A (zdec)

180

δθres
, (12.31)

where

d
(c)
A (zdec) =

1

H0

∫ 1

1
1+zdec

dx√
1−ΩΛ(1− x4)+ΩM (1−x)

,

(12.32)

where ΩΛ and ΩM are the density fractions of the dark
energy and the matter at the present epoch. We have
used the fact that the sum of the present factions of the
dark energy, matter, and radiation saturates the density
of the universe, Ω0 = ΩΛ +ΩM +ΩR = 1. In Section 13
we will discuss in some details the various cosmological
distances.

12.6 Small fluctuations and linear cosmological
perturbation

The CMB anisotropy is an indication of the existence of
small deviation from cosmic uniformity in the early uni-

verse. It is the seed that leads to cosmic structures, in-
cluding CMB anisotropy, the formation of galaxies, clus-
ters, and other features which grow out of the evolution
of the universe to produce the lumpiness of the presently
observed universe.

The cosmos has been, so far, treated as a uniform and
isotropic entity, described as a perfect fluid in an FLRW
metric, with the dynamics governed by the Einstein field
equation. The features of such a universe can be sum-
marized as follows:

• The perfect fluid, which contains the matter-energy
components of the universe, is described by the
energy-momentum or the stress-energy tensor given
in Eqs. (9.9), (9.26), and (9.27).

• The FLRW metric tensor is given in three different
forms in Eqs. (9.16), (9.18), and (9.22). We will
ignore the curvature constant by taking κ = 0, based
on the current observation favoring a flat universe.

• The Einstein field equation, which relates the cosmic
energy-momentum tensor to the metric tensor, is
defined in Eqs. (9.5), (9.7), (9.4), and (9.9).

The theoretical framework, which describes small de-
viations from the cosmological state of homogeneity and
isotropy, is the cosmological perturbation theory, aug-
mented by the invariance of cosmological gauge trans-
formation. Basically, the cosmological perturbation is to
add small terms, which are perturbations, to the FLRW
metric terms and to the perfect fluid stress-energy ten-
sor, all of the stochastic nature. The cosmological gauge
transformation is the freedom in the choice of pertur-
bation functions due to the invariance of Einstein field
equation under space-time coordinate transformations.
Hence, similar to gauge transformation in field theo-
ries, the cosmological gauge transformation also provides
the freedom of gauge fixing conditions. The formula-
tion, even restricted to the first order in the perturbation
terms, which is a good approximation due to smallness
of the anisotropy, involves a large number of perturba-
tive functions entailing rather lengthy algebraic manip-
ulations. It took two Sections of [221], Sections 5 and 6,
to present the details, and another chapter, Section 7, to
obtain the final formula of the CMB anisotropy in ana-
lytical approximation. The perturbation involves totally
20 small parametric functions, 10 each for the metric ten-
sor and the energy-stress tensor. We sketch the analytic
result below, following closely the treatment of [221], to
which we refer for more details. We note that in field
theories the perturbations are small constant parame-
ters, while in cosmology perturbations are small arbi-
trary functions classified according to their spatial tensor
properties.

The cosmological perturbation theory provides a gen-
eral approach to the structure formation of the universe

Bing-Lin Young, Front. Phys. 12(2), 121201 (2017)
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and it consists of two parts. The first part is the gener-
ation of the primordial inhomogeneity produced by the
quantum fluctuation of the inflation field. This is theo-
retically very attractive but regarded somewhat specula-
tive. Recently, cosmological observations have provided
preliminary indication of inflation. More data will be
coming in from newer experiments.

The second part concerns with the growth of the small
inhomogeneity, over cosmic time, by gravitational ampli-
fication, into the presently observed structures, galaxies,
cluster, as well as the cosmic microwave background ra-
diation.

A few words about the jargons commonly used. The
original FLRW metric describing a completely homoge-
neous and isotropic universe is referred to as the unper-
turbed universe or the background universe. The FLRW
metric is referred to as the unperturbed metric or back-
ground metric. Quantities in the background universe
are functions of the cosmic time only, while perturbative
functions, which represent the inhomogeneities, depend
on the cosmic time as well as the comoving coordinates.
We concern ourselves only with the linear perturbation,
which are the effects up to the first, i.e., the lowest, order
in the perturbative quantities.

We will restrict ourselves to the case of the flat uni-
verse κ = 0. This is an important simplification to the
formalism. Without the presence of the curvature term,
different modes of the plane waver Fourier expansion of
perturbation functions of the metric and the dynamic
variables, which are related by the Einstein equation and
the energy-momentum conservation, are linearly inde-
pendent.

12.6.1 Linear metric perturbations and their
decomposition

The first order perturbation to the metric tensor involves
10 small arbitrary functions which we shall explore be-
low. Let us add a small perturbation, denoted as hµν , to
the FLRW metric,

gµν ≡ ḡµν + hµν ,

hµν = hνµ. (12.33)

ḡµν is the homogenous and isotropic FLRW background
metric given in Eq. (9.16), depending on the cosmic time
t only via the scale factor a(t) of the background metric.
In the flat space of κ = 0, we have

ḡ00 = ḡ00 = −1,

ḡ0j = ḡj0 = ḡ0j = ḡj0 = 0,

ḡjk = ḡkj = a4ḡjk = a4ḡkj = a2δjk, (12.34)

which involves only one function a(t), the FLRW or Hub-
ble scale factor. hµν are perturbations to the elements of

the FLRW metric. Being functions of the cosmic time t
and the comoving coordinates xj , they are no longer ho-
mogeneous or isotropic functions, but maintain the sym-
metric property of the unperturbed metric as indicated
in the second equation in (12.33).
hµν do not form a tensor in either the perturbed or

background 4-dimensional spaces. This can be seen as
follows. Since ḡµν is the inverse of ḡµν , i.e., ḡµλḡλν = δµν ,
and gµν the inverse of gµν , i.e., gµλgλν = δµν . the two
relations lead to the identity

hµν = −ḡµλḡνρhλρ. (12.35)

to the leading order in the perturbative expansion. Due
to the negative sign of the right-handed side, hµν and
hµν are not related as a second rank tensor in either the
perturbed or background space of general relativity. In
the matrix form

hµν =

(
h00 h0j
h0j hjk

)
, hµν =

−h00
1

a2
h0j

1

a2
h0j − 1

a4
hjk

 .

(12.36)

In general, a two-indexed symmetric function in a four
dimensional space, such as hµν = hνµ, is made of 10 inde-
pendent functions. Dealing with a framework involving
so many independent quantities is tedious and requires
an efficient way to categorize them according to all pos-
sible symmetries available. A useful symmetry is their
transformation property in the comoving three dimen-
sional spatial space. The 10 quantities are divided into
functions of 3-scalars, 3-vectors, and 3-tensors in the co-
moving spatial space. It is clear that h00 is a 3-scalar, h0j
(j = 1, 2, 3) a 3-vector, and hjk (j, k = 1, 2, 3) a rank-2 3-
tensor. Under rather general conditions a 3-vectors, V ,
involving three independent components, can be divided
into an irrotational (curl-less) part V// and a solenoidal
(divergenceless) part V⊥.120) In particular, the irrota-
tional part can be written as the divergence of a scalar
function, and the divergenceless part can be written as
the curl of another vector function. Then

V ≡ V// + V⊥,

∇× V// = 0, V// ≡ ∇ϕ,

∇ · V⊥ = 0, V// ≡ ∇×VVV, (12.37)

where VVV is another vector function.
A rank-2 symmetric 3-tensor, having 6 independent

components, can be similarly decomposed according to
120)This is the Helmholtz theorem on the decomposition of vector

fields. The vector under consideration is assumed to approach
to zero faster than |x|−1 at infinity. We will come back to this
condition later in Section 12.8.4.
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their trace and divergence properties. The trace property
separates the tensor terms into trace and traceless parts.
The divergence property divides the terms into number
of derivatives and whether or not they are divergenceless.
So we can build such a tensor by two scalar functions, a
vector function, and a reduced rank-2 symmetric tensor.
For the scalar functions, one is multiplied by δjk, and
the other subjects to two derivatives. Both contribute to
the trace and divergence of the tensor. The vector func-
tion, subjected to one derivative, is divergenceless. The
reduced rank-2 tensor is symmetric and traceless, and
divergenceless with respect to either of its indices. So
the scalar functions contribute to two components, the
vector and reduced tensor contribute each also two com-
ponents. Hence there are totally six independent compo-
nents.

These totally 10 independent perturbative functions
are all functions of the cosmic time t and the comoving
spatial coordinates xj . As functions of t they can poten-
tially grow in magnitude to give rise to sizable structures
as observed today. And as functions of x they can lead
to inhomogeneity and anisotropy. In details, we have,
following the notation of [221],121)

• h00 is a 3-scalar, invariant under spatial rotation.
We denote

h00 = −h00 ≡ −E. (12.38)

• h0j = hj0 is a 3-vector subject to the Helmholtz
decomposition and we can write

h0j = hj0 = a2h0j = a2hj0 ≡ a(∂jF +Gj),

∂jGj = 0, (12.39)

involving a scalar function F and divergenceless vec-
tor function G− j. We have used Eq. (12.35) which
defines the relation between h0j and h0j . Here and
below, repeated spatial indices means summing over
the comoving spatial coordinates.

• hjk is a symmetric 3-tensor which can be written as

hjk = hkj = −a4hjk = −a4hkj

≡ a2(Aδjk + ∂j∂kB + ∂jCk + ∂kCj +Djk),

∂jCj = 0,

∂jDjk = ∂kDjk = 0, Djj = 0. (12.40)

Again, Eq. (12.35) is used to relate hjk and hjk.
The 3-tensor is made of two 3-scalar functions A
and B and one divergenceless 3-vector Cj , and
one divergenceless and traceless symmetric 3-tensor
Djk.

In summary, the metric perturbation consists of

• Four 3-scalar function, E, F , A, and B;
• Two divergenceless 3-vectors, Gj and Cj , each made

of two independent functions, and
• One divergence-less and traceless symmetric 3-

tensor, Djk, which consists of only two independent
functions.

• Summarized in matrix form

ḡµν =

(
−1 0

0 a2δjk

)
, ḡµν =

−1 0

0
1

a2
δjk

 ,

gµν = ḡµν + δgµν = ḡµν + hµν

=

(
−1 + h00 h0j

h0j a2δjk + hjk

)
=

(
−1− E a(∂jF +Gj)(= g0j)

g0j a2((1 +A)δjk + ∂j∂kB + ∂jCk + ∂kCj +Djk)

)
,

gµν = ḡµν + δgµν = ḡµν − ḡµλḡνσδgλσ

=

−1− h00
1

a2
h0j

1

a2
h0j

1

a2
δjk − 1

a4
hjk

 =

−1 + E
1

a
(∂jF +Gj)(= g0j)

g0j
1

a2
((1−A)δjk − ∂j∂kB − ∂jCk − ∂kCj −Djk)

 . (12.41)

At the end of the next subsection, in the completion of
the presentation on the classification of the perturbation
functions and the stress-energy tensor, we will discuss
the reason and the use of this classification of the per-
turbation functions.

121)p. 224, [221].

12.6.2 Perturbation in the stress-energy tensor

Owing to the symmetry Tµν = Tνµ, the perturbation to
the stress-energy tensor will be made of 10 small func-
tions. Let us start with the stress-energy tensor of the
homogeneous and isotropic background universe. This
unperturbed stress-energy tensor, denoted by T̄µν , is
made of the homogeneous energy and pressure densi-
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ties, and the velocity 4-vector, described by a perfect
fluid as given in Eq. (9.9). As to be described below,
the unperturbed velocity vector is a constant 4-vector.
Hence T̄µν is determined by the unperturbed energy and
pressure densities of the various components of the back-
ground universe which are functions of the cosmic time
only. Furthermore, the energy and pressure densities
of individual components are related by the equation
of the state Eq. (9.43). The most general form of the
stress-energy tensor Tµν is more complicated, involving
the density and flux of the energy, momentum, pressure,
and shear-stress as depicted in Fig. 9.1. T00 is the energy
density. T0j = Tj0 is the momentum flux. And Tjk has
the pressure density as the diagonal elements Tjj and the
shear stress as the off-diagonal elements Tjk, j ̸= k. For
the background universe the energy-momentum tensor
T̄µν has only non-vanishing diagonal terms as given in
Eq. (9.27), and all the non-diagonal terms are zero. For
the perturbed stress-energy density, all terms can appear
with the added terms being small.

The perturbed stress-energy tensor will involve the
perturbed energy density

ρ ≡ ρ̄+ δρ (12.42)

and the perturbed pressure density

P ≡ P̄ + δP, (12.43)

both hold for the individual components of the universe.
The perturbed velocity 4-vector is denote by

uµ ≡ ūµ + δuµ. (12.44)

ρ̄, P̄, and ūµ are the unperturbed quantities in a ho-
mogeneous and isotropic universe, where ūµ is given by
Eq. (9.26), and δρ, δP, and δuµ are the corresponding
small perturbations. The unperturbed energy and pres-
sure densities are functions of the cosmic time t only and
defined in terms of the Hubble constant in Eqs. (9.36)
and (9.40),

ρ̄ =
3

8πGN

(
ȧ

a

)2

=
3

8πGN
H2,

P̄ = − 1

8πGN

(
2ä

a
+

(
ȧ

a

)2
)

= − 1

8πGN

(
2Ḣ + 3H2

)
. (12.45)

To proceed further we have to examine more closely
the velocity 4-vectors. Let us list the unperturbed veloc-
ity 4-vector again (see Eq. (9.26)):

ḡµν ūµūν = −1,

ū0 = −ū0 = 1,

ūj = ūj = 0. (12.46)

Normalizing the perturbed velocity 4-vector similarly, we
have

gµνuµuν = (ḡµν + hµν)(ūµ + δuµ)(ūν + δuν) = −1,

(12.47)

which gives, to the first order in the perturbation func-
tions, the following condition

ḡµν (ūµδuν + δuµūν) + hµν ūµūν = 0. (12.48)

Then we obtain,

δu0 = δu0 = −1

2
h00 =

1

2
h00 = −1

2
E. (12.49)

So δu0 is not independent, given by the metric pertur-
bation. Only the 3-vector part, denoted as δuj , is inde-
pendent, given by one 3-scalar denoted by δu(s) and one
divergenceless 3-vector δu(V )

j :

δuj ≡ ∂jδu
(S) + δu

(V)
j ,

∂jδu
(V)
j = 0. (12.50)

So far we have introduced 5 independent functions: δρ,
δP, δu(S), and δu

(V)
j with ∂jδu

(V)
j = 0 which define the

perturbed perfect fluid part of the stress-energy tensor.
This is a direct extension of the corresponding unper-
turbed expression in the form of a perfect fluid, as given
by Eq. (9.9), by replacing all unperturbed quantities by
their perturbed counter parts,

T (pf)
µν = Pgµν + (P + ρ)uµuν . (12.51)

However, the most general form of a rank-2 symmetric
tensor contains ten independent functions. Five more
independent functions can be added to the spatial part
of the perfect fluid term. Physically they are the shear-
stress components, or the dissipative corrections terms
[221] which contribute only to the spatial part of the
energy-momentum tensor Tjk. We write the dissipative
corrections as

δT (dc)
µν ≡(1−δ0µ)(1−δ0ν)

(
∂µ∂νπ

(S)+∂µπ
(V)
ν +∂νπ

(V)
µ +π(T)

µν

)
,

∂jπ
(V)
j =0,

π
(T)
jk =π

(T)
kj , πTjj=0, ∂jπ

(T)
jk =∂kπ

(T)
jk =0. (12.52)

Now, we have the complete perturbed energy-
momentum tensor

Tµν ≡ T̄µν + δTµν = T (pf)
µν + δT (dc)

µν , (12.53)

which consists of ten independent perturbative functions.
They have a structure similar to that of the metric per-
turbations:
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• Four 3-scalar functions δρ, δP, δu(S), and π(S);

• Two divergenceless 3-vectors, δu(V)
j and π

(V)
j , sat-

isfying the conditions ∂jδu(V)
j = 0 and ∂jpi

(V)
j = 0;

and
• One tracelss and divergenceless symmetric tensor
π
(T)
jk satisfying the conditions π(T)

jj = 0 and ∂jπ(T )
jk =

0.

From Eq. (12.53), we decompose the first order perturbation terms to the energy-stress tensor according to their
3-spatial symmetry properties:122)

δT00 = −ρ̄h00 + δρ,

δT0j = δTj0 = P̄h0j − (ρ̄+ P̄)
(
∂jδu

(S) + δu
(V)
j

)
, ∂jδu

(V)
j = 0,

δTjk = P̄hjk + a2
(
δPδjk + ∂j∂kπ

((S)) + ∂jπ
(V)
k + ∂jπ

(V)
k + π

(T)
jk

)
,

∂jπ
(V)
j = 0, π

(T)
jk = π

(T)
jk , π

(T)
jj = 0. (12.54)

Summarizing in forms of matrices, we have

ūµ =
[
−1, 0

]
, ūµ =

[
1, 0

]
,

uµ = ūµ + δuµ =

[
−1− E

2
, ∂jδu

(S) + δu
(V )
j

]
,

uµ = ūµ + δuµ =

[
1− E

2
,

1

a2

(
∂jδu

(S) + δu
(V )
j

)]
, (12.55)

and

Tµν = T̄µν + δTµν

=

(1+E)ρ̄+δρ a(∂jF +Gj)P̄ − (ρ̄+ P̄)
(
∂jδu

(S) + δu
(V )
j

)
(= T0j)

T0j a2P̄((1+A)δjk+∂j∂kB+∂jCk+∂kCj+Djk)+a
2
(
δPδjk+∂j∂kπ(S)+∂jπ

(V)
k +∂kπ

(V)
j +π

(T)
jk

)
.

(12.56)

Other forms of the perturbation terms of the stress-
energy tensor are given by

δTµν =
(
ḡµλδgνσ + δgµλḡνσ

)
T̄λσ + ḡµλḡνσδTλσ,

δTµ
ν = ḡµλδTλν + δgµλT̄λν . (12.57)

12.6.2.1 Comments on the tensor decomposition of
perturbation functions

We have now completed the modification of the metric
tensor and the energy-momentum tensor due to first or-
der perturbation, defined by 20 independent small func-
tions. Let us remark again that the perturbations hµν
and δTµν are not tensors in either the original 4-space
with the FLRW metric ḡµν or in the perturbed 4-space
with the metric gµν . Both ḡµν and gµν and given in
Eq. (12.41).

Let us comment on the reason for making the above
decomposition of the perturbation terms in terms of their

122)The expressions given in Eq. (12.54) are just the expressions
Eqs. (5.1.39)–(5.1.41), [221] p. 225.

3-space tensor properties other than the convenience in
classifying them. The additional reason lies in the ad-
vantage of the Fourier decomposition of these terms as
functions of the comoving coordinates x, in the form
of Eq. (12.18). The Einstein field equation, which de-
termine the relationships of the perturbation quantities
hold order by order in the perturbation expansion. All
terms appear in the Einstein field equation are of the
same order. In the present case of the first order calcu-
lation, all terms in a given equation are first order and
therefore linear in perturbation terms. Hence the differ-
ent Fourier components are independent.

This property provides a good tool to simplify cal-
culations. Since the derivative ∂j = ∂/∂xj means a
multiplication of qj of the corresponding Fourier com-
ponent, for arbitrary qj , the tensor nature of the var-
ious terms in the Einstein equation under considera-
tion says that the equation will be held separately for
terms of the same nature, i.e., those proportional to δjk
which involves scalar perturbation functions, those hav-
ing two derivatives which also involve scalar perturba-
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tion function, those having one derivative which involves
divergence-less vector functions, and those being trace-
less and divergence-less tensor terms. Hence each of the
four expressions of the Einstein field equation can poten-
tially be separated into four equations: two consists of
scalar function, one involving vector functions, and re-
maining one involving tensor functions. This simplifies
greatly the treatment of the perturbation expansion. As
we will show in the next subsection that this separation
into group of terms is gauge invariant.

12.6.3 Cosmological gauge transformation

Up to now we have been working in a definite coordi-
nate framework of reference, i.e., starting from a definite
comoving coordinate system in which the unperturbed
system is given by the FLRW metric together with the
unperturbed dynamic quantities. However, since our for-
malism is covariant under four-dimensional coordinate
transformations, the choice of a particular coordinate
system is, although convenient, but arbitrary. As we
can see below, a coordinate transformation will intro-
duce changes in the metric and dynamic quantities. Such
changes, being artifacts which do not change any of the
original physical system, are called gauge transforma-
tions. It is analogous to gauge transformations in field
theories due to the invariance of a Lagrangian in a sym-
metry transformation. In cosmology, gauge transforma-
tions involve changes of functional forms of the metric
and dynamic quantities, due to the freedom of making
coordinate transformation in general relativity. The dif-
ferences in the various quantities before and after the
gauge transformation, referred to as gauge terms, are
just artifacts. So the importance of the study of gauge
transformations is both to expose the gauge artifact and
to explore the possibility of imposing conditions on the
metric and/or dynamic terms to simplify calculations.

12.6.3.1 Gauge transformation of an arbitrary tensor

Let us consider a covariant tensor in the perturbed uni-
verse

Fµ1µ2···(x) ≡ F̄µ1µ2···(x) + δFµ1µ2···(x), (12.58)

where, as in the notation of §12.6.1, F̄µ1µ2···(x) is the
tensor function associated with the background universe
and a function of the cosmic time only, and δFµ1µ2···(x)
the fluctuation of the function. Under the coordinate
transformation

xµ → x′µ = xµ + ϵµ(x), (12.59)

where ϵµ consists of four independent functions. Both
ϵ(x)µ and ∂ϵ(x)µ/∂xν are small functions of x of, e.g.,
the same order of the cosmological perturbation terms.

Being a tensor of rank n Fµν···(x) is transformed into
F ′

µν···(x
′),

F ′
µ1µ2···(x

′) = Fν1ν2···(x)
∂xν1

∂x′µ1

∂xν2

∂x′µ2
· · · , (12.60)

which affords a functional change of the original tensor,
F → F ′, and a shift of it argument xµ → x′µ. The
functional change at a given point xµ is interpreted as a
gauge transformation at the point, it can be calculated
as follows.123)

We can rewrite Eq. (12.60) as

F ′
µ1µ2···(x

′)dx′µ1 dx′µ2 · · · = Fν1ν2···(x)dxν1dxν2 · · · .
(12.61)

Let us express F ′
µ1µ2···(x) in terms of Fµ1µ2···(x) and ϵµ.

For the left-handed side of Eq. (12.61), we make an ex-
pansion in xµ

F ′
µ1µ2···(x

′)=F ′
µ1µ2···(x)+ϵ

ν(x)
∂

∂xν
Fµ1µ2···(x)+O((ϵµ)2).

(12.62)

In calculations below we will keep only terms to the first
order in ϵµ. For the right-handed side, we express dxν
in terms of dx′µ, also to the first order in ϵν(x),

dxν =
∂xν

∂x′λ
dx′λ =

(
δνλ − ∂ϵν(x)

∂xλ

)
dx′λ (12.63)

Substituting Eqs. (12.62) and (12.63) into Eq. (12.61)
and identifying the coefficients of the product
dx′µ1dx′µ2 · · · on the two sides, we have

F ′
µ1µ2···(x) = Fµ1µ2···(x)−

∂ϵν(x)

∂xµ1
Fνµ2···(x)

−∂ϵ
ν(x)

∂xµ2
Fµ1ν···(x)− · · ·

−ϵν(x) ∂

∂xν
Fµ1µ2···(x),

≡ Fµ1µ2···(x) + ∆Fµ1µ2···(x),

≡ F̄µ1µ2···(x) + δFµ1µ2···(x) + ∆Fµ1µ2···(x).

(12.64)
We note that to the lowest order in the cosmic fluctuation
and the gauge transformation, the fluctuation term of the
tensor δFµ1µ2···(x) is not affected. We can now identify
the term generated by the gauge transformation to be,
to the first order in ϵµ,

∆Fµ1µ2···(x) ≡ −ϵν(x) ∂

∂xν
F̄µ1µ2···(x)−

∂ϵν(x)

∂xµ1
F̄νµ2···(x)

−∂ϵ
ν(x)

∂xµ2
F̄µ1ν···(x)− · · · . (12.65)

As already being stated above, F̄µ1µ2··· is a function of
the cosmic time t only. Obviously this is a first order
equation as stated above.

123)The consideration given below can be found in [292], pp 80–81.
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12.6.3.2 Gauge transformation of the metric and
stress-energy tensors

We can rewrite the infinitesimal coordinate shift 4-vector
ϵµ(x) in term of two 3-scalar functions, ϵ0(x) and ϵ(S)(x),
and one divergenceless 3-vector functions ϵj(x):

ϵµ ≡ (ϵ0, ϵj),

ϵj ≡ ∂jϵ
(S) + ϵ

(V)
j , ∂jϵ

(V)
j = 0, (12.66)

and to the first order in perturbation

ϵµ = ḡµνϵν ,

ϵ0 = −ϵ0, ϵj =
1

a2
ϵj ≡

1

a2

(
∂jϵ

(S) + ϵ
(V )
j

)
. (12.67)

We list, from Eq. (12.65), the general terms induced by
gauge transformation in a 4-scalar S, 4-vector Vµ, and
4-tensor Tµν :

∆S = −ϵ0 ˙̄S,

∆Vµ = −ϵ0 ˙̄Vµ − V̄λ
∂ϵλ

∂xµ
,

∆Tµν = −ϵ0 ˙̄Tµν − T̄µλ
∂ϵλ

∂xν
− T̄λν

∂ϵλ

∂xµ
. (12.68)

Below we will use ϵ0 = −ϵ0 instead of ϵ0.
In applications to scalar quantities we have, from the

first expression of Eq. (12.68),

∆ρ = −ϵ0 ˙̄ρ = ϵ0 ˙̄ρ, ∆P = −ϵ0 ˙̄P = ϵ0
˙̄P, (12.69)

for the energy and pressure 4-scalara densities. The
scalar gauge transformation of the first expression above
leads to the interesting result

δρα
˙̄ρα

= · · · = δPβ

˙̄Pβ

= · · · = ϵ0, (12.70)

where α and β denote any energy or matter components
of the universe, known as adiabatic perturbations. See
the relevant discussion given in Section 12.3.1. From the
second expression of Eq. (12.68), we can write

∆uµ = −ϵ0 ˙̄uµ − ūλ
∂ϵλ

∂xµ
= −ūλ

∂ϵλ

∂xµ
, (12.71)

where ūµ is given in Eq. (12.46). In components, we have

∆δu0 = ϵ̇0 = −ϵ̇0,
∆δuj = ∂jϵ

0 = −∂jϵ0 : ∆δu(S) = −ϵ0, ∆δu
(V)
j = 0,

(12.72)

for the velocity 4-vector function. We note that for pure
energy-stress tensor quantities only the gauge parameter
ϵ0 enters.

The gauge transformation of the metric tensor gives,
from the third expression of Eq. (12.68),

∆gµν = −ϵ0 ˙̄gµν − ḡµλ
∂ϵλ

∂xν
− ḡλν

∂ϵλ

∂xµ
, (12.73)

which leads to terms similar to δgµν ≡ hµν due to metric
perturbations. We summarize in matrix form:

ϵµ =
[
ϵ0, ∂jϵ

(S) + ϵ
(V )
j

]
,

ϵµ =

[
−ϵ0,

1

a2

(
∂jϵ

(S) + ϵ
(V )
j

)]
,

∂jϵ
(V )
j = 0, (12.74)

for the infinitesimal coordinate transformation,

∆uµ = [−ϵ̇0, −∂jϵ0] ,

∆uµ =

[
ϵ̇0, − 1

a2
∂jϵ

0

]
, (12.75)

for the gauge transformation of the velocity vector, and

∆gµν = ∆hjk =

[
∆h00 ∆h0j

∆h0j ∆hjk

]
=

[
−∆E a(∂j∆F +∆Gj)(= h0j)

h0j a2 (∆A+ ∂j∂k∆B + ∂j∆Ck + ∂k∆Cj +∆Djk)

]

=

−2ϵ̇0 −∂jϵ0 − a2∂t

(
1

a2
∂jϵ

(S) +
1

a2
ϵ
(V )
j

)
(= ∆h0j)

∆h0j 2ϵ0a
2Hδjk − ∂j

(
∂kϵ

(S) + ϵ
(V )
k

)
− ∂k

(
∂jϵ

(S) + ϵ
(V )
j

)
 (12.76)

for the gauge transformation of the metric.
Equation (12.76) shows that the gauge transformation

adds terms to the metric perturbation functions E, F ,
Gj , etc., listed in Eqs. (12.38), (12.39), (12.40). Denoting
these additional terms due to gauge transformation by
∆E, ∆F , ∆Gj , etc., we have

∆E = 2ϵ̇0, (12.77)

for the 3-scalar part ∆g00,

∆F = −ϵ0
a

− a∂t

(
ϵ(S)

a2

)
,
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∆Gj = −a∂t

(
ϵ
(V)
j

a2

)
, (12.78)

for the 3-vector part ∆g0j , and

∆A = 2Hϵ0, ∆B = − 2

a2
ϵ(S),

∆Cj = − 1

a2
ϵ
(V)
j , ∆Djk = 0, (12.79)

for the 3-tensor part ∆gjk. We note that Eq. (12.77)
is not independent, it follows from Eq. (12.49) and the

first expression of Eq. (12.72). This also serves as a con-
sistency check.

The information obtainable from gauge transforma-
tion of Tµν

∆Tµν = −ϵ0 ˙̄Tµν − T̄µλ
∂ϵλ

∂xν
− T̄λν

∂ϵλ

∂xµ
(12.80)

is already given in Eqs. (12.69) and (12.72),124) and they
agree with what are expected from Eq. (12.56). We write
in matrix form,

∆Tµν =

[
ϵ0 ˙̄ρ+ 2ρ̄ϵ̇0 ρ̄∂jϵ0 − P̄ ϵ̇j + 2HP̄ϵj
ρ̄∂jϵ0 − P̄ ϵ̇j + 2HP̄ϵj ϵ0∂t(a

2P̄)δjk − P̄(∂jϵk + ∂kϵj)

]
, (12.81)

where ϵj is given in Eq. (12.66). Gauge transformation
gives rise to no terms corresponding to dissipative terms
of Eq. (12.52). This can be understood from the fact that
the terms generated from gauge transformation is de-
termined in part by the unperturbed energy-momentum
tensor which has the form of a perfect fluid without any
dissipative terms. So we have

∆π(S) = ∆π
(V)
j = ∆π

(T)
jk = 0. (12.82)

Now, we have completed the functional changes under
gauge transformation.

12.6.3.3 Gauge invariant combinations

Let us first summarize the effect of the gauge transfor-
mation on the various scalar perturbation functions, re-
calling x0 → x0+ ϵ0, xj → xj +∂jϵ

(S)+ ϵ
(V )
j , ∂jϵ(V )

j = 0,

A→ A+ 2Hϵ0, δρ→ δρ+ ˙̄ρϵ0,

B → B − 2

a2
ϵ(S), δP → δP + ˙̄Pϵ′,

E → E + 2ϵ̇0, δu(S) → δu(S) − ϵ0,

F → F− 1

a

(
ϵ0+a

2∂0

(
ϵ(S)

a2

))
, π(S)→π(S). (12.83)

There are linear combinations of terms which are gauge
invariant. For scalar functions we have the following
gauge invariant combinations:
Â ≡ A+ 2Hδu(S),

Ê ≡ E + 2δu̇(S),

B̂F ≡ F− a

2
Ḃ− 1

a
δu(S)≡BF − 1

a
δu(S), BF ≡F− a

2
Ḃ,

δρ̂ ≡ δρ+ ˙̄ρδu(S) = δρ− 3H(ρ̄+ P̄)δu(S),

δP̂ ≡ δP + ˙̄Pδu(S),
π̂(S) ≡ π(S), (12.84)

124)Explicit expressions for ∆T00, ∆T0j , and ∆Tjk are given in
Eqs. (5.3.9)–(5.3.11), [221] p. 237.

where Eq. (9.30) has been used to rewrite δρ̂. Note that
all gauge invariant scalar perturbations are the respective
scalar perturbation together with the scalar part of the
vector fluid velocity δu(S).

Gauge invariant combinations of vector functions are

ĜCj ≡ Gj − aĊj ,

δûj = δuj , π̂
(V)
j = π

(V)
j . (12.85)

Terms of tensor perturbation are gauge invariant:

D̂jk = Djk, π̂
(T)
jk = π

(T)
jk . (12.86)

To demonstrate that terms listed in Eq. (12.84) are
gauge invariant, let us take the first quantity Â as an
example. Using Eqs. (12.79) and (12.72), we have

Â = A+ 2Hδu(S)

→ (A+∆A) + 2H(δu(S) +∆u(S))

= (A+ 2Hϵ0) + 2H(δu(S) − ϵ0)

= A+ 2Hδu(S). (12.87)

12.6.4 Perturbation to cosmological equations: Number
of equations and solutions

The Einstein equation is invariant under coordinate
transformations and, under perturbation expansion, can
be expanded into the zero order equation which describes
the homogeneous and isotropic universe, the first order
equations which involve linearly the perturbation terms
examined above, and higher orders. We concern our-
selves only with the first order perturbation. Involv-
ing 20 unknown functions, the derivation of the Ein-
stein equation for the first order perturbation term is
tedious. Fortunately, the comoving spatial symmetry al-
lows the separation of the perturbation terms into three
independent groups: the 3-scalars group containing 8
perturbation functions, the 3-vectors another 8 pertur-
bation functions, and 3-tensors 4 perturbation functions.
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This decomposition of perturbation functions into groups
greatly simplifies the equations to be solved, although
the number of independent equations increases signifi-
cantly. For the discussion of the CMB anisotropy only
the scalar functions are important. So we will concern
us with the expressions which involve scalar functions
only. The vector terms of the perturbation, satisfying
equations of the decaying type and therefore decreasing
in importance in the cosmic evolution, can be neglected
in the present epoch. The tensor terms contribute to
polarizations of CMB which is currently under intensive
experimental study.

As discussed in the preceding two sections, there are
eight scalar functions: A, B, E, F , δρ, δP, δu(S), and
π(S). They satisfy six equations: four equations ob-
tained from the Einstein equation and two equations
from energy-momentum conservation. Let us see how
we arrive at this counting of the number of equations.

• The Einstein equation is a symmetric rank-2 tensor
equation in the 4-space-time. They can be separated
into the (00), (0j), and (jk) components. While the
(00) and (0j) components give one equation each,
the (jk) component gives two equation. One equa-
tion of the (jk) component is proportional to δjk and
the other ∂j∂k. So we have four equations from the
Einstein equation.

• The energy-momentum conservation is a 4-

dimensional vector equation. The (0) component is
the energy conservation, and the (j) component the
momentum conservation. So we have two equations
from energy-momentum conservation.

Then the total number of independent equations is six
as advertised above.

Given 8 independent unknown functions but 6 equa-
tions, how are we going to determine these unknown
functions uniquely? Here the gauge invariance comes
into play. From Eqs. (12.69), (12.72), and (12.77)–
(12.79), we see that gauge transformations of the scalar
functions are determined by two scalar gauge parame-
ters, ϵ0 and ϵ(S). Hence by a judicious choice of the scalar
gauge parameters, we can fix the values of two of the
scalar perturbation functions, say, by setting them to
zero, the remaining six scalar perturbation functions can
therefore be uniquely determined once the initial condi-
tions are given.

12.6.4.1 Perturbation of Einstein field equation

The four expressions for scalar perturbations obtained
from the Einstein equation are listed in [221].125) They
are gauge invariant as they should. They can be rewrit-
ten in manifestly gauge invariant form by expressing they
in terms of the gauge invariant parametric functions de-
fined in Eq. (12.84). We list the gauge invariant form of
the four equations below:126)

−4πGN

(
δρ̂− δP̂ − ∇2π(S)

)
=

(
−1

2
∂2t − 3H∂t +

1

2a2
∇2

)
Â+

(
1

2
H∂t + 2H2 +

ä

a

)
Ê +

H

a
∇2B̂F ,

−16πGN∂j∂kπ
(S) =

1

a2
∂j∂k

(
Â+ Ê + 2a(∂t + 2H)B̂F

)
, ∂j

(
∂tÂ−HÊ

)
= 0,

−4πGN

(
δρ̂+ 3δP̂ +∇2π(S)

)
=

(
3

2
∂2t + 3H∂t

)
Â−

(
3

2
H∂t + 3

ä

a
+

1

2a2
∇2

)
Ê − 1

a
(∂t +H)∇2B̂F . (12.88)

A useful equation which we will refer to later can be
obtained from Eq. (12.88). Adding 3 times of the first
equation, one half of the second equation summed over
j and k, and the fourth equation, we obtain127)

125)Equations (5.1.44)–(5.1.47), p. 226, [221].
125)To rewrite Eqs. (5.1.44)–(5.1.47), p. 226, [221] in manifest

gauge-invariant expressions in terms of the gauge invarinat func-
tions given in Eq. (12.84), we have used Eq. (9.44) and the following
zeroth order identities to replace the background energy and pres-
sure densities: ρ̄ = [3/(8πGN )](ȧ/a)2, P̄ = −[1/(8πGN )][2ä/a +
(ȧ/a)2], and 4πGN (ρ̄+ P̄) = −Ḣ = H2 − ä/a.

127)In terms of original perturbation functions Eq. (12.89) is

−8πGNρ = −2H

(
3

2
Ȧ+

1

2
Ḃ

)
+

1

a2
∇2A+ 3H2E +

2

a
H∇2F,

which we will come back in the discussion of the synchronous gauge
in Section 12.7.2.

−8πGNδρ̂ =

(
−3H∂t +

1

a2
∇2

)
Â+3H2Ê+2

H

a
∇2B̂F .

(12.89)

Together with the third equation of Eq. (12.88), we have

∂j

(
8πGNδρ̂+

1

a2
∇2Â+ 2

H

a
∇2B̂F

)
= 0. (12.90)

12.6.4.2 Perturbation of energy-momentum
conservation equations

The conservation of energy-momentum, Tµν
;ν = 0 gives

two equations.128) The energy-momentum conservation
128)See, Eqs. (5.1.48) and (5.1.49), p. 226, [221]. Again the identi-

ties ρ̄ = (3/(8πGN ))(ȧ/a)2 and P̄ = −(1/(8πGN ))(2ä/a+(ȧ/a)2)
are used to rewrite them in explicitly gauge invariant forms.
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equations are not independent of the Einstein equation,
but they are convenient to use. In gauge invariant quan-
tities, we have

∂j

(
δP̂ +∇2π(S) +

1

2
(ρ̄+ P̄)Ê

)
= 0,

δ ˙̂ρ+ 3H
(
δρ̂+ δP̂

)
+H∇2π(S) +

3

2
(ρ̄+ P̄)Â

−1

a
(ρ̄+ P̄)∇2B̂F = 0. (12.91)

Following [221], we remark that the energy-momentum
conservation equations can be applied to a component or
a subset of components of the universe that is decoupled
from the rest of the universe, and hence do not exchange
energy and momentum with the latter. Neutrinos and
dark matter are such cosmic components. Neutrinos are
decouple from the rest of the universe when the universe
is the age of about 1 second. Dark matter is decoupled
even earlier. We should also note that in the application
of the energy-momentum conservation relationship to a
subset of component of the universe, the original expres-
sions should be used not their explicitly gauge invariant
form. In particular, the first expression in Eq. (12.91)
has the original form,

∂j

(
δP+∇2π(S)+(∂t+3H)((ρ̄+P̄)δu(S))+

1

2
(ρ̄+P̄)E

)
=0.

(12.92)

We note tat this equation holds true for an individual
system of the universe isolated from, not exchanging en-
ergy and momentum with, the rest of the universe, such
as the dark matter. This equation will be used in the
discussion of the synchronous gauge below.

To conclude this section, we notice that the differen-
tial equations derived from the Einstein equation and the
energy-momentum conservation equation are real in both
the configuration space of (t,x) and the wave number
space (t, q). This is a consequence of separating the per-
turbation functions according to their symmetry prop-
erties of scalar, vector, and tensor. The wave number
space is the Fourier transformation of the perturbation
functions, where q is the comoving wave number vector.
In the wave number space a spatial derivative ∂j is re-
placed by iqj . We shall come back to the wave-number
space in the discussion of the evolution of the perturba-
tion functions to be given in Section 12.8.

12.7 Gauge fixing

Because of gauge invariance of the individual equations
of the Einstein field equation and the energy momentum
conservation equation, perturbation functions generated
by a gauge transformation, given in Eqs. (12.77)–(12.79),

and (12.82), which are called gauge terms, satisfy the
Einstein field and energy-momentum conservation equa-
tions. This is a consequence of the fact that the Einstein
field equation Eq. (12.88) and the energy-momentum
conservation equation, Eq. (12.91) are linear in the per-
turbation functions. To the first order in the perturba-
tion, given a set of perturbation functions δρ, δP, A, · · · ,
the gauge transformed set, δρ+∆ρ, δP +∆P, A+∆A,
· · · , is a solution as well. Then the set of gauge functions
∆ρ, ∆P, ∆A, · · · is a solution too. Since the gauge terms
δρ, etc., are functions of arbitrary gauge parameter func-
tions ϵµ(x), these types of solutions must be spurious.
This creates the gauge ambiguity.

We can also see the problem of the gauge ambigu-
ity from the allowed solutions to the governing dynamic
equations of the system under consideration. We have
six equations, which include four equations from the
Einstein field equation Eq. (12.88) and two equations
from the energy-momentum conservation Eq. (12.91).
The functions entering these six equations are six gauge
invariant perturbation functions, i.e., δρ̂, etc., which
are linear combinations of the eight perturbation func-
tions δρ, etc., as listed in Eq. (12.84). The perturba-
tion function of the velocity potential, δu(S), appears in
Eqs. (12.88) and (12.91) implicitly, but not explicitly, by
helping defining the gauge invariant perturbation func-
tions. The perturbation functions F and B appear in
these equations only through their linear combination
BF ≡ F − (a/2)Ḃ. So we can obtain unique solutions
for the gauge invariant quantities. But, unless we can
determine two of the eight perturbation functions inde-
pendent of the governing dynamic equations, we will not
be able to have a set of unique solutions for the system.

This ambiguity, however, can be turned into advan-
tages, as remarked in the preceding section, by choosing
a gauge which allows us to determine the complete set
of solutions and possibly to simplify the calculation in-
volved. This is to fix the gauge parameters by choosing
some suitable values for ϵ0, ϵ(S), and ϵ

(V)
j , which allows

us to set some of the metric, density, and/or velocity per-
turbation functions to zero. As a result, no more gauge
transformations are allowed and, in the meantime, some
of the equations governing the perturbation functions are
simplified. Then the equations, as given in Eqs. (12.88)
and (12.91) in the case of scalar perturbations, can be
solved uniquely with the needed initial conditions. For
the general case, since there are four gauge parameters
under a coordinate shift, only four of the perturbation
functions, two 3-scalars and one divergenceless 3-vector
can be fixed. For the scalar sector which is relevant to the
CMB anisotropy power spectrum, the two scalar gauge
parameters are just right for what is necessary.

The gauge transformation of the scalar perturbations
involve two of the four gauge parameters, ϵ0 and ϵ(S).
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So we can fix two of the seven perturbation functions E,
F , A, B, δρ, δP, and δu(S), while remaining perturba-
tion function πS) is gauge invariant hence not involved
in gauge fixing. Let us examine the dependence of the
scalar perturbations on the gauge parameters. The gauge
transformation of E, A, δρ, δP, and δu(S) depend on ϵ0;
B depends on ϵ(S); F depends on both ϵ0 and ϵ(S). So on
the two functions to be chosen, either F , or B, or both
have to be included. However, there may be complica-
tions to some of the gauge choice due to the specific forms
of ∆E and ∆F . ∆E, given in Eq. (12.77), depends on
the time derivative of ϵ0 and it can leave undetermined a
part of ϵ0 that depends only on the spatial coordinates.
The form of ∆F given in Eq. (12.78) has the following
property: ∆F = 0 for

ϵ(S)(t, x) = −a(t)2
∫ t ϵ0(t

′, x)

a(t′)2
dt′. (12.93)

Then, unless the chosen gauge conditions can fix either
ϵ0 or ϵ(S), a residual gauge transformation is possible,
hence the perturbation functions involved can not be de-
termined uniquely. We will explore this in the discussion
of the synchronous gauge later.

There are two common choices of gauges due to their
merits in calculations: the Newtonian gauge and the Syn-
chronous gauge. Let us briefly discuss them below.

12.7.1 Newtonian gauge

The Newtonian gauge is defined by choosing the gauge
functions ϵ0 and ϵ(S) so that

B +∆B = B − 2

(
ϵ(S)

a2

)
= 0,

F +∆F = F − 1

a

[
ϵ0 + a2∂t

(
ϵ(S)

a2

)]
= 0. (12.94)

The first equation fixes ϵ(S) which, together with the
second equation, fixes ϵ0. The gauge ambiguity repre-
sented by Eq. (12.93) is removed. There is no more gauge
freedom to make additional gauge transformations with
non-vanishing ϵ0 and ϵ(S). In practice, the Newtonian
gauge equations are obtained by setting B = F = 0 in
Eqs. (12.88) and (12.91) and maintaining the same no-
tations for all other perturbation functions.

Usually some of the perturbation functions are re-
named, letting

E ≡ 2Φ, A ≡ −2Ψ. (12.95)

F = 0, B = 0, (12.96)

where Φ is referred to as the Newtonian potential and Ψ
the Newtonian curvature potential. They are also known
as the Bardeen potentials. In this gauge, elements of the

metric scalar perturbation functions are completely fixed
and simple

g
(NG)
00 |scalar = −(1 + 2Φ),

g
(NG)
0j |scalar = 0,

g
(NG)
jk |scalar = a2(1− 2Ψ)δjk. (12.97)

The line element is written as

ds(NG)2|scalar = −(1 + 2Φ)dt2

+a2(1− 2Ψ)δjkdxjdxk, (12.98)

and the stress-energy tensor is

T
(NG)
00 |scalar = (1 + 2Φ)|ρ̄+ δρ,

T
(NG)
0j |scalar = −(ρ̄+ P)∂ju

(S),

T
(NG)
jk |scalar = a2 ((1− 2Ψ)P + δP) δjk

+a2∂j∂kπ
(S). (12.99)

The Einstein field equation in the Newtonian gauge,
written out in details from Eq. (12.88)129), are

−4πGN

(
δρ− δP −∇2π(S)

)
=
(
H∂t + 2Ḣ + 6H2

)
Φ+

(
∂2t + 6H∂t −

1

a2
∇2

)
Ψ,

−8πGN∂j∂kπ
(S) =

1

a2
∂j∂k(Φ− Ψ),

4πGN (ρ̄+ P̄)∂jδu
(S) = −∂j (HΦ+ ∂tΨ) ,

4πGN

(
δρ+ 3δP +∇2π(S)

)
=

(
3H∂t + 6Ḣ + 6H2 +

1

a2
∇2

)
Φ+ (3∂2t + 6H∂t)Ψ.

(12.100)

The momentum and energy conservation equations, from
Eq. (12.91), are130)

∂j

(
δP+∇2π(S)+

1

a3
∂t

(
a3(ρ̄+P̄)δu(S)

)
+(ρ̄+P̄)Φ

)
=0,

δρ̇+ 3H(δρ+ δP) +∇2

(
(ρ̄+ P̄)

a2
δu(S) +Hπ(S)

)
−3(ρ̄+ P̄)∂tΨ = 0. (12.101)

Let us mention that in the Newtonian gauge the re-
lation given in Eq. (12.90) becomes particularly simple,
setting B = 0 and F = 0 and write out in terms of the

129)They can obtained directly from Eqs. (5.1.44)–(5.1.47), [221].
Note that we have used the identity: ä/a = Ḣ +H2.

130)They can be seen more directly from Eqs. (5.1.48) and
(5.1.49), [221].
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perturbation function explicitly

∂j

(
8πGNδρ̂+

1

a2
∇2Â− 2

H

a2
∇2δu(s)

)
= ∂j

(
8πGNδρ̂−

2

a2
∇2Ψ

)
= 0 (12.102)

This is a constraining equation which will be used in
Section 12.8 for the derivation of a crucial conservation
relation in the evolution of the early universe.

12.7.2 Synchronous gauge

The synchronous gauge, which will be used in the calcu-
lation of the CMB anisotropy, is defined by setting

E +∆E = E + 2ϵ̇0 = 0,

F +∆F = F − 1

a

[
ϵ0 + a2∂t

(
ϵ(S)

a2

)]
= 0. (12.103)

The scalar part of the metric is

g
(SG)
00 |scalar = −1, g

(SG)
0j |scalar = 0,

g
(SG)
jk |scalar = a2 [(1 +A)δjk + ∂j∂kB]

= a2 [(1− 2Ψ)δjk + ∂j∂kB] . (12.104)

The stress-energy tensor is

T
(SG)
00 |scalar = ρ̄+ δρ,

T
(SG)
0j |scalar = −

(
ρ̄+ P̄

)
∂ju

(S),

T
(SG)
jk |scalar = a2P[(1 +A)δjk + ∂j∂kB]

+a2(δP + ∂j∂Kπ
(S))

= a2P[(1− 2Ψ)δjk + ∂j∂kB]

+a2(δP + ∂j∂Kπ
(S)). (12.105)

Let us list the resultant field equations in the syn-
chronous gauge, as obtained from Eqs. (12.88) and
(12.91). They are given in [221] in terms of the origi-
nal perturbation functions. The Einstein field equations
are131)

−4πGN

(
δρ− δP −∇2π(S)

)
=

1

2
∇2

(
1

a2
A−HḂ

)
− 1

2
(∂t + 6H)Ȧ,

−16πGN∂j∂kπ
(S) =

1

a2
∂j∂k

(
A− (∂t + 3H)Ḃ

)
,

8πGN (ρ̄+ P̄)∂jδu
(S) = ∂jȦ,

−4πGN (δρ+ 3δP +∇2π(S))

=
1

a2

[
a2
(
3

2
Ȧ+∇2Ḃ

)]
≡ 1

a2
∂t(a

2ψ), (12.106)

131)See, in Eqs. (5.3.28)–(5.3.31), [221].

where it has been defined

ψ ≡ 1

2
(3Ȧ+∇2Ḃ). (12.107)

The energy and momentum conservation equations are
respectively132)

δρ̇+ 3H(δρ+ δP) +∇2

(
1

a2
(ρ̄+ P̄)δu(S) +Hπ(S)

)
+(ρ̄+ P̄)ψ = 0,

∂j

(
δP +∇2π(S) + (∂t + 3H)

(
(ρ̄+ P̄)δu(S)

))
= 0.

(12.108)

Equation (12.89)133), which will be useful later, takes the
following simple form in the synchronous gauge:

−8πGNδρ =
1

a2
∇2A− 2Hψ. (12.109)

Let us take a close look at the synchronous gauge con-
ditions Eq. (12.103). Both conditions are potentially
problematic. The first condition which determines only
the time dependent part of ϵ0 allows the addition to ϵ0
an arbitrary function which depends only on spatial co-
ordinates. The second condition allows a corresponding
part added to ϵ(S) as shown in Eq. (12.93). This freedom
is the residual gauge transformation allowed:134) The pa-
rameters of this residual gauge transformation are given
by

ϵ′0(t,x) ≡ −τ(x),

ϵ′(S)(t,x) ≡ a2(t)τ(x)

∫ t dt′
a2(t′)

, (12.110)

where τ(x) is an arbitrary time-independent function.
An arbitrary gauge function τ(x) will cause problems
because different sets of perturbation functions obtained
in the synchronous gauge may not be different, but
just related by a gauge transformation of the form of
Eq. (12.110).135)

However, this gauge ambiguity can be avoided if some
suitable condition can be imposed on some of the scalar
perturbation functions so that the freedom of residual
gauge transformation Eq. (12.110) is removed and all
perturbation functions in the synchronous gauge are
fixed. This is indeed the case in the ΛCDM model in
which a cold dark matter presents. As shown in [221]
the scalar 4-velocity perturbation function ϵ(S) of the
dark matter, having the gauge transformation property
as given in Eq. (12.72), is time-independent and such

132)See, Eqs. (5.3.34) and (5.3.32), [221].
133)See Footnote 127).
134)Equation (5.3.39), [221], p. 242.
135)A detailed discussion of the effect under the residual gauge

transformation Eq. (12.110) can be found in [221], pp 242–243.
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a gauge transformation makes the synchronous gauge
unique.136)

12.7.3 Remarks on other gauges and gauge conversions,
and gauge solutions

12.7.3.1 Other gauges and gauge conversions

There are other gauges proposed in the literature. Differ-
ent gauges can be used conveniently for different phys-
ical situation. Different gauges can be converted into
one another by transformations. In the two examples
given above, the gauge conditions are imposed on metric
perturbations. Gauge conditions can also be defined on
quantities entering in the energy-stress tensor, δρ, δP,
or δuµ.

Let us enumerate some of the other gauges appeared
in the literature: The spatially flat gauge sets F = 0 and
A = 0. There exists a non-trivial residual gauge transfor-
mation which requires additional condition to eliminate
this additional gauge freedom.137) The uniform density
gauge sets δρ = 0, which determines ϵ0. The other gauge
condition fixes a suitable metric perturbation term that
requires either F = 0 or B = 0. The comoving gauge
is defined by δu(S) = 0 plus F = 0 or B = 0. More
gauge conditions can be found in the literature, e.g.,
[224], [293], and for earlier works [294].

136)The detailed argument can be found in [221], p. 243. For the
pedagogic reason we give the argument for it here. The cold dark
matter is non-relativistic, its pressure density vanishes, P̄DM = 0.
We can set the perturbation of its pressure to zero too. The vanish-
ing of the dark matter pressure is maintained by the gauge trans-
formation because of Eq. (12.68). We can also set its dissipative
part to zero π

(S)
DM = 0. Then the first equation of the energy-

momentum conservation, Eq. (12.92), which holds for the dark
matter separately, becomes:

∂j

(
ρ̄DM∂tδu

(S)
DM + δu

(S)
DM(∂t + 3H)ρ̄DM

)
= 0.

Since ρ̄DM ∼ 1/a3, then (∂t + 3H)ρ̄DM = 0, the above expression
is reduced to ∂j∂tu

(S) = constant. The most general solution
for this equation is that u(S)DM is the sum of two functions, one
is a function of the cosmic time only and the other a function
of the comoving coordinates only. The first function gives rise
to a homogeneous and isotropic velocity potential, which will be
ignored because it leads to a zero mode solution. This is equivalent
to drop the overall spatial derivative ∂j in Eq. (12.92). The second
function leads to a dark matter velocity potential as a function
of the comoving coordinate only, called, say, δu′(S)(x). Then a
gauge transformation with the gauge parameter ϵ0(x) = δu′(S)(x)
can be made to obtain a vanishing dark matter velocity potential
δu

(S)
DM = 0, which is required physically. This then fixes the gauge

completely.
137)The residual gauge transformation is

ϵ′(S) = a2(t)τ(x),

where τ(x) is an arbitrary function of the comoving spatial coor-
dinates only.

12.7.3.2 Gauge conversions

Although different gauges are preferred in different situ-
ations, e.g., for the reason of simplification of the calcu-
lations involved, all gauges are equivalent and one gauge
can be converted into another by suitable gauge transfor-
mations. A discussion on and some examples of the con-
version among different gauges can be found in [221].138).

12.7.3.3 Gauge solutions

We make two comments concerning some of the general
properties of gauge functions. We will use them to derive
a set of solution in the next section 12.8 in the discussion
of the early cosmic evolution.

• Gauge solutions. Since the governing equations,
i.e., the Einstein field equations and the energy-
momentum conservation equations, are linear and
homogeneous in the perturbation functions, and
are gauge invariant, as demonstrated explicitly
in Eqs. (12.88) and (12.91), the gauge transfor-
mation functions, ∆ρ, etc., and ∆E, etc. given
in Eqs. (12.66), (12.69), (12.72), (12.77), (12.78),
(12.79), and (12.82), are solutions of the Einstein
Field and energy-momentum conservation solutions.
This is also the reason why we can obtained solu-
tions to these governing equations by fixing a gauge.

• A noted point. From Eqs. (12.78) and (12.79),
it seems that arbitrary gauge functions of ϵ0, ϵ(S),
and ϵ(V )

j would contribute to the perturbation func-
tion ∆B, ∆F , ∆Gj , and ∆Gj . However, these
perturbation functions enter the Einstein field and
energy-momentum conservation equations through
their spatially derivatives, some simple functional
dependence in the comoving coordinates will not
contribute. As seen in Eqs. (12.88) and (12.91), F
and Bj enter their second derivatives, so constant
and linear in xj in the gauge functions will have no
effect. Functional restrictions on ϵ

(V )
j can be seen

from the equations for the vector perturbation func-
tions which we refer to [221]139)

12.8 Very early cosmic perturbation – Outside the
Horizon

12.8.1 Issues involved – A preliminary discussion

To begin we describe some of the salient points of the
cosmological perturbation.

• The cosmological perturbations occurs at the very
early time of the universe, seeded by quantum fluc-
tuations taking place during the inflation epoch.

138)See pp 243–255, [221].
139)[221], Eqs. (5.1.50) and (5.1.51).
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However, observations of the effects of the perturba-
tions, such as the CMB anisotropy, is made at the
present time, on what have been imprinted on the
last scattering surface. The last scattering surface
(LSS), where the cosmic photons decouple from the
baryonic plasma, begins the epoch when the cosmic
photon can propagate freely, carrying the LSS in-
formation with them unaltered to the present to be
observed. Hence in order to study the effect of the
cosmic perturbation, we have to know how the early
perturbations have evolved as the cosmos grows.

• From the time of inflation to the much later time
of observation, the universe has undergone stages
of transformations. They include the reheating of
the universe after the inflation, the freeze out of
the dark matter, and perhaps other drastic stages
of evolution of the universe. During reheating, the
vacuum energy is presumably transferred to regular
particles, such as quarks, gauge boson, etc. Aside
from this very general picture, we know very little
of the dynamics of the transformation process. on
dark matter, for instance, the situation is highly un-
certain. We do not know much about properties of
the dark matter, what kind of particles they are,
and what kind of dynamics they obey. Hence we
need to have a mechanism in our calculation to en-
sure that the information of the very early cosmos
is preserved down to an epoch when the properties
of the universe becomes known, And from there on,
the evolution of the universe down to LSS can be
calculated with certainty.

• Perturbations to the metric and stress-energy tensor
have well-defined time dependence, governed by the
Einstein field equation. In contrast, their spatial
dependence, which has a random distribution, is not
precisely determined but defined stochastically.
The random spatial dependence entails the types
of observations that can be made. In the study of
the temperature deviation, for instance, one can not
predict the temperature at a given point of the sky.
But one can expect to measure the average temper-
ature of the sky and the temperature anisotropy cor-
relation for any two directions, as described respec-
tively in Eqs. (12.5) and (12.9). Another example,
say, on large structures of galaxies, one cannot ask
to calculate the distance of a nearest large galaxy
from the Milky Way. But one can ask to estimate
the average separation between two large galax-
ies.140) Theses examples of what can and cannot
be carried out meaningfully in cosmological studies
suggest that cosmological perturbations have to be
treated as stochastic variables in their spatial de-
pendence.

140)See [224], p. 85.

• Equations governing the perturbations are linear ho-
mogeneous coupled equation involving both time
and spatial derivatives. In the scalar case, there
are six unknown gauge invariant scalar perturbation
functions and six equations, and by fixing the gauge
to determine the eight scalar perturbation functions,
in the presence of both time and spatial derivatives
in the six equations. This is a rather complicate
situation. Fortunately, we can simplify the system
by making the spatial coordinate Fourier transfor-
mation of the perturbation functions in terms of the
exponential transformation

exp(iq·x) = exp
(

i
(q
a

)
· (ax)

)
, (12.111)

where a = a(t) is the Hubble scale factor and
q/a ≡= |q|/a is the physical wave-number. Since
we keep only terms which are linear in the pertur-
bation functions, the different Fourier modes, which
are also known as the normal modes, with fixed q/a
at a given cosmic time t are independent. Hence
the Einstein field and energy-momentum conserva-
tion equations governing the perturbation functions
can be expressed in terms of their Fourier modes.
Furthermore, a spatial derivative ∂j becomes a mul-
tiplication factor iq. So the equations of the Fourier
modes can contain only time derivatives.

• The exact solution of the evolution of the cosmic
perturbation functions has to be carried out in the
kinetic theory using the Boltzmann equation,141) re-
sulting in a system of equations too complicate to
be possibly solved analytically. Hence, for the pur-
pose of making detailed comparison between theory
and observations, numerical simulations are neces-
sary. Modern computing power is no longer a chal-
lenge for such tasks. But numerical solutions are not
transparent to the relevant physics involved. Work-
ing in the hydrodynamic limit [221] gives a set of
analytic solutions which fit well with the observa-
tion of CMB. We follow this approach closely in the
rest of this Section.

12.8.2 Fourier decomposition and the stochastic
property

The perturbation functions are stochastic variables,
characterized by the averages of their products, i.e.,
their n-point correlation functions at equal time, <
A(t,x)B(t,y) · · · >. To solve the Einstein field and
energy-momentum conservation equations we need a pro-
cedure to factor out the stochasticity dependence of the
perturbation functions and disentangle some of the com-
plications as discussed above. In carrying out this pro-
cess, we can express the equations in terms of Fourier

141)For a discussion of the kinetic theory we refer to [221], §6.1,
pp 258–274.
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amplitudes of the perturbation functions for a give mode
q. Let us consider a typical perturbation functionX(t,x)
and make a Fourier decomposition in the expanding
background universe,

X(t,x) =
∑
n

∫
d3qei(q/a)·(ax)αn(q)Xnq(t), (12.112)

where x is the comoving coordinates and q the comoving
wave vector. n enumerates the different mode of inde-
pendent solutions and αn(q) the corresponding stochas-
tic variable. We need to know the statistic property of
the stochastic variable which we will discuss below. The
Fourier component Xnq(t),142) labeled for the n-th so-
lution of mode q, is an ordinary function of the cosmic
time t and the wave-number q ≡ |q|. Since the Fourier
component is related to a physical quantity, it does not
dependent on the direction of the wave vector, which is
associated with the statistic variable.

The physical wave number is q/a, from which we can
define the physical wavelength of the given mode q,

λq ≡ 2πa

q
, (12.113)

which will be useful in devising a conservation quantity
under the evolution of the universe. As expected, the
wavelength, which is proportional to the Hubble expan-
sion parameter, is stretched in time as the universe ex-
pands. During the inflationary epoch all wavelengths are
stretched exponentially. In the radiation-dominated pe-
riod, the stretched factor is proportional to t1/2, while in
the matter-dominated period t2/3. See Table 9.2 for an
explanation.

As indicated in Eq. (12.112), stochastic properties of
the perturbation functions are contained in the scale fac-
tor of stochastic variables αn(q), which also embodies
the directional information of the wave vector. For a
given mode n, αn(q) is common to all eight scalar per-
turbation functions E, F , A, B, δρ, δP, u(S), and π(S),
which have contributions from the various energy and
matter components of the universe. After the choice
of a gauge, there are six independent scalar perturba-
tion functions which satisfy six linearly coupled equa-
tions. So there are six independent sets of solutions,
hence n = 1, 2, · · · , 6. If some relationships exist among
the perturbation functions, the number of independent
coupled equations and hence the highest value of n will
be reduced. The differential equations Eqs. (12.88) and
(12.91), or Eqs. (12.100) and (12.101) in the Newto-
nian gauge, or Eqs. (12.106)–(12.108) in the synchronous
gauge, can be rewritten in terms of their Fourier am-
plitudes of a given mode. As commented at the end
of §12.6, the differential equations are real in both the
Fourier space and the comoving coordinate space.

142)The notation follows that of [221].

The stochastic variable αn(q) can be chosen in the
“orthonormal” basis,143) so that the two-point average of
αn(q) is orthogonal in the mode number as well as in the
wave number,

⟨αn1(q1)α
∗
n2
(q2)⟩ = δn1n2δ

3(q1 − q2). (12.114)

This allows us to project out a particular normal mode
of a scalar perturbation function, i.e.,

⟨∂j1∂j2 · · ·X(t,x)α∗
n(q)⟩ = (iqj1)(iqj2) · · · eq·xXnq(t).

(12.115)

The two-point correlation function at equal time is
straightforward to obtain,

⟨X1(t,x)X2(t,y)⟩

=
∑
n1,n2

∫
d3q1d3q2eiq1·xe−iq2·y

⟨αn1(q1)α
∗
n2
(q2)⟩X1n1q1(t)X

∗
2n2q2(t)

=
∑
n

∫
d3qeiq·(x−y)X1nq(t)X

∗
2nq(t), (12.116)

which shows that the correlation function depends on the
relative distance of the two comoving coordinate points
under consideration, x − y, not their actual positions.
This reflects the stochastic nature of the original dis-
tribution functions X(t,x) and Y (t,y). Let us remark
that the separation of the perturbation functions into in-
dependent scalar, vector, and tensor parts requires that
averages of the cross products of scalar-vector, scalar-
tensor, and vector-tensor stochastic variables vanish. So
the scalar, vector, and tensor perturbation functions
have different stochastic variables.

Now we can straightforwardly write down the equa-
tions governing the scalar perturbation functions in their
Fourier amplitudes, for a given mode n and wave-number
q. The equations in the synchronous gauge, Eqs. (12.106)
and (12.108), which will be used later, are

−4πGN

(
δρq − δPq + q2π(S)

q

)
= − q2

2a2
(Aq − a2HḂq)−

1

2
(∂t + 6H)Ȧq,

−16πGNπ
(S)
q =

1

a2
Aq − (∂t + 3H)Ḃq,

8πGN (ρ̄+ P̄)δu(S)
q = Ȧq,

−4π
(
δρq + 3δPq − q2π(S)

q

)
=

1

a2
∂t(a

2ψq), (12.117)

where

ψq ≡ 1

2
(3Ȧq − q2Ḃq). (12.118)

143)We refer to [221], pp 229–231 for a proof that an orthonormal
basis can always be constructed.
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for the Einstein field equations, and

δρ̇q + 3H(δρq + δPq)− q2
[
1

a2
(ρ̄+ P̄)δu(S)

q +Hπ(S)
q

]
+3(ρ̄+ P̄)ψq = 0,

δPq − q2π(S)
q + (∂t + 3H)

[
(ρ̄+ P̄)δu(S)

q

]
= 0, (12.119)

for the energy and momentum conservation equations.
To simplify the notation we have dropped the notation
for the solution mode number n and suppressed the time
dependence t as well. So Aq, etc., are Anq(t), etc. And

A(t,x) ≡
∑
n

∫
d3qe(aq)·(ax)αn(q)Anq, (12.120)

etc. This notation will be used below.

12.8.3 Conservation outside the horizon

The study of perturbation functions in the wave num-
ber space is particularly useful because of the relation
between the expansion of the universe and the physical
wavelength. As already stated, the discussion below fol-
lows closely that given in [221] to which we refer for fur-
ther consultation. During inflation the metric scale fac-
tor a grows exponentially, and the physical wavelength
defined in Eq. (12.113) becomes exponentially long for a
given comoving wave number q. However, the Hubble ex-
pansion rate H = ȧ/a stays the same. Hence, during in-
flation and for a sufficient long period of time afterwards,
most of the physical wavelengths 2π/(q/a) are longer
than the Hubble length H−1,144) so 2π/(q/a) ≫ H−1,
then

q

aH
≪ 1. (12.121)

except for a small range of very short wavelengths. The
Contribution from the very short wavelengths region,
which corresponds to very large q values, will be very
small, due to rapid oscillations of the exponential factor
in the Fourier transformation. Fourier modes satisfy-
ing Eq. (12.121) are said to be outside the horizon.145)

Contributions of the Fourier modes inside the horizon
are negligible during inflation and a certain period after-
wards.

In order for what has happened in inflation to maintain
its effect to the much later stage of the universe, there
has to be a conservation law to preserve it in the process
of cosmic evolution. Such a conservation law, which does
exit as we shall see below, can be stated as follows:

144)In the natural units. See the discussion of cosmologic lengths
given in Section 13.

145)This is not the particle horizon or event horizon discussed in
Section 13. However, notice that H(t)−1 is the Hubble length at
the cosmic time t. The particle horizon of the present epoch is
H−1

0 = H(t0)−1 multiplied by a numerical factor of the order of
unity, where t0 is the present time of the universe.

Conservation outside the horizon: Inde-
pendent of the constituents of the universe,
there exist adiabatic solutions to the Einstein
field equation in which certain combinations
of perturbation functions are time independent
outside the horizon.

The conserved quantities referred in the above theorem
are gauge invariant combinations of perturbation func-
tions. Let us consider the following gauge invariant
quantities, for convenience in the Newtonian gauge

R ≡ 1

2
Â = −Ψ +Hδu(S),

ζ ≡ 1

2
Â+

δρ̂

3(ρ̄+ P̄)
= −Ψ +

δρ

3(ρ̄+ P̄)

= R+
1

12π2GN (ρ̄+ P̄)a2
∇2Ψ, (12.122)

where the gauge invariant combinations Â and δρ̂ are
given in Eq. (12.84), and the scalar perturbation func-
tion A = −2Ψ enters in the 3-tensor part of the met-
ric perturbation hjk in the form a2Aδjk as defined in
Eq. (12.40). In obtaining the final result of the second
expression in Eq. (12.122) we have used Eq. (12.102) by
dropping the overall spatial derivative ∂j which is just to
ignore a zero mode term in the Fourier space. This can
be seen by writing Eq. (12.102) in its Fourier component,

qj

(
δρ̄q +

q2

4πGNa2
Ψq

)
= 0. (12.123)

Dropping the multiplicative factor qj means the omission
of a term proportional to the delta function of the wave
vector δ(q), i.e., a zero mode term.

In the wave-number space, Eq. (12.122) is

Rq = −Ψq +Hδu(S)
q ,

ζq = Rq −
q2

12πGN (ρ̄+ P̄)a2
Ψq. (12.124)

Equation (12.124) shows that outside the horizon Rq and
ζq are practically identical,

(Rq − ζq) |outside of horizon= 0, (12.125)

because the coefficient of Ψq in the second expression is
very small outside the horizon

q2

12πGN (ρ̄+ P̄)a2
= ξ

( q

aH

)2
≪ 1, (12.126)

where ξ is the order of unity.146) Being gauge invariant,
this Newtonian relation between Rq and ζq also holds in

146)As can be seen from Table 9.1 which lists the equation of state
of possible components of the very early universe. Since the early
universe is dominated by radiation, not by dark matter or dark
energy, P̄ = ρ̄/3, then 12πGN (ρ̄+ P̄) = 6H2.
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other gauges. Rq is conserved outside the horizon in the
inflation theory driven by a single scalar field, so ζq is
also conserved in this situation.

Next, we shall prove that ζ is conserved outside the
horizon for a particular set of perturbations, i.e., the
adiabatic perturbation which we will define when we get
to it. Let us take the time derivative of ζ, using the last
term in the middle expression of Eq. (12.122), we have
in the wave number space

ζ̇ = −Ψ̇ +
δρ̇q

3(ρ̄+ P̄)
−

˙̄ρ+ ˙̄P
3(ρ̄+ P̄)2

δρq

= −Ψ̇ +
1

3(ρ̄+ P̄)

[
− 3H(δρq + δPq)

+
q2

a2
(ρ̄+ P̄)δu(S)

q + q2Hπ(S)
q + 3(ρ̄+ P̄)Ψ̇

]

−
˙̄ρ+ ˙̄P

3(ρ̄+ P̄)2
δρ̂q, (12.127)

where we have used the first equation in Eq. (12.119) to
rewrite δρ̇q. We can further simplify the expression by
the relationship given in the second and third expressions
of Eq. (12.100),

ζ̇ =
1

3(ρ̄+ P̄)2

(
˙̄ρδPq − ˙̄Pδρq

)
+

q2

12πGN (ρ̄+ P̄)a2

(
−3

2
HΦq − Ψ̇q +

1

2
HΨq

)
.

(12.128)

Outside the horizon the second term on the right-handed
side is very small, then we have

ζ̇ |outside the horizon=
1

3(ρ̄+ P̄)2

(
˙̄ρδPq − ˙̄Pδρq

)
.

(12.129)

In the case of adiabatic perturbations which means147)

δραq
˙̄ρα

= · · · = δPβq

˙̄Pβ

= · · · , (12.130)

where α and β denote any matter or energy components
of the universe, ζ is conserved, irrespective of the types
of energy and matter components of the universe.

ζ̇ | outside the horizon
adiabatic perturbation

= 0. (12.131)

Similarly, R is also conserved under the same conditions.
147)We have encountered adiabatic perturbations in Section 12.3.1

which concerns with density perturbation of different particle
species of the universe.

For the later usage we rewrite R and ζ in the syn-
chronous gauge below by using Eq. (12.109) to replace
A. For this purpose we consider ∇2R and ∇2ζ instead:

∇2R |SG = −4πGNa
2δρ+ a2Hψ +H∇2δu(S),

∇2ζ |SG = −4πGNa
2δρ+ a2Hψ +

∇2δρ

3(ρ̄+ P̄)

= −4πGNa
2δρ+ a2Hψ − H∇2δρ

˙̄ρ
, (12.132)

where the subscript SG means in the synchronous gauge
and ψ ≡ (3Ȧ + ∇2Ḃ)/2 ≡ −3Ψ̇ + ∇2Ḃ/2 is defined in
Eq. (12.107). In the last line Eq. (9.45) has been used.

12.8.4 Adiabatic solutions

In this subsection we will demonstrate the existence of
adiabatic solutions. We first observe that gauge trans-
formations generate terms in density functions ∆ρ and
∆P that are adiabatic like, as shown in Eq. (12.70). To-
gether with terms generated in other perturbation func-
tions given in Eqs. (12.69), (12.72), (12.77)–(12.79), they
satisfy the Einstein field and energy-momentum conser-
vation equations. But they can be transformed away.
Hence they are gauge terms, not genuine solutions. This
gauge trap can be avoided once we fix a gauge to work
in. We choose the Newtonian gauge. As we have shown
earlier, in the Newtonian, once we set B = F = 0, there
does not exist additional gauge transformations that al-
low the system to stay in the Newtonian gauge. The
solutions obtained are unique.

The trick to find an adiabatic solution is to begin in a
homogeneous universe in which all the variables depend
only on the cosmic time. We note two helpful points
about the homogeneous universe in the Newtonian gauge
relevant to our consideration.148)

• The first point is that in a homogeneous universe
the scalar perturbation functions B and F do not
contribute in general. This is due the fact, as can
be seen from Eqs. (12.88) and (12.91), that they ap-
pear in the equations together in the term B̂F and
under two spatial derivatives ∇2 or ∂j∂k. Hence
if we have a non-trivial coordinate transformation
which maintains the cosmic homogeneity, the per-
turbation functions so generates is not a gauge mode
and is adiabatic owning to Eq. (12.70).

• The second point is that the solution of the ho-
mogeneous unverse, in which all spatial derivatives
vanish, can be considered as a zero mode solution,
q = 0, for the general, inhomogeneous universe.
Hence a generalization of the zero mode solution to
the case q ̸= 0, if it exist, gives us the perturbation
function that we are looking for.

148)As noted earlier, the discussion follows that given in [221].
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12.8.4.1 Adiabatic solution in the homogeneous universe

In the homogeneous universe a special gauge transfor-
mation is allowed even in the Newtonian gauge as we
can see below. Let us make a change of the coordinate
variables149)

xµ → xµ + ϵµ(t, x),

ϵµ ≡ (ϵ0, ϵj)=(ϵ0, ∂jϵ
(S)+ϵ

(V )
j ), ∂jϵ

(V )
j =0, (12.133)

Note that the coordinate transformation is allowed to
depend on the comoving coordinates, which is not spa-
tially homogeneous. From Eqs. (12.76) and (12.77), the
spatial homogeneity for ∆(H)h00 = −2ϵ̇0, where the sub-
script (H) denotes the homogeneous space, says

ϵ0 = ϵ(t) +X(x), (12.134)

where ϵ(t) and X(x) are arbitrary small functions of
t and x respectively. The vanishing of the time-space
component of the metric tensor generated by the gauge
transformation

∆(H)h0j = −∂jϵ0 − a2∂t(ϵj/a
2) = 0 (12.135)

gives a differential equation which relates ϵ0 and ϵj
through the arbitrary function X(x) unless it vanishes,

∂t

( ϵj
a2

)
= − 1

a2
∂jX, (12.136)

which has the solution

ϵj(t,x) = a2(t)fj(x)− a2(t) (∂jX(x))

∫ t

τ

dt′
a2(t′)

,

(12.137)

where fj(x) is an arbitrary vector function of the comov-
ing coordinates. The lower limit of the integration τ is
an arbitrary cosmic time.

From Eq. (12.76), we also have

∆(H)hjk = 2a2Hϵ0δjk − (∂jϵk + ∂kϵj)

= 2a2H (ϵ(t) +X(x)) δjk

−a2 (∂jfk(x) + ∂kfj(x))

+2a2∂j∂kX(x)

∫ t

τ

dt′
a2(t′)

. (12.138)

In order for ∆(H)hjk to be independent of the comoving
coordinates x, we have to have X(x) = 0 and fj(x) to
be linear in x. So, let us write fj(x) ≡ ωjkxk. We can
now obtain ϵj and ∆hjk. We make a decomposition of

149)We reproduce the discussion given in [221], p. 248 and p. 249.

ϵj(t,x)

ϵj(t,x) = a2fj(x) ≡ a2ωjkxk

=
a2

3
ωℓℓxj +

a2

2

(
ωjk + ωkj −

2

3
ωℓℓδjk

)
xk

+
a2

2
(ωjk − ωkj)xk

=
a2

6
ωℓℓ∂jx

2 +
a2

2
∂′j

(
x′jωj′kxk − 1

3
ωℓℓx

2

)
+
a2

2
(ωjk − ωkj)xk, (12.139)

where (ωjk) is a 3×3 numerical matrix and ωℓℓ its trace.
We now have explicitly

∆(H)hjk = 2a2
[
Hϵ(t)− 1

3
ωℓℓ

]
δjk

−a2
(
ωjk + ωkj −

2

3
ωℓℓδjk

)
, (12.140)

which, as promised, is a function of the cosmic time only.
The last term appearing in the second and third line of
Eq (12.139), which is proportional to the antisymmetric
quantity ωjk − ωkj , will make no contributions in the
following discussions.

The results given in Eqs. (12.139) and (12.140) can be
interpreted as follows. We first compare (12.139) with
the standard form of ϵj listed in Eq. (12.66). The first
term of the third line of Eq. (12.139) can be identified
as ∂jϵ(S) and the third term as ϵ(V ). The middle term
of the right-handed side of Eq. (12.139) is ambiguous.
It is both curlless and divergenceless, and therefore can
be included in either ∂jϵ(S) or ϵ(V )

j . The reason for this
puzzling fact is that the Helmholtz decomposition of the
vector field Eq. (12.37), as stated in Fn. 120), does not
apply to ϵj(t,x) in Eq. (12.139) because of its asymp-
totic behavior in xj . As of ∆(H)hjk the resultant given
in Eq. (12.140) suggests that the first term of the right-
handed side belongs to ∆A of Eq. (12.79), and the second
term to ∆Djk. It is easy to see that it satisfies the con-
ditions imposed on Djk listed in Eq. (12.40). The second
term is new, not present in the general case of coordinate
transformation considered for gauge transformations, see
Eq. (12.79).

We can now identify all metric, density, and fluid terms
generated by the coordinate transformation Eq. (12.133)
and (12.134), expressible in terms of a scalar function of
the cosmic time ϵ(t) and a constant 3× 3 matrix ωjk,

∆(H)E = 2ϵ̇(t), ∆(H)A = 2

[
Hϵ(t)− 1

3
ωℓℓ

]
,

∆(H)Djk = −ωjk − ωkj +
2

3
ωℓℓδjk,

∆(H)ρ = ˙̄ρϵ(t), ∆(H)P = ˙̄Pϵ(t),
∆(H)u0 = −ϵ̇(t), ∆(H)u(S) = −ϵ(t). (12.141)

121201-154
Bing-Lin Young, Front. Phys. 12(2), 121201 (2017)



Review article

All other changes vanish.
As remarked early, the coordinate transformation

functions listed in Eq. (12.141) provide a set of solutions
to the Einstein field and energy-momentum conservation
equations in the homogenous universe. Following [221],
we take the solutions as the negative of the transforma-
tion functions, i.e.,

Φ(t) ≡= −1

2
∆(H)E = −ϵ̇(t),

Ψ(t) ≡ −1

2
(−∆(H)A) = Hϵ(t)− 1

3
ωℓℓ,

Djk ≡ −∆(H)Djk = ωjk + ωkj −
2

3
ωℓℓδjk,

δρ ≡ −∆(H)ρ = − ˙̄ρϵ(t),

δP = −∆(H)P = − ˙̄Pϵ(t),
δu(t) ≡ −∆(H)u0 = ϵ̇(t),

δu(S)(t) = −∆(H)u(S) = ϵ(t). (12.142)

All other perturbation functions vanish. As can be seen
from the third line of Eq. (12.142) on the solutions to
the energy and pressure densities, this set of solutions is
adiabatic.

It is straightforward to check that the zero mode equa-
tions of the Newtonian gauge, which involve the first
and fourth expressions in Eq. (12.100) and the second
expression in Eq. (12.101), are satisfied. The rest of
the equations vanish identically based on the fact that
they involve one or two spatial derivatives. However, the
two one-derivative expressions, i.e., the third expression
in Eq. (12.100) and the first expression in Eq. (12.101)
are satisfied even without the spatial derivative.150) But
the second expression of Eq. (12.100) which involves two
derivatives is not satisfied without imposing the zero
mode condition. This has important bearing on obtain-
ing a unique set of solution when generalized to the case
of q ̸= 0.

12.8.4.2 Generalizing the solution and the conservation
law

Let us generalize the solution to the situation of q ̸= 0
and we will focus on the scalar functions.151) So far ϵ(t)
is an arbitrary function of the cosmic time. The removal
of the condition q = 0 causes no problem except for the
second expression in Eq. (12.100). There is, however,
a natural solution to the difficulty as follows, based on
the explicit form of the expression: For vanishing scalar
anisotropic inertial π(S) = 0, the expression is satisfied
in the absence of spatial derivatives, when the condition
Φ = Ψ is imposed. The condition gives rise to a first

150)To verify the equations the following identities are convenient
to use: ä/a = Ḣ + H2, ...

a /a = Ḧ + 3ḢH + H3, 8πGN ρ̄ = 3H2,
and 8πGN P̄ = −2Ḣ − 3H2.

151)For the effect of Djk we refer to [221], p. 251.

order differential equation in ϵ(t) which can be obtained
from the first line of Eq. (12.142):

∂tϵ(t) +Hϵ(t) =
ωℓℓ

3
≡ Rω. (12.143)

The solution of this equation is straightforward,

ϵ(t) =
Rω

a(t)

∫ t

τ

dt′a(t′), Rω ≡ ωℓℓ

3
. (12.144)

The non-vanishing scalar perturbations are
Φ(t) = Ψ(t) = −δu0(t) = −ϵ̇(t)

= Rω

[
−1 +

H

a(t)

∫ t

τ

dt′a(t′)
]
,

δρ(t)
˙̄ρ

=
δP(t)

˙̄P
= −δu(S) = −ϵ(t)

= − Rω

a(t)

∫ t

τ

dt′a(t′). (12.145)

The second expression shows that this is an adiabatic
solution.

The most general solution of Eq. (12.143) will also
include a part which is the solution of the homogeneous
part of the differential equation for Rω = 0. The solution
takes the form

ϵ̃(t) =
C
a(t)

, (12.146)

which is the difference of two solutions for a non-
vanishing Rω with different lower integration limits, say
τ and τ ′. This Rω = 0 solutions leads to the following
perturbation functions

Φ̃ = Ψ̃ = − ˙̃ϵ = H
C
a
,

δρ̃
˙̄ρ
=
δP̃
˙̄P

= −ϵ̃ = −C
a
. (12.147)

For an expanding universe, these are “decay” solutions,
which decrease in time. They have no significance in the
evolution of the universe and hence will be neglected.

The perturbation functions given in Eqs. (12.145) and
(12.147) satisfy the Newtonian gauge equations for wave-
length outside the horizon. Now we can make the gener-
alization of the zero mode solution: Rω, which is origi-
nally a constant factor multiplying all perturbation func-
tions, can be extended to be a function of q : Rω → Rωq.
In the wave-number space, we have the q-dependence
perturbation functions
Φq(t) = Ψq(t) = −δqu0(t) = −ϵ̇q(t)

= Rωq

[
−1 +

H

a(t)

∫ t

τ

dt′a(t′)
]
,

δρq(t)
˙̄ρ

=
δPq(t)

˙̄P
= −δu(S)

q (t) = −ϵq(t)

= −Rωq

a(t)

∫ t

τ

dt′a(t′). (12.148)
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We can obtain the conserved quantities discussed in
Section 12.8.3. The conserved quantities Rq and ζq de-
fined in Eq. (12.124) are, in the present solution

Rq = −Ψq +Hδu(S)
q = Rωq,

ζq = −Ψq +
δρq

3(ρ̄+ P̄)
= Rωq. (12.149)

The presence of the q-dependence determined by Rωq

leads to spatial dependence in the perturbation func-
tions. This spatial dependence is conserved in the evo-
lution of the universe for each individual wave-numbers
as long as their wave-lengths are outside the horizon.

12.9 Evolution of scalar perturbations in the
hydrodynamic limit

To compute the evolution of the cosmological fluctua-
tion, following [221], we start from a point of the cosmic
time when we are more or less certain about the com-
position of the unverse. This initial stage is taken to be
at the temperature of 109 K, from which the evolution
of the various perturbation functions can be worked out
analytically to the comparatively recent time. Then the
perturbations will grow in size and the linear perturba-
tion can no longer be valid. However, in the presently
consideration we are interested in the cosmologic fluctu-
ation in the CMB temperature, we need only to work
out analytically the evolution of the perturbation down
to the last scattering surface at the temperature about
3000 K when the linear perturbation is still valid. Pass-
ing the last scattering surface (LSS), the CMB photon
can propagate freely to the present epoch and preserves
what have been imprinted on the LSS.152)

At 109 K, the universe is about a couple of minutes
old and is made of four main components: photons, neu-
trinos, dark matter, and the baryonic matter which in-
cludes electrons, while the present-day dominant dark
energy forms just a very small fraction of the universe
and can be neglected. These major matter-radiation
components have roughly the following status:

• Neutrinos have decoupled (which took place at T ≈
1010 K) and become cosmic free streamers.

• The synthesis of light nuclei is about to completed.
• Assumed to be of the cold category, the dark matter

has “long” decoupled from the universe and become
non-relativistic, pressureless.

• The photon and baryon plasma are still tightly
coupled by the electromagnetic interaction due to
Thomson scattering. But the photon conversion
into electron-positron pairs has frozen out.

152)The titles of this section is adopted from [221], §6.2, p. 274.
Although the “hydrodynamic limit” is not generally a familiar ter-
minology in particle physics, it is a broad subject in classic physics
and applied mathematics. For a quick view of it, please see [295].

Let us recall that the LSS is at the cosmic age of 0.38
million years, the cosmic temperature of 3000 K, and the
redshift z = 1100. For a brief glance of the milestones of
the universe, see Table 9.6. Needless to say, the various
energy-matter components are never totally separated
from one another because of the gravitational effect as
dictated by the Einstein field equation which guides the
behavior of the universe when all other interactions be-
comes unimportant.

Kinetic descriptions of the various cosmic components
are necessary for a precision treatment of the evolution
of the universe. For a discussion of the basic formu-
lation of the kinetic theory, see [221].153) In an exact
approach, numerical simulations of the Boltzmann equa-
tions involved are necessary.154) In order to better see
the underline physics involved, however, we follow the
approach of [221] which provides an analytic treatment
as an approximation to the system of the four kinds of
energy-matter.155) Even in this type of approximation,
the system under consideration is already quite compli-
cated. In some stages of the treatment, the approxima-
tions seemed to be drastic. But the resultant expression
for the CMB power spectrum describes the observation
well. Below we will sketch the approaches to the approx-
imation and refer to [221] for details.156)

12.9.1 Setting up the system of equations

The synchronous gauge proves to be convenient for the
study of the cosmic evolution. We will first list the equa-
tions that govern the evolutions of the different species
of energy-matter in the synchronous gauge. Let us re-
call that in the Einstein field equation Eq. (12.106) all
energy-matter components of the universe enter into each
of the four equations. So all equations will involve the
dark matter, neutrinos, photons, and the baryonic mat-
ter. For the energy-momentum conservation equation
Eq. (12.108), individual components holds their own
equations, under the common effect of the gravity repre-
sented by ψ. In this very early stage of the universe, the
dark energy is a very small component of the universe
and therefore negligible in the present consideration.

The following approximations will be made:

• In the hydrodynamic limit, the anisotropic inertial
will be neglected, so we set π(S) = 0 for all energy-
matter components.

153)See [221], §6.1, pp 258–274.
154)In addition to the Boltzmann codes, CMBFast [296] and

CAMB [297], mentioned in [221] (p. 257) there are other codes
developed more recently, such as CMBEASY [298] and CLASS. A
series of four articles on CLASS [302] that also provide comparisons
of different codes can be found in [303].

155)The approximate solutions occupy most of Section 6 of [221].
156)In Sections 6 and 7 of [221], both kinetic and hydrodynamic

approaches are presented. Here we follow the hydrodynamic ap-
proach of [221] only.
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• We will work with cold dark matter and so its fluid
velocity can be set to zero δu(S)

D = 0. This amounts
to fix the dark matter on the comoving coordinates.

• For neutrinos, the fluid velocity and anisotropic in-
ertial make negligible contributions at the very early
time outside the horizon. And their energy and
momentum densities perturbations are related by
δPν = δρν/3, as if neutrinos are in local thermal
equilibrium. Furthermore, in later time when the
universe becomes matter-dominated, the overall ef-
fect of the neutrino becomes increasingly small.

• Because of the significant electromagnetic interac-
tion of the Thomson scattering, the baryon and pho-
ton form a tightly coupled plasma so they have the
same fluid velocity potential: δu

(S)
B = δu

(S)
γ . The

photon is in local thermal equilibrium which gives
Pγ = ργ/3. The baryonic matter is non-relativistic,
so its pressure density vanishes PB = 0.

Under the approximations as described above, we have
the following quantities in our cosmological system:

• 4 energy densities perturbations which include the
of photon δργ , neutrino δρν , baryonic matter δρB ,
and dark matter δρD;

• 2 fluid velocity perturbations of the photon and
baryonic matter δuγ and neutrino δuν ; and

• 2 metric perturbations which represent the gravita-
tional potentials A and B.

In the synchronous gauge, the perturbations in the den-
sity and velocity potential are determined by the fourth
and third expressions of the Einstein field equation given
in Eq. (12.106). The density perturbation depends on a
particular combination of metric perturbations defined in
Eq. (12.107): ψ = (3Ȧ+∇2Ḃ)/2. As we will see below,
the seven quantities, which include ψ, four functions of
density perturbation, and two functions of fluid velocity
potential perturbation, form a closed system of seven dif-
ferential equations and seven unknowns. So a complete
set of solutions are allowed. Since ψ is determined by the
time derivative of A and the time and spatial derivatives
of B, the first and second expressions in Eq. (12.106) are
needed to determine A and B individually.

12.9.2 Hydrodynamic equations and initial conditions

12.9.2.1 The differential equations

Now we list the differential equations that govern the
cosmic evolution. All expressions are in the wave-number
space. The cosmic components are explicitly labeled.
12.9.2.1.1 The gravitational field equation
The fourth equation of Eq. (12.106):

1

a2
∂t
(
a2ψq

)
= −4πGN (δρDq + δρBq + 2δργq + 2δρνq) .

(12.150)

The photon and neutrinos are relativistic, δPγ =
(1/3)δργ and δPν = (1/3)δρν for adiabatic perturbation.
The baryon matter and dark matter are non-relativistic,
δPB = δPD = 0.
12.9.2.1.2 Energy conservation equations
Each of the four cosmic components has its energy den-
sity evolution equation. From the first equation of
Eq. (12.108), we have

(∂t + 3H)δρDq = −ρ̄Dψq,

(∂t + 3H)δρBq −
q2

a2
ρ̄Bδu

(S)
γ = −ρ̄Bψq,

(∂t + 4H)δργq −
4q2

3a2
ρ̄γδu

(S)
γ = −4

3
ρ̄γψq,

(∂t + 4H)δρνq −
4q2

3a2
ρ̄νδu

(S)
ν = −4

3
ρ̄νψq, (12.151)

where scalar anisotropic inertias of all cosmic compo-
nents, and the scalar velocity potential of the dark mat-
ter as well, are set to zero. The photon and baryon form
a tightly coupled plasma, so δu(S)

γ = δu
(S)
B . The velocity

potential of the dark matter vanishes, δu(S)
D = 0.

12.9.2.1.3 Momentum conservation equations
The momentum of the cold dark matter is neglected.
The baryonic matter and photon are coupled in their
momenta so they enter jointly in the momentum conser-
vation equation. The neutrino has its separate momen-
tum conservation equation. From the second expression
of Eq. (12.108), we obtain the equations for the pertur-
bation functions of the velocity potentials,

(∂t + 3H)

[(
ρ̄B +

4

3
ρ̄γ

)
δu(S)

γ

]
= −1

3
δργq,

(∂t + 3H)

[(
4

3
ρ̄ν

)
δu(S)

ν

]
= −1

3
δρνq, (12.152)

where we have set P̄B = 0, P̄γ = 1
3 ρ̄γ , and P̄ν =

1
3 ρ̄ν . The dark matter has a vanishing velocity potential
δu

(S)
D = 0 and (12.108) for the dark matter is satisfied

identically.
Following [221], we can simplify the above equations

significantly by defining the scaled density perturbations

δβq ≡ δρβq
ρ̄β + P̄β

, (12.153)

where β denotes the energy-matter species. The back-
ground energy densities have well-defined behavior in
terms of the scale factor a, i.e., ρB ∼ a−3, ρD ∼ a−3,

Bing-Lin Young, Front. Phys. 12(2), 121201 (2017)
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ργ ∼ a−4, and ρν ∼ a−4, so ˙̄ρβ/ρ̄β = −3H for the
non-relativistic dark matter and baryonic matter, and
˙̄ρβ/ρ̄β = −4H for the photon and neutrino. In particu-
lar, the second and third equations of Eq. (12.151) are

∂tδBq −
q2

a2
δu(S)

γ = −ψq,

∂tδγq −
q2

a2
δu(S)

γ = −ψq, (12.154)

which lead to

∂t (δBq − δγq) = 0. (12.155)

Then if the relation δBq = δγq holds at some cosmic time,
it will be true at all cosmic time. Since we are interested
in the adiabatic condition δBq = δγq at early time outside
the horizon, we can take

δBq = δγq (12.156)

in the hydrodynamic equations, Eqs. (12.150)–(12.152).
So there are now six independent quantities to be deter-
mined by six equations.
12.9.2.1.4 Collecting governing differential

equations for adiabatic solutions
We rewrite the time evolution equations in terms of δβq
and set δBq = δγq. The gravitational field equation
Eq. (12.150) becomes157)

1

a2
∂t
(
a2ψq

)
=−4πGN

[
ρ̄DδDq+

(
ρ̄B+

8

3
ρ̄γ

)
δγq+

8

3
ρ̄νδνq

]
.

(12.157)

The energy conservation equations Eq. (12.151) becomes,

∂tδDq = −ψq,

∂tδγq −
q2

a2
δu(S)

γq = −ψq,

∂tδνq −
q2

a2
δu(S)

νq = −ψq. (12.158)

The momentum conservation equations Eq. (12.152),

∂t

(
1 +RB

a
δu(S)

γq

)
= − 1

3a
δγq,

∂t

(
1

a
δu(S)

νq

)
= − 1

3a
δνq, (12.159)

where158)

RB ≡ 3ρ̄B
4ρ̄R

. (12.160)

157)Equations below (12.157)–(12.159) are Eqs. (6.2.9)–(6.2.14),
p. 276 in [221].

158)RB here is R in [221], see p. 276. We use a different nota-
tion to avoid confusion, since R has been used earlier to denote
something else.

These simplified equations, Eqs. (12.157), (12.158),
and (12.159), together with further approximations ac-
cording to the physical situations under consideration,
will be used to obtain the required solutions. There are
six equations in Eqs. (12.157)–(12.159), involving six un-
knowns: ψq, δγq = δBq, δD, δνq, δu(S)

γq , and δu
(S)
νq . The

parameters entering the differential equations explicitly
include q and RB , and the scale factor a(t).

12.9.2.2 Initial conditions

We first determine the initial conditions that the solu-
tions of the evolution equations have to have. The epoch
of the universe from which we choose to begin our cal-
culation is relatively simple, consisting of well-defined
energy-matter components. The perturbation functions
are still small and can be treated linearly. We begin at
the cosmic temperature of T = 109 K, when the uni-
verse is highly radiation-dominated159) and the parame-
ters that describe the background universe are straight-
forward:

ρ̄ ≈ ρ̄R ≡ ρ̄γ + ρ̄ν ≫ ρ̄M ≡ ρ̄B + ρ̄D, RB ≪ 1,

a(t) ∝
√
t, H =

ȧ

a
=

1

2t
, (12.161)

With these inputs and some further suitable simplifica-
tions, the six equations given in Eqs. (12.157)–(12.159)
will be simplified enough so that single-term solutions of
all six quantities can be obtained. They will be taken as
the leading terms of their respective more complete so-
lutions valid for an extended time region, which includes
T = 109 K as its earliest edge in time. Therefore, these
initial time single-term solutions will play the role of ini-
tial conditions of the system of differential equations.

Since adiabatic solutions are used to study the CMB
power spectrum, we restrict ourselves to the adiabatic
perturbation only. We will see below that there are two
independent solutions of the adiabatic nature. But only
one of them is suitable for structure formation. To pro-
ceed we further assume the following:

• For radiation dominance, we can drop the back-
ground matter densities ρ̄M in comparison with that
of the radiation ρ̄R. Then Rq can be set to zero.

• At high enough temperature we can take the adia-
batic perturbation for all components of the energy
matter densities:160)

159)The ratio of radiation density over matter density at the cos-
mic temperature T is T/TEQ. For TEQ of the order of 104, the
radiation energy density is 5 orders of magnitude greater than that
of the matter.

160)As stated in [221], p. 277 above Eq. (6.2.23): “· · · only these
modes are present in inflationary theories with a single scalar field,
or if the universe is ever earlier in a state of complete local thermal
equilibrium with no non-conserved quantities.”
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δDq = δBq = δγq = δνq ≡ δq,

δu(S)
γq = δu(S)

νq ≡ δu(S)
q . (12.162)

We note that, although ρ̄D and ρ̄B are much smaller
than ρ̄γ and ρ̄ν and therefore negligible, the pertur-
bation functions δD and δB , which are fractional
with small denominators as defined in Eq. (12.153),
may not be small in comparison with δγ and δν .
Here we make the ansatz that they are comparable
in magnitude to satisfy the adiabatic condition.

• Drop all terms proportional to q2/a2 for being out-
side the horizon and early enough in the cosmic time
so that the radiation dominates the universe.161) We
will justify this approximation after we obtain the
solution.

Under these additional approximations, Eqs. (12.157),
(12.158), and (12.159) are reduced to three unknowns,
δq, δu(S)

q , and ψq, and three equations:

1

t

∂

∂t
(tψq(t)) = −4πGN

(
8

3
(ρ̄γ + ρ̄ν)

)
δq(t)

= −4H2δq(t) = − 1

t2
δq(t),

∂tδq(t) = −ψq(t),

∂

∂t

(
δu

(S)
q (t)√
t

)
= − 1

3
√
t
δq(t), (12.163)

where Eq. (12.161) H = 1/(2t) has been used. The first
two equations lead to a second order homogeneous equa-
tion for δq:

∂

∂t
(t∂tδq(t))−

1

t
δq(t) = 0, (12.164)

which has two simple solutions: δq(t) ∼ t and δq(t) ∼
t−1. However, these are not the solutions of the evolution
equations, of course. They will be taken as the leading
terms to which the actual solutions should be matched
with, which will be made at the beginning time when
the cosmos evolution is calculated. Let us discuss these
leading term solutions in some detail.
12.9.2.2.1 Mode 1: The leading term solution

δq(t) ∼ t

For δq(t)∼ t, from the second expression of Eq. (12.163)
we have the cosmic time behavior ψq(t) ∼ independent
of t and δu

(S)
q (t) ∼ t2. From the differential equations

in Eq. (12.163) we can write down the leading term so-
lutions

ψq(t) ≡ ψ̂q, δq(t) = −ψ̂qt, δu(S)
q (t) = (2ψ̂q/9)t

2.

(12.165)
161)See [221], p. 277 above Eq. (6.2.23).

Then, ψ̂q, which is independent of t, can be determined
by making a connection with the much earlier universe,
in particular, the conserved quantity R and ζ in the
synchronous gauge given in Eq. (12.132). In the wave-
number space, using Eq. (12.165), we have

q2Rq = 4πGNa
2δρq(t)− a2Hψq(t) + q2Hδu(S)

q (t)

= −2a2H2tψ̂q − a2Hψ̂q +

(
q2

a2H2

)
2

9
a2H3t2ψ̂q.

(12.166)

To obtain the first term on the right-handed side of the
second line above, we have rewritten the corresponding
term in the first line, in the radiation-dominated regime
and using Eq. (12.153), as

4πGNδρq(t)=4πGN

(
(ρ̄γ+P̄ν)δγq(t)+(ρ̄ν+P̄ν)δνq(t)

)
=4πGN

(
4

3

)
(ρ̄γ + ρ̄ν)δq

=2H2δq = −2H2tψ̂q, (12.167)

where Eq. (12.162), the equation of state for radiation
components Pγ = (1/3)ργ and Pν = (1/3)ρν , and for
radiation dominance H2 = (8πNG/3)(ργ + ρν) are used.
Furthermore, in the radiation-dominated regime a ∼

√
t

and H = 1/(2t), then the factor a2H3t2 is time inde-
pendent. Outside the horizon, the last term of the sec-
ond line on the right-handed side of Eq. (12.166), which
is proportional to q2/(a2H2), can be dropped. Then
Eq. (12.166) gives

ψ̂q = − tq
2R(o)

q

a2
, (12.168)

where R(o)
q denotes that Rq is evaluated outside the hori-

zon.
We can now write down the solutions for the pertur-

bation functions in Mode 1:

ψ(M1)
q (t) = −q

2R(o)
q t

a2
,

δ(M1)
q (t) = δγq(t) = δνq(t) = δBq(t) = δDq(t) =

q2R(o)
q t2

a2
,

δu(SM1)
q (t) = δu(S)

γq (t)=δu(S)
νq (t)=−2

9

q2R(o)
q t3

a2
, (12.169)

which will serve as the initial conditions, i.e., the leading
term, for the perturbation functions outside the horizon.
The solutions to be obtained later that are outside the
horizon and valid in the time regime that includes this
initial time at the temperature T = 109 K will have to
be matched with Eqs. (12.169) in their leading terms in
the cosmic time t.

Let us now demonstrate that the (q2/a2)δu(S)
βq terms in

expressions of Eq. (12.158) are negligible. We can write,
using the Model 1 expressions

Bing-Lin Young, Front. Phys. 12(2), 121201 (2017)
121201-159



Review article

q2

a2
δu(SM1)

q = −2

9

q2

a2
q2R(o)

q t3

a2

=
1

18

q2

a2H2
ψ(M1)
q (t), (12.170)

where we have used the relation H = 1/(2t). Indeed, the
terms proportional to q2/a2 are negligible out side the
horizon.

The other solution δq ∼ t−1, which gives ψ̂ ∼ t−2

and δu(S) ∼ const, is a decaying solution for which the
perturbations decrease in time. So they are not relevant
to structure formation in cosmic evolution. Hence it does
not concern us here. There are other modes of solution
which we refer to [221] for more discussions.162)

12.9.3 The approach to analytic solutions

12.9.3.1 Strategy for analytic solutions

The parameter space that describes the perturbation
functions, besides the various energy components, in-
volves the cosmic time t and the physical wave-number
q/a corresponding to the wave-length λq = 2πa/q. The
physical wave-length covers the whole range from 0 to
∞, and the cosmic time extends almost the whole cos-
mic history. For the present treatment, we consider the
cosmic time to starts from a few hundreds seconds after
the Big Bang, corresponding to the cosmic temperature
T ∼ 109 K when the physics of the universe has become
well-known and clearly formulated. This is a vast, multi-
dimensional space with immensely complicated dynamic
processes involved. Not surprisingly, to obtain an ana-
lytic solution is a serious challenge. It requires judicious
division of the parameter space into subregions in time
and wavelength, and making approximations to simplify
the dynamic equations that drive the evolution of the
universe.

The cosmic time under consideration can be divided
into two large periods. The first period is from this ini-
tial time to the LSS of about 380 000 years when the
cosmic temperature is T ∼ 3000 K at the red shift and
zL = 1100. The second period is from LSS to the present
at τU = 13.8 billion years. In the first period the universe
went through important milestones which cause the uni-
verse to change its properties significantly. Containing
the period of the matter-radiation equality, the first time
period can be further divided into a radiation-dominated
followed by a matter-dominated period. We will come
back to the matter-radiation equality below and more
details can be found in Section 9.5.4. In dealing with
property changes of the universe, significant simplifica-
tions have to be made at times, however, with the es-
sential physical properties of the system considered not
being altered. The wavelength space is divided into a

162)pp 278–279, [221].

long wavelength region and a short wavelength one. Long
wavelengths contribute to temperature coefficients of low
multipoles, while short wavelengths to those of high mul-
tipoles.

As stated earlier, we follow closely the treatment given
in [221], which will be frequently referred to, in footnotes
mostly, for details. We will not reproduce the whole ar-
gument that leads to the analytic solutions. We will
present the details in the initial stages of the consid-
eration when the situation is still relatively simple. In
later stages, relevant results given in [221] will be quoted,
and details will be referred to the pertinent pages and/or
equation numbers.

Let us first briefly describe the milestone in the first
period of the cosmic time that is critical for obtaining
the analytic solutions: In the early times the universe
is weighted heavily in favor of radiation. The density
ratio of matter to radiation ρ̄M/ρ̄R ∼ a is very small.
However, the ratio increases with time like

√
t. At LSS,

matter and radiation contribute equally, known as the
matter-energy equality. Afterward, the weight of mat-
ter vs radiation is reversed and the universe becomes
matter-dominated. Let us denote the time of matter-
energy equality by tEQ,

ρ̄M
ρ̄R

∣∣∣∣
tEQ

= 1. (12.171)

As can be seen in Table 9.6, tEQ ≈ 50 000 yrs, and
the temperature and redshift are TEQ ≈ 104 K and
zEQ ≈ 3500. We will see below that the matter-radiation
equality plays an important role in the present consider-
ation.

Let us call the Hubble length defined by DH = H−1

(c = 1) the horizon. The scale of the physical wave-
length is given by the ratio of the horizon to the physical
wavelength

DH
λq

≡ H−1

λq
=

1

2π

q

aH
. (12.172)

We refer to the situation that the horizon is smaller than
the wavelength H−1/λ < 1 as outside the horizon, and
the situation that the horizon is greater than the wave-
length H−1/λ > 1 as inside the horizon. We summarize
this, dropping the numerical factor 1/(2π):

q

aH
=
q

ȧ

{
< 1, outside the horizon,
> 1, inside the horizon. (12.173)

In the very early times of the inflationary epoch and also
a certain period afterward, because of the huge exponen-
tial expansion while the Hubble expansion rate stays con-
stant, so except for very short wavelengths or very large
wave-numbers, the majority of the waves, which is rep-
resented by a very large range in the q value, are outside
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the horizon. After this very brief period of time, when
the universe further evolves, q/(aH) grows. For instance
in the radiation-dominated period a∼ t1/2 and H∼ t−1,
then q/(aH)∼ t−1/2. And in the matter-dominated pe-
riod a ∼ t2/3 and H ∼ t−1, then q/(aH) ∼ t−1/3. Even-
tually, most wavelengths or most wave numbers, except
for the very long ones of very small q values, get inside the
horizon, i.e., q/(aH)> 1. A special wave-number called
qEQ is defined at tEQ for the ratio q/(aH) to be unity,

qEQ ≡ aH|t=tEQ ≡ (aH)EQ = a0H0

√
2ΩM√
ΩR

, (12.174)

where a0 is the FLRW scale factor at the present epoch,
H0 the corresponding Hubble expansion rate. We have
also used the identity aEQ/a0 = ΩR/ΩM . The details
can be found in Section 13.4.3.163)

Because of these very different time and wavelength
behaviors, there does not exit a single set of analytic ex-
pressions for the perturbation functions to be valid for
all wavelengths and in the whole time period under con-
sideration. So we have to suitably divide the q− t space
into regions such that the properties of the perturbation
functions are sufficiently uniform in a given region to al-
low, under suitable approximations, analytic expressions
for the perturbation functions can be obtained. It is also
necessary to require neighboring regions to overlap so
that leading terms of solutions in different region of the
same perturbation function are matched in overlapping
regions.

The q − t space is separated into four regions divided

by the lines q/qEQ = 1 and t/tEQ = 1. Each of the four
regions have their own analytic solutions for the pertur-
bation functions which are valid in a significant part of
the neighboring regions, so that in their overlapping re-
gion, the two solutions have the common leading term.
The solutions for the regions containing the early time
T = 109 K, will be required to satisfy the every early
time initial conditions given in Eq. (12.169) as discussed
in Section 12.9.2.

12.9.3.2 Division of the t-q space

It is convenient to define the cosmic time t and the wave
number q in units of their values at the matter-radiation
equality, i.e., using the variables t/tEQ and q/qEQ. Define
the following scaled variables,

t̄ ≡ t

tEQ
, q̄ ≡ q

qEQ
, ā ≡ a

aEQ
=
ρ̄M
ρ̄R

, (12.175)

where the last identity can be verified by noting that
ρ̄M ∼ a−4, ρ̄M ∼ a−3, and ρ̄REQ = ρ̄MEQ. The t-q
space can be conveniently divided into regions according
to lines of constant t̄ and q̄.

We will first explore some of the useful relationship in
the scaled variables t̄, q̄, and ā. The ratio aH/(aH)EQ
has been investigated in Section 13 and an analytic ex-
pression valid for the cosmic period in which the vacuum
energy is negligible in comparison with matter and radi-
ation is given in Eq. (13.53), Section 13.4.3, to which we
refer for more details. First, we have

aH

(aH)EQ
=

1√
2

√
ā(t̄) + 1

ā(t̄)
≈


1√
2ā(t̄)

∼ (t̄)
−1/2

, t̄ < 1 (ā(t̄) < 1) radiation-dominated,

1√
2ā(t̄)

∼ (t̄)
−1/3

, t̄ > 1 (ā(t̄) > 1) matter-dominated.
(12.176)

The horizon to wavelength ratio can be written in various forms which will be useful below,

q

aH
=

q/qEQ
(aH)/(aH)EQ

= q̄

√
2ā√
ā+ 1

= q̄

√
2√

ā+ 1

ρ̄M
ρ̄R

= q̄

√
2ā√
ā+ 1

√
ρ̄M
ρ̄R

≈ q̄


√
2
ρ̄M
ρ̄R

∼ (t̄)
1/2

, t < 1 (ā(t̄) < 1) radiation-dominated,

√
2

√
ρ̄M
ρ̄R

∼ (t̄)
1/3

, t > 1 (ā(t̄) > 1) matter-dominated,
(12.177)

163)At the matter-radiation equality, ρMEQ = ρREQ gives
aEQ/a0 = ΩR/ΩM , where the subscript 0 denote quantities at
the present epoch and ΩR = ρR/ρc, etc., where ρc is the criti-
cal density. Neglecting the contribution of the dark energy which
is a tiny fraction of the cosmic energy at this early universe, we
have the Hubble expansion rate at the matter-radiation equal-
ity H2

EQ = (8πGN/3)(2ρMEQ). The Hubble expansion rate
at the present time is H2

0 = (8πGN/3)ρ0. For a flat universe,
ρ0 = ρc. Then HEQ/H0 =

√
2ρMEQ/ρ0 =

√
2ΩM (a0/aEQ)3 =

where we have used the last identity given in
Eq. (12.175). In comparison with the exact expres-
sions, the approximate expressions in Eqs. (12.176) and
(12.177) are good within 20%.

In the radiation dominated region t̄ < 1 we have ā(t̄) <
1, and in the mass dominated region t̄ > 1 and ā(t̄) >
1. This suggests that we can construct approximately

(a0/aEQ)
√
2ΩM/

√
ΩR.
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invariant expressions from q/(aH) and ρ̄M/ρ̄R = ā(t̄) in
the matter- and radiation-dominated regions as can be
seen in Eq. (12.177):

• (q/(aH))(ρ̄R/ρ̄M ) is approximately constant in time
in the radiation dominated region of t̄ < 1, varying
by a factor of

√
2 having the value between

√
2q̄ and

q̄.
• (q/(aH))2(ρ̄M/ρ̄R) is close to being a constant in

the matter-dominated region of t̄ > 1, varying also
by a factor

√
2 having also the value between q̄ and√

2q̄.

In Fig. 12.7 we plot several relevant quantities as func-
tions of t̄. This is a busy figure containing 6 curves rep-
resenting 6 functions labeled along the left- and right-
handed vertical axis of the same scale. The curves are
tagged numerically 1 to 6. Some details of these curves
are given below:

• Curves 1 and 2. The figures represent q̄ vs t̄ for a
fixed value of q/(aH) according to the expression
given in Eq. (12.177)

q̄ =
q

aH

( √
2ā(t̄)√
ā(t̄) + 1

)−1

. (12.178)

The solid blue curve 1 is for q/(aH) = 1 trac-
ing

√
ā(t̄) + 1/(

√
2ā(t̄)), where ā(t̄) is given in

Eq. (13.63). The dotted blue curve 2 is for the ap-

Fig. 12.7 The horizontal axis is t̄ ≡ t/tEQ, i.e., cosmic
time in units of the time of matter-radiation equality. The
vertical axes, left- and right-handed sides having the same
scale, represent six different functions. The left-handed side
vertical axis is labeled for the curves 1 to 4, representing
ā, and the relation between q/qEQ and q/(aH). The right-
handed side vertical axis, labeled for curves 5 and 6, is for
(q/(aH)n)(ρ̄R/ρ̄M ), n = 1 and 2, with fixed q̄ = q/qEQ = 1.
Details of the various curves are given in the text.

proximated expression, which we can rewrite as,

q̄|q/(aH)=1 =

( √
2ā(t̄)√
ā(t̄) + 1

)−1

≈ (t̄)
−1/2

Θ(1− t̄) + (t̄)
−1/3

Θ(t̄− 1).

(12.179)

Corresponding curves of different values of q/(aH)
are parallel to curves 1 and 2. Since ā(t̄ = 1) = 1,
the value of q/(aH) for a given curve can be simply
read off from its intersect with the vertical line t̄ = 1.

• Dashed blue curve 3. The figure represents

q

aH
= q̄

√
2ā√
ā+ 1

(12.180)

as given in Eq. (12.177) for q̄ = 1. Curves of different
values of q̄ are parallel to curve 3 and the intersect
of the curve with the vertical line t̄ = 1 gives the
value of q̄.

• Solid Black curve 4. This is ā vs t̄ according to
Eq. (13.63). The range of application of the expres-
sion of ā is from the time of nucleosynthesis to the
present.

• Dashed red curve 5. This curve plots

q

aH

ρ̄R
ρ̄M

= q̄

√
2

ā(t̄) + 1
(12.181)

for q̄ = 1. The curve is flat for t̄ < 1, i.e., close
to being constant in the t̄ < 1 region. Curves of
different values of q̄ are parallel to curve 5, and the
value of q̄ can be read off from the intersect of the
curve with the vertical line t̄ = 1.

• Dashed dark brown curve 6. This represents

q

aH

(
ρ̄R
ρ̄M

)1/2

= q̄

√
2ā(t̄)

ā(t̄) + 1
(12.182)

for q̄ = 1. the curve is practically flat representing
approximately a constant value for t̄ > 1. The value
of q̄2 can also be read off from the intersect of the
curve with the line t̄ = 1.

We make a few additional comments on Fig. 12.7 be-
low:

• The time region under consideration extends from
t̄ ≈ 10−10 to 106. The initial time corresponds to
t ≈ 200. at the temperature T = 109 K and the
final time to the present epoch of 13.8 Byrs, while
the matter-radiation equality time is at t ≈ 49 000
yrs.
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• The horizon to wavelength ratio, given by q/(aH) =
q/ȧ up to a factor (2π)−1, classifies the wavelengths
according to the curve q/(aH) = 1, represented by
the blue solid curve 1. The region above q/(aH) =
1, i.e., q/(aH) > 1, which has wavelengths shorter
than the horizon, is said to be inside the horizon,
and the region below q/(aH) = 1 (q/(aH) < 1) is
outside the horizon. In the very early times, most
of the wavelengths, except for the very short ones
or very large q̄ values, are outside the horizon. As
can seen from Fig. 12.7 at t̄ = 10−8 all waves of
q̄ < 104 are outside the horizon. At the initial time
of t̄ = 10−10 all waves of q̄ < 105 are outside the
horizon.

• For a given wave of fixed q, as time increases, aH
decreases and hence q/(aH) increases, then more
and more wavelengths outside the horizon will cross
into the horizon. The shorter the wavelength or the
larger the value of q, the earlier the crossing tran-
sition will occur. This is illustrated by q/(aH) for
fixed q in curves 3. All wavelengths of q̄ > 1 cross
into the horizon before the matter-radiation equal-
ity time represented by the t̄ = 1 vertical line, while
all those of q̄ < 1 make the crossing transition af-
terward. Hence for a given value of q̄, the corre-
sponding wavelength will sooner or latter cross to
enter in the horizon, the larger the q̄ the sooner. In
the radiation-dominated region, i.e., t̄ < 1, all wave-
lengths of q̄ > 1 will make the crossing transition in
the radiation dominated era, while all wavelengths
of q/qEQ < 1 will make the transition in the matter-
dominated era. For long wavelengths, say, q̄ = 0.1,
the wave will stay outside the horizon even at the
LSS.

12.9.3.3 Magnitudes and engineering dimensionalities
of relevant quantities

Here we made an estimate of several relevant parame-
ters in order to see the physical relevance of this division
of the t − q space.164) In matter-radiation dominated
epoches various quantities can be expressed conveniently
in terms of measurable cosmological parameters, such as
the redshift and present day matter and energy density
fractions. The basic tools needed for this task are the
cosmic time behavior of the scale factor in the radiation
and matter-dominated eras: aR ∼

√
t and aM ∼ t2/3,

and redshift relationship a = (1 + z)−1a0, where the
subscript 0 denotes quantities at the present epoch. It
should be kept in mind that numerical values of cosmo-
logical parameters are updated annually. But the vari-
ation of values of the parameters involved are generally
smaller than the uncertainties introduced by the approx-

164)This subsection corresponds to pp 280–282, [221].

imations employed in the present calculation. However,
keeping numerical values updated is a good practice.165)

• The redshift at the matter-radiation equality, using
the fact that ρR ∼ a−4 and ρM ∼ a−3 we can write

1 + zEQ =
a0
aEQ

=
ρM0

ρR0

ρREQ

ρMEQ
=
ΩM

ΩR

= 2.273× 104(ΩMh
2) ≈ 3200. (12.183)

The magnitude of the redshift at the last scattering
surface, 1 + zL = 1100, is given in Table 9.6 and
discussed in Section 9.5.6.

• The Hubble expansion rate in the radiation and
matter-dominated eras:166) The radiation part of the
contribution gives

H2
R =

8πGN

3
ρR = H2

0

ρR
ρC

= H2
0ΩR

(a0
a

)4
= H2

0ΩR(1 + z)4, (12.184)

which gives

HR = H0

√
ΩR(1 + z)2

= 3.2409× 10−18
√
ΩRh2(1 + z)2 s−1

= 2.15× 10−20(1 + z)2 s−1. (12.185)

Similarly the matter part of the Hubble expansion
rate gives167)

HM = H0

√
ΩM(1 + z)3/2

= 3.2409× 10−18
√
ΩMh2(1 + z)3/2 s−1

= 1.221× 10−18(1 + z)3/2 s−1. (12.186)

The vacuum energy has a constant contribution

HΛ = H0

√
ΩΛ = 3.2409× 10−18

√
ΩΛh2

= 1.81× 10−18 s−1. (12.187)

The total Hubble expansion rate is given by

H =
√
H2

Λ +H2
R +H2

M. (12.188)

The Λ-radiation equality occurs at redshift z ≈ 9,
and the Λ-matter equality at z ≈ 0.42. So matter-
radiation will dominate for all eras of the redshift

165)We use the following cosmological parameters provided in the
2014 Particle Data Book: H0 = 3.240905h × 10−18 s−1, ΩM =
0.142h−2, ΩR = 4.4h−2 × 10−5, h = 0.673, ΩΛ = 0.685, and
ΩM = 0.315. The temperature of the present epoch is taken to
be T0 = 2.7255 K. A useful conversion factor is 1 Mpc = 1.029 ×
1014 s.

166)Following [221], we treat neutrinos as massless and hence they
are included in the radiation part of the energy density.

167)For a consistency check, Eq. (12.183) can be obtained from
Eqs. (12.185) and (12.186)
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higher than a few tens, from the every early universe
down to the appearance of first stars.
Then the Hubble expansion rate at the matter-
radiation equality is

HEQ =
√
2HM|EQ = 1.77(ΩMh

2)2 × 10−11 s−1

≈ 3.55× 10−13 s−1, (12.189)

which is already a rather small expansion rate.
• The physical wavelength at the matter-radiation

equality viewed in the present epoch:168)

λEQ0 =
2π

qEQ/a0
=

2π

qEQ/aEQ

a0
aEQ

=
2π

HEQ
(1+zEQ)

= 8.069× 1015(ΩMh
2)−1

= 78.4(ΩMh
2)−1Mpc · s

≈ 553 Mpc = 1800 Myr. (12.190)

• The order of the multipole moments at the matter-
radiation equality viewed by an Earth observer, ℓEQ,
can be estimated, using Eqs. (12.186) and (12.189),

ℓEQ = qEQ· rL =
qEQ
aEQ

aEQ
a0

a0
aL
aL· rL

= HEQ
1 + zL
1 + zEQ

aL· rL

= H0

√
2ΩM(1 + zEQ)(1 + zL)d

(LSS)
A

= 3.12
√
2ΩM(1 + zEQ) ≈ 140, (12.191)

where aL and rL are the FLRW scale factor and
comoving diameter at LSS, zL is the redshift at LSS,
and d(LSS)

A ≡ aLrL is the angular diameter distance
at the last scattering surface as given in Eq. (13.79).
We have used the value ΩM = 0.315. For a general
wave number q at LSS, we have

ℓq = q · rL = ℓEQq̄ ≈ 140q̄. (12.192)

Hence the long wavelength regime q̄ < 1 contributes
to “low” multipoles ℓ < 140, and the short wave-
length regime q̄ > 1 to “high” multipoles ℓ > 140.

It is interesting and sometime useful to know the en-
gineering dimensionality of physical quantities involved
in a discussion. In the natural unit there is only one
engineering dimension. We take it to be the dimension
of the cosmic time denoted as [t]. So all physical quan-
tities have the dimension in powers of [t]. We list the
dimensionality of various quantities below:

168)For a comparison of the numerical values, see Eq. (6.2.45), p.
281, [221].

• [t]2: GN ; metric perturbation function B; vector
part of the three-scalar vector coordinate shift ϵ(S).

• [t]: The comoving coordinates x0 = t, xj ; perturba-
tion functions F , Cj ; scalar velocity potential δu(S);
three-scalar and vector coordinate shift ϵ0 and ϵ(V )

j .
• [t]0: velocity; FLRW scale factor a; metric tensors
gµν ; metric perturbations hµν : metric perturbation
functions E, Gj , A, Djk; velocity potentials uµ; per-
turbation functions of velocity potentials δu0 and
δu

(V )
j , the conserved quantity outside the horizon

R = A/2 +Hδu(S).
• [t]−1: energy; mass; H; gravitational potential ψ =

(3Ȧ+∇2Ḃ)/2; wave number q.
• [t]−2: scalar anisotropic inertia π(S).
• [t]−3: vector anisotropic inertia π(V )

j .
• [t]−4: energy-mass densities and their perturbations
ρj and δρj ; pressure and its perturbation P and δP;
energy-momentum tensor Tµν ; tensor anisotropic in-
ertia πJk,

• Fourier components of all types of functions have en-
gineering dimension of their original quantity multi-
plied by [t]3, For an examples, Aq has the dimension
[t]3, δρq has the dimension [t]−1, etc.

12.9.4 Solutions in the long wavelength regime

The long wavelength regime is defined for the perturba-
tion functions which have wavelengths sufficiently long so
that they remain well outside the horizon at the matter-
radiation equality. Aa shown in Fig. 12.7, this region lies
well below curve 3, i.e., q/(aH) = 1. From Eq. (12.180)
this means q̄ ≪ 1. From curves 5 and 6 of Fig. 12.7,
and Eqs. (12.181) and (12.182), we obtain the following
constraints:

q

aH

ρ̄R
ρ̄M

= q̄
2√
ā+ 1

≪ 1 (12.193)

and( q

aH

)2 ρ̄R
ρ̄M

= q̄2
2ā

ā+ 1
≪ 1. (12.194)

The quantities [q/(aH)](ρ̄R/ρ̄M ) and [q/(aH)]2(ρ̄R/ρ̄M )
are nearly constant respectively in the radiation- and
matter-dominated regions.

Since q̄ < 1 throughout the long wavelength regime,
the regime contributes only to multipoles not larger than
140, ℓ ≤ 140, according to Eq. (12.192).

For the six quantities that define the cosmic perturba-
tions, which are related through Eqs. (12.157)–(12.159),
it is not possible to have a single set of analytic solutions
which is valid in the entire long wavelength regime which
contains both radiation-dominated and matter domi-
nated epoches. In order to obtain analytic solutions, we
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further divide the long wavelength regime in cosmic time
according to the approximate invariant constraints. The
constraint of Eq. (12.193) in the radiation-dominated re-
gion, in which [q/(aH)](ρR/ρM ) is approximately con-
stant in time, will be labeled as Long wavelength outside
horizon (LOH). And the matter-dominated region with
the constraint Eq. (12.194), in which [q/(aH)]2(ρR/ρM )
is approximately constant, is labeled as Long wavelength
matter-dominated era (LMD). With suitable additional
approximations, sets of analytic solutions can be found
separately for LOH and LMD. The two regions overlap in
a small range in the beginning of the matter-dominated
region. The two sets of solutions are matched in this
overlapping range.

12.9.4.1 Long wavelength - Outside the horizon (LOH)

This region covers the radiation-dominated and an ini-
tial part of the matter-dominated eras, with q/(aH) ≪ 1
or q/a ≪ H and q̄ ≪ 1 according to Eq. (12.193) which
involves the radiation-dominated regions and extends to
the early part of a matter-dominated region for the cos-
mic time not too much later than tEQ. So, in the defin-
ing differential equations Eqs. (12.157), (12.158), and
(12.159) we can drop terms proportional to q2/a2. From
Eq. (12.158), all scaled density perturbations satisfy the
same differential equation, i.e., δ̇βq = −ψq. Then we
have the adiabatic solution outside the horizon for all
scaled perturbed density to be the same. Labeling all
the relevant quantities with the superscript (LOH), we
have

δ(LOH)
q ≡ δ

(LOH)
Dq = δ

(LOH)
Bq = δ(LOH)

γq = δ(LOH)
νq .

(12.195)

The equations set Eqs. (12.157)–(12.159) is reduced to
the following four equations:

∂t

(
a2ψ(LOH)

q

)
= −4πGNa

2

(
ρ̄M +

8

3
ρ̄R

)
δ(LOH)
q ,

∂tδ
(LOH)
q = −ψ(LOH)

q ,

∂t

(
1 +RB

a
δu(LOH)

γq

)
= − 1

3a
δ(LOH)
q ,

∂t

(
1

a
δu(LOH)

νq

)
= − 1

3a
δ(LOH)
q , (12.196)

where RB = 3ρ̄B/(4ρ̄R) as defined before in Eq. (12.160),
ρ̄R = ρ̄γ + ρ̄ν , and ρ̄M = ρ̄B + ρ̄D.

There are analytic solutions to the set of differential
equations given in Eq. (12.196). We will state briefly
how to obtain the solutions and refer to [221] for de-
tails.169) Substituting the expression of the second equa-
tion of Eq. (12.196) for −ψq into the first equation, we

169)pp 283–284, [221].

obtain a second order differential equation for δq. There
are two particular solutions to this differential equation.
The general solution is a linear combination of the two
particular solutions. Imposing the boundary conditions
given in Eq. (12.169), the following set of solutions is
obtained,170)

ψ(LOH)
q =

2
√
2q2R(o)

q

5HEQa2EQā
4

(√
1 + ā

(
32+8ā−ā3

)
−32+24ā

)
,

δ(LOH)
q =

4q2R(o)
q

5H2
EQa

2
EQā

2

(
16+8ā−2ā2+ā3−16

√
1+ā

)
,

δu(LOH)
γq =−

√
2ā

3HEQ(1 +RB)

∫ ā

0

δq(ā
′)√

1 + ā′
dā′,

δu(LOH)
νq =−

√
2ā

3HEQ

∫ ā

0

δq(ā
′)√

1 + ā′
dā′, (12.197)

We can follow the treatment given in §12.9.2, in partic-
ular, for Eq. (12.170), to check that outside the horizon
with q̄2 ≪ 1, the terms (q2/a2)δuβq, β = γ, ν, are in-
deed much smaller than the other terms which appear in
the same equations in Eq. (12.158). However, the present
situation is more complicated because an explicit expres-
sion for δuβq is not available. We outline the proof in
the footnote below.171) Hence the omission of the term
(q2/a2)δuβq is justified.

To prepare for the matching condition which is valid
later in the matter-dominated era where ā > 1, we list

170)These are Eqs. (6.3.13)–(6.3.16) of [221], in which y =
a/aEQ is just ā. In checking the initial conditions, which
is in the deep radiation-dominated regime, we make a lead-
ing order small ā expansion and notice the following relation:
H2
EQā

−4 = (8πGN/3)2ρ̄REQ(a4EQ/a4) = (8πGN/3)2ρ̄REQ, and
2H2 = 1/(2t2).

171)Referring to Eq. (12.197), we can write

q2

a2
δu

(LOH)
νq = q̄2

2
√
2q2R(o)

q

5HEQa
2
EQā

4
Fu(ā),

Fu(q̄)=−
2

3
ā3
∫ q̄

0

dā′

ā′2
√
1+ā′

(
16+8ā′−2ā′2+ā′3−16

√
1+ā′

)
,

(12.198)

where the relation q2/a2 = q̄2(H2
EQ/ā2) has been used. We also

write

ψ(LOH) =
2
√
2q2R(o)

q

5HEQa
2
EQā

4
Fψ(ā),

Fψ(ā) =
√

1 + q̄(32 + 8ā− ā3)− 32− 24ā. (12.199)

We can numerically compare Fu(ā) and Fψ(ā). The ratio
Fu(ā)/Fψ(ā) begins at zero for q̄ = 0 and increases with ā. The
ration is 0.08 for ā = 1, approximately unity for ā = 4.6, and 2.9
for ā = 10.
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the leading large ā≫ 1 expansion of above quantities:172)

ψ(LOH)
q |ā≫1→ − 2

√
2q2R(o)

q

5HEQa2EQ

√
ā
= −3q2R(o)

q t

5a2
,

−→δ(LOH)
q |ā≫1→

4q2R(o)
q ā

5H2
EQa

2
EQ

=
9q2R(o)

q t2

10a2
,

δu(LOH)
γq |ā≫1→ − 8

√
2q2R(o)

q ā5/2

45H3
EQa

2
EQ(1 +RB)

= − 3q2R(o)
q t3

10(1 +RB)a2
,

δu(LOH)
νq |ā≫1→ −8

√
2q2R(o)

q ā5/2

45H3
EQa

2
EQ

= −3q2R(o)
q t3

10a2
. (12.200)

Note that the final expressions are written to be propor-
tional to a−2 in order to take care of the normalization
factor in aEQ.

12.9.4.2 Long wavelength – Matter-dominated era
(LMD)

In the matter-dominated region t̄ ≫ 1, we can drop
the contribution of radiation in the equation of the
gravitational potential Eq. (12.157). To further sim-
plify the treatment, the baryonic matter contribution
is also dropped in comparison to the dark matter.173)

These approximations are to say that the dark mat-
ter largely determines the Hubble expansion rate and
hence the perturbation to the gravitational potential.
So the right-handed side of (12.157) can be written as
−(3/2)H2δDq. However, due to the much faster growing
in time δujq ∼ t3 in comparison with ψq ∼ t as shown
in Eq. (12.200), terms proportional to q2/a2 in expres-
sions of Eq. (12.158) can not be neglected. Using the
fact that in the matter-dominated regime a ∼ t2/3 and
H = 2/(3t), we can reduced Eqs. (12.157)–(12.159) to

∂t

(
t4/3ψ(LMD)

q

)
= − 2

3t2/3
δ
(LMD)
Dq ,

∂tδ
(LMD)
Dq = −ψ(LMD)

q ,

∂tδ
(LMD)
γq − q2

a2
δu(LMD)

γq = −ψ(LMD)
q ,

172)These include Eqs. (6.3.23) and (6.3.24) in [221]. To obtain
large ā leading terms for expressions in Eq. (12.197), we have used
the relation HEQ =

√
2Hā3/2 and H = (2/3)t−1 in the matter-

dominated regime. The second relation follows from a ∼ t2/3.
The first relation can be proved as follows: H2 ≈ (8πGN/3)ρ̄M =
(8πGN/3)ρ̄MEQ(a3EQ/a3) = H2

MEQā
−3/2.

173)Note that ΩB/ΩD = 0.02207/0.1198 = 18.4% even as late
as the present epoch. Hence neglecting the baryonic matter is
a drastic approximation. But it enables analytic solutions to be
obtained.

∂tδ
(LMD)
νq − q2

a2
δu(LMD)

νq = −ψ(LMD)
q ,

∂t

(
(1 +RB)

t2/3
δu(LMD)

γq

)
= − 1

3t2/3
δ(LMD)
γq ,

∂t

(
1

t2/3
δu(LMD)

νq

)
= − 1

3t2/3
δ(LMD)
νq . (12.201)

As stated above the first two expressions indicate that
the perturbation to the gravitational potential is deter-
mined by the dark matter density. The equations for
the photon and neutrino are more complicated to solve.
Below we sketch the solutions and refer the details to
[221]. We discuss the different cosmic components below
separately.
12.9.4.2.1 Perturbations in dark matter and

gravitational potential
In this region under the approximation stated above, the
perturbations to dark matter and gravitational potential
are determined by themselves: Substituting the second
expression of Eq. (12.201) into the first one, we obtain a
second order equation for δDq.

∂t

(
t4/3∂tδ

(LMD)
q

)
=

2

3t2/3
δ(LMD)
q . (12.202)

There are two particular solutions which are simple to
obtained: One solution is δDq ∼ t2/3 and ψq ∼ t−1/3,
and the other δDq ∼ t−1 and ψq ∼ t−2. These solutions
have to be matched with the previous solution for long
wavelengths outside the horizon in the large ā limit as
given in Eq. (12.200). The first set of solutions can match
with these initial conditions. The resultant functional
forms of δ(LMD)

Dq and ψ
(LMD)
q are

δ
(LMD)
Dq =

9q2R(o)
q t2

10a2
,

ψ(LMD)
q = −3q2R(o)

q t

5a2
. (12.203)

We note that the second particular solution which is
discarded in a decay solution.
12.9.4.2.2 Perturbations in photons and baryons
Perturbations of the photon and baryon fractional en-
ergy densities, which are identical δBq = δγq, and the
photon velocity potential perturbation δuγq are deter-
mined by the third and fifth equations of Eq. (12.201).
One can obtain a second order inhomogeneous differen-
tial equation for either δLMD

γq or δuLMD
γq . We follow [221]

to work on the differential equation for δLMD
γq then ob-

tain δuLMD
γq from the third expression of Eq. (12.201).

The solution of an inhomogeneous differential equation
is made of two parts: the solution of the inhomogeneous
equation and that of the homogeneous equation. Let us
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denote the two solutions for the fractional photon den-
sity perturbation function by, respectively, δ(iLMD)

γq and
δ
(hLMD)
γq . We have

∂t

(
a2

t2/3
(1 +RB) ∂tδ

(iLMD)
γq

)
+

q2

3t2/3
δ(iLMD)
γq

= −∂t
(
a2

t2/3
(1 +RB)ψ

(LMD)
q

)
,

∂t

(
a2

t2/3
(1 +RB) ∂tδ

(hLMD)
γq

)
+

q2

3t2/3
δ(hLMD)
γq = 0,

(12.204)

where ψ
(LMD)
q is given by the second expression of

Eq. (12.203) and RB ≡ 3ρ̄B/(4ρ̄R) is defined in
Eq. (12.160). The complete solution to this differential
equation is given by

δ(LMD)
γq = δ(iLMD)

γq + Chδ
(hLMD)
γq ,

δu(LMD)
γq = δu(iLMD)

γq + Chδu
(hLMD)
γq , (12.205)

where Ch is an arbitrary constant which is allowed by
a homogeneous differential equation. We discuss sepa-
rately the solutions of the homogeneous and inhomoge-
neous equations.
Solutions of the inhomogeneous equation
We start by considering the inhomogeneous differential
equation Eq. (12.204). This complicate looking second
order inhomogeneous differential equation has a set of
closed-form analytic solutions174)

δ(i)γq =
3q2R(o)

q (1 + 3RB) t
2

5a2 (t2q2/a2 + 2RB)
,

δu(i)γq = − 3q2R(o)
q t3

5a2 (t2q2/a2 + 2RB)
. (12.206)

To proceed we look for regions in the q − t space in
which the above set of solutions to the inhomogeneous
equations can be simplified. The simplified solutions to-
gether with analytic solutions of the homogeneous differ-
ential equations will form the required solutions of LMD.
The simplification is to neglect either the term t2q2/a2 or
2BR in comparison with the other in the denominators
of the expressions in Eq. (12.206). We first consider the
case RB ≫ t2q2/a2. Then δ

(i)
γq and δu

(i)
q above satisfy

already their matching conditions given in Eq. (12.200)
if RB ≫ 1. The condition RB ≫ t2q2/a2 can be satis-
fied for sufficiently small wavelengths because of the re-
lation q2t2/a2 = (q2/(a2H2))t2H2 = (4/9)(q2/(a2H2))
in the matter-dominated region. However, the condition
RB ≫ 1 can not be satisfied at LSS or earlier. This can

174)See, Eqs. (6.3.25), p. 286, [221].

be seen by examining the magnitude of RB:

RB =
3ρ̄B
4ρ̄R

=
3ρ̄B0(a0/a)

3

4ρ̄R0(a0/a)4

= (1 + z)−1 3ΩB

4ΩR
=

376.2

1 + z
, (12.207)

which varies from 0.11 at matter-radiation equality of
zEQ = 3500 to 0.34 at LSS zL = 1100.175) So RB < 1 in
the range between matter-radiation equality and LSS.

So we make an additional constraint on the region of
the wave number considered, i.e.,

RB ≡ 3ρ̄B
4ρ̄R

≪ q2t2

a2
≪ ρ̄M

ρ̄R
. (12.208)

This is consistent with the above assumption that ρ̄B is
much smaller than ρ̄D. This additional constraint also
says that we restrict ourselves to moderately long wave-
lengths with the q value small enough so that q/(aH) ≪
1 at the matter-radiation equality. Since all terms in
Eq. (12.208) have the same time behavior, i.e., pro-
portional to t2/3, he inequality can hold in the entire
matter-dominated era. This moderate wavelength re-
striction enables us to establish a connection between
the present solutions with those in the case of short wave-
lengths to be discussed in the next subsection. We note
that short wavelength solutions are relevant to large val-
ues of ℓ. With the condition of moderately long wave-
lengths, Eq. (12.208), the inhomogeneous solution given
in Eq. (12.206) can be approximated as

δ(iLMD)
γq =

3

5
(1 + 3RB)R(o)

q ,

δu(iLMD)
γq = −3

5
R(o)

q t. (12.209)

Solution of the homogeneous equation
The solution of the homogeneous differential equation
given in Eq. (12.204) is more complicated. The exact
solution is made of Gaussian hypergeometric functions.
However, simpler analytic solutions can be obtained if
additional approximations are made. For the purpose of
imposing the matching conditions, we divide the region
into two parts. In the first part, RB ≪ 1 is negligi-
ble, corresponding to the case of not so deeply into the
matter-dominated era. In the second subregion RB is
not negligible compared to unity.

For RB ≪ 1, RB can be dropped in comparison with
unity in the second expression of Eq. (12.204), we can
readily check that the differential equation has the par-
ticular analytic solutions sin(

√
3qt/a) and cos(

√
3qt/a).

175)We use the value ΩB = 0.02207h−2 and ΩR = 4.4h−2×10−5.
The redshift at the matter-radiation equality is zEQ = 3500 and
at LSS zL = 1100.
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So the general homogeneous solutions for the photon
density and velocity perturbations are176)

δ(h)γq = cq cos
(√

3q

a
t

)
+ dq sin

(√
3q

a
t

)

δu(h)γq =
a√
3q

(
−cq sin

(√
3q

a
t

)
+ dq cos

(√
3q

a
t

))
.

(12.210)

These are not the required solutions yet, since the
present region also includes the situation in which RB

becomes non-negligible in comparison with unity. So
the homogeneous solution has be modified too. In the
presence of the RB term in the homogeneous differential
equation in Eq. (12.204), an approximated solution can
be obtain by the WKB method, using Eq. (12.210) as
guidance. The approximate solution for non-negligible
RB takes the form177)

δ(hLMD)
γq = −3R(o)

q

5

1

(1 +RB)
1/4

cosφ,

δu(hLMD)
γq =

3R(o)
q

5

a
√
3q (1 +RB)

3/4
t

sinφ,

φ ≡
∫ t

0

qdt

a
√
3 (1 +RB)

=

√
3qt

a
√
RB

ln
(√

RB +
√

1 +RB

)
. (12.211)

We note that the term ln(
√
BR +

√
BR + 1)/

√
RB de-

creases monotonically as RB increases, having the max-
imal value of unity at RB = 0. Therefore, in the
matter-dominated region and outside the horizon of
q2t2/a2 ≪ 1, ϕ is small. It is straightforward to check
that δ(hLMD)

γq and δu(hLMD)
γq are reduced to δ(h)γq and δu(h)γq

when RB ≪ 1, with178) cq = −R(o)
q /5 and dq = 0 in Eq.

(12.210).
Complete solutions for the photon and baryon
The photon solutions Eq. (12.205), which include both
the inhomogeneous and homogeneous solutions given re-
spectively in Eqs. (12.209) and (12.211), takes the form:

δ(LMD)
γq = δ(iLMD)

γq + δ(hLMD)
γq ,

δu(LMD)
γq = δu(iLMD)

γq + δu(hLMD)
γq , (12.212)

176)See Eqs. (6.3.29) and (6.3.30) p. 289, [221]. We follow the
same notation. In obtaining δu

(h)
γq from δ

(h)
γq , the term involving

ψ
(LMD)
q in the third expression of Eq. (12.201) has to be dropped

as it is the inhomogeneous term.
177)See pp 288–289, [221]. To verify the second equality in the

expression for φ in Eq. (12.211) below, the following identifies in
the matter dominated region can be used: RB = 3ρ̄B/(4ρ̄R) =
(3/4)(ΩB/ΩR)(a/a0) and ṘB = (2/3)RBt

−1.
178)See p. 288, [221].

which corresponds to Ch = 1 in Eq. (12.205).
Now we have the solutions for the photon and baryon

system,
δ(LMD)
γq = δ

(LMD)
Bq

=
3R

(o)
q

5

[
1 + 3RB − 1

(1 +RB)
1/4

cosφ
]
,

δu(LMD)
γq =

3R(o)
q t

5

[
−1 +

a
√
3q (1 +RB)

3/4
t

sinφ
]
,

(12.213)
where φ is given in Eq. (12.211).
12.9.4.2.3 Comment on the neutrino

contribution
For completeness let us comment on the solutions for the
neutrino system, although the neutrino system does not
contribute significantly. As shown in Eq. (12.201) the
differential equations for the neutrino system are iden-
tical to those of the photon system by setting RB = 0.
So the solutions for the neutrino system can be obtained
similarly, i.e., by setting RB = 0 in Eq. (12.213):

δ(LMD)
νq = δ

(LMD)
Bq =

3R
(o)
q

5
(1− cosφ) ,

δu(LMD)
νq =

3R(o)
q t

5

(
−1 +

a√
3qt

sinφ
)
. (12.214)

However, we should note that the contribution of the
neutrino system in this wavelength region is negligible.
12.9.4.2.4 List of LMD solutions
We summarize the solutions for the case of matter-
dominated long wavelength by collecting the expressions
of Eqs. (12.203), (12.213), and (12.214):

δ
(LMD)
Dq =

9q2R(o)
q t2

10a2

ψ(LMD)
q = −3q2R(o)

q t

5a2
.

δ(LMD)
γq =δ

(LMD)
Bq =

3R
(o)
q

5

[
1+3RB− 1

(1+RB)
1/4

cosφ
]
,

δu(LMD)
γq =

3R(o)
q t

5

[
−1 +

a
√
3q (1 +RB)

3/4
t

sinφ
]
.

δ(LMD)
νq =

3R
(o)
q

5
(1− cosφ) ,

δu(LMD)
νq =

3R(o)
q t

5

(
−1 +

a√
3qt

sinφ
)
,

φ ≡
√
3qt

a
√
RB

ln
(√

RB +
√
RB + 1

)
,

RB ≡ 3ρ̄B
4ρ̄R

. (12.215)
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It can be checked that in the case out the horizon and un-
der the condition Eq. (12.208), i.e., RB ≪ (q2t2)/a2 ≪ 1,
the boundary conditions Eq. (12.200) are satisfied.

12.9.5 Solutions in the short wavelength regime

This regime, in contract to that of long wavelengths, in-
cludes wavelengths which are sufficiently short so that
they are well inside the horizon at the matter-radiation
equality. As can be seen in Fig. 12.7 this requires
q̄ ≫ 1. Hence Eq. (12.192) shows that this is the wave-
length regime which contributes to large multipole mo-
ments of the CMB anisotropy ℓ ≫ 140. Perturbations
in this wavelength regions cause gravitational condensa-
tions which lead to the structure formation of galaxies
and clusters.

Similar to the long wavelengths regime the cosmic time
space in the present case is again divided into the radi-
ation dominated region deep inside the horizon. In con-
trast to Eqs. (12.193) and (12.194), the conditions in the
region of short wavelength is

q

aH

ρ̄R
ρ̄M

= q̄

√
2√

ā+ 1
≫ 1 (12.216)

for the radiation-dominated region deep inside the hori-
zon, and( q

aH

)2 ρ̄R
ρ̄M

= q̄2
2ā

ā+ 1
≫ 1. (12.217)

in the matter-dominated region deep inside the horizon.
Since in this short wavelengths region q̄ ≫ 1, they con-
tribute to large multipoles moments of the order of hun-
dreds or greater.

12.9.5.1 Short wavelengths in the radiation dominated
region (SRD)

In the radiation dominated region we drop matter
density in comparison with radiation density. The
governing differential equations can be obtained from
Eqs. (12.157), (12.158), and (12.159) by dropping the
matter density function in the gravitational field equa-
tion and drop the term RB in comparison with unity in
the photon momentum equation: using a ∼ t1/2

1

t
∂t(tψq) = −32π

3
GN (ρ̄γδγq + ρ̄νδνq) ,

∂tδDq = −ψq,

∂tδγq −
q2

a2
δuγq = −ψq,

∂t

(
t−1/2δuγq

)
= −1

3
t−1/2δγq,

∂tδνq −
q2

a2
δuνq = −ψq,

∂t

(
t−1/2δuνq

)
= −1

3
t−1/2δνq. (12.218)

We briefly describe how to further simplify these differen-
tial equations, check the fact that they satisfy the initial
conditions, and then write down the solutions. We refer
to [221] for details.179)

• We are interested in adiabatic solutions in which all
reduced density functions δq and velocity potential
δuq are the same at the very early time. In partic-
ular, we see in Eq. (12.218) that the perturbation
functions of the photon and neutrinos satisfy the
same set of differential equations, so we can set

δγq = δνq, δuγq = δuνq. (12.219)

• In the highly radiation-dominated regime, the grav-
itational equation, i.e., the first expression in
Eq. (12.218) can be further simplified for adiabatic
solutions by writing

8πGN

3
(ρ̄γ + ρ̄ν) ≈ H2 =

1

4t2
, (12.220)

where we have taken a ∼ t1/2 to calculate H =
ȧ/a = 1/(2t).

The solutions to Eq. (12.218) are listed below:180)

ψ(SRD)
q =

3R(o)
q

t

[
2

θ
sin θ + 2

θ2
(cos θ − 1)− 1

]
,

δ
(SRD)
Dq = −6R(o)

q

∫ θ

0

[
2

θ′2
sin θ′+ 2

θ′3
(cos θ′−1)− 1

θ′

]
dθ′,

δ(SRD)
γq = δ(SRD)

νq =3R(o)
q

[
2

θ
sin θ+ 2

θ2
(cos θ−1)−cos θ

]
,

δu(SRD)
γq = δu(SRD)

νq = 4tR(o)
q

[
1

2θ
sin θ+ 1

θ2
(cos θ−1)

]
,

(12.221)

where

θ ≡ 2qt√
3a

≈ 1√
3

q

aH
. (12.222)

The approximation follows from the fact that in the deep
radiation-dominated regime the Hubble expansion pa-
rameter is given by H = 1/(2t).

It is straightforward to check that, in the small θ limit,
expressions listed in Eq. (12.221) satisfy the initial condi-
tions given in Eq. (12.169). The expression for the reduce
density perturbation of dark matter is different from that
of other reduced density perturbations. Straightforward
numerical comparison shows that they are in fact the
same for θ < 1 or q/(aH) not much larger than unity
which is the case under consideration. So the adiabatic
condition is satisfied.

179)pp 290–292, [221].
180)See Eqs. (6.4.11)–(6.4.14), p. 291, [221].
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12.9.5.2 Short wavelengths-deep inside the horizon
(SDH)

The system of differential equations Eqs. (12.157)–
(12.159) have analytic solutions for short wavelengths
well inside the horizon q/(aH) ≫ 1 independent of the
relative size of the matter and radiation density. Refer-
ring to Fig. 12.7, this includes much of the region above
curve 1. It is not so straightforward to derive the so-
lutions to the various perturbation functions. We shall
give a short description of how to obtain the solution and
then list the solutions given in [221] to which we refer for
details, with the page and equation numbers provided.

• For deep inside the horizon, q/a≫ H, we have q/a
and H which have the dimension of inverse of time,

provide two scales of time rate of change. Terms
of time derivatives of the order of q/a are the fast
modes, while those of the order of H are slow modes.

• The rapid oscillation in the fast mode causes a
damping effect which allows us to ignore the effect
of the neutrino.

• There are analytic solution for the fast and slow
modes for the perturbation functions. Further more
there is an overlapping region for the two modes
where the two sets of solution are matched.

The complete solution of the perturbation functions
in this regime, up to the era of recombination, are given
blow.181) On the right-handed sides of the four expres-
sions in Eq. (12.223), the first terms are the solutions for
the slow mode and the second terms the fast mode.

ψ(SDH)
q = −6R(o)

q a

aEQt
J (κ̂) + 16

√
3πGN ρ̄γ(2 +RB)(1 +RB)

1/4

(
a

q

)
R(o)

q e−Γ̂q(t) sinΘq(t),

δ
(SDH)
Dq = −9R(o)

q a

aEQ
J (κ̂) + 48πGN ρ̄γ(2 +RB)(1 +RB)

3/4

(
a

q

)2

R(o)
q e−Γ̂q(t) cosΘq(t),

δ(SDH)
γq = δ

(SDH)
Bq =

6R(o)
q a3(1 + 3RB)

aEQq2t2
J (κ̂)− 3R(o)

q

(1 +RB)1/4
e−Γ̂q(t) cosΘq(t),

δu(SDH)
γq = −6R(o)

q a3

aEQq2t
J (κ̂) +

√
3aR(o)

q

q(1 +RB)3/4
e−Γ̂q(t) sinΘq(t), (12.223)

where the first terms on the right-handed side are the slow mode and the second terms the fast mode, and

R(o)
q =

1

2
Âq |outside horizon=

1

2

(
Aq + 2Hδu(S)

)
|outside horizon,

J (κ̂) =

(
−7

2
+ γ + ln 4κ̂√

3

)
,

κ̂ =
√
2q̄ =

√
2
q

qEQ
=

√
2q

aEQHEQ
=

√
ΩR

H0ΩM

q

a0
=

19.3

ΩMh2
q

a0
,

Θq(t) =
q√
3

∫ t

0

dt

a
√
1 +RB

≡
∫ t

0

ωq(t
′)dt′, ωq(t) ≡

1√
3

q

a
√
1 +RB

,

Γ̂q(t) =
q2

6

∫ t

0

tγ
a2(1 +RB)

(
16

15
+

R2
B

1 +RB

)
dt ≡

∫ t

0

Γqdt,

Γq ≡ q2

6

tγ
a2(1 +RB)

(
16

15
+

R2
B

1 +RB

)
, RB ≡ 3ρ̄B

4ρ̄R
, tγ ≡ 1

σTne
, (12.224)

where R(o)
q is defined in Eq. (12.124) evaluated outside

the horizon and γ = 0.5772156649 . . . is the Euler con-
stant. tγ is the photon mean free path or mean free time
in a non-relativistic plasma of electron number density

181)The expressions are Eqs. (6.4.59)–(6.4.62), p. 302, [221],
where details of the derivation are given.

ne and the Thomson scattering cross section σT is cal-
culated in the rest frame of the plasma electron.

Let us remark that the first, slow mode terms and
the second, fast mode terms in the above perturbation
functions in Eq. (12.223) terms have different orders of
magnitude which can be sorted out straightforwardly.
The perturbation functions ψq and δDq are dominated by
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their respective first, slow mode terms. However owing
to their oscillatory nature, the second, fast mode terms
can have significant effect in the baryonic acoustic oscil-
lation. The functions δγq and δuγq are dominated, by
their second, faster mode terms at the horizon entry.
But the slow terms have noticeable effect in the study of
the CMB anisotropy in multipole coefficients Cℓ which
we will take up later.

12.9.6 Interpolating between long and short wavelengths
(ILS) – Transfer functions

We have obtained analytic solutions in two special re-
gions of the wavelength: (1) very long wavelengths
which enter the horizon very late in comparison with

the matter-radiation equality and they contribute to low
multipoles moments of ℓ < 140, and (2) very short wave-
lengths which enter the horizon quite early in compar-
ison with the matter-radiation equality and they con-
tribute to high multipoles moments of the order of sev-
eral hundred. To compare the analytic result with ob-
servations we have to know the solution for intermediate
wavelengths that enter the horizon around the matter-
radiation equality and contribute to the multipoles in
the range of ℓ ≈ 200 where lies the first acoustic peak in
the CMB anisotropy. Analytic expressions of solution in
this intermediate wavelength region can be constructed
to interpolate between long and short wavelengths ob-
tained above. Let us quote the final expressions182) in
leading order

ψ(ILS)
q = −3R(o)

q q2tT (κ̂)

5a2
,

δ
(ILS)
Dq =

9R(o)
q q2t2T (κ̂)

10a2
,

δ(ILS)
γq = δ

(ILS)
Bq =

3R(o)
q

5

[
(1 + 3BR)T (κ̂)− 1

(1 +RB)1/4
e−Γ̂qS(κ̂) cos (Θq(t) + ∆(κ̂))

]
,

δu(S)(ILS)
γq = −3R(o)

q

5

[
tT (κ̂)− a√

3q(1 +RB)3/4
e−Γ̂qS(κ̂) sin [Θq(t) + ∆(κ̂))

]
, (12.225)

where κ̂, Γ̂q(t), and Θq(t) are given in Eq. (12.224). The transfer functions T (κ̂), S(κ̂), and ∆(κ̂), are given in
[221]183) and we quote them below:184)

T (κ̂) =
ln(1 + (0.124κ̂)2)

(0.124κ̂)2

[
1 + (1.257κ̂)2 + (0.4452κ̂)4 + (0.2197κ̂)6

1 + (1.606κ̂)2 + (0.8568κ̂)4 + (0.3927κ̂)6

]1/2
,

S(κ̂) =

[
1 + (1.209κ̂)2 + (0.5116κ̂)4 +

√
5(0.1657κ̂)6

1 + (1.9459κ̂)2 + (0.4249κ̂)4 + (0.1657κ̂)6

]2
,

∆(κ̂) =
(1.1547κ̂)2 + (0.5986κ̂)4 + (0.2578κ̂)6

1 + (1.723κ̂)2 + (0.8707κ̂)4 + (0.4581κ̂)6 + (0.2204κ̂)8
, (12.226)

where κ̂, Γ̂ , and Θ are defined in Eq. (12.224). For long
wavelengths, i.e., κ̂ ≪ 1, the transfer functions take the
limiting values T (κ̂) → 1, S(κ̂) → 1, and ∆(κ̂) → 0.
Then ψ

(ILS)
q and δ

(ILS)
Dq are reduced to ψ

(LMD)
q and

δ
(LMD)
Dq .

182)The corresponding expressions are given in Eqs. (6.5.15) and
(6.5.16) p. 309, and Eqs. (6.5.17) and (6.5.18) p. 310, [221], where
details of the derivation can be found.

183)The transfer function are given in Eqs. (6.5.12)–(6.5.14), pp
307–308, [221].

184)The expression for ∆(κ̂) given below is the corrected form
which can be found in the errata of the First Print of [221]. See:
http://zippy.ph.utexas.edu/weinberg/swcorrections.pdf.

Plots of the transfer functions are given in Fig. 12.8.185)

12.10 Temperature anisotropy due to scalar
perturbations

In this section we shall derive an analytic expression for
the CMB anisotropy due to perturbation functions in
the scalar mode, through a series of approximations in
treating the cosmic evolution after LSS. The final result
so obtained can be studied with simple numerical inte-

185)This plot is similar to that of Fig. 6.1 given on p. 309, [221],
where the function ∆(κ̂) has the form before the correction as
mentioned in Footnote 184).
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Fig. 12.8 Transfer functions defined in Eq. (12.226).

grations and readily compared with observational data.
We will not concern ourselves with the tensor mode
which is much smaller than the scalar mode. We will
not concern ourselves with the CMB polarization either.
Let us state again, we follow closely the approaches of
[221] and frequently refer to its relevant expressions in
footnotes.

In the preceding section we have obtained the ex-
pressions of the scalar perturbations associated with the
gravitational potential due to matter and energy from
very early times down to the last scattering surface. Evo-
lutions of these expressions have to be worked out to the
present time when the CMB anisotropy is observed. To
enable an analytic calculation of this evolution, a key
approximation will be made: a sharp transition of pho-
tons from thermal equilibrium to free propagation. In
other words, the approximation says that the transition
of photons from opacity, which means fully interacting
with charged particles, to complete transparency, which
means fully non-interacting free streaming, takes place at
a certain time instantaneously. In this approximation,
LSS is considered to be located at a sharp time, called
say tL, instead of being a process which happened during
a significantly long time interval. So tL is the time of the
opacity to transparency transition. This approximation
also neglects the scattering of CMB photons by matter
that re-ionizes the baryon matter in the appearance of
first stars, at around the red shift z ≈ 10.186) However,
certain relatively simple approaches can be used to make
up for the approximation, including:

• The reionization corrections entailed in the temper-
ature correlation can be simply taken into account
for the case of multipoles ℓ > 20. This will be in-
cluded in the final result.

• The sharp transition can also be partially made up
by including the effect of viscous damping, and by
including effects of averaging over a finite time in-
terval of the last scattering surface.

186)See discussion in p. 329, [221].

12.10.1 Sudden transparency approximation –
Following the photon trajectory

Under the assumption of sudden transparency at LSS,
the expression of the CMB anisotropy can be derived
by following the trajectory of a freely propagating CMB
photon, in a perturbed metric, from the LSS to the
present. The calculation can be carried out in a class
of gauges in which the perturbation of the time-space
components of the metric functions are set to vanish,
i.e., g0j = 0, such as the Newtonian and synchronous
gauges. From Eq. (12.41), we have

g00 = −1 + h00 ≡ −1− E(r, t),

g0j = h0j ≡ a(∂jF +Gj) = 0,

gjk = a2(t)δjk + hjk(r, t)

≡ a2[(1 +A)δjk + ∂jkB + ∂jCk + ∂kCj +Djk].

(12.227)

Let us take the comoving frame with the observer at
the origin and consider a pulse of photons traveling to-
ward the observer along a radial direction n̂. At the
cosmic time t the coordinate of the photon is r(t)n̂. Fol-
lowing a null path of its trajectory, the photon is on the
geodesic

gjkdx
jdxk = −[1 + E(r(t)n̂, t)](dt)2

+[a2(t) + hrr](dr)2 = 0, (12.228)

which gives a time evolution equation for the photon
radial coordinate, in an expanding universe,

d
dtr(t) = −

[
1 + E(r(t)n̂, t)

a2(t) + hrr(r(t)n̂, t)

]1/2
≡ 1

a(t)
[−1 +N (r̄(t)n̂, t)] , (12.229)

where r̄(t) is the radial coordinate of the background
universe or the zeroth order form of the above expression.
To the first order in the perturbation

N(r̄(t)n̂, t) =
1

2

[
hrr(r̄(t)n̂, t)

a2(t)
−E(r̄(t)n̂, t)

]
. (12.230)

The negative sign on the right-handed side of the first
line of Eq. (12.229) indicates that the photon pulse in
question travels towards the origin. Note that since the
perturbation functions E and hrr are already first or-
der, the coordinate argument in them can be replace by
the photon zeroth order radial coordinate r̄(t), i.e., that
in the absence of metric perturbations. Dropping the
perturbation functions, we obtain from Eq. (12.229) the
zeroth order equation

d
dt r̄(t) = − 1

a(t)
. (12.231)
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We can solve both Eqs. (12.229) and (12.231):

r̄(t) = rL −
∫ t

tL

dt′
a(t′)

, (12.232)

where tL is the time of LSS and rL the radial coordinate
at the time of LSS. The radial coordinate as a function
of the cosmic time is given by

r(t) = r̄(t) +

∫ t

tL

1

a(t′)
N(r̄(t′)n̂, t′)dt′

= rL +

∫ t

tL

1

a(t′)
[N(r̄(t′)n̂, t′)− 1]dt′. (12.233)

The initial conditions are satisfied:

r(tL) = r̄(tL) = rL (12.234)

Assuming that this pulse of photon reaches the observer
at the present epoch at t0, we have,

r(t0) = 0 = rL+

∫ t0

tL

1

a(t)
[N(r̄(t)n̂, t)− 1]dt. (12.235)

Up to now we have considered the trajectory of a fixed
point, say a crest, of the wave of a photon pulse. Let us
consider the trajectory of the next crest passing through
the LSS to reach the observer at the origin. Suppose
that the next crest passes through LSS at tL + δtL and
reaches the observer at t0+δt0. This latter photon pulse
satisfies an equation similar to Eq. (12.235), but with
tL and t0 being replaced respectively by tL + δtL and
t0 + δt0. Furthermore, there is a variation in tL due to
the perturbation of the radial velocity of the photon gas
or the photon-nucleon plasma. Combining the equations
starting at tL and those at tL + δtL, we obtain an equa-
tion which is the variation of the original Eq. (12.235).
When δtL and δt0 are identified as the respective peri-
ods of the photon wave at LSS and at the present, de-
noted as τL and τ0, a relation between the two periods, or
their frequencies denoted as νL and ν0, can be obtained.
Note that the photon periods or their frequencies at tL
and t0 are not the same because of the expansion of the
universe, which affects the wavelength of the photon in
question.

Let us illustrate this time variations below. First con-
sider the variation in the zeroth order coordinate for
t < t0. From Eq. (12.232), we have

δr̄(t) = δrL − δ

∫ t

tL

dt′
a(t′)

= δrL −
[∫ t

tL+δtL

dt
a(t)

−
∫ t

tL

dt
a(t)

]
= δu(r)γ (rLn̂, tL)δtL +

δtL
a(tL)

. (12.236)

The first term on the right-handed side of the second
line, δrL = δu

(r)
γ (rLn̂, tL)δtL arises from the perturbation

of the radial velocity of the photon gas or the photon-
nucleon plasma δu(r)γ , which introduces a non-vanishing
variation to the zeroth order radial distance caused by
the time elapse δtL, even though rL is a constant.

For the second photon wave crest, which leaves LSS
at tL + δtL, its zeroth order radial coordinate is r̄(t) +
δu

(r)
γ δtL. The variation of Eq. (12.235) is

0 = δrL + δ

∫ t0

tL

dt
a(t)

[N(r̄(t)n̂, t)− 1]

= δrL +

(∫ t0+δt0

tL+δtL

−
∫ t0

tL

)
dt
a(t)

[N(r̄(t)n̂, t)− 1]

+

∫ t0

tL

dt
a(t)

δN(r̄(t)n̂, t), (12.237)

where
δN (r̄(t)n̂, t) = N ((r̄(t) + δr̄(t))n̄, t)−N (r̄(t)n̂, t)

=
∂

∂x
N (xn̂, t) |x=r̄(t)

δtL
a(tL)

. (12.238)

Note that in the second line of the above expression we
have dropped a δu

(r)
γ dependent term in δr̄(t) given by

Eq. (12.236). The term makes a second order contribu-
tion.

We now have all the ingredients needed to calculate
the variation of Eq. (12.235) from Eq. (12.237). It is

0 =

[
1−N(rLn̂, tL) + a(tL)δu

(r)
γ (rLn̂, tL)

+

∫ t0

tL

dt
a(t)

∂

∂x
N(xn̂, t) |x=r̄(t)

]
δtL
a(tL)

− (1−N(0, t0))
δt0
a(t0)

, (12.239)

where we have used the zeroth order result r̄(t0) = 0 in
the first order term N(r̄(t0), t0). The above expression
can be further simplified by the relation

1

a(t)

∂

∂x
N(xn̂, t) |x=r̄(t)

= − d
dtN(r̄(t)n̂, t) +

∂

∂t
N(xn̂, t) |x=r̄(t) . (12.240)

Substituting Eq. (12.240) into Eq. (12.239) and perform-
ing the doable integration, we obtain

0 =

[
1−N(0, t0) + a(tL)δu

(r)
γ (rLn̂, tL)

+

∫ t0

tL

dt ∂
∂t
N(xn̂, t) |x=r̄(t)

]
δtL
a(tL)

− (1−N(0, t0))
δt0
a(t0)

. (12.241)
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Now we can calculate the ratio of the two time intervals,
to the first order in the perturbation,

δtL
δt0

=

[
1−

∫ t0

tL

dt ∂
∂x
N(xn̂, t) |x=r̄(t)

−a(tL)δu(r)γ (rLn̂, tL)

]
a(tL)

a(t0)
. (12.242)

The periods of the photon at different time t are given
by the proper time intervals which are

δτL =
√

−g00(rL, tL)δtL =
√
1 + E(rL, tL)δtL,

δτ0 =
√

−g00(0, t0)δt0 =
√
1 + E(0, t0)δt0. (12.243)

We now obtain the ratio of the frequencies, to the first
order in perturbation,

ν0
νL

=

√
1 + E(rL, tL)√
1 + E(0, t0)

δtL
δt0

=

[
1+

1

2
(E(rLn̂, tL)−E(r0n̂, t0))−a(tL)δu(r)γ (rLn̂, tL)

−
∫ t0

tL

dt ∂
∂t
N(xn̂, t) |x=r̄(t)

]
a(tL)

a(t0)
. (12.244)

In the absence of the perturbation, this is just the dis-
cussion of the redshift shown in Eq. (9.60).

12.10.2 Temperature fluctuation due to scalar perturba-
tions

We now calculate the temperature fluctuation at the
present epoch by relating it to that at the LSS through
the cosmic evolution. We observe that photons leaving
LSS to propagate freely but under the influence of the
universe will behave as if they are in equilibrium, having
a number density nγ ∼ T 3

γ and energy density ργ ∼ T 4
γ .

The energy of individual photons are proportional to
their frequencies ϵγ ∼ νγ . Then the relation ργ = nγϵγ
gives T 4

γ ∼ T 3
γ νγ which leads, in turn, νγ ∼ Tγ . Hence

the temperature T0 at the present time t0 is related to
that at LSS TL ≡ T (tL) at time tL by the ratio of the fre-
quencies of their photons. Let T (n̂) be the temperature
of the photon coming from the direction n̂. We write

T (n̂) = T (tL)
ν0
νL

≡
[
T̄ (tL) + δT (i)(rLn̂, tL)

] ν0
νL
,

(12.245)

where T̄ (tL) is the averaged temperature on LSS at tL
and δT (i)(rLn̂, tL) the temperature fluctuation on LSS at
tL. The average temperature on LSS at tL and that at
the present time T0 are related by

T0 =
a(tL)

a(t0)
T̄ (tL) (12.246)

Now we can define the fractional temperature perturba-
tion at the present time observed in the direction n̂, to
the first order in the perturbation,
∆T (n̂)

T0
=
T (n̂)− T0

T0

=
ν0
νL

a(t0)

a(tL)

[
1 +

δT (i)(rLn̂, tL)

T̄ (tL)

]
− 1

=
ν0
νL

a(t0)

a(tL)
+
δT (i)(rLn̂, tL)

T̄ (tL)
− 1. (12.247)

To obtain the last line we note that δT (i)(rLn̂, tL)/T̄ (tL)
is of the first order in the perturbation, therefore we can
take the zeroth order of the ratio (ν0/νL)(a(t0)/a(tL))
which is unity.187) Substituting Eq. (12.244) into
Eq. (12.247), we obtain
∆T (n̂)

T0
=

1

2
(E(rLn̂, tL)−E(0, t0))−a(tL)δu(r)γ (rLn̂, tL)

−
∫ t0

tL

dt ∂
∂t
N(xn̂, t) |x=r̄(t) +

δT (i)(rLn̂, tL)

T̄ (tL)
.

(12.248)
In the temperature perturbation there are both scalar

and tensor contributions from the metric perturbations,
while the metric vector perturbation is set to zero h0j = 0
in the class of gauge under consideration. Since there is
no correlation between the scalar and tensor perturba-
tions in the temperature multipole coefficient Cℓ, their
contributions can be separately treated. As stated be-
fore we concern ourselves only with scalar perturba-
tions which make the dominant contribution to the CMB
anisotropy.

12.10.2.1 Dissection of scalar perturbations

The non-vanishing perturbation functions of the relevant
scalar metric perturbation are given in Eqs. (12.38) and
(12.40):

h
(S)
00 = −E, h

(S)
jk = a2

(
Aδjk +

∂2B

∂xj∂xk

)
.

N =
1

2

(
A+

∂2B

∂r2
− E

)
, (12.249)

where the superscript S denotes the scalar contribution.
The scalar radial photon fluid velocity δu(r)γ is obtained
from the photon velocity potential δu(S)

γ as follows:188)

δu(r)γ = ḡrλ
∂δu

(S)
γ

∂xλ
=

1

a2
∂δu

(S)
γ

∂r
. (12.250)

We have the scalar part of the fractional temperature
fluctuation Eq. (12.248),

187)In the background universe the product of the FLRW scale
factor times the frequency of a photon is constant at an arbitrary
cosmic time t, i.e., a(t)ν(t) = const. See Eq. (9.60).

188)See, p. 339, Eq. (7.1.32), [221].

121201-174
Bing-Lin Young, Front. Phys. 12(2), 121201 (2017)



Review article

(
∆T (n̂)

T0

)(S)

=
1

2
(E(rLn̂, tL)− E(0, t0))−

1

a(tL)

∂

∂x
δu(S)

γ (xn̂, tL) |x=r̄(tL)

−1

2

∫ t0

tL

dt
(
Ȧ(xn̂, t) +

∂2

∂r2
Ḃ(xn̂, t)− Ė(xn̂, t)

)
|x=r̄(t) +

δT (i)(rLn̂, tL)

T̄ (tL)
, (12.251)

where we have used the notation for the partial derivative with respect to the cosmic time

Ȧ(xn̂, t) ≡ ∂

∂t
A(xn̂, t), Ė(xn̂, t) ≡ ∂

∂t
E(xn̂, t), etc. (12.252)

To make the physics transparent, we can rewrite the integrand of the integral appearing in the second line of
Eq. (12.251):189)(
Ȧ(xn̂, t)+

∂2

∂x2
Ḃ(xn̂, t)−Ė(xn̂, t)

)
|x=r̄(t)= − d

dt

((
a2(t)B̈(xn̂, t)+a(t)ȧ(t)Ḃ(xn̂, t)+a(t)

∂

∂x
Ḃ(xn̂, t)

)
|x=r̄(t)

)
+
∂

∂t

(
a2(t)B̈(xn̂, t)+a(t)ȧ(t)Ḃ(xn̂, t)+A(xn̂, t)−E(xn̂, t)

)
|x=r̄(t) .

(12.253)

Substituting the result of Eq. (12.253) into Eq. (12.251), performing the straightforward time integration, and
grouping the resulting terms according to their dependence on the cosmic time variables: time at the LSS tL, time
at the present epoch t0, and the time interval in between, i.e., integration between tL and t0. They are named
respectively as “early”, “late”, and “ISW”:190)(

∆T (n̂)

T0

)(S)

=

(
∆T (n̂)

T0

)(S)

early
+

(
∆T (n̂)

T0

)(S)

late
+

(
∆T (n̂)

T0

)(S)

ISW
. (12.254)

The expressions of these terms and their physical meanings are discussed below.
The “early” term is given by:191)(

∆T (n̂)

T0

)(S)

early
≡ −1

2

(
a2(tL)B̈(rLn̂, tL) + a(tL)ȧ(tL)Ḃ(rLn̂, tL)− E(rLn̂, , tL)

)
+
δT (i)(rLn̂, tL)

T̄ (tL)
− a(tL)

∂

∂x

(
1

2
Ḃ(xn̂, tL) +

1

a2(tL)
δu(S)

γ (xn̂, tL)

)
|x=rL . (12.255)

The name of the term is clear: All terms are functions of the LSS variables rL and tL. The second term of the second
line, involving radial derivatives, comes from the Doppler effect. The first term of the second line, as remarked
earlier, represents the intrinsic temperature fluctuation that occurs on LSS. This “early” term makes the largest
contribution to multipole moment coefficients ℓ > 20.

The “late” term is192)(
∆T (n̂)

T0

)(S)

late
≡ 1

2

(
a2(t0)B̈(0, t0) + a(t0)ȧ(t0)Ḃ(0, t0)− E(0, t0)

)
+a(t0)

∂

∂x

(
1

2
Ḃ(xn̂, t0) +

1

a2(t0)
δu(S)

γ (xn̂, t0)

)
|x=0 . (12.256)

189)The following identity has been used:

∂2

∂x2
Ḃ(xn̂, t) |x=r̄(t)

=−
d
dt

((
a2(t)B̈(xn̂, t)+a(t)ȧ(t)Ḃ(xn̂, t)+a(t)

∂

∂x
Ḃ(xn̂, t)

)
|x=r̄(t)

)
+
∂

∂x

(
a2(t)B̈(xn̂, t) + a(t)ȧ(t)Ḃ(xn̂, t)

)
|x=r̄(t),

which is given in [221] as the first expression given on p. 342.
190)See, [221], Eq. (7.1.36).

The name of the term is also clear: All terms are func-
tions of variables of the present epoch, r0 = 0 and t0.
The “late” term is similar to the “early” term, but as
expected, without an intrinsic temperature fluctuation
term. The first three terms on the right-handed side do
not depend on the incoming photon direction n̂. Hence
it contributes to the monopole moment only. As will be

191)See, [221], Eq. (7.1.37).
192)See, [221], Eq. (7.1.38).
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demonstrated in the next subsection in the discussion of
the Fourier decomposition of scalar perturbation func-
tions, the last term depends linearly on n̂. Therefore,

this term contributes only to the dipole moment ℓ = 1.
Hence the “late” term can be ignored for ℓ > 1.

The “ISW” term is193)

(
∆T (n̂)

T0

)(S)

ISW
≡ −1

2

∫ t0

tL

dt
[
∂

∂t

(
a2(t)B̈(xn̂, t) + a(t)ȧ(t)Ḃ(xn̂, t) +A(xn̂, t)− E(xn̂, t)

)]
x=r̄(t)

, (12.257)

which describes the integrated Sachs–Wolfe effect (ISW).
It is a consequence of time-dependent fluctuation of grav-
itational fields integrated over the time from LSS tL to
the present t0. For time independent gravitational po-
tentials that lie in the photon path from LSS to the
present, the ISW effect will vanish. Hence the gravita-
tional effect of the cold dark matter does not contribute
to ISW. The ISW effect contributes to relatively small
multipole coefficients, ℓ < 20.

12.10.2.2 Fourier decomposition of scalar perturbation
functions

Let us now work out the various terms that enter in
“early” expression, etc., in terms of Fourier amplitudes
of relevant perturbation functions. This is to rewrite
the perturbation functions, E(x, t), etc. in their Fourier
decomposition. See Section 12.8.2 for more details. We
write

B(x, t) ≡
∫

d3qα(q) exp (iq·x)Bq(t), etc., (12.258)

where a single mode is assumed to dominate the scalar
temperature fluctuation. To simplify the notation we
write Bq(t) mean a function of both q and t. So we
use the notation B(q, t) and Bq(t) interchangeably. The
stochastic variable α(q) is normalized as

⟨α(q)α∗(q′)⟩ = δ(q − q′). (12.259)

We can rewrite the “early” terms, etc.,(
∆T (n)

T0

)(S)

early
=

∫
d3qα(q) exp(iq· n̂tL)[FT (q, tL)

+iq̂· n̂GT (q, tL)], (12.260)

where194)

FT (q, t) ≡ FT1(q, t) +
δT

(i)
q (tL)

T̄ (tL)
,

193)See, [221], Eq. (7.1.39).
194)Here FT and GT are F and G of [221], Eqs. (7.1.44) and

(7.1.45). We modify the notation slightly to avoid possible confu-
sion with the metric perturbation functions F and Gj defined in
Eq. (12.39). The metric perturbation function F will appear in
our discussion of gauge invariance below.

FT1(q, t) ≡ −1

2

[
a2(t)B̈q(t) + a(t)ȧ(t)Ḃq(t)− Eq(t)

]
,

GT (q, t) = −q
[
a(t)

2
Ḃq(t) +

1

a(t)
δu(S)

γq (t)

]
. (12.261)

The “late” term becomes(
∆T (n)

T0

)(S)

late
=

∫
d3qα(q)[FT1(q, t0)+iq̂· n̂GT (q, t0)],

(12.262)

which shows that the “late” term contributes to multi-
poles only up to ℓ = 1.

The “ISW” term is(
∆T (n)

T0

)(S)

ISW
=

∫ t0

tL

dt
∫

d3qα(q) exp(iq· n̂r̄(t))

× ∂

∂t

(
FT1(q, t)−

Aq(t)

2

)
. (12.263)

12.10.2.3 Gauge invariance of scalar perturbations

For the separation of the various terms in Eq. (12.254)–
(12.257) and the labeling of the Doppler term in
Eq. (12.255) to be meaningful, they have to be indi-
vidually gauge invariant for the class of gauges under
consideration, g0j = 0.195) Let us rewrite the relevant
perturbation functions in gauge invariant form discussed
in §12.6.3. The gauge invariant scalar perturbation func-
tions are given in Eq. (12.84). The relevant ones are given
below, suppressing the functional dependence:

Ê ≡ E + 2δu̇(S), Â ≡ A+ 2Hδu(S),

B̂F ≡ F − 1

2
aḂ − 1

a
δu(S),

δT̂ ≡ δT + ˙̄Tδu(S) = δT −HT̄δu(S), (12.264)

where Ê, Â, B̂F , and δT̂ are gauge invariant under arbi-
trary gauge transformations. In the last line of the above
equations, δT is a scalar and T̄ ∼ 1/a, so ˙̄T = −HT̄ . Let
us recall that F is the scalar function appears in the per-
turbation of g0j .

There are basically three groups of terms entering in
Eqs. (12.255)–(12.257) which we rewrite in the following

195)We can prove the gauge invariance directly by making gauge
transformation on the various terms to show that they are invari-
ant. This is the approach taken in [221], p. 341.
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in terms of gauge invariant perturbation functions. Their
functional arguments are suppressed. First, the group of
terms entering in Eqs. (12.255) and (12.256),

1

2
Ḃ +

1

a2
δu(S)

γ =
1

a

[
a

2
Ḃ +

1

a
δu(S)

γ

]
= −1

a
B̂F +

1

a
F ; (12.265)

the group entering in Eq. (12.255)

a2B̈ + aȧḂ − E − 2
δT (i)

T̄

= a2∂t

[
2

a

(
−B̂F + F − 1

a
δu(S)

γ

)]
+2ȧ

[
−B̂F + F − 1

a
δu(S)

γ

]
−
[
Ê − 2δu̇(S)

γ

]
− 2

[
δT̂ (i)

T̄
+Hδu(S)

γ

]

= −a2∂t
(
2

a
B̂F

)
− 2ȧB̂F −Ê− δT̂ (i)

T̄
+2aḞ ; (12.266)

and the group entering in Eq. (12.257)

a2B̈ + aȧḂ +A− E

= a2∂t

[
2

a

(
−B̂F + F − 1

a
δu(S)

γ

)]
+2ȧ

[
−B̂F + F − 1

a
δu(S)

γ

]
+
[
Â− 2Hδu(S)

γ

]
−
[
Ê − 2δu̇(S)

γ

]
= −a2∂t

(
2

a
B̂F

)
− 2ȧB̂F + Â− Ê + 2aḞ . (12.267)

These groups of terms, Eqs. (12.265)–(12.267) are gauge
invariant in the gauge g0j = 0 which maintains F =
0. This makes the “early” term Eq. (12.255) and the
“ISW” term Eq. (12.257) gauge invariant. But the
“late” term (12.256) is not gauge invariant. As shown

in Eq. (12.266), since the first term in the right-handed
side of the “late” term does not have an intrinsic temper-
ature fluctuation, it is not gauge invariant. However, as
we have seen in Eq. (12.262), the “late” term contributes
to multipole moments only up to the dipole ℓ = 1, it will
be ignored.

Let us take a brief look of the gauge transformation
under the present requirement. As shown in Eq. (12.76),
a general gauge transformation due to an infinitesimal
coordinate shift xµ→xµ+ϵµ in the form of Eq. (12.66)

ϵµ ≡ (ϵ0, ∂jϵ
(S) + ϵ

(V )
j ). (12.268)

This introduces shifts in all scalar perturbation functions
and some vector perturbation functions as well, as dis-
cussed in §12.6.3, listed in Eqs. (12.72), (12.77)–(12.79),
(12.81), and (12.82). To maintain g0j = 0, it requires,
in particular, ∆F = 0, which leads to a relation among
the scalar parts of the gauge transformation parameters
given in Eq. (12.78)

ϵ0 + a2∂t

(
ϵ(S)

a2

)
= 0. (12.269)

Then all shifts of the perturbation functions ∆E, ∆A,
etc. can be worked out in terms of the parameter, say
ϵ0. One can verify directly that the “early” and “ISW”
terms, Eqs. (12.255) and (12.257), are gauge invari-
ant.196)

12.10.2.4 Scalar mode temperature multipole
coefficients and angular power spectra

We will now work out the coefficients of the temperature
multipoles moments for perturbations in the scalar mode
and the corresponding power spectra. For large multi-
poles of ℓ > 20 we can ignore the “ISW” term. So we
will focus on the “early” term given in Eq. (12.260) and
write it in a multipole expansion

(
∆T (n̂)

T0

)(S)

≈
(
∆T (n̂)

T0

)(S)

early
=

∫
d3qα(q)

[
FT (q, tL) +GT (q, tL)

∂

∂x

]
exp(iq̂· n̂x) |x=qrL

≡ 1

T0

∑
ℓm

a
(S)
T,ℓmYℓm(n̂), (12.270)

where FT (q, tL) and GT (q, tL) are given in Eq. (12.261)
and α

(S)
T,ℓm are coefficients of the multipole moment ex-

pansion of scalar temperature fluctuations. To obtain
these multipole moment coefficients we follow the de-

196)As already noted earlier, this approach of direct verification
of gauge invariance is employed in [221], p. 341.

velopment presented in Section 12.4. We make a multi-
pole expansion of the exponential function as given in
Eq. (12.19), i.e.,

exp (iq̂· n̂x) = 4π
∑
ℓm

iℓjℓ(x)Yℓm(n̂)Y ∗
ℓm(q̂). (12.271)

The scalar temperature fluctuation multipole coefficient
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can be readily calculated,

α
(S)
T,ℓm = 4πiℓT0

∫
d3qα(q)(jℓ(qrL)F − T (q, tL)

+j′ℓ(qrL)GT (q, tL))Yℓm(q̂),

j′ℓ(qrL) =
∂

∂x
jℓ(x) |x=qrL . (12.272)

The angular power spectra is defined in Eq. (12.13)

C
(S)
TT,ℓ =

1

2ℓ+ 1

∑
m

⟨aℓma∗ℓm⟩

= (4πT0)
2

∫ ∞

0

q2dq
∣∣∣jℓ(qrL)FT (q, tL)

+j′ℓ(qrL)GT (q, tL)
∣∣∣2. (12.273)

Here we are interested in large order multipole mo-
ments. The expression of the angular power spectra
Eq. (12.273) can be simplified using the large order ap-
proximation of the spherical Bessel function of the first
kind discussed in §12.5.3. We note that for ℓ ≫ 1 jℓ(z)
has substantial values only for z ' ℓ and for z > ℓ it
oscillates rapidly. This behavior of the ℓ− z relationship
can be seen clearly in Fig. 12.6, and it will be advanta-
geous to factor ℓ out as much as possible. We rewrite
the large order asymptotic expression Eqs. (12.27) and
(12.28), by changing the variable to make the argument
of the trigonometric function looks simpler:197)

qrL ≡ ℓβ, for β ≥ 1, (12.274)

The comoving wave number q can be scaled out by the
order of the multipole, q = (ℓ/rL)β, for a given order of
the multipole moment.

jℓ(qrL) ≡ jℓ(ℓβ) ≈
1

ℓ
√
β(β2 − 1)1/4

cos
(
ℓ
√
β2 − 1− ℓ cos−1

(
1

β

)
− π

4

)
,

j′ℓ(qrL) ≡ j′ℓ(ℓβ) ≈ − 1

ℓ
√
β(β2 − 1)1/4

·
√
β2 − 1

β
sin
(
ℓ
√
β2 − 1− ℓ cos−1

(
1

β

)
− π

4

)
. (12.275)

The angular power spectra become

C
(S)
TT,ℓ ≈ (4πT0)

2 ℓ

r3L

∫ ∞

1

βdβ√
β2 − 1

∣∣∣∣FT

(
ℓβ

rL
, tL

)
cos
(
ℓ
√
β2 − 1− ℓ cos−1

(
1

β

)
− π

4

)
−
√
β2 − 1

β
GT

(
ℓβ

rL
, tL

)
sin
(
ℓ
√
β2 − 1− ℓ cos−1

(
1

β

)
− π

4

)∣∣∣∣∣
2

. (12.276)

The trigonometric functions entering in Eq. (12.276)
include the following terms: cos2(η) = 1

2 (1 + cos(2η)),
sin2(η) = 1

2 (1 − cos(2η)), and cos(η) sin(η) = 1
2 sin(2η),

where η ≡ ℓ
√
β2 − 1 − ℓ cos−1(1/β) − π/4. For large

ℓ they are rapidly oscillating functions of β. Assuming
that FT (ℓβ/rL, tL) and GT (ℓβ/rL, tL) are smooth func-
tions of β, we have, under the β integration, cos(2η) and
sin(2η) are effectively zero, while cos2(η) and sin2(η) ef-
fectively 1/2.198) Multiplied by the factor ℓ(ℓ + 1) ≈ ℓ2

197)Stages of variable changes are employed in the calculation in
[221]. Here we follow its second stage of variable change, see pp
347–348, [221].

198)These results can be argued as follows. In a measurement, the
value of a variable, such as q or β in the present case, can not be
given in absolute precision. Each point can be regarded as being
associated with a small interval. Hence the value of the function
of the variable should be taken as the average of the values in the
small interval of the variable. For the case of a rapid oscillating
function, there would be several oscillations in the averaging inter-
val. So the sine and cosine functions are averaged to 0, and their
squares to 1/2. This argument is essential in the formulation of
long baseline neutrino oscillations. We have to be careful in the
present case, because η is small when β is very close to 1. Then
a reasonably valued percentage interval in β ≈ 1 might not cover
several oscillation cycles. So a small but finite interval of β has to
be assigned there in making the average.

as usually done, the angular power spectra has a much
simpler expression,

ℓ(ℓ+ 1)C
(S)
TT,ℓ ≈ 8π2T 2

0

ℓ3

r3L

∫ ∞

1

βdβ√
β2 − 1

[
F 2
T

(
ℓβ

rL
, tL

)

+
β2 − 1

β2
G2

T

(
ℓβ

rL
, tL

)]
. (12.277)

From the above functional form and the physics input
in the formulation we can draw several conclusions even
without knowing the explicit expressions of the form fac-
tors FT and GT .

• For multipole moments ℓ > 20, the power spectra of
the temperature anisotropy depend largely on the
physics at the LSS.

• From the approximations adopted so far, we see that
the form factors depend on the total matter density
and the baryonic matter density at LSS. These den-
sity on LSS can be related to their present values,
and therefore the density parameter ΩBh and ΩMh.
The dark matter fractional density at the present
epoch is Ω = ΩM −ΩB.
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• For large ℓ the scaled power spectra ℓ(ℓ+1)C
(S)
TT,ℓ de-

pends on the ratio ℓ/rL, not on ℓ and rL separately,
where rL depends on H0 as well as all density pa-
rameters, including the space curvature κ. Hence
the temperature anisotropy can not be used to de-
termine the cosmic parameters H0, ΩΛ, and Ωκ sep-
arately.

• In case of a flat universe, i.e., κ = 0, we can obtain
ΩΛ = 1− ΩM . In the acuracy of the present treat-
ment, the radiation fractional density, Ω < 10−3

can be neglected.

We can simplify the expressions of the form factors
FT and GT by the assumption that at LSS the gravita-
tional potential ψ, given by Eq. (12.107) which has the
momentum space expression

ψq =
1

2

(
Ȧ− q2Ḃ

)
, (12.278)

is dominated by the cold dark matter.199) Then we can
relate the form factors to three potential perturbation
functions: the gravitational potential ψ, the photon-
baryon velocity potential δu(S)

γ , and the photon frac-
tional density perturbation δγ . The key point is that
LSS is dominated by matter and with the assumption
of cold dark matter domination, we can show that the
perturbation function A is time independent. Than we
can express Ḃ and B̈ in terms of ψ.

From Eq. (12.109) we have

q2Aq = 8πGNa
2ρ̄DδDq − 2a2Hψq. (12.279)

The time dependence of the various quantities are as
follows: The following quantities are obvious H ∼ t−1,

a2 ∼ t4/3 for matter domination, and ρ̄D ∼ a−3 ∼ t−2.
From Eq. (12.215) or (12.225), we have ψq ∼ t/a2 ∼
t−1/3 and δDq ∼ t2/a2 ∼ t2/3. Hence the two terms
on the right-handed side of the above equation are sep-
arately time-independent. So Aq is time independent.
Then Eq. (12.278) gives

Ḃq |DMD= −2ψq

q2
, (12.280)

where DMD stands for dark matter domination. Know-
ing the time dependence of ψq ∼ t−1/3 we can take the
time derivative of the above expression to obtain

B̈q |DMD=
2ψq

3q2t
. (12.281)

For the intrinsic temperature fluctuation on LSS we
related it to the photon density perturbation on LSS200)

δT (i)(rLn̂, tL)

T̄ (tL)
=

1

3
δγ(tL). (12.282)

In the synchronous gauge the time component of the met-
ric perturbation function is set to vanish, E = 0. Then,
from Eq. (12.261) we have a simplified expressions of the
two form factors:201)

FT (q, tL) =
1

3
δγq(tL) +

1

3

a2(tL)

q2tL
ψq(tL),

GT (q, tL) = − q

a(tL)
δu(S)

γq (tL) +
a(tL)

q
ψq(tL), (12.283)

where the perturbation functions are given by their inter-
polating form δ

(ILS)
γq (tL), ψ(ILS)

q (tL), and δu
(S)(ILS)
γq (tL)

as given in Eqs. (12.225). We list the perturbation func-
tions below again:

ψq(tL) = −3R(o)
q q2tLT (κ̂)

5a2(tL)
,

δγq(tL) =
3R(o)

q

5

[
(1 + 3BRL)T (κ̂)− 1

(1 +RBL)1/4
e−Γ̂q(tL)S(κ̂) cos (Θq(tL) + ∆(κ̂))

]
,

δu(S)
γq (tL) = −3R(o)

q

5

[
tLT (κ̂)− a(tL)√

3q(1 +RBL)3/4
e−Γ̂q(tL)S(κ̂) sin (Θq(tL) + ∆(κ̂))

]
, (12.284)

where κ̂, Γ̂g(t), and Θg(t) are given in Eq. (12.224),
and RBL is RB are evaluated at the LSS time tL. The
transfer functions T (κ̂), S(κ̂), and ∆(κ̂), are given in
Eq. (12.226).

We now address two complications that have been ig-
nored earlier in our approximation. One is the instant
transparency approximation at the LSS, and the other
the re-ionization effect due to the appearance of the first
stars.

12.10.2.4.1 Average over LSS
To take into account of the feature that the photon trans-
parency happens over a finite period of time instead of

199)See Footnote 173) appearing in the paragraph above
Eq. (12.201) for a comment on the assumption that the dark matter
dominates the gravitational potential.

200)This can be demonstrated as follows: From ργ ∼ T 4,
δργ [∼ 4T 4(δT/T )] = 4ργ(δT/T ), and also δργ = (ρ̄γ + P̄γ)δγ =
(4/3)ρ̄γδγ , we obtain Eq. (12.282).

201)These are Eqs. (7.2.18) and (7.2.19), p. 349 of [221].
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instantaneously, we represent LSS by a peaked function
of the cosmic time which can be parameterized as a Gaus-
sian distribution202)

PL(t) ≡
1√
2πσt

e−(t−tL)
2/(2σ2

t ), (12.285)

where 2
√
2 · ln(2)σt is the full-width at half maximum.

The integration of PL(t) over time from −∞ to ∞ is
unity. For the zero width Gaussian, i.e., in the limit
σt → 0, PL(t) becomes the delta function δ(t− tL) which
recovers the case of instantaneous transparency. We can
replace the trigonometric functions by their finite width
average,

cos(Θq(tL) + ∆(κ̂)) →
∫ ∞

−∞
dtPL(t) cos(Θq(t) + ∆(κ̂)),

sin(Θq(tL) + ∆(κ̂)) →
∫ ∞

−∞
dtPL(t) sin(Θq(t) + ∆(κ̂)).

(12.286)

The original trigonometric functions are recovered in the
limit of vanishing σt. The integrals in the above ex-
pressions can be perform if a further approximation is
made by replacing the argument of the trigonometric
function by the first two terms in its Taylor series ex-
pansion around the LSS time tL:

Θq(t) = Θq(tL) +
d
dtΘ(t) |tL ·(t− tL) +O((t− tL)

2)

=

∫ tL

0

ωq(t)dt+ ωq(tL)(t− tL) +O((t− tL)
2),

(12.287)

where Θq(t) is given in Eq. (12.224) and

ωq(t) ≡
q√
3

1

a
√
1 +RB

. (12.288)

We can do the integrals in Eq. (12.286) by keeping the
first two terms in the above Taylor series expansion. The
first expression of Eq. (12.286) gives

cos(Θq(t) + ∆(κ̂))

→
∫ ∞

−∞
dtPL(t) cos(Θq(tL) + ∆(κ̂) + ωq(tL)(t− tL))

= cos(Θq(tL)+∆(κ̂))

∫ ∞

−∞
dtPL(t) cos(ωq(tL)(t−tL))

−sin(Θq(tL)+∆(κ̂))

∫ ∞

−∞
dtPL(t) sin(ωq(tL)(t−tL)).

(12.289)

The last line above proportional to the sine functions
vanishes, because PL(t) as given in Eq. (12.285) is even

202)The argument follows that of [221], pp 350–352. See Eq.
(7.2.25), [221].

in t− tL while sin(ωq(tL)(t− tL)) is odd, so the integral
vanishes. The remaining integral gives the result,203)∫ ∞

−∞
dtPL(t) cos(ωq(tL)(t−tL))=e−ω2

q(tL)σ
2
t /2. (12.290)

The second expression in Eq. (12.286) can be treated
similarly. So we have

cos(Θq(tL)+∆(κ̂))→cos(Θq(tL)+∆(κ̂))e−ω2
q(tL)σ

2
t /2,

sin(Θq(tL)+∆(κ̂))→sin(Θq(tL)+∆(κ̂))e−ω2
q(tL)σ

2
t /2.

(12.291)

The average is to introduce a damping effect represented
by exp(−ω2

q (tL)σ
2
t /2).

Substituting Eq. (12.291) into the perturbation func-
tions listed in Eq. (12.284) which enter the form fac-
tors Eq. (12.283), we see two damping factors appear-
ing in the density perturbations δγq(tL) and δu

(S)
γq (tL):

Γ̂q(tL) and exp(−ω2
q (tL)σ

2
t /2). Their explicit expressions

can be found in Eqs. (12.224) and (12.288), which show
that they are proportional to the square of the physical
wave number on LSS, i.e., q2/a2L, and therefore inversely
proportional to the physical wavelengths as defined in
Eq. (12.113), where aL ≡ a(tL). It is therefore conve-
nient to define a damping length for each of the damping
factor

Γ̂q(tL) ≡
q2

a2L
d2Silk,

1

2
ω2
q (tL)σ

2
t ≡ q2

a2L
d2Landau. (12.292)

From Eqs. (12.224) and (12.288), we have

d2Silk =
a2L
6

∫ tL

0

tγ
a2(1 +RB)

(
16

15
+

R2
B

1 +RB

)
dt,

d2Landau =
σ2
t

6[1 +RB(tL)]
. (12.293)

203)The proof is the following:∫ ∞

−∞
dtPL(t) cos(ωq(tL)(t− tL))

=
1

2
√
2πσt

e−ω
2
q(tL)σ2

t /2
∫ ∞

−∞
dt
[
e−(t−tL−iωq(tL)σ2

t )
2
/(2σ2

t )

+e−(t−tL+iωq(tL)σ2
t )

2
/(2σ2

t )
]

= e−ω
2
q(tL)σ2

t /2.

The final result is obtained by dropping the imaginary parts in the
exponents of the integrand by a change of variable of integration.
A mathematically rigorous proof of this procedure can be made
using the Cauchy theorem. The Cauchy theorem says that the
integration of an analytic function over a closed path vanishes.
In the present case the close path is the boundary of an infinite
rectangle, including the real axis, plus a suitable straight line in the
complex plan parallel to the real axis, and plus two line segments
parallel to the imaginary axis but locating at t → ±∞, where t is
the real variable of the complex plan.
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The overall damping length dD is given by

d2D ≡ d2Silk + d2Landau. (12.294)

We also express two other dimensionless quantities
which enter the multipole coefficient, κ̂ and Θq(tL), in
terms of products of the physical wave number on LSS
q/aL and suitably defined lengths. First, the argument
of transfer functions,204) we write

κ̂ =
√
2
q

qEQ
≡ q

aL
dT ,

dT =

√
2aL

aEQHEQ
=

√
ΩR

(1 + zL)ΩMH0
. (12.295)

Second, the argument of the trigonometric functions in
Eq. (12.284) is rewritten as

Θq(tL) =
q√
3

∫ tL

0

dt√
1 +RB

≡ q

aL
dH ,

dH =
aL√
3

∫ tL

0

dt
a
√
1 +RB

, (12.296)

where dH is called the acoustic horizon distance. It
turned out that the integral above has an analytic ex-

pression by rewriting the time integration in the inte-
gration in RB .205)

dt = RBdRB

H0

√
ΩMR3

R0

√
RB +RBEQ

, (12.297)

where RB0 ≡ RB(t0) = 3ΩB/(4Ωγ) and RBEQ ≡
RB(tEQ) = (ΩR/ΩM )RB0. The integral in Eq. (12.296)
can be performed, when we rewrite a/a0 = RB/RR0. We
obtain206)

dH =
2√

3RB0ΩMH0(1 + zL)

× ln
(√

1 +RBL +
√
RBEQ +RBL

1 +RBEQ

)
, (12.298)

where RBL ≡ RB(tL). We note that RB0, RBEQ,
and RBL are related by their redshifts: RB0 = (1 +
zEQ)RBEQ = (1 + zL)RBL.

We can now write the two form factors given in
Eq. (12.283), using Eqs. (12.284), (12.291), (12.294),
(12.295), (12.296), and (12.298)207)

FT (q, tL) =
R(o)

q

5

[
RBLT

(
q

aL
dT

)
− e−(q2/a2

L)d2
D

(1 +RBL)1/4
S

(
q

aL
dT

)
cos
(
q

aL
dH +∆

(
q

aL
dT

))]
,

GT (q, tL) = −
√
3R(o)

q

5

e−(q2/a2
L)d2

D

(1 +RBL)3/4
S

(
q

aL
dT

)
sin
(
q

aL
dH +∆

(
q

aL
dT

))
. (12.299)

204)We have used the following identities: aEQ/a0 = ΩR/ΩM
and HEQ =

√
2H0(a0/aEQ)2.

205)This can be derived as follows: We write

RB =
3ρ̄B

4ρ̄γ
=

3ΩB

4Ωγ

a

a0
,

which allows us to write

dRB =
3ΩB

4Ωγ

ȧ

a0
dt = RBHdt.

Up to the time of the LSS, to a very good approximation the Hub-
ble expansion rate can be approximated by matter and radiation
densities. Since the dark energy is very small in those epoches and
the curvature has a negligible contribution, we write, for ρ0 = ρc,

H

H0
=

√
ρ̄M + ρ̄R

ρ̄0
=

√
ΩM

(a0
a

)3
+ΩR

(a0
a

)4
=

√
ΩM

(
3ρ̄B0

4ρ̄γ0

4ρ̄γ

3ρ̄B

)3

+ΩR

(
3ρ̄B0

4ρ̄γ0

4ρ̄γ

3ρ̄B

)4

=

√
ΩM

(
RB0

RB

)3

+ΩR

(
RB0

RB

)4

=

√
ΩMR

3
B0

R2
B

√
RB +RBEQ,

where RBEQ = (ΩR/ΩM )RB0 and BR0 = 3ΩB/(4Ωγ). Combin-
ing the results, we obtain Eq. (12.297).

12.10.2.4.2 Reionization by first stars
Let us first describe briefly the reionization effect.208)

Reionization is an epoch of the universe during which
the first generation of stars and galaxies are formed as
the beginning of the end of the cosmic dark ages. It took
place at the cosmic age of around 400 million years, cor-
responding to the redshift of the order zRe ≈ 10. It is
one of the critical phase changes in the evolution of the
universe. Prior to this phase change, the universe was
dark, permeated with a dense fog of primordial neutral
hydrogen and helium gas. Briefly, the prior states of the
universe were the followings: For the first 370 000 years,
the universe was filled with a hot ionized gas. As the uni-
verse expanded, the thermal energy of the big bang, in
the form of electromagnetic radiation of a black body dis-

206)This is Eq. (7.2.39) on p. 353, [221], but we rewrite some of
the terms, i.e., RBL = RB0/(1 + zL).

207)These are Eqs. (7.2.36) and (7.2.37), p. 352 in [221].
208)The 2015 Planck data on CMB polarization have pushed the

epoch of the first star by 100 million years from 450 million years
to 550 million years. See the Planck news release [304] and the list
of publication [305]. The redshift of the reionization zreion should
be reduced. Tentatively our discussion uses the old value of zreion.
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tribution, continues to redshift to lower energies. This
allows more and more of the gas of electrons, protons,
and helium nuclei to combined to form neutral hydrogen
and helium atoms. As the temperature of the universe
dropped below 3000 K, almost all ions and electrons are
combined into neutral atoms, so photons are decoupled
from the baryon and the universe becomes transparent.
This is the last scattering surface, of course, and here
the photon left the imprint of the CMB. Although the
universe is transparent to radiation, there were no light
sources exited yet. The CMB imprints have the averag-
ing temperature lower than 3000 K which are therefore
mostly in the middle infrared range and redshifted fur-
ther downward to lower frequencies. This hence begins
an epoch of the dark ages.

The dark age ends when the universe is about 400
million years old with the appearance of first stars and
galaxies which emit ultra violet ionizing radiations to
ionize neutral atoms to initiate the epoch of reioniza-
tion (EoR).209) In the beginning of EoR, the intergalac-
tic medium is neutral except in the immediate regions
around the first stars. The fraction of the reionized gas
increases with the increase of ionizing sources of more
stars and galaxies. The universe was reverted from a
neutral state to the state of an ionized plasma. This
happens in the redshift interval of 6 < z < 15 in the uni-
verse age interval of 400 million years to 1 billion years.
At this point the universe had made sufficient expan-
sions, matter had become diffused enough so that the
photon-electric charge interactions, causing scatterings
with electrons and, to a much smaller rate, protons, are
sufficiently rare, the universe stays largely transparent.

Although for the majority of CMB photons the uni-
verse is entirely transparent, there is a small but finite
probability that some of the photons are scattered by
electrons in the reionized plasma.210) So the CMB we
observed today consists of two components. One compo-
nent involves photons which are unaffected by the reion-
ization effect. They preserve the foot prints of the LSS,
which took place at around zLSS = 1100. The probabil-
ity of this unaffected photon is exp(−τreion), where τreion
is the optical depth of the reionized plasma and is one of
the parameters defining the standard ΛCDM model. The
other component involves CMB photons undergone scat-
tering off electrons rather recently at much smaller red-
shifts around zreion ≈ 10. The probability of this compo-
nent of photons is ∼ 1− exp(−τreion). The radius of this
“reionization surface” rreion is much smaller than that of
LSS rL. So for a given wave number q, it contributes to
much smaller multipole moments, ℓ ∼ qrreion (instead of
ℓ ∼ qrL). So we can neglect the contribution from this

209)Many descriptions of the reionization epoch can be found in
the literature. See, for an example, [306].

210)The discussion follows that given on p. 353, [221].

component of CMB photon when we are interested in
the effect of high multipole moments. Then the effect of
the reionization is to multiply the form factors FT and
GT given in Eq. (12.299) by the factor exp(−τreion), and
the multipole coefficients by the factor exp(−2τreion).
The most recent PDG [13] gives the value τreion = 0.091
which corresponds to exp(−2τreion) = 0.83.211)

12.10.3 Explicit expression for the temperature
multipole coefficient

Most ingredients are now in place for computing the tem-
perature multipole coefficient as a function of the mul-
tipole order ℓ. We first specify the overall scale factor
R(o)

q of the perturbation functions given in Eq. (12.284).
Let us recall that R(o)

q is a conserved quantity outside
the horizon and it characterizes the primordial fluctu-
ations in the very early universe. We have to express
the form factors FT and GT Eq. (12.299) as functions
of the multipole order ℓ, and clarify a point relevant to
the expression of the temperature multipole coefficient.
Because of their significant number, a summary of the
parameters that appear in the expression of the temper-
ature multipole coefficient, will be given.

12.10.3.1 Overall factor R(o)
q

The overall factor can be parameterized as

|R(o)
q |2 =

N2

q3

(
q

a0kR

)ns−1

, (12.300)

where ns is the scalar spectral index which is one of the
cosmological parameters defining the standard ΛCDM
model [307], N a dimensionless constant, and kR a scale
factor for the wave number usually in units of Mpc−1.212)

We will come back to them later again when we plot the
temperature multipole coefficient. We remark that R(0)

q

is related to the curvature fluctuation amplitude, also one
of the parameters of the standard ΛCDM model [307].
As can be seen from Eqs. (12.277) and (12.299), |R(o)

q |2
goes with the factor ℓ3/r3L, then we have213)

ℓ3

r3L
|R(o)

q |2 = N2 ℓ3

q3r3L

(
qrL

(a0/aL)aLrLkR

)ns−1

=
N2

β3

(
ℓβ

(1 + zL)kRd
(L)
A

)ns−1

, (12.301)

where q =≡ ℓβ/rL defined in Eq. (12.274) has been
used. d

(L)
A ≡ aLrL is the angular diameter distance of

211)[221] uses exp(−2τreion) = 0.8 which gives τreion ≈ 0.117.
212)See a discussion given in [307], §27.3 Cosmological Parame-

ters.
213)This is the first equation on p. 354, [221].
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LSS, which, in the case of a flat geometry, is given in
Eq. (13.79),

d
(L)
A =aLrL

=
1

(1+zL)H0

∫ zL

0

dz√
ΩΛ+ΩM (1+z)3+ΩR(1+z)4

.

(12.302)

We refer to §13.6 for a discussion of the angular diameter
distance.

12.10.3.2 Relating distances with multipole orders

Using Eqs. (12.274), (12.294)–(12.296), and (12.302), we
can convert the wave number q dependence into the de-
pendence on the order of multipole moments ℓ. We write,

q

aL
dD = ℓβ

dD

d
(L)
A

≡ β
ℓ

ℓD
, ℓD ≡

d
(L)
A

dD
,

q

aL
dT = ℓβ

dT

d
(L)
A

= β
ℓ

ℓT
, ℓT ≡

d
(L)
A

dT
,

q

aL
dH = ℓβ

dH

d
(L)
A

= β
ℓ

ℓH
, ℓH ≡

d
(L)
A

dH
, (12.303)

and
ℓβ

(1 + zL)d
(L)
A kR

= β
ℓ

ℓR
,

ℓR ≡ (1 + zL)kRd
(L)
A . (12.304)

12.10.3.3 Explicit expression of the scalar multipole
coefficient and some of its properties

With the above relations, substituting Eq. (12.299) into
Eq. (12.277), and rescale the coefficient by the multiply-
ing the factor ℓ(ℓ+ 1) ≈ ℓ2 for large ℓ, we have214)

ℓ(ℓ+ 1)

2π
C

(S)
TT,ℓ =

4π

25
T 2
0N

2e−2τreion

∫ ∞

1

dβ 1

β2
√
β2 − 1

(
ℓ

ℓR
β

)ns−1

×

{[
3RBLT

(
ℓ

ℓT
β

)
− e−2(ℓ2/ℓ2D)β2

(1 +RBL)1/4
S

(
ℓ

ℓT
β

)
cos
(
ℓ

ℓH
β +∆

(
ℓ

ℓT
β

))]2

+
3(β2 − 1)

β2(1 +RBL)3/2
e−2(ℓ2/ℓ2D)β2

S2

(
ℓ

ℓT
β

)
sin2

(
ℓ

ℓH
β +∆

(
ℓ

ℓT
β

))}
. (12.305)

The gross behavior of the temperature multipole co-
efficient can be seen from the integrand of the above
expression. We outline it briefly below.

• It is an oscillating function of ℓ and the periodicity
of the oscillation is largely determined by ℓT . It
is suppressed exponentially in ℓ and β. Therefore,
important contributions to the integral come from
the lower limit of integration around β ≈ 1.

• The (n + 1)th oscillation peak will be suppressed
relative to the nth peak as the former occurs at a
high ℓ value.

• The height of the curve is determined by ℓD and the
transfer function S which depends on ℓT .

• The contribution from the form factor GT , which
contains the factor (β2 − 1)/β2, is suppressed rela-
tive to the form factor FT . Hence the behavior of
the multipole coefficient is largely determined by the
form factor FT . Hence the second line of the right-
handed side of Eq. (12.305), which comes from FT as
can be seen in Eq. (12.299), is the controlling term.

214)This is Eq. (7.2.41), p. 354, [221].

• Let us denote the argument of the cosine term by
ϑ = ℓβ/ℓH + ∆(ℓβ/ellT ). Then the peaks occur
at ϑ = nπ, n = 1, 2, · · · . The two terms in the
controlling line are added constructively for old n =
2n′ − 1 but destructively for even n = 2n′, where
n′ = 1, 2, · · · . This implies that the peak at 2n′ + 1
may not be suppressed as strongly in comparison
with that at 2n′ as it would be otherwise. Since
the transfer function ∆ is small as we will see later,
the first peak will occur at ℓ to be a few times ℓT .
The second peak roughly doubles that of the value
of ℓ, the third peak roughly triples, etc., unless ℓH
varies significantly from the value determined by the
relevant future cosmic parameters, which is unlikely.

• Strictly speaking there is a weak singularity at ℓ = 0
in the form (ℓ)ns−1 for ns < 1. Since the expression
is only valid for ℓ much greater than 1, we can ignore
this singularity.

12.10.3.4 Numerical results

Because of the complication due to the dependence on
multiple parameters, detailed studies of the temperature
multipole coefficient can best be made numerically. We

Bing-Lin Young, Front. Phys. 12(2), 121201 (2017)
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take the needed parameters given in the most recent
PDG [13] as the baseline and vary some of the parame-
ters to see how C

(S)
TT,ℓ responses to changes, while hold

some other parameters fixed.

• The fixed input parameters and their PDG2014 [13]
values are: T0 = 2.7255 K, ns = 0.958, τreion =
0.091, and zL = 1090− 1.215)

• The scale factors N2 = 1.736×10−10 and kR = 0.05
Mpc−1 are given in [221].216)

• With the input values given above we have the
overall coefficient in front of the integral in
Eq. (12.305),217)

4π

25
T 2
0N

2e−2τreion(106µk)2 = 540.3 µK2. (12.306)

• ℓH , ℓH , and ℓH depend on the matter-energy density
straightforwardly. They will be calculated with each
set of parameters we choose to work with.

• ℓD = d
(L)
A /dD [Eqs. (12.303) and (13.87)], where

dD =
√
d2Silk + d2Landau [Eq. (12.294)], is compli-

cated. Although we have only glossed over them,
dSilk and dLandau can be found in details in [221].218)

With the expressions dLandau given in [221],219)

d2Landau =
3σ2t2L

8TL(1 +RBL)
, (12.307)

where tL = 0.1134 Mpc (370 000 years) and TL =
(1 + zL)T0 are the LSS time and temperature, and
σ = 262 K. It can be readily calculated for a given
set of matter-radiation densities, which we will do
below. But dSilk is much more involved. We will
approximate it as fixed and take its value dSilk =
0.006 555 Mpc as given in [221].220) This approxima-
tion will introduce some uncertainties in the results

215)These values are not exactly those given in [221], but very
close to. See p. 356, [221].

216)See, p. 356, [221]. The same value for kR is also give in [307]
where it is denoted as k0.

217)This is Eq. (7.2.51), p. 356 of [221] and the numerical values
given is 519.7 µK2 which corresponds to a slightly larger value of
τreion = 0.1103.

218)See Eqs. (7.3.34) and (7.3.35), p. 352, and the related discus-
sions, [221].

219)Eq. (7.3.35), p. 352, [221].
220)Eq. (7.2.49), p. 356, [221]. The expression for dSilk is given

in Eq. (7.2.34), p. 352 in [221]. For completeness we record the
expression here. The integration in time t is converted into that in
RB by Eq. (??),

d2Silk =
R2
BL

6(1− Y )nB0σT cH0
√
ΩMR

9/2
B0

×
∫ RBL

0

dRBR
2
B

X(RB)(1+RB)
√
RB+RBEQ

(
16

15
+

R2
B

1 +RB

)
,

where Y = 0.24 is the helium fraction of nucleons, nB0 is the
present baryon number density, σT is the Thomson cross section,
and X(RB) is the proton density fraction as a function of RB .

below. But we do not expect the variation in dSilk to
be anything drastic in the parameter ranges we will
consider below. So we expect that the main char-
acteristics of the parameter variation will be main-
tained.

Below we list 10 sets input data in Table 12.2 to be
used to calculate the temperature multipole coefficient.

The 10 sets are made into 4 groups: The baseline group
uses the observational data. The rest are divided into 3
groups, having 3 sets of data in each group with a definite
characteristics of variations:

• For the baseline input we take the most recent data
from [13]: h = 0.673, ΩB = 0.02207h−2 = 0.0487,
ΩM = 0.1419h−2 = 0.3132, ΩΛ = 1−ΩM = 0.6868.

• Data sets A1, A2, and A3: having the same values
as the baseline set in the matter density and there-
fore dark energy density but varying baryon density,
with ΩBh

2 = 0.005, 0.08, 0.14 respectively for A1,
A2, and A3. So the dark matter density will vary
accordingly.

• Data sets B1, B2, and B3, having the same val-
ues as the baseline set in the baryon density but
varying matter density and therefore the dark en-
ergy and dark matter densities, taking ΩMh

2 =
0.1, 0.25, 0.45 respectively for B1, B2, and B3.

• Data sets C1, C2, and C3, with varying scale factor
for the Hubble expansion rate: h = 0.38, 0.5, 0.9

For a flat universe the condition ΩM + ΩΛ = 1 is im-
posed in the accuracy range we are working with. There-
fore we do not consider the case of varying the dark
energy density while keeping all other densities fixed.
The above variations of the input data considered are
straightforward. There are more complicated ways to
vary the input data. It belongs to the realm of data
fitting which is not what we intend to do here.

We plot in Fig. 12.9 the temperature multipole co-
efficient for the three groups of input parameters. Each
group is presented together with the baseline data for the
purpose of contrast. The vertical axis is the conventional
temperature multipole coefficient ℓ(ℓ+ 1)C

(S)
ℓ /(2π) and

the horizontal axis is the multipole order ℓ. The data set
for each curve is indicated.

Let us briefly comment on the characteristics of the
data sets and aspects of physics they are sensitive to.

• As shown in the top panel of Fig. 12.9 for the data
set A, when the baryon density increases, peaks and
valleys move to higher values of ℓ. The height of
the first peak increases with ΩB when ΩB is small.
But the height changes very little with ΩB when
ΩBh

−2 is greater than 0.02 or ΩB greater than 0.05
as shown by curves A3, A2 and Base.
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Table 12.2 Values of parameters entering the temperature multipole coefficient in units of µK2.

Base A1 A2 A3 B1 B2 B3 C1 C2 C3

h 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.38 0.5 0.9
ΩB 0.049 0.011 0.177 0.309 0.049 0.049 0.049 0.153 0.088 0.027
ΩM 0.313 0.313 0.313 0.313 0.221 0.552 0.994 0.983 0.568 0.175
ΩΛ 0.687 0.687 0.697 0.687 0.779 0.448 0.006 0.017 0.432 0.825
RB0 670.1 151.8 2429 4251 670.1 760.1 670.1 670.1 670.1 670.1
RBL 0.615 0.139 2.229 3.900 0.615 0.615 0.615 0.615 0.615 0.615
RBEQ 0.196 0.044 0.711 1.244 0.278 0.111 0.062 0.196 0.196 0.196
d
(L)
A 12.83 12.83 12.83 12.83 14.76 10.18 7.95 14.14 13.54 12.09
dH 0.133 0.145 0.111 0.097 0.144 0.114 0.094 0.133 0.133 0.133
dT 0.125 0.125 0.125 0.125 0.177 0.071 0.039 0.125 0.125 0.125

dLandau × 103 4.820 5.739 3.409 2.767 4.820 4.820 4.820 4.820 4.820 4.820
dD × 103 8.137 8.712 7.388 7.115 8.137 8.137 8.137 8.137 8.137 8.137

ℓD 1577 1473 1736 1803 1814 1251 977 1738 1664 1486
ℓH 96.39 88.6 116.4 132.2 102.3 89.2 84.1 106.3 101.7 90.8
ℓR 699.2 699.2 699.2 699.2 804.3 554.6 433.2 770.7 737.9 658.0
ℓT 102.7 102.7 102.7 102.7 83.26 143.53 202.0 113.2 108.4 96.8

• When the matter density changes the trend is quite
clear as shown in the middle panel of Fig. 12.9. The
peaks and valleys move to lower values of ℓ and
heights of all peaks become lower when OmegaM
increases. The trend in decreasing heights of even
peaks are particularly noticeable. As figure B3
shows, for very large matter density, e.g., ΩM =
0.994 or ΩMh

−2 = 0.45, the even peaks disappear.
• When h changes, as shown in the bottom panel of

Fig. 12.9, the difference among the four data sets is
not very pronounced except for quite small h. As
shown by curve C1, for h = 0.38 peaks are higher
and at larger ℓ values.

Taking all curves in Fig. 12.9 together, We can conclude
that there are lot degeneracies in the parameter sets.
Therefore, good data together with detailed simulations
are necessary to extra the cosmological parameters.

12.10.4 Multipole coefficients CTT,ℓ

12.10.4.1 Observations

The standard ΛCDM model is generally defined to in-
volve 6 parameters: ΩM , ΩB , ΩΛ, ns, τreion, and
the curvature fluctuation amplitude related to R(0)

q

Eq. (12.300). However, for the comparison of theory with
observational data, the scope of the required parameters
evolves and the number varies from 5 to 10.221)

Determination of the temperature multipole coeffi-
cient is a fundamental task of cosmological observations.
The most recent high statistics data came in 2013 from

221)See the review article by O. Lahav and A.R. Liddle, 24. The
cosmological parameters in the PDG [13].

Fig. 12.9 A comparison of the three of input data. For
details see the text.

the Planck collaboration [308, 309], and in 2012 from
WMAP9 [310, 311]. The Planck 2013 results on the
temperature multipole coefficient is reproduced here in
Fig. 12.10. The vertical axis is the conventional quantity
Dℓ ≡ ℓ(ℓ + 1)Cℓ/(2π). The plot shows several acoustic
peaks and valleys which can be well-fitted by the six-
parameter ΛCMD model. The horizontal axis is in linear
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scale for ℓ > 50 and logarithmic scale for ℓ < 50. The
shaded area below ℓ < 50 increases when ℓ decreases to
include cosmic variance. We refer to the Planck publi-
cations cited, [308] and [309], for details of the plot and
the cosmological parameters obtained. Since the corre-
sponding plot of WMAP9 uses different scales, which
do not facilitate an easy comparison, we will not show
the WMAP9 results here. The WMAP9 results can be
readily found in the two publications [310] and [311].
Scientific Publications of WMAP are listed in [312].

A comparison of the Planck and WMAP9 results has
been made in [313]. The figure which compares tem-
perature multipole coefficient of the two collaborations
is reproduced in Fig. 12.11. In the whole range of the
data sets, the two results agree within a few per cent,
depending on the particular data sets included in the
comparison. We note that “eCMB” means the extended
WMAP data set. For an explanation see [310].

12.10.4.2 Analytic expression vs observational data

The temperature multipole coefficient Eq. (12.305) de-
pends on nine quantities: T0, N , τreion, ns, RBL, ℓD,
ℓH , ℓR, and ℓT . The last five RBL, ℓD, etc., are func-
tions of the cosmic matter-energy densities, where ℓD
has a complicated dependence on some other quantities
as well, as shown in Eqs. (12.293), (12.293), (12.304),
and Footnote 220). To make a numerical representation
let us examine these parameters in some detail.

• The cosmological quantities, such as T0, ργ0 =
Ωγh

−2, zL, zEQ, are well-delineated, so they are
parts of the fixed input. Hence the value of RB0,
which enters various parameters of Eq. (12.305), can
be used to determine ΩB .

• The baryon to photon density ratio RB at the three
temporal milestones, the matter-radiation equality
RREQ, the LSS RBL, and the present epoch RB0

are related:

RB0 =
3ΩB

4Ωγ
, RBL =

RB0

1 + zL
, RB0 =

RB0

1 + zEQ
.

(12.308)
• The multipole orders ℓT , ℓH , ℓR are given in terms

of the density parameters as follows:

ℓT =
d
(L)
A

dT
=

ΩM√
ΩR

I(zL),

ℓH =
d
(L)
A

dH
=

(
2√

3RB0ΩM

× ln
√
1 +RBL+

√
RBEQ+RBL

1 +RBEQ

)−1

I(zL),

ℓR =
kR
H0

I(zL), (12.309)

Fig. 12.10 CMB temperature power spectrum from
Planck. See the related text for more explanation. More de-
tails are found in the relevant references, e.g., [308] and [309].

Fig. 12.11 A comparison of the Planck2013 and WMAP9
best fits of the multipole coefficient given in [313]. The bot-
tom panel gives the ratio of Planck divided by WMAP. The
agreement is generally around 2% for the most prominent
part of the data sets.

where

I(zL) ≡
∫ zL

0

dz√
ΩΛ +ΩM (1 + z)3 +ΩR(1 + z)4

.

(12.310)

We assume a flat universe.
• ℓD has a complicated expression. It is composed

of two components, the Silk and Landau damp-
ing lengths. We refer to the discussions given in
[221].222)

• The dark energy enters the calculation in the an-
gular diameter distance dA(L) through the integral
defined in Eq. (12.310), together with the other
matter-energy densities.

222)See Eqs. (7.2.34) and (7.2.35), p. 352, [221].
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Fig. 12.12 A comparison of the analytic expression
Eq. (12.305) with the Planck + WMAP polarization data set
as plotted in [313]. The red dash-dotted curve represented
the analytic expression and the blue solid curve the said data
set.

In Fig. 12.12 we plot the analytic expression
Eq. (12.305) using the baseline parameter together with
the corresponding observational curve given by [313], i.e.,
the Planck+WP data set. The blue solid curve is the ob-
servation and the red dash-dotted curve represents the
analytic expression (12.305). The overall physics is rep-
resented fairly well by the analytic expression. The mis-
match of the details is also quite clear. The oscillation in
the analytic expression is somewhat slower and the dis-
sipation or radiation damping for large ℓ is too strong.
However, in view of the complication of the physics in-
volved that entails the approximation adopted and the
multiple characters that enter into the play, the analytic
expression derived in [221] is doing a very respectable
job.

13 Cosmological distances and times

To make this section more or less independent, there are
overlaps and repetitions with Section 9.

13.1 Introduction

Well-defined concept of distances is fundamental to the
understanding of a dynamic system, such as the expand-
ing universe of ours. However, distance measurements
in cosmology223) is complicated, since the distances be-
tween objects vary as time evolves due to the expansion
of the universe. For an observer on Earth, distance mea-
sures out into distant galaxies and stars are also look
back in time, as both measurements rely on light prop-
agation in the null path, which is the trajectory of the
electromagnetic radiation emitted from the object under
observation and received by an Earth observer. Con-
sequently,expressions of the various distance and time

223)Also known as cosmography. See [314] for a discussion on
distance measurements.

measures are related. To stay general, we will derive dis-
tance and time expressions in the FLRW (Friedmann-
Lemaître–Robertson–Walker) metric for the case of a
curved space of finite curvature constant K and sum-
marize them for the case of the flat ΛCDM universe.

There are various distance scales defined in cosmology,
but most are not directly measurable, under the general
situation of a curved space. In a curved space, some of
the distance definitions depend on certain basic quanti-
ties, such as the scale factor a(t) and the comoving co-
ordinate224) radial distance r which are not measurable
experimentally. Most of the distance quantities to be
discussed below are related essentially to one of the two
distance definitions: the proper distance and the angular
diameter distance. The latter is defined for distances per-
pendicular to the line of sight, while the former along the
line of sight, of the observer in the comoving coordinates.
Measurable quantities include the red shift, angular di-
ameter distance, and the flux of a radiation source, etc.
Hence some of the distance quantities are “derived con-
cept”225) which are related to measurable quantities to
be discussed below.

An observable distance here refers to the situation, in
which, e.g., photons emitted during an event can reach
the observer in the present age of the universe, or even-
tually into the future. It does not necessarily mean that
the event can be measured experimentally. Actual ob-
servable events in terms of photon observables can take
place only after the last scattering surface (LSS) after
the photon decouples from the matter plasma, when the
universe is about 370 000 years of age. Such photons are
said to be in the state of free streaming so that they suf-
fer no interactions with charged particles in their path
from their emitting sources to the observer. Much ear-
lier measurable events can happen, in principle, in terms
of neutrinos, which are decoupled when the universe is
about one second old. Gravitational waves, which carry
information of the cosmic birth, can serve to probe the
every beginning of the universe.

13.2 The FLRW metric

To make the present discussion self-contained, some of
the material discussed in Section 9, to which we refer for
details, will be repeated here. We start with the FLRW
metric.

ds2 = −gµνdxµdxν

224)Let us recall that the comoving coordinate frame is a coor-
dinate system which expands in synchronization with the Hubble
expansion of the universe. Cosmological objects, such as galaxies,
when removed of their peculiar velocities, are fixed in the comoving
frame. In the FLRW metric, the r, θ, and ϕ are the spherical co-
ordinates of the comoving frame and a(t) is the Hubble expansion
factor.

225)See p. 74, [222].
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= c2dt2 − a2(t)

[
dr2

1− κr2
+ r2(dθ2 + sin2θdϕ2)

]
,

(13.1)

where, here and below, we keep the velocity of the light c
for clarity and for the proper engineering dimensionality
of the distance.

√
ds2 is called the proper time interval

and t the cosmic time. a(t) is the Hubble scale factor
which determines the Hubble expansion rate. K is the
curvature constant, with a suitably normalized scale fac-
tor, taken to be 0 for the flat space, +1 for the closed
space, and −1 for the open space. r, θ, and ϕ are the
comoving spherical coordinates, where r is referred to as
the comoving radial coordinate. Another time variable,
called the conformal time η, is defined by

dη ≡ dt
a(t)

, (13.2)

which is convenient in the discussions below.
We note that the comoving coordinates are time in-

dependent in the expanding homogeneous and isotropic
background universe. They define the comoving posi-
tions of cosmic objects like galaxies when the objects’
peculiar motion are neglected.226)

An equivalent definition of the comoving radial coor-
dinate, denoted by χ, is related to r by

dχ =
dr√

1− κr2
. (13.3)

Integrating the expression, with the condition χ = 0 for
r = 0, we can relate the two forms of the comoving radial
coordinate:227)

χ=
1√
κ

arcsin(
√
κr)=



1√
κ

arcsin(
√
κr), κ>0,

r, κ=0,

1√
|κ|

arcsinh(
√
|κ|r), κ<0,

(13.4)

and inverting the above expression to give

r =
1√
κ

sin(
√
κχ) =



1√
κ

sin(
√
κχ), κ > 0,

χ, κ = 0,

1√
|κ|

sinh(
√

|κ|χ), κ < 0.

(13.5)
226)The peculiar motion, or peculiar velocity, refers to the part of

the motion of a galaxy which cannot be explained by the Hubble
flow of the expansion of the universe. The peculiar velocity of an
object is generally due to gravitational interactions with nearby
galaxies or over-densities. The survey of the peculiar velocity field
is a useful tool served as independent probes of cosmological pa-
rameters.

227)The identity sin(iθ) = i sinh(θ) is used below.

So the metric can also be written as

ds2 = c2dt2 − a2(t)
[
dχ2 + Sκ(χ)(dθ2 + sin2θdϕ2)

]
,

(13.6)

where

Sκ(χ) = r2 =
1

κ
sin2(

√
κχ). (13.7)

In the flat space, κ = 0, r = χ, the two radial coordinates
are identical.

13.2.1 The past and future light-cones

Let an observer be located at the origin of the comov-
ing coordinate system. Consider a light signal traveling
between the origin and the a point with the comoving
radial coordinate r1. The cosmic time of the signal hap-
pens at the origin at t0 or η0, and at r1 or χ1 at t1 or
η1. The light-cones, past and future, with respect to the
observer can be defined. For the past light-cone t1 < t0
the light signal travels from r1 to the origin, and for the
future light-cone t1 > t0 from the origin to r1. Taking
the light signal traveling path along a great circle of con-
stant angular coordinates, i.e., ds2 = 0 and dΩ = 0, we
have

cdη = c
dt
a(t)

= ∓dχ = ∓ dr√
1− κr2

. (13.8)

The “−” sign defines the past light-cone while the “+”
sign the future light-cone. The integral relation is∫ t0

t1

dη = ∓
∫ χ

0

dχ,

η1 = η0 ∓ χ1. (13.9)

Again the − and + are respectively for the past and
future light-cones.

13.2.2 The ΛCDM model

We define the Hubble expansion rate H in the ΛCDM
model,

H2 =

(
ȧ

a

)2

=
8πGN

3

∑
j

ρj , (13.10)

where GN is the Newtonian gravitational constant. ρj
is one of the four forms of energy densities: the cosmo-
logical constant ρΛ, non-relativistic matter ρM, radiation
ρR, and curvature constant ρK , with

ρΛ ≡ 1

8πGN
Λ

ρκ ≡ − 3

8πGN

c2κ

a2
, (13.11)
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where Λ is the cosmological constant. The form of the
energy density as a function of the cosmic scale factor is:

ρj ∼ a−3(1+wj), (13.12)

where wj denotes the equation of state of the various
components of the energy forms: for the cosmological
constant wΛ = −1, non-relativistic matter wM = 0, ra-
diation wR = 1/3, and curvature constant wK = −1/3.
A summary of the wj can be found in Table 9.1.

Below the subscript “0” denotes quantities of the
present epoch, e.g., t0 is the cosmic time at the present
epoch, H0 the present expansion rate or the Hubble con-
stant, a0 the present scale factor, etc. The critical energy
density is the total energy density of the universe at the
present time defined in terms of the Hubble constantH0,

ρc =
3H2

0

8πGN
. (13.13)

Define the density ratios of the present epoch

Ωj ≡
ρj0
ρc
,

ΩΛ +ΩM +ΩR +ΩK = 1 (13.14)

In particular

Ωκ =
ρκ0
ρc

= − c2κ

a20H
2
0

. (13.15)

We also define

Ω0 ≡ ΩΛ +ΩM +ΩR,

Ωκ = 1−Ω0. (13.16)

We can rewrite the curvature constant κ in terms of
the effective curvature energy density ratio,
√
κ = ia0H0

c

√
Ωκ = i a0

DH

√
Ωκ, (13.17)

where DH is the Hubble length228) at the present epoch
defined by

DH ≡ c

H0
, (13.18)

which we will come back to later. We can rewrite
Eq. (13.7) in different forms:

Sκ(χ) =
1

κ
sin2(

√
κχ) =

D2
H

a20Ωκ
sinh2

(
a0
√
Ωκ

DH
χ

)
=

D2
H

a20(1−Ω0)
sinh2

(
a0
√
1−Ω0

DH
χ

)
,

In the case of a flat universe Ωκ = 0, Ω0 = 1, χ=r, and

Sκ(χ)|Ω0=1 = χ2 = r2 (13.19)

228)It is also referred to as the Hubble radius.

13.3 Distance & time, comoving radial coordinate

Since distance measurements are carried out by the elec-
tromagnetic radiation, which travels along a null path,
we can convert a distance measurement into a measure-
ment of the cosmic time. We explore this below.

13.3.1 Light propagation and null path in the FLRW
metric

From the FLRW metric, we have the null path of light
propagation,

ds2 = c2dt2 − a(t)
2

(
dr2

1− κr2
+ r2dΩ

)
= c2dt2 − a(t)

2 [dχ2 + Sκ(χ)dΩ
]
= 0. (13.20)

In particular, for an observer located at the origin of the
comoving frame, we can choose the comoving coordinates
so that the null path has constant angular variables so
that dΩ = 0. Then
cdt
a(t)

≡ cdη =
dr√

1− κr2
= dχ. (13.21)

Note that the left-handed side is a function of the cos-
mic time while terms after the second equality sign are
functions of comoving radial coordinates which are time
independent. So, the above relation characterizes the
null path and allows us to relate distance and time, and
express them in terms of the redshift z or the Hubble
scale factor a(t).

For t ≤ t0, where t0 is the time of the present epoch,
the expansion scale factor and the redshift are related by

a(t) = a(z) = (1 + z)−1a0, (13.22)

where a0 ≡ a(t0) and z is the redshift.
Time and distance expressions become explicit in

ΛCDM and can be evaluated numerically. They may
have analytical expressions in special cases, as the ex-
pression of the Hubble expansion rate becomes known.
We can rewrite the Hubble expansion rate at arbitrary
cosmic time as

H =
ȧ

a
= H0

(
H

H0

)

= H0

√∑
j ρj

ρc
≡ H0Ẽ, (13.23)

where Ẽ can be written explicitly as

Ẽ ≡ H

H0
=

√∑
j ρj

ρc

≡ Ẽz=
√
ΩΛ+ΩM (1+z)3+ΩR(1+z)4+Ωκ(1+z)2.

(13.24)
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We can rewrite the time derivative from H = ȧ/a,

dt= 1

H

da
a

=
1

H0Ẽ

da
a

=− 1

H0

1

1+z

dz√
ΩΛ+ΩM (1+z)3+ΩR(1+z)4+Ωκ(1+z)2

.

(13.25)

13.3.2 Comoving Radial coordinate

Since the comoving coordinates are fixed, we can obtain
an explicit expression for it in terms of the energy-matter
density variables of the universe, up to a scale factor.
Let us take an object located at the radial coordinate r1
emit a light signal at the cosmic time t1 which reaches
an (Earth) observer at t0. The object has the observed
redshift z1. From Eqs. (13.21) and (13.25) we can write
the comoving radial distance in terms of the redshift,
etc.,

dχ= cdt
a(t)

= cdη

=−DH
a0

dz√
ΩΛ+ΩM (1+z)3+ΩR(1+z)4+Ωκ(1+z)2

,

(13.26)

where DH is the Hubble length defined in Eq. (13.18).
We can relate the radial coordinate χ1 or r1 located

at the redshift z1

χ1=χ(z1) = c

∫ t0

t1

dt
a(t)

=
DH

a0

∫ z1

0

dz√
ΩΛ+ΩM(1+z)3+ΩR(1+z)4+Ωκ(1+z)2

,

r1=r(z1) =
1√
κ

sin(
√
κχ1). (13.27)

So the comoving radial coordinate is determined by the
redshift up to an unknown constant normalization factor
a0. Since Ẽz is positive definite, this expression shows
clearly that the larger the redshift of an object has, the
further it is from the observer.

The validity of the z integration lies in the range be-
tween 0 and ∞ in z. But what are their ranges of valid-
ity as the density ratios Ωj are fixed in value? We make
the following observation: Up to the present time the
universe spends most of its time after the LSS. Starting
from LSS, at zL ≈ 1100, all energy components of the
universe are decoupled from one another and Ωj ’s are
constant. However, when we go back in times earlier
than LSS, there are transitions of non-relativistic to rel-
ativistic matter. So the values of Ωj would be altered,
and the radiation part will become larger. For quantities
involving Ẽ−1

z , since the radiation energy density is pro-
portion to (1+z)4, its value for larger z should be larger.

So applications of Eqs. (13.25) and (13.26) involved inte-
grations of time periods earlier than LSS using constant
Ωj determined presently is an approximation. Since the
dominant contribution comes from the period from LSS
to the present, this approximation is valid.

Comparing the radial variables χ and r, We see from
the above discussion that χ is related to the cosmic time
and the redshift directly and can be evaluated straight-
forwardly. r is related to χ through the geometric or hy-
perbolic functions. In the case of a flat universe, which
is the case of our universe, r and χ are identical, and the
computation of distances are simplified.

13.3.3 Lookback time and light traveling time
∆t = t0 − t1

Considering a pulse of EM radiation emitted at time t1,
from a source located at the comoving radial coordinate
r1 of redshift z1. The observer on Earth, located at r0 =
0 receives the signal at time t0 (the present epoch). The
trajectory of the EM wave follows a null path along a
fixed angular coordinates so that dΩ = 0. The time
interval ∆t = t0 − t1, known as the lookback time, can
be expressed in the FLRW metric as follows. According
to Eq. (13.25), the lookback time as a function of the
redshift z1 is given by

∆tlb= t0 − t1 =

∫ t0

t1

dt = τH

∫ z1

0

1

1 + z

dz
Ẽz

=τH

∫ z1

0

1

1+z

dz√
ΩΛ+ΩM (1+z)3+ΩR(1+z)4+Ωκ(1+z)2

,

(13.28)

where we have defined the Hubble time τH by

τH ≡ 1

H0
=
DH
c
. (13.29)

For small z1, the lookback time Eq. (13.28) can be ap-
proximated as

∆tlb|z1≪1 ≈ τHz1. (13.30)

13.4 Hubble scales, age of the universe, and explicit
forms of scale factor

13.4.1 Hubble time τH and Hubble length DH

The Hubble expansion rate at the present time is given
by

H0 = 100h km · s−1 · Mpc−1

= (9.777752 Gyr)−1h

= 3.2408× 10−18h s−1. (13.31)

Then we have the Hubble time at the present epoch to
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be229)

τH =
1

H0
= 9.777752h−1 × 109 yr

=

{
1.377× 1010 yr = 4.346× 1017 s, h = 0.71,

1.453× 1010 yr = 4.585× 1017 s, h = 0.673.

(13.32)

The Hubble length is

DH=cτH = 0.925063h−1 × 1026 m = 2.997925h−1 Gpc

=

{
1.303×1026 m=4.222Gpc, ΩΛ=0.73, h=0.71,

1.374×1026 m=4.455Gpc, ΩΛ=0.685, h=0.673.

(13.33)

The Hubble length and Hubble time respectively pro-
vide scales for the cosmic length and time. The meaning
of the Hubble length can be illustrated by considering
the galaxy expansion velocity. As will be seen in Section
13.5.1, the Hubble length is the proper distance at the
present epoch where the recession velocity equals to the
velocity of light.

13.4.2 Ages of the universe τU and the matter-radiation
epoch tEQ

The age of the universe, τU = t0 is given by the above ex-
pression of lookback time by taking z1 → ∞ as discussed
in Eq. (9.81).

τU = τH

∫ ∞

0

1

1 + z

dz√
ΩΛ +ΩM (1 + z)3 +ΩR(1 + z)4 +Ωκ(1 + z)2

. (13.34)

Given the energy-matter density ratios the integral above
can be performed readily numerically. We obtain the
following values for a flat universe:230)

τU =

{
0.993τH = 13.7 Byr, ΩΛ = 0.73, h = 0.71,

0.951τH = 13.8 Byr, ΩΛ = 0.685, h = 0.673,

(13.35)

where Byr is billion years.
The age of the epoch of the matter-radiation equal-

ity can also be calculated straightforward. This is to
set the lower limit of the integration given above in
Eq. (13.35) at the corresponding redshift zEQ which
can be calculated as follows: ρR = (a0/a)

4ρR0 and
ρM = (a0/a)

3ρM0. At the matter-radiation equality
ρR = ρM which gives

zEQ =
a0
aL

− 1 =
ΩM

ΩR
− 1 = 3430 (13.36)

for ΩM = 0.315 and ΩR = 9.18× 10−5. Then we have

tEQ = 50 300 yr. (13.37)
229)For numerical calculations, we use the central values given in

the 2014 PDG: ΩΛ = 0.685, ΩM = 0.315, Ωγ = 5.46 × 10−5, and
h = 0.673. The contribution of the radiation energy with Ωγ of the
order of 10−5 can be neglected in many situations. However if it is
needed, say in cases of large redshift such as at the last scattering
surface zL = 1100, we take neutrinos as massless which give us
ΩR = 9.18× 10−5. For comparison we frequently also give results
for the WMAP7 data set as given in the 2013 PDG: ΩΛ = 0.73,
ΩM = 0.27, and h = 0.71.

230)The integral is not sensitive to the upper limit of integration
when it is over 100. The integral is also not sensitive to the presence
of ΩR. We can take ΩR = 0 and hence ΩΛ +ΩM = 1 to integrate
z from 0 to the redshift of the last scattering surface ZL ≈ 1100.
Hence the complication of ΩR and ΩM above the LSS can be
ignored in the accuracy that concerns us.

13.4.3 Functional form of the scale factor a

The Hubble expansion rate Eq. (13.23) defines the func-
tional relationship between scale factor a and the cosmic
time t as follows. Let us define the normalized scale fac-
tor

â(t) ≡ a(t)

a0
=

1

z + 1
, (13.38)

where a0 ≡ a(t0), t0 is the time of the present epoch. We
can write, setting curvature parameter to zero K = 0,

H2

H2
0

∑
j

ρj
ρc

=
∑
j

Ωj

[
a0
a(t)

]3(1+wj)

=
1

â4(t)

[
ΩΛ(â(t))

4+ΩM â(t)+ΩR

]
, (13.39)

where the curvature term has been dropped. Equation
(13.23) can be rewritten as

dt = 1

H0

da
a
√∑

j
ρj

ρc

=
1

H0

âdâ√
ΩΛâ4+ΩM â+ΩR

. (13.40)

This expression relates the cosmic time and the normal-
ized scale factor â with the initial condition â(t = 0) = 0.
In general one can obtain â as a function of t by numer-
ical inversion of the above expression. However, if any
one of the of the three densities ratios is set to zero, an
analytic result can be obtained. Two interesting cases
are ΩR = 0 and ΩΛ = 0. The latter has been used in
the discussion of CMB anisotropy and the former will
be used in this chapter in the discussion of cosmic event
horizon.
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13.4.3.1 Early time scale factor, vacuum energy
negligible

Since the contribution of the vacuum energy is constant
in the cosmic time given by ΩΛ, while the contributions
of radiation and matter are respectively ΩR(1 + z)4 and
ΩM (1+z)3, the effect of the vacuum energy is negligible
in the early universe when the redshift is several tens
or larger. This is the case in the epoches before the
appearance of the first stars, at about z = 70. Then
Eq. (13.40) can be written as

dt ≃ τH
âdâ√

ΩM â+ΩR

, (13.41)

where τH = H−1
0 . The integration of the above equation

is straightforward to give

t =
τH√
ΩM

[
2

3

√
â+ âEQ(â− 2âEQ) +

4

3
â
3/2
EQ

]
, (13.42)

where âEQ is the reduced scale at the matter-radiation
equality ρM = ρR,

âEQ =
ΩR

ΩM
. (13.43)

It is straightforward to see that in the radiation domi-
nated region, i.e., â < âEQ we have â ∼ t1/2. And in the
matter dominated region, i.e., â > âEQ, â ∼ t2/3. These
are the expected behavior of the scale factor in the cosmic
time. We can calculate the time of the matter-radiation
equality for â = âEQ. We have

tEQ = t(âEQ) =
τH√
ΩM

4

3

(
1− 1√

2

)
â
3/2
EQ , (13.44)

which gives the numerically value tEQ ≈ 5 × 104 yr for
either set of the cosmological parameters,231) agreeing
with the value listed in Table 9.6.

The time-Hubble scale factor relationship, Eq. (13.42)
can be further simplified if we normalize the time in units
of the time of the matter-radiation equality and the scale
factor in units of the scale factor at the equality. Define

ā ≡ â

âEQ
=

a

aEQ
, t̄ ≡ t

tEQ
,

āEQ ≡ ā(tEQ) = 1. (13.45)

The convenience in defining ā as a function of t̄ is that
ā(t̄) < 1 for t̄ < 1, and ā(t̄) > 1 for t̄ > 1. Equation
(13.42) can be rewritten as

t̄ =

(
1 +

1√
2

)(√
ā+ 1(ā− 2) + 2

)
. (13.46)

We can also express ā as a function of t̄. Rearranging
the above expression Eq. (13.46) as a cubic equation of
ā:

ā3 − 3ā2 + 4− 4

[(
1− 1√

2

)
t̄− 1

]2
= 0. (13.47)

A linear combination of two of the three roots of this
cubic equation gives the needed expression for ā as a
function of t̄. We have the early time solution

ā(t̄) = 1− 1

2

[
s1(t̄) + s2(t̄)− i

√
3(s1(t̄)− s2(t̄))

]
Θ

(
2

(
1 +

1√
2

)
− t̄

)
+ [s1(t̄) + s2(t̄)]Θ

(
t̄− 2

(
1 +

1√
2

))
,

â(e)(t̄) = âEQā(t̄), (13.48)

where the superscript (e) denotes the early time, âEQ is
given in Eq. (13.43), “i” is the usual imaginary symbol,
Θ the Heaviside step function, and

s1(t̄) =
3

√
2f2t (t̄)− 1 + 2ft(t̄)

√
f2t (t̄)− 1,

s2(t̄) =
3

√
2f2t (t̄)− 1− 2ft(t̄)

√
f2t (t̄)− 1,

ft(t̄) ≡
(
1− 1√

2

)
t̄− 1. (13.49)

Needless to say, the expressions given in Eq. (13.48) are
real. More details on the solution of the cubic equation
is given in Section 13.7.5. The complexity in Eq. (13.48)
in comparison with Eq. (13.46) is due to fact that in go-

231)We have used ΩM = 0.315 and ΩR = 9.18× 10−5 as before.

ing from the latter to Eq. (13.47) it involve the square of
the terms appearing in both sides of the equality sym-
bol. This introduces spurious solutions in Eq. (13.47).
Therefore an appropriate linear combinations of the cu-
bic roots is necessary in order to recover the starting
information of Eq. (13.46). Some more details about the
three roots and the selection of them in obtaining the
correct solution for ā can be found in Section 13.7.5.

Let us rewrite the Hubble expansion rate in a form
which finds usages in the discussion of CMB anisotropy
in Section 12.9.3. We write

H = H0
H

H0
= H0

1

â2

√
ΩM â+ΩR

= H0

√
ΩM

(
1

âEQ

)3/2(
1

ā

)2 √
ā+ 1, (13.50)
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where ā ≡ ā(t̄) is given in Eq. (13.48). And from
Eq. (13.50) and recalling āEQ = 1, we have

aH = a0âEQāH = a0H0

√
ΩM

âEQ

√
ā+ 1

ā
,

(aH)EQ = a0H0

√
2ΩM

âEQ
. (13.51)

Then

aH

(aH)EQ
=

√
ā(t̄) + 1√
2ā(t̄)

. (13.52)

We note that this function behaves like t̄−1/2 for t̄ ≪ 1
and like t̄−1/3 for t̄ ≫ 1 as expected. The coefficients
in front of the power terms are not exactly constant but
close to unity. The coefficient in front of t̄−1/2 varies
monotonically from 0.80 to 1 as t̄ varies from 0 to 1,
and the coefficient in front of t̄−1/3 varies also monoton-
ically from 1 to 0.85 as t̄ varies from 1 to ∞.232) So, this
function takes approximately the following form, with an
error no more than 20% within the whole range of the
cosmic time,

aH

(aH)EQ
≈ t̄−1/2Θ(1− t̄) + t̄−1/3Θ(t̄− 1), (13.53)

The range of validity of the given form of the scale fac-
tor from the time of nucleosynthesis to the photon last
scattering. We have used Eq. (13.53) in Section 12.9.3
in the discussion of CMB.

13.4.3.2 Late time scale factor, radiation energy
negligible

This is the case of late universe when the redshift is a few
or less, say, after the the start of the structure formation

at roughly z = 7. In this late period ΩR(1+ z)
4 ≪ 1 the

radiation contribution can be neglected. The vacuum
energy becomes important. we an write,

dt = τH

√
âdâ√

ΩΛâ3 +ΩM

. (13.54)

Here we can set ΩΛ + ΩM = 1. The integral can be
performed straightforwardly by a variable change233) so
as to obtain

â(l)(t) ≡ a(t)

a(t0)

=

(
1−ΩΛ

ΩΛ

)1/3

sinh2/3

(
3
√
ΩΛ

2

t

τH

)
, (13.55)

where τH = 1/H0 and the superscript (l) means late
time to distinguish it from the early time expression of
Eq. (13.48). It is clear that the first derivative of â is
positive, ˙̂a(l) > 0, representing an expanding universe.
The second derivative of â(t) can be shown to vanish
at

tAV =
2

3
√
ΩΛ

ln
(
1 +

√
3√

2

)
τH . (13.56)

For t < tAV, ¨̄a < 0 the expansion of the universe de-
celerates and for t > tAV, ¨̄a > 0 the universe expansion
accelerates. Roughly, tAV ≈ τH/2.234) It is also straight-
forward to see that for ΩΛ = 0, i.e., for a matter domi-
nated universe, Eq. (13.55) leads to â(l)(t) ∼ t2/3. This
is the expected behaviors of the Hubble scale factor a(t)
for a matter dominated universe.

The scale factor normalized at the matter-radiation
equality as a function of the normalized time t̄ = t/tEQ
is given by

ā(l)(t̄) =
â(t)

âEQ
=

Ω
4/3
M

ΩR(1−ΩM )1/3
sinh2/3

[
(2−

√
2)
Ω

3/2
R

√
1−ΩM

Ω2
M

t̄

]
(13.57)

Inverting the above expression Eq. (13.55), we have

t =
2τH

3
√
ΩΛ

arcsinh
(√

ΩΛ

1−ΩΛ
â3

)
. (13.58)

232)Equation (13.46) gives ā = (4/
√
6)(1 − 1/

√
2)1/2 t̄1/2 and

aH/(aH)EQ = (
√
6/4)(1 + 1/

√
2)1/2t−1/2 for t̄ ≪ 1, and ā =

(2(1−1/
√
2)2/3 t̄2/3 and aH/(aH)EQ = (1/

√
2)(1+1/

√
2)1/3t−1/3

for t̄≫ 1.
233)A change of variable y = (â)3/2 gives dt = (2/(3

√
H0))dy/√

y2 + (1−ΩΛ)/ΩΛ which allows one to obtain easily the result
given in Eq. (13.55).

234)tAV = 0.530τH for ΩΛ = 0.685, and tAV = 0.514τH for ΩΛ =
0.73.

For t ≤ t0, we can set â = (1 + z)−1 to write

t(z) =
2τH

3
√
ΩΛ

arcsinh
(√

ΩΛ

1−ΩΛ
(1 + z)−3

)
. (13.59)

From â(t0) = 1 or setting z = 0, we have

t0 ≡ t(0) =
2τH

3
√
ΩΛ

arcsinh
(√

ΩΛ

1−ΩΛ

)
, (13.60)

which is just the age of the universe. The numerical
values of Eq. (13.60) reproduce τU of Eq. (13.34) for both
sets of the cosmological parameters of ΩΛ = 0.73 and
h = 0.71, and ΩΛ = 0.685 and h = 0.673.
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13.4.3.3 Connecting the early time and late time scale
factors

The expressions of the scale function â(e) in Eqs. (13.48)
and â(l) in (13.55) are valid in different time regimes,
the latter near and includes the present epoch, and the
former around the matter-radiation equality. The two
differ significantly at very early time t ≪ tEQ and very
late time t ≫ tEQ. However, there is a sizable time re-
gion in between, in which matter density dominates over
both radiation and vacuum energy. There the two scale
factors are practically the same. This can be verified
by a straightforward numerical comparison of the two.
So we can smoothly joint the two expressions to obtain
an analytic expression for the normalized scale function
which is valid over the cosmic time, practically the entire
homogeneous and isotropic background universe, except
for the every early time period, from the time of nucle-
osynthesis of t ≈ 200 s. to the present of t = 13.8 Byr.

It is convenient to express the normalized scale fac-
tors in the scaled time t̄ = t/tEQ. Let us rewrite â(l) of
Eq. (13.55) as a function of the scaled time:

â(l)(t̄)=

(
ΩM

1−ΩM

)1/3
sinh2/3

(
3
√
1−ΩM

2

tEQ
τH

t

tEQ

)
=

(
ΩM

1−ΩM

)1/3
sinh2/3

(
(2−

√
2)
Ω

3/2
R

√
1−ΩM

Ω2
M

t̄

)
.

(13.61)
We take the merging point of the two normalized scale
factors at the time of vacuum energy-radiation equality
when the universe is about tΛR ≈ 540 Myr. The time of
matter-radiation equality is tEQ ≈ 50, 00 yr. The scaled
time at the merging point is

t̄MG = tΛR/tEQ ≈ 1.1× 104. (13.62)

We write the overall normalized scale factor as
â(t̄) = â(e)(t̄)Θ(t̄MG − t̄) + â(l)(t̄)Θ(t̄− t̄MG)

ā(t̄) = ā(e)(t̄)Θ(t̄MG − t̄) + ā(l)(t̄)Θ(t̄− t̄MG). (13.63)
The range of validity is from the nucleosynthesis at the
cosmic time of about 200 s. to the present of 13.8 Byr.

13.5 Proper distance and related length measures

13.5.1 Proper distance, dp, comoving distance dC, and
the Hubble expansion

The proper distance235) is the distance between two
points measured on the spatial geodesic along a hyper-
surface of constant cosmic time. It is the distance from

235)See, [218], p. 415; [221], p. 4; [74], p. 36; and [225], p. 100.
We note that in some of the newer texts, proper distance is no
long defined, or used differently. For the latter see [224], and for
the former see, e.g., [223].

an observer to the redshift z1 measured at a cosmic time
t. In the FLRW metric, the proper distance between
an observer and a distant galaxy is defined on a spatial
surface of dt = 0. In particular, when the observer is de-
fined to be the origin of the comoving frame, the angular
variables of the path of the measurement are fixed, so
that dΩ = 0, we have236)

ds// =
√
grr(t)dr =

a(t)√
1− κr2

dr = a(t)dχ, (13.64)

where grr is given in Eq. (9.22) or can be read off from
Eq. (13.1). For an observer at the origin, the proper
distance at some time t of a galaxy located at the time-
independent comoving radial coordinates r1 of redshift
z1 is given by

dp(t, r1) ≡ a(t)

∫ r1

0

dr√
1− κr2

= a(t)

∫ χ1

0

dχ

= a(t)χ1 = a(t)
1√
κ

arcsin(
√
κr1). (13.65)

We should emphasize that no physical measurement can
be carried out for the proper distance. In order to make
the measurement so defined it has to be carried out in-
finitely fast or to freeze the expansion of the universe at
the time of the measurement, so that the cosmic scale fac-
tor stays at a constant value during the measurement.237)

A related distance is the comoving distance, which is
the proper distance with t being evaluated at the time
when the light signal reaches the observer, which is the
present time t = t0. From Eq. (13.67), putting z = 0, we
have238)

dc(r1) = dp(t0, r1) = a0χ1=
a0√
κ

arcsin(
√
κr1). (13.66)

In the case that the Hubble expansion rate is known,
such as the ΛCDM, the proper distance and the comov-
ing distance can be evaluated using the null path of light
propagation using Eqs. (13.21) and (13.25). Let a light
beam be emitted at t1 from the galaxy with the red-
shift z1 reaches the observer at t0, and the scale factor
is a(t) = a0/(1 + z), we can rewrite Eq. (13.65) as

236)This is the line element on the space-like surface, not to be
confused with the FLRW metric line element Eq. (A17) which
defines the proper time.

237)A way to imagine the measurement of the proper distance is
given in [218], p. 415. Let us reproduce the argument below: Let
us set up a chain of measuring stations closely spaced along the line
of sight between the two galaxies in question. Observers at each
station will measure the distance to their respective next stations
at the same time t, say, by measuring the traveling times of their
respective light signals. The proper distance in question is obtained
by summing up all these small distance measurements, with the
small space between neighboring measuring stations going to zero.
Such a measurement cannot be carried out in a real experiment.

238)The comoving distance is not uniquely defined. In some of
the literature, it is defined simply as χ1 of Eq. (13.4).
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dp(t, r1) = a(t)c

∫ t0

t1

dt′
a(t′)

= a(t)c

∫ a0

a1

da
ȧa

=
a(t)c

H0

∫ a0

a1

1

Ẽ

da
a2

=
DH

1 + z(t)

∫ z1

0

dz√
ΩΛ +ΩM (1 + z)3 +ΩR(1 + z)4 +Ωκ(1 + z)2

,

dc(r1) = DH

∫ z1

0

dz√
ΩΛ +ΩM (1 + z)3 +ΩR(1 + z)4 +Ωκ(1 + z)2

, (13.67)

where z(t0) = 0.
Although in the general setting of arbitrary t the

proper distance has no real relevance to observes, it can
be used for the discussion of issues related to the expand-
ing universe [315]. We can use the proper distance to
derive the Hubble expansion law as follows. Let us take
the time derivative of the proper distance Eq. (13.65),
the recession velocity at a general comoving radial dis-
tance and an arbitrary time is given by

ḋp(t, r1) = ȧ(t)χ1(r1) = H(t)dp(t, r1), (13.68)

i.e., the Hubble recession velocity for the coordinate
point r1 at any time t is proportional to the correspond-
ing proper distance times the Hubble expansion rate at
the given time. In particular, at the present epoch for
small z1 ≪ 1, we have, from Eq. (13.68),

ḋp(t0, r1)|z1≪1 ≈ H0DHz1 = cz1. (13.69)

As stated earlier, the meaning of the Hubble length
can be further illustrated by considering the galaxy ex-
pansion velocity. Let us take the Hubble recession veloc-
ity Eq. (13.68) for the coordinate point r1 at the present
epoch and setting the recession velocity at the light ve-
locity ḋp(t0, r1) = c. Then

dp(t0, r1)|ḋ(t0,r1)=c = dc(r1)|ḋc(r1)=c =
c

H0
= DH .

(13.70)

Hence the Hubble length is the comoving distance which
has the recession speed equal to the speed of light.

Within the Hubble length all the recession velocity is
subluminal and beyond the Hubble length all superlumi-
nal. Having superluminal recession velocity for galaxies
does hot violate the fundamental principle of special rel-
ativity.239) In the ΛCDM model, as can be calculated
from Eq. (13.67), the redshift value for the subluminal
and superluminal boundary happens at z = 1.41 for
ΩΛ = 0.73 and h = 0.71, and z = 1.48 for ΩΛ = 0.685
and h = 0.673.

13.5.2 Particle horizon dph

The particle horizon240) is the maximal distance from
which an observer, on Earth for instance, can receive
a signal emitted from an object in the past. It is also re-
ferred to simply as the horizon.241) Because of the finite-
ness of the speed of light and the age of the universe, the
particle horizon of an observer is finite and will increase
as the cosmic time increases. The particle horizon at the
present epoch is determined by the upper limit of the
allowed comoving distance. Hence the particle horizon
of the present epoch is given by

dph ≡ dc(rmax) = a0

∫ rmax

0

dr√
1− κr2

= a0c

∫ t0

0

dt
a(t)

= DH

∫ zmax

0

dz
Ẽz

, (13.71)

where rmax is the maximal value of r1 and zmax → ∞ the
value of the redshift in the past corresponding to rmax.
We have

dph = DH

∫ ∞

0

dz√
ΩΛ +ΩM (1 + z)3 +ΩR(1 + z)4 +Ωκ(1 + z)2

= cτU = ct0 =

{
3.45DH = 4.49× 1026 m, for ΩΛ = 0.73, h = 0.71,
3.24DH = 4.45× 1026 m, for ΩΛ = 0.685, h = 0.673,

(13.72)

where ΩR and Ωκ are ignored and ΩM is set to be 1−ΩΛ.
The difference of the two set of data is about 5%.

The particle horizon will increase with time. For ob-
servers on earth, more and more portion of the universe
becomes visible as the age of the universe increases, be-
cause longer time allows further light to reach earth.

239)For a clear accessible discussion, see [315] and [316].
240)[218], p. 489; [74], p. 36. The name particle horizon together

with the term event horizon was coined by Rindler in 1956, [317].
See [218], p. 490.

241)See [240], p. 93. It is also referred to as the cosmological
horizon or the light horizon.
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13.5.3 Cosmic event horizon

The cosmic event horizon or simply the event horizon
defines the largest distance from which a light signal is
emitted and can eventually reach an observer in the dis-
tant future. This distance may be finite or infinite, de-
pending on the cosmological models that determine the
large time behavior of the scale factor a(t). In some
models, including the present ΛCDM, there exists a fi-
nite radial distance, denoted as χeh or reh, called cosmic
event horizon or event horizon, beyond which no object,
such as a galaxy, can ever be visible to the observer.242)

Consider a photon source which emits a signal at tem
which is received by an observer at tobs. Another signal
is emitted at t′em and received by the same observer at
t′obs. In the comoving frame in which the observer is
at the coordinate origin, the time independent comoving
radial distance of the photon source, denoted as χ1 or
r1, is given by

χ1 =
1√
κ

arcsin
(√
κr1
)

= c

∫ tobs

tem

dt
a(t)

= c

∫ t′obs

t′em

dt
a(t)

. (13.73)

We shall assume that the source and observer can ex-
ist forever, so that their relationship in the cosmic time
evolution can be explored, not being intruded by the
complications of the finite lifetime of either the source or
the observer.

Since a(t) is non-negative, χ1 increases with tobs for a
given tem. χ1 also increases for a given tobs when tem de-
creases. These state that the observer’s visible universe
increases with the time of observation, and with the sig-
nal emission going back to an earlier time. For a given
tem, the maximal range of observation is reached when
tobs → ∞. This gives rise to the quantity called event
horizon. If the integral in (13.73) diverges for tobs → ∞,
then all parts of the universe will eventually be visible
to the observer. So there does not exit an event horizon.
However, if the integral converges for tobs → ∞, there is
a maximal χ1(tem), which is the event horizon denoted
as χeh1, beyond which no object can ever be in causal
contact with the said observer. In plain words, what
the event horizon means is that for all light signals emit-
ted at the time t1, the furthermost source is located at
the comoving radial coordinate reh(tem), beyond which
an electromagnetic signal emitted at tem will never be
able to reach the observer. The criterion for the exis-
tence of an event horizon is quite straightforward. From

242)The cosmic event horizon should not be confused with the
black hole event horizon, although the two have some similarities.

Eq. (13.73) we have:

a(t)

t

t→∞−→

{
0, no finite event horizon,
̸= 0, existence of a finite event horizon.

(13.74)
We will see later that in the cosmological standard model
of ΛCDM the cosmic event horizon exits. For a given tem
it is,

χeh(tem) = c

∫ ∞

tem

dt
a(t)

. (13.75)

There is also an overall event horizon beyond which no
light signal will be able to reach an observer. The over-
all event horizon is obtained by setting tem = 0 in the
expression of the event horizon

χ
(OA)
eh = c

∫ ∞

0

dt
a(t)

. (13.76)

Further discussions and a concrete evaluation of the
event horizon in the current ΛCMD is given in Section
13.7.3.

13.6 Physical distance measures243)

13.6.1 Angular diameter distance dA and comoving an-
gular diameter distance dcA

244)

In analogues to distances along the line of sight which can
be represented by the radial variable r or χ as given in
Eq. (13.64), we can also define distances or sizes transver-
sal to the line of sight of an (Earth) observer. Let an
object of redshift z1 be located at the comoving coordi-
nate r1 and ϕ1 and having an finite extension in the θ
variable dθ. The transverse distance element is defined
by

ds⊥ =
√
gθθdθ = a(t)r1dθ = a(t)

1√
κ

sin(
√
κχ1)dθ

=
a(t)√
κ

sin
(
√
κ
DH
a0

×
∫ z1

0

dz√
ΩΛ +ΩM(1+z)3+ΩR(1+z)4+Ωκ(1+z)2

)
dθ,

(13.77)
where tθθ is given in Eq. (9.22).

243)Presently there are four approaches for distance measures. For
near objects there are the parallax and proper motion approaches.
For objects outside the Milky Way there are measurements of their
apparent vs absolute luminosities, and measurements of their an-
gular vs true diameter. These four distance measurements give
similar results for objects that are no farther than 109 light years
away which correspond to redshifts of z < 2. Beyond this range
they differ from one another and also from the “proper distance”
discussed above.

244)See, [218], p. 422, and [101], p. 35
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Suppose that an object has a transversal size dtr. Light
signals are emitted from the opposite ends of the object

at time t1 and reach an observer at time t0, forming an
angle δθ. We define the angular diameter distance dA,

dA(r1) =
ds⊥
δθ

|t1 = a(t1)r1 = a(t1)
1√
κ

sin(
√
κχ1),

=
a(t1)√
κ

sin
(
√
κ
DH
a0

∫ z1

0

dz√
ΩΛ +ΩM(1 + z)3 +ΩR(1 + z)4 +Ωκ(1 + z)2

)
, (13.78)

where the time variable is evaluated at t1.
In the discussion of CMB anisotropy we need the angular diameter distance at the last scattering surface d(L)A .

It is given by setting t1 = tL in Eq. (13.78). Taking κ = 0 and using the fact aL/a0 = (1 + zL)
−1, we have, for

zL = 1100,

d
(L)
A = aLrL =

DH
1 + zL

∫ zL

0

dz√
ΩΛ +ΩM(1 + z)3 +ΩR(1 + z)4

=
H−1

0

1 + zL

{
3.32, ΩΛ = 0.73, ΩM = 0.27,
3.12, ΩΛ = 0.685, ΩM = 0.315.

(13.79)

Another situation is the distance between two objects, say galaxies, located on a line transverse to the earth line
of sight. The above discussion also applies. In this case the distance between the two galaxies expands with the
cosmic flow and it is appropriate to evaluate the distance at the time t0, I.e., the cosmic time of the observer. This
defines the comoving angular diameter distance,

dcA = a0r1 =
a0
a(t1)

a(t1)r1 = (1 + z1)dA

=
a0√
κ

sin
(
√
κ
DH
a0

∫ z1

0

dz√
ΩΛ +ΩM(1 + z)3 +ΩR(1 + z)4 +Ωκ(1 + z)2

)
. (13.80)

This is also known as the proper-motion distance or
the transverse comoving distance [293]. It is similar to
the comoving distance defined in Eq. (13.66). In a flat
universe the transverse comoving distance is identical to
the comoving distance Eq. (13.67) and its numerical eval-
uation can be done straightforwardly.

13.6.2 The luminosity distance245) dL

The normal way to calculate the rate of energy received
by an observer from a light source is the of total lumi-
nosity L divided by 4πd2, and multiplying the effective
area of the detector δA, where d is the distance between
the light source and the observer, i.e., LδA/(4πd2). In
the expanding universe, however, this is more compli-
cated. From the point of view of the light source the
radiation fronts form various spherical shells around it.
The distance to be calculated will involve the metric gθθ
and the distance will be related to the angular diameter
distance. However, for an ever expanding universe, com-
plications are introduced by the expansion taking place
during the light traveling between the light source and
the observer: One complication is the effect of the expan-
sion of the distance and cosmic time between the light

245)See, [218], pp 418–421 and Kolb and Turner, p. 41.

source and the observer. The other is the shift of the
frequency of the photon emitted by the distant source to
a lower frequency, and hence to a lower energy, when it
arrives at the observer. Taking these complications into
consideration, we define the apparent flux measured by
an observe fA and a luminosity distance dL,

fA ≡ L

4πd2L
, (13.81)

where L is the true luminosity of the galaxy at the time
the photon signal is emitted. Below we relate the lumi-
nosity distance with the angular diameter distance.

Let the observer be the origin of the comoving coor-
dinate and the comoving radial coordinate of the light
emitter be r1 of redshift z1. To obtain the luminosity
distance we have to consider three factors due to Hubble
expansion: (1) When the light signal reaches the ob-
server, the Hubble expansion stretches the wavelength
by a factor 1+ z1 and hence lowers the measured energy
by the same factor. (2) Since the luminosity and flux re
related to energy density per unity time, we have to take
into account of the effect of the Hubble expansion on the
time. The time interval measured at r1 is stretched by
a factor 1 + z1. The same time stretch factor has al-
ready been considered in Section 9.1.4, Eq. (9.60). So
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the flux will be reduced by another factor 1 + z1. (3)
Furthermore, the (angular diameter) distance from the
galaxy to the observer is expanded from dA = a(t1)r1
to dcA = a(t0)r1 = (1 + z)dA, which introduces another
suppression factor (1 + z1)

2 in the measured radiation
flux. Then in relation to the angular diameter distance
which is defined as the distance at the time of emission of
the light signal, the luminosity is suppressed by a factor
(1 + z1)

4. Hence we have the luminosity distance, which
relates the true luminosity of the source at its emission
and the measured flux by the observer, to be

dL = (1 + z1)dcA = (1 + z1)
2dA

=
a0
a(t1)

dcA =

(
a0
a(t1)

)2

dA =
a20
a(t1)

r1, (13.82)

where r1 is given in Eq. (13.27), dcA in Eq. (13.80), and
dA in Eq. (13.78).

13.7 Recapitulating results in a flat universe κ = 0

There are strong evidences that the universe is flat so
that the space-time curvature constant K = 0 and
therefore the vanishing of the curvature energy density
ΩK = 0, which gives rise to simplifications to most ex-
pressions related to universe expansion.

13.7.1 Summary of results

Line element:

ds2 = c2dt2 − a2(t)(dr2 + r2dΩ2). (13.83)

Null path:

cdt
a(t)

= dr = dχ. (13.84)

Comoving radial coordinate:

χ1 = r1 =
DH
a0

∫ z1

0

(
1

Ẽz

)
K=0

dz. (13.85)

Distance measures:

dp(t1, r1) = dA(r1) = a(t1)r1

=
DH
1 + z

∫ z1

0

(
1

Ẽz

)
K=0

dz,

dc(r1) = dcA(r1) = a0r1 = a0χ1

= DH

∫ z1

0

(
1

Ẽz

)
K=0

dz,

dL(r1) = (1 + z1)dcA = (1 + z1)
2dA

= (1 + z1)DH

∫ z1

0

(
1

Ẽz

)
K=0

dz,

dph = DH

∫ ∞

0

(
1

Ẽz

)
K=0

dz = 3.502DH, (13.86)

Fig. 13.1 Distances in units of the Hubble length DH as
functions of the redshift z.

where Ẽz is given in Eq. (13.24).
We plot in Fig. 13.1 the three distances in the flat

space dp(z1, r1) = dA(r1), dc(r1) = dcA(r1), and dL(r1)
as functions of the redshift for the case Ω = 0.685. For
small redshift all the distances are about the same. They
deviate from one another for z > 0.1. The luminosity
distance increases linearly with the redshift. The co-
moving and comoving angular diameter distance flattens
out for z > 100. The proper distance and angular diam-
eter distance reaches a maximum at about z ≈ 1.6 then
decreases as z increases.

13.7.2 Explicit examples: LSS and later epoches

LSS (the last scattering surface)
At the last scattering surface of z1 = 1090 we have

d
(L)
A = dp(zL, rL) =

dcA
1 + z

= 13.4 Mpc,

dcA = dc = a0r1 = a0χ1 = 14.580 Gpc,
dL = (1 + zL)dcA = 1.59× 104 Gpc. (13.87)

13.7.3 Cosmic event horizon and a sketch of the
longterm cosmic future246)

To calculate the event horizon we need to know the be-
havior of the integral in Eq. (13.73) when tobs → ∞. We
rewrite the expression of Eq. (13.25) by setting K = 0
and dropping the contribution of the radiation energy.
So we assume that the universe is saturated by matter
and the dark energy which says ΩΛ +ΩM = 1. This is a
good approximation for epoches after the LSS. and the

246)Some of the discussion presented here below follows that given
in [318] and to which we refer for more details.
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case discussed in Section 13.4.3. The reduced scale fac-
tor can be expressed in analytic form in the cosmic time
as given in Eq. (13.55).

For an exponentially expanding universe at large t as
indicated in Eq. (13.61), the integral in Eq. (13.73) con-
verges as tobs → ∞, hence there exists a finite cosmic
event horizon for a given tem. All presently observable
galaxies, except for those gravitationally bound to that
of the observer, will sooner or later move out of the event
horizon, after which their electromagnetic signals will no
longer be able to reach the said observer. So any of
those galaxies can only be monitored for a finite period
in their lifetime. Let us calculate the event horizon for of
a source object sending out a signal at tem which reaches
an Earth observer at tob → ∞. We denote the comoving
radial coordinate of the source object by deh. For the
case that the emission time lies in the past, i.e., tem < t0
we can express the cosmic time in terms of the redshift.
Denoting the redshift of the source object by zem, we
have

deh(tem) = a0reh(tem) = c

∫ ∞

tem

dt
â(t)

=
2

3
DH

[
1

ΩΛ(1−ΩΛ)2

]1/6 ∫ ∞

yem

dy
[sinh(y)]2/3 ,

yem =
3

2

√
ΩΛ

tem
τH

= arcsinh
(√

ΩΛ

1−ΩΛ
(1+zem)−3

)∣∣∣∣∣
tem<t0

, (13.88)

where â(t) is given in Eq. (13.61) and a change of variable
of integration has been made.

There are two notable cosmic event horizons. One is
the event horizon of the present epoch and the other is
the overall event horizon of our standard ΛCDM world.
The event horizon of the present epoch, i.e., the remotest
comoving radial distance that we are able to reach, which
we denote by d

(0)
eh , is obtained by setting the emission

time at the present time, tem = t0 or zem = 0,

d
(0)
eh =

2

3
DH

[
1

ΩΛ(1−ΩΛ)2

]1/6 ∫ ∞

y0

dy
[sinh(y)]2/3 ,

=

{
1.12DH = 4.73 Gpc = 15.4 Gyr, for ΩΛ = 0.73, h = 0.71,

1.15DH = 5.12 Gpc = 16.8 Gyr, for ΩΛ = 0.685, h = 0.673.
(13.89)

The overall event horizon of the ΛCDM cosmos is to set tem = 0 or zem → ∞, we have

d
(Oa)
eh =

2

3
DH

[
1

ΩΛ(1−ΩΛ)2

]1/6 ∫ ∞

0

dy
[sinh(y)]2/3

=

{
4.62DH = 19.5 Gpc = 63.6 Gyr, for ΩΛ = 0.73, h = 0.71,

4.38DH = 20.0 Gpc = 63.9 Gyr, for ΩΛ = 0.685, h = 0.673.
(13.90)

So the cosmic event horizon is finite of limited size. The
overall event horizon is about d(Oa) ≈ 64 Gyr. We should
remark that this result is an approximation, because at
large redshift z, i.e., small y the integrand is not valid.
But we expect the effect to be small.

Let us examine the fate to all the galaxies that are
visible to us at the present epoch. Each visible galaxy
has a redshift z1, where z1 ≤ zL, and the radia-
tion signals we are receiving from it are emitted when
the universe has the age τz1 or the cosmic time tz1 given in
Eq. (13.59)

τz1 =
2

3
√
ΩΛ

arcsinh
((

1−ΩΛ

ΩΛ
(1 + z1)

3

)−1/2
)
τH.

(13.91)

We denote the comoving radial coordinate of this galaxy
by χ1 = r1. Let a light pulse be emitted by the source

of redshift z1 at t1 and reach the observer at the present
epoch t0. Consider another pulse from the source which
is emitted at tem > t1 and reaches the observer at tob >
t0. Both allow us to calculate the same comoving radial
coordinate of the source. From Eq. (13.26), we have

χ1=χ(z1) = c

∫ t0

t1

dt
a(t)

=
c

a0H0

∫ z1

0

dz√
ΩΛ+ΩM(1+z)3+ΩR(1+z)4+Ωκ(1+z)2

=c

∫ tobs

tem

dt
a(t)

, (13.92)

where tobs varies with tem. The second line above allows
the determination of χ(z1), and the third line provides
the constraint on the time interval during which a source
and observer can make causal contact, which lie in the
future time for tem > t1 and tobs > t0.
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For a given χ1, tobs increases with tem. Since the inte-
gral is convergent as a(t) increase exponentially, there
exists a value of tem, called the latest emission time
dented as tLem, which makes tobs → ∞. Then Eq. (13.92)
can no longer be satisfied for tem > tLem. This is the
physical situation which says that the light emitted by
the source galaxy after the latest emission time will not
be able to reach the observe. For a given z1 there is
an unique tLem, which is obtained as the solution of the
following equation, obtained from the second and third
line of Eq. (13.92). Defining ť ≡ t/τH and neglecting
both ΩK and ΩR, we have∫ z1

0

dz√
ΩΛ + (1−ΩΛ)(1 + z)3

=

∫ ∞

ťLem

dť
â(ť)

=

(
1−ΩΛ

ΩΛ

)−1/3 ∫ ∞

ťLem

dť[
sinh

(
3
√
ΩΛ

2 ť
)]2/3 , (13.93)

where â(ť) can be obtained from Eq. (13.55). We plot
the results in Fig. 13.2, as functions of the redshift of the
source object z1. The red solid curve is the cosmic time
of the last emission tLem which the observer will receive
in the infinite future. We also plot by the dashed cyan
curve the age of the universe at the redshift z1. Note
that the age of the light emission, i.e., the cyan curve
determines the comoving radial coordinates of various
objects.

Let us elaborate some more, referring to Fig. 13.2. For
a radiation source of a given redshift, the light signal
emitted at this last emission time will take an infinite
amount of time to reach an Earth observer. For exam-
ple, for a galaxy of z1 ̸= 0, an Earth observer can only
monitor it for a finite period of time of its evolution. For
example, for a galaxy of z = 5, the light we receive from
it presently was emitted at the cosmic time of 0.082τH or
1.1 Gly which is in the early period of the formation of

Fig. 13.2 The red solid curve gives the latest emission time
of a galaxy at a give redshift z at the present epoch. The cyan
dashed curve shows the age of the galaxy when light signals
are emitted that are presently reaching the observer.

galaxies.247) The last light we can receive from it is emit-
ted at the time when the universe is 0.46 τH = 6.4 Gly
old, and after which we lose causal contact with it and
will no long be able to monitor its evolution beyond the
last light. Another example is the presently oldest galaxy
observed which has a redshift 11.9 [319].248) The light
was emitted at about 0.026τH ≈ 340 Mly and the last
light was emitted at 0.25τH ≈ 3.5 Gly.

13.7.4 Results for low redshifts

For low redshift z < 1, we have, independent of the val-
ues of the various energy densities,

r1 ≈ χ1 ≈ z1
DH
a0

,

dA ≈ dL ≈ dP ≈ dpr ≈ d
(0)
A = a0r1 ≈ DHz1. (13.94)

13.7.5 Remarks on the cubic equation relating time and
the Hubble scale factor

The roots of a cubic equation as a textbook material
is well known. For a summary, see [291].249) Since
there are subtle features in the present case concerning
Eqs. (13.46) and (13.47), here we make some remarks on
them.

In the notation of [291], the cubic equation is written
in the form

x3 + b2x
2 + b1x+ b0 = 0. (13.95)

Referring to Eq. (13.47), we have

b2 ≡ −3, b1 = 0, b0 ≡ 4− 4

[(
1− 1√

2

)
t̄− 1

]2
.

(13.96)

We define

q ≡ −b
2
2

9
= −1,

r ≡ −b0
2

− b32
27

= 2

[(
1− 1√

2

)
t̄− 1

]2
− 1,

q3 + r2 = −1 +

{
2

[(
1− 1√

2

)
t̄− 1

]2
− 1

}2

,

s1 ≡ 3

√
r +

√
q3 + r2,

s2 ≡ 3

√
r −

√
q3 + r2. (13.97)

247)For this calculation we take ΩΛ = 0.7, in between the values
we used earlier. We also take h = 0.7.

248)NASA News Release, Dec. 12, 2012 [319].
249)The search for the general solution of the roots a cubic equa-

tion has a rich history. A web search provides some interesting
readings.
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The three roots are given by

ā1 = s1 + s2 −
b2
3
,

ā2 = −1

2
(s1 + s2)−

b2
3

+
i
√
3

2
(s1 − s2),

ā3 = −1

2
(s1 + s2)−

b2
3

− i
√
3

2
(s1 − s2). (13.98)

The sign of q3+ r2 is a discriminator of the solutions.250)

First we need to know the sign and zeros of q3 + r2:

q3+r2



< 0, t̄ < 4

(
1 +

1√
2

)
,

= 0, t̄ = 0, 2

(
1 +

1√
2

)
, 4

(
1 +

1√
2

)
,

> 0, t̄ > 4

(
1 +

1√
2

)
.

(13.99)

The root ā1 is real. The roots ā2 and ā3 are real for
t̄ < 4(1 + 1/

√
2), but complex for t̄ > 4(1 + 1/

√
2).

Hence the initial condition ā (t̄ = 0) = 0 and and the
defining condition t̄ = 1 and ā (t̄ = 1) = 1 can be used
to discriminate among the solutions. It can be checked
that these conditions are satisfied by ā3 only. So ā3 is
the possible solution for t̄ < 4(1+1/

√
2). However, since

ā3 joins smoothly with the always real root ā1 at t̄ <
2(1+1/

√
2), the Hubble scalar factor takes the expression

ā(t̄) = ā3(t̄)Θ

(
2

(
1 +

1√
2

)
− t̄

)

+ā1(t̄)Θ

(
t̄− 2

(
1 +

1√
2

))
. (13.100)

We note several specific points in the cosmic time (in
units of tEQ): ā = 0 at t̄ = 0 is the initial condition;
ā = 1 at t̄ = 1 is the matter-radiation equality; ā = 2 at
t̄ = 2

(
1 + 1√

2

)
, where ā1 and ā3 join to form the solu-

tion, is when the Hubbke scale factor is twice of that of
the matter-radiation equality; ā = 3 at t̄ = 4

(
1 + 1√

2

)
,

where both ā2 and ā3 become complex, is when the
scale factor is three times as large as that of the matter-
radiation equality. All these features can be shown in
Fig. 13.3. Note that the complex solutions for ā2 and ā3
are not shown in the figure. The reduced Hubble scale
factor ā(t̄), a monotonic increasing function of the cosmic
time, is represented by the pink dotted curve marked as

250)The sign of q3+r2 constrains on the solutions. For q3+r2 > 0
there are one real root and two complex roots which are complex
conjugate to each other. For q3 + r2 = 0 s1 = s2, all three roots
are real with one degenerated pair. For q3 + r2 < 0 all three roots
are real.

Fig. 13.3 The three roots ā1 red solid, ā2 blue dotted,
and ā3 pink dashed as marked by the curves, and the root
discriminator q3 + r2 cyan dash-dotted. The root ā1 stays
real for all values of t̄, while roots ā2 and ā3 become complex
for t̄ < 0 and t̄ > 4(1 + 1/

√
2) ≈ 6.828. The present plot

shows only the real part of the roots. The reduced Hubble
scale factor ā(t̄) is represented by the pink dotted curve ā3(t̄)
for t̄ ≤ (1/2)(1+1/

√
2) ≈ 3.414 and the red solid curve ā1(t̄)

for t̄ ≥ (1/2)(1 + 1/
√
2).

ā3 for t̄ ≤ (1/2)(1+1/
√
2) and the red solid curve marked

as ā1 for t̄ ≥ (1/2)(1 + 1/
√
2).

13.8 Summary table

We summarize the present distance-time discussion in
Table 13.1.

Appendix A: Phase space, invariants, and the
Liouville’s theorem

In this Appendix we first demonstrate that the element
of the phase space volume

d3xd3p = dx1dx2dx3dp1dp2dp3 (A.1)

is invariant under Lorentz transformations. Then we
prove one form of the Liouville theorem that says that
the number density functions of the phase space is also
Lorentz invariant. The thermal distribution function
given in (9.99) is an example of this class of Lorentz
invariant phase space distribution functions, as has been
noted at the end of Section 9.2.1.

The Liouville theorem is an important tool in many
branches of physics. It is a fundamental theorem in sta-
tistical mechanics and classical mechanics, It has also
been said that Liouville theorem underlines all of astron-
omy.251)

251)See, p. 2, [320].
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Table 13.1 A summary of the various length and time measures. As noted the quantities listed in the last column are
all evaluated by setting κ = 0.

Expression Flat universe K = 0
Distance/Time

(Current value)¬

Hubble time τH = 1
H0

(13.77 Byr/14.53 Byr)­

Hubble length DH = c
H0

= cτH (4.222 Gpc/4.455 Gpc)­

Hubble expansion rate H(z) = H0Ẽz H0

√
ΩΛ +ΩRz

4
+ +ΩMz

3
+ +Ωκz2+

®

H0Ẽz

Comoving radial coordinate χ1 = 1√
κ

arcsin(
√
κr1)¯

∫ r1
0

(
dr/(1− κr2)

)
= c

∫ t1 (dt/a(t))
= DH

a0

∫ z1
0 (dz′/Ẽ′

z)

DH
a0

∫ z1
0 (dz′/Ẽ′

z)

r1 = 1√
κ

sin(
√
κχ1)

1√
κ

sin
(√

κDH
a0

∫ z1
0 (dz′/Ẽ′

z)
)

DH
a0

∫ z1
0 (dz′/Ẽ′

z)

Lookback time ∆tlb =
∫ t0
t1

dt τH
∫ z1
0 (dz′/((1 + z′)Ẽ′

z)) τH
∫ z1
0 (dz′/((1 + z′)Ẽ′

z))

Age of universe τU = ∆tlb|t1=0 τH
∫∞
0 (dz′/((1 + z′)Ẽ′

z)) (0.992τH/0.948τH)
(13.66 Byr/13.77 Byr)

Proper distance dp(t, r1) = a(t)χ1
DH
1+z

∫ z1
0 (dz′/Ẽ′

z)
DH
1+z1

∫ z1
0 (dz′/Ẽ′

z)

Comoving distance dc(r1) = a(t0)χ1 = dp(t0, r1) DH
∫ z1
0 (dz′/Ẽ′

z)) DH
∫ z1
0 (dz′/Ẽ′

z)

Particle horizon dph(t1) = dc(r1max)

= a(t1)
∫ t1
0 (dt′/a(t′))

DH
∫∞
z1=0(dz

′/Ẽ′
z) (3.383DH/3.171DH)

(14.28/14.13) Gpc

Angular diameter distance dA(r1) ≡ dtr
δθ

= a(t1)r1
a0

1+z1

1√
κ

sin
(√

κDH
a0

∫ z1
0 (dz′/Ẽ′

z)
)

DH
1+z1

∫ z1
0 (dz′/Ẽ′

z)

Comoving angular diameter dcA(r1) = a0r1 (1 + z1)dA(r1) DH
∫ z1
0 (dz′/Ẽ′

z)

Luminosity distance dL(r1) = (1 + z1)dcA(r1) (1 + z1)dcA(r1) = (1 + z1)2dA(r1) (1 + z1)DH
∫ z1
0 (dz′/Ẽ′

z)

Cosmic event horizon

¬Two data sets are used. Set 1 is given by WMAP in the 2013 PDG: ΩΛ = 0.73, ΩM = 0.27 and h = 0.71. Set 2 is given by the best
fit of Planck 2013 plus WMAP [236]: ΩΛ = 0.685, ΩM = 0.315 and h = 0.673.

­Conversion of different unites: 1 pc = 3.262. ly = 1.02927× 108 s = 3.08568× 1016 m, 1 ly = 0.96405× 1016 m.
®We used the notation z+ ≡ 1 + z.
¯r1 and χ1 refer to a fixed comoving radial coordinates corresponding to the redshift z1 and when the cosmic age is t1.

A.1 Lorentz invariant volume element of the
momentum space

Let us first consider the Lorentz invariant element of
the momentum space. This is well-known and rela-
tively easily to obtain. Here we revert to the usual con-
vention of positive metric used in particle physics, i.e.,
pµp

µ = (p0)2− (p)2, instead of the negative metric given
in Eq. (9.16), which is more convenient in general rel-
ativity. The element of the energy-momentum d4p =
dp0dp1dp2dp3 and the mass-shell condition δ+(pµp

µ −
m2) are Lorentz invariant, where the subscript “+” in
the δ-function means taking the positive solution for p0

in pµp
µ −m2 = 0. Then their product

d4pδ+(pµp
µ −m2) =

1

2E
d3p (A.2)

is clearly Lorentz invariant. This is a typical example of
an elegant or slick argument which uses the combination
of Lorentz invariant quantities to obtain another Lorentz
invariant result.

For readers who are suspicious of any slick arguments
and would prefer to prove results using the very funda-
mental relationship that can be employed, Eq. (A.2) can
be proved as follows: Let pµ and p′µ be the 4-momentum
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of a particle in two parallel coordinate systems252) related
by a Lorentz transformation with the relative velocity β⃗
in an arbitrary direction. We have253)

p′0 = γ(p0 − β · p),

p′ = p+
γ − 1

β2
(β · p)β − γp0β, (A.3)

where β is the relative velocity of the two inertial frames,
γ = 1/

√
1− β2 is the regular Lorentz boosting factor,

p0 =
√
m2 + p2, and p′0 =

√
m2 + p′2. Recall that we

work in the natural units, setting the speed of the light
c = 1. We can rewrite the relationship in Eq. (A.3) in
the matrix form,

p′ = Λ̃p, (A.4)

where p′ and p are respectively the column matrices
made of the components of the momenta p′µ and pµ,
and the elements of the matrix Λ̃ are

Λ̃0
0 = γ,

Λ̃0
j = Λ̃j

0 = −γβj ,

Λ̃j
k = δjk +

γ − 1

β2
βjβk. (A.5)

It is straightforward to check that Λ̃ has a unity deter-
minant |Λ̃| = 1, and the inverse of Λ̃ is obtained by
changing the sign of the vector β in Λ̃, i.e.,

Λ̃−1(β) = Λ̃(−β). (A.6)

The Lorentz transformation leaves the metric of special
relativity invariant G = (2δµ0δν0− gµν), i.e., in the 4× 4
form

Λ̃TGΛ̃ = G, G ≡


1

−1
−1

−1

 (A.7)

Now we can calculate directly the transformation of
the volume element of the 3-momentum space from the
second expression of Eq. (A.3) by taking into account of
the mass-shell condition p0 =

√
p2 +m2

dp′1dp′2dp′3 =

∣∣∣∣∂p′j∂pk

∣∣∣∣dp1dp2dp3, (A.8)

252)What we mean by parallel coordinate systems is that their
three coordinate-axes are parallel. This is just a technic assump-
tion to make the formulae involved simpler. The case of two coor-
dinate axes arbitrarily oriented with respect to each other can be
obtained from the case of parallel coordinate-axes by a rotation.
Since rotation is a unitary operation. The argument below still
hold.

253)The expressions given in Eq. (A.3) can be found in, e.g., [321],
Eq. (11.19), p. 517.

where the determinant is∣∣∣∣∂p′j∂pk

∣∣∣∣ = ∣∣∣∣δjk +
γ − 1

β2
βjβk − γ

p0
βjpk

∣∣∣∣
=
γ(p0 − β · p)

p0
=
p′0

p0
, (A.9)

which gives the Lorentz invariance equation given in
Eq. (A.2)

1

p′0
d3p′ =

1

p0
d3p. (A.10)

A.2 Lorentz invariant volume element of the
configuration space

The Lorentz invariance volume element of the configura-
tion space, which is not commonly discussed explicitly,
can be shown similarly, but with a slight twist. The an-
swer can be expected from one’s first contact with spe-
cial relativity, i.e., the topic of Lorentz contraction. The
calculation below is just a fancy version of the topic of
Lorentz contraction. Let us examine a massive particle
in different coordinate frames. First consider the refer-
ence frame X in which the particle has the 3-momentum
p and energy p0, together with the rest frame of the par-
ticle which we call XR. The two reference frames are
taken to be parallel and related by a Lorentz transfor-
mation in which the X frame moves relative to the XR
with the velocity −p/p0 = −β. The γ factor is given by
γ = p0/

√
p02 − p2. The coordinates of the particle in the

two reference frames are related according to Eq. (A.3)

t = γ(tR + β · xR),

x = xR +
γ − 1

β2
(β⃗ · xR)β + γtRβ⃗. (A.11)

We take small variations of the coordinates:

∆t = γ(∆tR + β ·∆xR),

∆x = ∆xR +
γ − 1

β2
(β⃗ ·∆xR)β + γ∆tRβ⃗. (A.12)

The length measurement in the X-frame, expressed in
terms of that of the XR-frame, is an simultaneous event
in the former, so we have to take ∆t = 0. Then we have

∆x = ∆xR +
γ − 1

β2
(β⃗ ·∆xR)β − γ(β⃗ ·∆xR)β⃗. (A.13)

In vector components we can write

∆xj =

(
δjk − γ − 1

γβ2
βjβk

)
∆xRk. (A.14)

The infinitesimal volume elements in the two frames of
reference are related by

∆x1∆x2∆x3 =

∣∣∣∣ ∂∆xj∂∆xRk

∣∣∣∣∆xR1∆xR2∆xR3. (A.15)
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The determinant is very simple∣∣∣∣ ∂∆xj∂∆xRk

∣∣∣∣ = ∣∣∣∣δjk − γ − 1

γβ2
βjβk

∣∣∣∣ = 1

γ
, (A.16)

which gives us the expected result

∆xR1∆xR2∆xR3 = γ∆x1∆x2∆x3. (A.17)

If the particle is considered in another coordinate frame
X ′ of energy p′0 or the γ factor γ′, a relation similar to
Eq. (A.17) holds,

∆xR1∆xR2∆xR3 = γ′∆x′1∆x
′
2∆x

′
3. (A.18)

Then we obtain the invariant volume elements in the
configuration space

γ′∆x′1∆x
′
2∆x

′
3 = γ∆x1∆x2∆x3,

p′0d3x′ = p0d3x, (A.19)

where p′0/p0 = γ′/γ. This is the relationship we are
looking for.

A.3 Lorentz invariant phase space elements

Combining Eqs. (A.10) and (A.19), we have the Lorentz
invariant phase space element as the product of the two
Lorentz invariant elements:

d3p′d3x′ =

(
p0

p′0
d3p′

)(
p′0

p0
d3x′

)
= d3pd3x. (A.20)

A intuitive quick check of this result can be made by
considering a massive particle, starting being stationary
in the x-frame. It is boosted by the γ factor along, say,
the z-direction in the x′-frame. We have, then, ∆x′ =
∆x, ∆y′ = ∆y, ∆p′x = ∆px, and ∆p′y = ∆py, while
momentum in the z-direction is boosted by a factor γ,
∆p′z = γ∆pz, and the length in the z-direction is suffered
a contraction by the same factor, ∆z′ = γ−1∆z. We have

d3p′d3x′ = (γd3p)

(
1

γ
d3x

)
= d3pd3x. (A.21)

A.4 Liouville’s theorem

In a simple form, the often stated Liouville theorem is
the assertion that the phase-space distribution function
is constant along trajectories of a system, under quite
broad constraining conditions. So the theorem deals with
the conservation of the phase-space distribution func-
tion. One can find many discussions of the theorem in
the literature and on the web. Let us first clarify what
we mean by the phase-space distribution function. We
use a mechanical system as an illustration. A state of

a mechanical system is determined by its coordinates:
xj and momentum pj , j = 1, 2, 3. Denote the den-
sity of the number of states in the phase space volume
dVps = d3xd3p by f(t, xj , pj), where t is the time. The
total number of states in this volume element is

∆N = f(t, xj , pj)dVps. (A.22)

Under the assumption that the system is under the in-
fluence of a smooth, conserved force, which means no
collision or frictional forces, the phase space elements
dVps and the total number of states ∆N are constant
in time as the system moves along its trajectory. Hence
the state distribution function is also a constant. This
means

d
dtf(t, xj , pj) =

∂

∂t
f(t, xj , pj) +

(
∂

∂xj
f(t, xk, pk)

)
ẋj

+

(
∂

∂pj
f(t, xk, pk)

)
ṗj

= 0. (A.23)

A proof of the above expression can be found in [322]. A
detailed exposition of the Liouville’s theorem, including
some useful elementary material can be found in [320].
A discussion of the more complicated cases of the pres-
ence of abrupt forces, such as collisions, can be found in
[237]254)

To conclude: we have shown that the phase-space
volume element dVps is invariant in the preceding sub-
section. The total number of states in an infinitesi-
mal phase-space volume element, obviously, cannot be
changed by a Lorentz transformation, so the phase-space
distribution function has to be Lorentz invariant. This
says, from Eq. (9.99), that the energy of the photon con-
cerned and its temperature track each other under the
Lorentz transformation.

Appendix B: Useful cross section formulae

In this Appendix we list some of the relevant low energy
cross sections.

B.1 Electromagnetic interaction cross sections

B.1.1 Klein–Nishina formula

The photon electron/positron scattering, γ+e± → γ+e±

in the laboratory frame with an incident photon of three-
momentum k and out going photon of momentum k′

|k′| = me|k|
me + |k|(1− cos θ) , (B.1)

254)See, pp 408–413, [237].
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where θ is the angle of the final photon momentun with
respect to the direction of the momentun of the incident
photon. Then the differential cross section is given by

dσ
dΩ =

α2

2m2
c

|k|2

|k′|2

(
|k′|
|k|

+
|k|
|k′|

− sin2 θ

)
, (B.2)

where α = 1/137 is the fine structure constant at van-
ishing momentum.

B.1.2 Thomson scattering cross section

The Thomson cross section is obtained by taking the
limit of zero energy for the incident photon and inte-
grating over the directions of the outgoing photons. In
the limit of vanishing energy of the photon, |k′|/|k| → 1,
we have

dσ
dΩ

∣∣∣∣
|k|→0

=
α2

2m2
e

(1 + cos2 θ). (B.3)

The integration over the solid angle is straightforward,
we obtain

σTh =
8π

3
r2e ,

re =
α

me
. (B.4)

re is the classical radius of the electron. Numerically we
have
re = 2.81794× 10−13 cm,
σTh = 6.65256× 10−25 cm2. (B.5)
Because of the inverse mass-square dependence of the

Thomson cross section, the scattering cross section of
massive fermion will be suppressed by about a factor
(me/M)−2, where M is the mass of the heavier fermion
in question. In particular, the low energy photon-proton
scattering cross section, much below that of the one
pion production process which has the photon thresh-
old energy mπ[1 + mπ/(2mp)] ≈ mπ in the labora-
tory frame (i.e., the initial proton at rest), the cross
section involves a Thomson-cross-section term plus the
contribution from the proton anomalous magnetic mo-
ment. So the cross section is smaller roughly by a factor
(me/mp)

2 ≈ 3 × 10−7. Hence in the early universe the
equilibrium of photon with the charged plasma of elec-
trons and protons is mainly due to the photon-electron
scattering and then the electron-proton scattering.

B.2 Weak interactions cross sections

B.2.1 Muon lifetime

The lowest order calculation of the decay width of the
muon (and antimuon), µ− → νµ + e− + ν̄2, is

Γµ =
G2

Fm
5
µ

192π
+O

(
me

mµ

)
, (B.6)

which gives the mean lifetime of the muon, with the
Fermi constant GF = 1.1664× 10−5 GeV−2,

τµ =
1

Γµ
≈ 2.187× 10−6 s. (B.7)

The experimental value is τ expµ = (2.197034±0.000021)×
10−6 s [11].

B.2.2 Leptonic elastic cross sections

These reactions involve the elastic scattering of the three
flavors of neutrinos against the electron:

σ(νee
− → νee

−) =
G2

FS

π

((
1

2
+XW

)2

+
1

3
X2

W

)
Lab frame−−−−−−→ 9.5× 10−45

(
Eν +me/2

1 MeV

)
cm2,

σ(ν̄ee
− → ν̄ee

−) =
G2

FS

π

(
1

3

(
1

2
+XW

)2

+X2
W

)
Lab frame−−−−−−→ 4.0× 10−45

(
Eν +me/2

1 MeV

)
cm2,

σ(νµe
− → νµe

−) =
G2

FS

π

((
1

2
−XW

)2

+
1

3
X2

W

)
Lab frame−−−−−−→ 1.6× 10−45

(
Eν +me/2

1 MeV

)
cm2,

σ(ν̄µe
− → ν̄µe

−) =
G2

FS

π

(
1

3

(
1

2
−XW

)2

+X2
W

)
Lab frame−−−−−−→ 1.3× 10−45

(
Eν +me/2

1 MeV

)
cm2,

(B.8)

where XW ≡ sin2 θW ≈ 0.23 [11], θW is the weak mixing
or Weinberg angle, and S = (pe+pν)

2, i.e., the square of
the sum of the 4-momenta of the incoming electron and
neutrino. The second expression of each of the above
cross section formulae is given in the laboratory frame.

B.2.3 Leptonic inelastic cross sections

The followings are muon production cross section:

σ(νµe
− → µ−νe) =

G2
F

π

(S −m2
µ)

2

S
Θ(S −m2

µ),

σ(ν̄µe
− → µ−ν̄e) =

G2
F

3π

(S −m2
µ)

2

S
Θ(S −m2

µ), (B.9)

where the Θ-function denotes the threshold requirement.
We do not give the results in the laboratory frame be-
cause it requires rather high energies to produce a muon
from the electron of the order of 20 GeV.
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B.2.4 More neutrino leptonic and annihilation cross
sections

Formulae of neutrino-neutrino elastic scatter and anni-
hilation, and neutrino charged lepton two-body reaction
for the spin sum of squared matrix elements can be found
in [324].

B.2.5 Neutrino nucleon elastic cross sections

Below are neutrino-nucleon elastic scattering cross sec-
tion at low energies in the laboratory frame. The formula
applies to all three flavors of neutrinos and antineutrinos:

σ(νn→ νn) =
G2

FE
2
ν

π
(g2V + 3g2A)

= 9.3× 10−44

(
Eν

1 MeV

)2

cm2,

σ(νp→ νp) =
G2

FE
2
ν

4π
(g2V + 3g2A) (1− 4XW )

2

= 6.0× 10−46

(
Eν

1 MeV

)2

, (B.10)

where Eν is the incident neutrino energy in the labora-
tory frame and

gV = 1, gA = 1.257. (B.11)

B.2.6 Two-body neutrino nucleon inelastic cross sec-
tions

The low energy neutrino nucleon scattering cross sec-
tions are directly relevant to the present discussion.255)

We consider the case that the nucleons involved in the
reaction are practically at rest.

σ(νen→ e−p)

=
G2

FE
2
ν

π
(g2V + 3g2A)

(
1+

Q

Eν

)√
1 + 2

Q

Eν
+
Q2 −m2

e

E2
ν

=
G2

F

π
(g2V + 3g2A)Ee−pe−

=
G2

F

π
(g2V + 3g2A)βe−E

2
e− ,

σ(ν̄ep→ e+n)

=
G2

FE
2
ν̄

π
(g2V + 3g2A)

(
1− Q

Eν̄

)√
1− 2

Q

Eν̄
+
Q2 −m2

e

E2
ν̄

=
G2

F

π
(g2V + 3g2A)Ee+pe+

=
G2

F

π
(g2V + 3g2A)βe+E

2
e+ , (B.12)

where Eν is the incident neutrino energy, Q = mn−mp =
1.2933 MeV is the neutron and proton mass difference,

255)A derivation of the cross section formula below can be found
in [253].

and βe∓ are the relativistic beta factor for the elec-
tron and positron, i.e., their velocity in the natural
units. In the approximation that the nucleons are at
rest, we have Ee− = Eν + Q and Ee+ = Eν̄ − Q, and
pe∓ =

√
E2

e∓ −m2
e, which are the relationships that al-

low us to write the second expressions in each of the two
cross section formulae. Furthermore we note that the
above two expressions are related by crossing the two
nucleons, which changes the sign of Q, and then applies
the charge conjugation and parity (CP) operation.

Using crossing by interchanging the initial and final
leptons in the two reactions of Eq. (B.12), we obtain the
cross sections of two more lepton nucleon reactions:

σ(e+n→ ν̄ep) =
G2

F

π
(g2V + 3g2A)E

2
ν̄ ,

σ(e−p→ νen) =
G2

F

π
(g2V + 3g2A)E

2
ν , (B.13)

where the mass of the neutrino is neglected. Let us note
that the above two sets of reactions Eqs. (B.12) and
(B.13) enter the discussion of cosmological nucleosyn-
thesis.256)

B.2.7 Orders of magnitude of typical cross sections

Interaction Typical cross section
Decay,
Life-time

Strong 10−26 cm−2=102 barn = 10 mb 10−24 s
Electromagnetic 10−32 cm2=10−8 barn = 10 nb 10−16 s
Weak 10−38 cm2=10−14 barn = 10 fb 10−8 s

Appendix C: Useful constants and units
conversion

In this Appendix we list a few important physical con-
stants which are meant for quick references. For details
and more complete listings, we refer to the appropriate
tables in [13].

C.1 Natural units and units conversion

In the extended natural units there is only one unit, usu-
ally taken as the energy. Proper units of physical quan-
tities can be recovered by insert enough powers of ~, c,
and kB, or converting the energy units to another units
with fix numerical values: ~ = 1 relates energy to time,
~c = 1 energy to length, and kB = 1 energy to temper-
ature. First we list the three well-known fundamental

256)See [218], pp 547–548.
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Table C.1 The three fundamental constants.

Fundamental
constant value Proper units

Natural
units

~ 6.582118× 10−22 MeV·s 1

c 2.997825× 1010 cm·s−1 1

kB 8.617343× 10−11 MeV·K−1 1

GN 6.67428× 10−14 m3·g−1·s−2

6.70881× 10−39 ~c(GeV/c2)−2 GeV−2

GF 1.16637× 10−5 (~c)3GeV−2 GeV−2

constants ~, c, kB , and GN and GF . To our adopted
accuracy the errors can be omitted.

C.1.1 Units conversion

In the natural units the particle number density has the
dimension of (energy)3, the energy density (energy)4,
etc. To convert the energy units into a length units, one
needs to multiply it by the factor

(~c)−1 = (1.97327× 10−11 MeV · cm)−1

= 5.06773× 1010 MeV−1cm−1. (C.1)

The following table provides this kind of conversion fac-
tors.

As an example, to write the particle number density,
in the units of MeV3, to the proper units cm−3, the factor
is multiplied:

1 MeV3 = (5.06773× 1010 cm−1)3

= 1.30149× 1032 cm−3. (C.2)

C.2 Masses and binding energies

We list a few useful mass values and nuclear binding
energies in Table C.3.

Binding energy, half-life, and spin of the light nuclei
in Table C.4.

Table C.3 The nucleon mass values and difference.

Nucleon Mass value (MeV)

Proton mp 938.2720

Neutron mn 939.5653

Electron me 0.510999

Q = mn −mp 1.2933

Table C.4 Binding energies of selected light nuclei. Most
of the values are obtained from [325]. Some of the values
may not be exact. Depending on the use of the information,
it is advisable that independent sources should be checked for
accuracy.

Nucleus Binding energy (MeV) spin halflife

Deuteron D 2.23452 1 -

Tritium T 8.4818 1/2 12.32 yrs

Helium-3 3He 7.7180 1/2 -

Helium-4 4He 28.302 0 -

Lithium-4 4Li 1.15/nucleon 2 7.58× 10−23 s

Lithium-6 6Li 5.33/nucleon 1 -

Lithium-7 7Li 5.606/nucleon 3/2 -

Lithium-8 8Li 5.160 2 839 ms

Lithium-9 9Li 178.3 ms

Beryllium-7 7Be 5.371/nucleon 3/2 53 days

Beryllium-8 8Be 7.062 0 7× 10−17 s

Beryllium-9 9Be 6.463/nucleon 3/2 -

Beryllium-10 10Be 6.498/nucleon 0 2.18× 106 yrs

Table C.2 Units conversion.

Energy Temperature Length Time

1 MeV 1.16045× 1010 K 5.06773× 1010 cm−1 1.51927× 1021 s−1

1.60218× 10−6 erg

1.78266× 10−27 g

8.61734× 10−11 MeV 1 K 4.36704 cm−1 1.30920× 1011 s−1

5.06773× 1010 MeV−1 4.36704 K−1 1 cm 3.33564× 10−11 s

1.51927× 1021 MeV−1 1.30920× 1011 K−1 2.99783× 1010 cm 1 s

1.97327× 10−11 MeV 2.28988× 10−1 K 1 cm−1 2.99792× 1010 s−1

6.58212× 10−22 MeV 7.63822× 10−12 K 3.33564× 10−11 cm−1 1 s−1

Bing-Lin Young, Front. Phys. 12(2), 121201 (2017)
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C.3 Useful constants

Astrophysical constants & parameters in Table
C.5.

C.4 Planck quantities

Planck quantities involve the gravitational constant GN

are given in Table C.6.
Note that all Planck quantities in the table can be

obtained from the Planck mass MP by applying units
conversion factors given in Table C.2 which come from
the definition of natural units. The numerical value of
MP = 1.22 × 1019 GeV in nature units can be directly
obtained from Table C.1. The Planck mass and energy
densities are a matter of definition as defined in Table
C.2. But their form can also be argued as follows, using
the Planck mass density as an illustration. First, we no-
tice that the expression MP =

√
~c/GN has indeed the

proper mass units, although the Planck mass is usually
expressed in the energy units, i.e., GeV. To obtain the
Planck mass density, we observe that in natural units
the mass density has the dimension of energy to the 4th
power. Since the only relevant mass in the Planck scale
is the Planck mass, we start with M4

P and convert three
powers of MP each into units of the length inverse, i.e.,
MP →MP (c/~). Hence we have

ρP ≡M4
P

( c
~

)3
=

(
~c
GN

)2 ( c
~

)3
=

c5

~G2
N

, (C.3)

which is just MP /ℓ
3
P . To obtain its numerical value in

the proper units, using Table C.2 we convert one power
of MP into units of mass in grams, and three powers of
MP each into the inverse of the length in cm−1; or, we
simply use the numerical values of the quantities involved
as given in Table C.6.

Table C.5 Some useful astrophysical constants and pa-
rameters. All relevant numbers are referred to the present
epoch.

Constant/Parameter Value Units

c (speed of light) 2.99792× 1010 cm

Yr 3.15569× 107 sec

ly (light year) 9.46053×1015 m

pc (parsec) 3.08568×1016 m

3.262 ly

nγ 410.5(T/2.725)3 cm−3

nb (2.482± 0.032)× 10−7 cm−3

0.256 protons m−3

η = nb/nγ 6.05× 10−10

h 0.673± 0.012

H0 (9.777752)−1h Gyr−1

3.24091× 10−18h sec−1

τ
(0)
H = 1/H0 (Hubble
time)

3.08556× 1017h−1 sec

9.77775h−1 Gyr

D
(0)
H = c/H0 (Hubble
length)

9.25025× 1025h−1 m

τU (age of universe) 13.6 Gyr

ρc = 3H2
0/8πGN 1.05368× 10−2h2 (MeV/c2)/cm3

1.87835× 10−29h2 g/cm3

ργ 0.2604 eV/cm3

ρb 240 eV/cm3

εγ(average γ energy) 6.34× 10−4 eV

ΩΛ = ρΛ/ρc 0.685

Ωm = ρm/ρc 0.315

Ωb = ρb/ρc 0.02207h−2

Ωγ = ργ/ρc 2.471×10−5

(T/2.725)4h−2

Table C.6 The Planck quantities.

Quantity Defined value units

Planck mass MP =
√

~c
GN

1.22089× 1019 GeV
2.17651× 10−5 g

Reduced Planck mass µP =
√

~c
8πGN

2.43532× 1018 GeV

Planck length ℓP =
√

~GN
c3

1.61620× 10−33 cm

Planck time tP =
√

~GN
c5

= ℓP
c

5.39123× 10−44 sec

Planck temperature TP =

√
~c5

GNk
2
B

= 1
kB
MP c

2 1.41585× 1032 K

Planck mass density ρP = MP

ℓ3
P

= c5

~G2
N

5.15555× 1093 g/cm3

Planck energy density εP = ρP c
2 = c7

~G2
N

4.63298× 10114 erg/cm3
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and a significant part written early was based on data of the 2012
edition of the Particle Data Group’s (PDG’s) Review of Particle
Physics (RPP). Some portions written more recently were based
on the 2014 edition of RPP. The differences of most of the needed
data, such as the matter-energy densities, etc. in the two editions
are small, mostly agreeing within 1 − σ. When actual data are
involved, the version of RPP used are generally noted. Hence, even
though updating of older data to the newest available is desirable
in principle, I felt that it is not necessary in the present case. So
updating the data used for the whole report has not been made.

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use, dis-
tribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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